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Abstract

The objective of this thesis is a survey of crisp and fuzzy sober topological spaces. We
begin by examining sobriety of crisp topological spaces. We then extend this to the L-
topological case and obtain analogous results and characterizations to those of the crisp
case. We then briefly examine semi-sobriety of (L,M)-topological spaces.
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PREFACE

The purpose of this present work is a survey of Sobriety, starting with the crisp case and
then extending it to the L-topological case and the (L,M)-topological case.

Chapter 1 is of an introductory nature, providing the reader with results concerning lat-
tice theory, ideals and filters, fuzzy sets, topologies and neighbourhoods.

Chapter 2 concerns crisp sobriety. We begin with the initial definition of crisp sobriety
of ordinary topological spaces and then characterize crisp sober spaces in three different
ways. The first characterization is in terms of completely prime filters. The second char-
acterisation is in terms of nets. The final characterization is in terms of irreducible closed
sets.

Chapter 3 is about the properties of crisp sober spaces, it is divided up into three sec-
tions. The first section deals with the relationship of sobriety to the seperation axioms and
we then go on to define a topology on ptT . The second section deals with sober spaces and
continuous maps. The third section is titled sobriety of partially ordered sets. In this section
we define a partial order on a T0 space, called the specialization ordering. We then proceed
to examine topologies on partially ordered sets (X,≤) such that the specialization ordering
on the space is ≤. In this connection we have a look at the Alexandrov topology and the
upper interval topology. We then define the Scott topology and answer the question as to
whether the Scott topology on a directed set is always sober.

Chapter 4 deals with fuzzy sobriety or L-sobriety. We define sobriety of an L-topological
space in an analogous manner to sobriety of a crisp topological space. We then examine
sobriety for the case L = [0, 1]. In this section we follow the work of Singh and Srivastava
in [17] where we look at the definitions of α-sober spaces, strongly sober spaces and ultra-
sober spaces. The remainder of the section deals with how these different concepts relate to
one another.

Chapter 5 is titled properties of L-sober spaces and is analogous to Section 3.2 for the
ordinary topological case.

Chapter 6 is titled fuzzy sobriety, semi-sobriety and the Hausdorff properties. In the first
section we seek a counterpart to the characterization of sobriety of crisp topological spaces
in terms of irreducibly closed sets. In doing this we discuss the L-topological equivalent,
semi-sobriety due to Wesley Kotzé. We then go on to discuss the Hausdorff properties and
how these relate to semi-sobriety and sobriety. The next section is a characterization of
L-topological sober spaces, firstly in terms of completely prime filters and then in terms of
nets. These characterizations are analogous to those in chapter 2. The last section of chap-
ter 6 looks at how semi-sobriety is related to the concepts of Srivastava which we discussed
in section 4.2. Sections 6.3 and 6.4 are based on as yet unpublished work by Wesley Kotzé.

In Chapter 7 we follow Kotzé’s work in [13] this deals with the lifting of sobriety and
semi-sobriety.

In Chapter 8 we again follow [13] but this time in connection with semi-sobriety in (L,M)-
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topological spaces.

We are aware of at least two notable recent contributions about sober spaces which do
not, in our opinion, fit this discussion. These are :
P. Taylor, Sober spaces and continuations. Theory and applications of Categories 10(12)(2002),
248-300.
and
A. Pultr and S. E. Rodabaugh, Examples for different sobrieties in fixed-basis topology.
Topological and Algebraic structures in fuzzy sets. Eds. S. E. Rodabaugh and E. P. Kle-
ment, Kluwer Academic Publishers (2003). ( [15])
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Chapter 1

Lattice Theory and Basic
Concepts

1.1 Introductory Concepts

The following are well known. See e.g. [8].

1.1.1 Definition
Let A be a set. A partial order on A is a binary relation ≤ which is

1. reflexive : a ≤ a ∀a ∈ A

2. transitive : if a ≤ b and b ≤ c then a ≤ c

3. antisymmetric : if a ≤ b and b ≤ a then a = b

A poset is a set equipped with a partial order.

1.1.2 Definition
Let A be a poset, S a subset of A. We say an element a ∈ A is a join (least-upper bound)
for S and write a =

∨

S if,

1. a is an upper bound for S i.e. s ≤ a ∀s ∈ S

2. if b satisfies ∀s ∈ S (s ≤ b) then a ≤ b

The antisymmetry axiom ensures that the join of S, if it exists, is unique. If S is a two-
element set {s, t} we write s ∨ t for

∨

{s, t} and
∨

∅ = 0, should it exist; then 0 is clearly
the least element of A.

1.1.3 Proposition
Let A be a poset in which every finite subset has a join and with least element 0, then the
following are satisfied:

1. a ∨ a = a ∀a ∈ A

2. a ∨ b = b ∨ a ∀a, b ∈ A

3. a ∨ (b ∨ c) = (a ∨ b) ∨ c ∀a, b, c ∈ A

4. a ∨ 0 = a ∀a ∈ A

We say that (A,∨, 0) is a commutative monoid in which every element is idempotent.
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1.1.4 Theorem
Let (A,∨, 0) be a commutative monoid in which every element is idempotent. Then there
exists a unique partial order on A such that a ∨ b is the join of a and b and 0 is the least
element. i.e. a ≤ b iff a ∨ b = b

A set with the structure described in the theorem is called a semilattice (join semilattice).
The theorem shows that the notion of a join semilattice can be expressed equivalently either
in terms of the order relation or in terms of the join operation.

1.1.5 Definition
Let A be a poset, S a subset of A. We say an element a ∈ A is a meet (greatest-lower bound)
for S and write a =

∧

S if,

1. a is a lower bound for S i.e. a ≤ s ∀s ∈ S

2. if b satisfies ∀s ∈ S (b ≤ s) then b ≤ a

If S is a two element set {s, t}, we write s ∧ t for
∧

{s, t} and
∧

∅ = 1, if it exists, will be
the greatest element of A

1.1.6 Proposition
Let A be a poset in which every finite subset has a meet and with greatest element 1, then
the following are satisfied,

1. a ∧ a = a ∀a ∈ A

2. a ∧ b = b ∧ a ∀a, b ∈ A

3. a ∧ (b ∧ c) = (a ∧ b) ∧ c ∀a, b, c ∈ A

4. a ∧ 1 = a ∀a ∈ A

(A,∧, 1) is a commutative monoid in which every element is idempotent.

Dually, the analogue of Theorem 1.1.4 applies. If (A,∧, 1) is a commutative monoid in
which every element is idempotent, then there exits a unique partial order on A such that
a ∧ b is the meet of a and b and 1 is the greatest element i.e. a ≤ b iff a ∧ b = a. A set with
this structure is again a semilattice, in this case a meet semilattice.

1.1.7 Definition
A lattice is a poset A in which every finite subset has both a join and a meet.

By Theorem 1.1.4 we see that a lattice is a poset A equipped with two binary operations
∨, ∧ and two distinguished elements 0, 1 such that (A,∨, 0) and (A,∧, 1) are semilattices
and the partial orders induced on A by the semilattice structures are opposite each other.

1.1.8 Proposition
Suppose (A,∨, 0) and (A,∧, 1) are semilattices. Then (A,∨,∧, 0, 1) is a lattice iff the ab-
sorptive laws,

1. a ∧ (a ∨ b) = a ∀a, b ∈ A

2. a ∨ (a ∧ b) = a ∀a, b ∈ A

are satisfied.
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Proof. a∨ b = b implies by (1) a∧ b = a∧ (a∨ b) = a and by (2), a∧ b = a implies a∨ b = b.
So the two partial orders on A agree.
The converse follows trivially.
�

1.1.9 Definition
A distributive lattice, is a lattice (A,∨,∧, 0, 1) which satisfies the additional identity, called
the distributive law,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ∀a, b, c ∈ A

1.1.10 Lemma
If the distributive law holds in a lattice then so does its dual,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) ∀a, b, c ∈ A

Proof. Using the absorptive laws of Proposition 1.1.8

(a ∨ b) ∧ (a ∨ c) = ((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c)

= a ∨ ((a ∧ c) ∨ (b ∧ c))

= (a ∨ (a ∧ c)) ∨ (b ∧ c)

= a ∨ (b ∧ c)

�

1.1.11 Definition
1. A join-semilattice A is said to be complete if it has arbitrary joins and not just finite

ones.

2. A meet-semilattice A is said to be complete if it has arbitrary meets and not just finite
ones.

3. A lattice A is said to be complete if it has arbitrary joins and meets and not just finite
ones.

1.1.12 Proposition
A poset is a complete join-semilattice iff it is a complete meet-semilattice.

Proof. Let A be a complete meet-semilattice, S ⊂ A. Consider the set T of all upper
bounds for S, and let a =

∧

T . Since every s ∈ S is a lower bound for T , we have s ≤ a

and hence a is an upper bound for S. So a is the least element of T , i.e. a =
∨

S.
�

1.1.13 Definition
A frame is a lattice which is closed under arbitrary suprema (

∨

) and finite infima (∧) and
satisfies the frame distributive law,

a ∧ (
∨

bi) =
∨

(a ∧ bi)

A semi-frame is a lattice which is closed under arbitrary suprema (
∨

) and finite infima (∧).
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1.1.14 Definition
An order preserving map is a map f : (A,≤) −→ (B,≤) with the property that if a ≤ b,
a, b ∈ A then f(a) ≤ f(b) in B.

1.1.15 Definition
A lattice morphism f : A −→ B between two lattices is a map preserving the distinguished
elements 1, 0 and the operations ∨ and ∧.
A frame morphism between frames preserves arbitrary suprema and finite infima.

It should be noted that a lattice morphism is necessarily an order preserving map, but
an order preserving map between lattices is not necessarily a lattice morphism.

1.1.16 Definition
An order reversing involution on a poset A is a map ′ : A −→ A satisfying a ≤ b ⇒ b′ ≤ a′

for all a, b ∈ A and a′′ = a for all a ∈ A.

If A is a lattice with an order reversing involution it is easy to see that the de Morgan
laws are satisfied, viz. (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′, and 0′ = 1 and 1′ = 0; and in
the case of a complete lattice (

∨

ai)
′ =

∧

a′i and (
∧

ai)
′ =

∨

a′i.

1.1.17 Definition
A poset A is said to be directed if

1. A 6= ∅

2. every pair of elements of A has an upper bound in A.

We say A has directed joins if
∨

S exists for every subset S ⊆ A.

1.2 Ideals and Filters
1.2.1 Definition

An ideal I in a lattice, A, is a subset of A such that,

1. 0 ∈ I and a, b ∈ I implies a ∨ b ∈ I

2. I is a lower set, i.e. a ∈ I and b ≤ a⇒ b ∈ I

An ideal is prime if 1 6∈ I and a ∧ b ∈ I ⇒ a ∈ I or b ∈ I. If a ∈ A, then ↓ (a) = {b ∈ A :
b ≤ a} is an ideal of A, called the principal ideal generated by a.

1.2.2 Definition
A filter F in a lattice A is a subset of A such that

1. 1 ∈ F and a, b ∈ F ⇒ a ∧ b ∈ F

2. F is an upperset i.e. a ∈ F and b ≥ a⇒ b ∈ F

Clearly ↑ (a) = {b ∈ A : b ≥ a} is a filter in A. A filter is prime if 0 6∈ F and a ∨ b ∈ F ⇒
a ∈ F or b ∈ F and completely prime if

∨

ai ∈ F ⇒ ∃i, ai ∈ F .

1.2.3 Proposition
1. F is a prime filter in A iff A \ F is a prime ideal in A.

2. F is a completely prime filter in A iff A \ F is a principal(prime) ideal in A.

Proof.
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1. trivial

2. F completely prime is equivalent to,

∀i, ai ∈ A \ F ⇒
∨

ai ∈ A \ F

which (since A \ F is an ideal by part (a)) is equivalent to saying,

A \ F = {b ∈ A : b ≤
∨

ai, ai ∈ A \ F}

= ↓ (
∨

{a : a ∈ A \ F})

So A \ F is a principal prime ideal in A

�

1.2.4 Definition
An element a ∈ A is prime in A iff ↓ (a) is a prime ideal. So a is prime iff b∧ c ≤ a⇒ b ≤ a

or c ≤ a.

1.2.5 Definition
An element a ∈ A is irreducible (co-prime) in A iff b ∨ c ≥ a⇒ b ≥ a or c ≥ a.

1.2.6 Proposition
If A has an order reversing involution then a ∈ A is prime in A iff a′ is irreducible in A′.

1.2.7 Theorem ( [11], [12])
1. If I is a prime ideal of a lattice A, then I = {a ∈ A : ϕ(a) ≤ α}(= ϕ←[0, α]) where ϕ

is a lattice morphism ϕ : A −→ L, where L is a lattice with 0 and 1 and α 6= 1.

2. If I is a principal prime ideal of a frame A, then I = ϕ←[0, α] where ϕ is a lattice
morphism ϕ : A −→ L, where L is a lattice with 0 and 1 and α 6= 1.

3. Conversely, if I = ϕ←[0, α] with ϕ a lattice morphism ϕ : A −→ L, where L is a lattice
with 0 and 1 and α is a prime element of L, α 6= 1, then I is a prime ideal of A.

Proof.

1. Define ϕ : A −→ L as :

ϕ(a) =

{

α if a ∈ I
1 if a 6∈ I

Then it can easily be checked that ϕ is a lattice morphism, i.e. if a ∈ I and b ∈ I,
then a∨ b ∈ I and so ϕ(a) = α = ϕ(b) = ϕ(a∨ b). Therefore ϕ(a∨ b) = ϕ(a)∨ϕ(b). If
a ∈ I and b 6∈ I, then a∨ b 6∈ I and so ϕ(a) = α, ϕ(b) = 1 and ϕ(a∨ b) = 1. Therefore
ϕ(a)∨ ϕ(b) = ϕ(a∨ b). If a 6∈ I and b 6∈ I, then a∨ b 6∈ I and so ϕ(a) = ϕ(b) = 1 and
ϕ(a ∨ b) = 1. Therefore ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b). If a ∈ I and b ∈ I, then a ∧ b ∈ I
and so ϕ(a) = α = ϕ(b) = ϕ(a ∧ b). Therefore ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b). If a ∈ I
and b 6∈ I then a ∧ b ∈ I and so ϕ(a) = α, ϕ(b) = 1 and ϕ(a ∧ b) = α. Therefore
ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b). If a 6∈ I and b 6∈ I then a∧ b 6∈ I since I is a prime ideal, and
so ϕ(a) = ϕ(b) = ϕ(a ∧ b) = 1. Therefore ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b).
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2. If A is a frame we only have to add the following to the proof of (1):
If

∨

ai ∈ I, then ai ∈ I for all i. So ϕ(
∨

ai) = α and ϕ(ai) = α. Hence ϕ(
∨

ai) =
∨

ϕ(ai). If
∨

ai 6∈ I (so ϕ(
∨

ai) = 1): Suppose all ai ∈ I. Then
∨

ai ∈ I since
I is a principal prime ideal. So there exists aj 6∈ I. Hence ϕ(aj) = 1 and thus
ϕ(

∨

ai) =
∨

ϕ(ai).

3. Given I = ϕ←[0, α], α 6= 1, α prime. Then 1 6∈ I. If a ∧ b ∈ I, then ϕ(a ∧ b) ≤ α,
hence ϕ(a) ∧ϕ(b) ≤ α. Since α is prime, this means that ϕ(a) ≤ α or ϕ(b) ≤ α. Thus
a ∈ I or b ∈ I. I is therefore a prime ideal.

�

1.2.8 Note
If L = {0, 1}, then α = 0 and the ϕ in (1) and (2) above is unique and in (3), I = ϕ←{0}.

1.3 Fuzzy sets and Zadeh’s extension principle

If L is a complete lattice with 0 and 1 then LX = {f : X −→ L} becomes a lattice under
the definition (u ∧ v)(x) ≡ u(x) ∧ v(x) and (u ∨ v)(x) ≡ u(x) ∨ v(x) for u, v ∈ LX . 0 and 1
will indicate the functions identically 0 and 1 on X respectively. If L is distributive lattice
or a frame so is LX under these definitions. If L has an order reversing involution, so has
LX under u′(x) ≡ u(x)′. The members of [0, 1]X with these operations were called fuzzy
sets by Zadeh( [29]).

Given a function f : X −→ Y , Zadeh defined maps between LX and LY (in both directions)
as follows (of course Zadeh had L = [0, 1] in mind) :

1.3.1 Definition (Zadeh’s extension principle [29])
If f is a map from a set X into a set Y , then for v ∈ LY , f←(v) is defined by f←(v)(x) ≡

v(f(x)), and for u ∈ LX , f→(u) is defined by,

f→(u)(y) =

{ ∨

x∈f←{y} u(x) if f←(y) 6= ∅

0 if f←(y) = ∅

In the special case where L = {0, 1}, this corresponds with the classical notions of image
and pre-image of “crisp” sets under a map.

The following summarizes the properties of f→ and f←. The proofs are routine and can
be found in [1], [24], [25] and [26].

1.3.2 Theorem
Let X,Y, Z be sets, f : X −→ Y , g : Y −→ Z, u, (uj) ∈ LX , v, (vj) ∈ LY , w ∈ LZ .
Then

1. (g ◦ f)→(u) = g→(f→(u),

2. (g ◦ f)←(w) = f←(g←(w)),

3. f←(supj∈Jvj) = supj∈Jf
←(vj),
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4. f←(infj∈Jvj) = infj∈Jf
←(vj),

5. f←(v′) = (f←(v))′,

6. vj ≤ vk ⇒ f←(vj) ≤ f←(vk),

7. f→(supj∈Juj) = supj∈Jf
→(uj),

8. f→(infj∈Juj) ≤ infj∈Jf
→(uj),

9. f→(u′) ≥ f→(u)′,

10. uj ≤ uk ⇒ f→(uj) ≤ f→(uk),

11. f→(f←(v)) ≤ v with equality if f is surjective,

12. f←(f→(u)) ≥ u with equality if f is injective,

13. f→(f←(v) ∧ u) = v ∧ f→(u).

1.3.3 Definition
A fuzzy point µx on X is a member of LX with {x} as support, i.e.

µx(y) =

{

α if y = x

0 otherwise

for some α ∈ L \ {0}. Where the value of α plays a role as in Section 6.2 we also denote
such a point by (x, α).
If L has an order reversing involution, we say that a fuzzy point is quasi-coincident with
u ∈ LX iff µx(x) > u(x)′ (equivalently u(x) > µx(x)′) (In the case L = [0, 1] this means
that µx(x) + u(x) > 1). We write µx qco u.

1.3.4 Proposition
1. µx qco u ∧ v iff µx qco u and µx qco v

2. µx qco
∨

j∈J uj iff ∃j ∈ J such that µx qco uj

Proof. trivial
�

1.3.5 Definition
Let µ ∈ LX we define the support of µ, suppµ, as follows,

suppµ = {x ∈ X : µ(x) > 0}

7



1.4 Topologies

C.L. Chang [1] was the first to define a “fuzzy topology” extending the “crisp” concept in
the lattice {0, 1}X to [0, 1]X .
More generally:

1.4.1 Definition
If L is a complete lattice with 0 and 1 then a subfamily T of LX is an L-topology (fuzzy
topology) on X if,

1. 0,1 ∈ T

2. u, v ∈ T ⇒ u ∧ v ∈ T

3. ui ∈ T , i ∈ I ⇒
∨

ui ∈ T .

(X,L, T ) is called an L-topological (fuzzy topological) space and the members of T are the
L-open (fuzzy open) sets.

In what follows, when considering L-topologies, we’ll assume L to be a frame so that
the frame distributive law of Definition 1.1.13 is also valid for LX . Furthermore, if L has
an order reversing involution then T ′ (the involutes of the members of T ) is a sublattice of
LX which is closed under arbitrary infima and finite suprema, the L-closed sets.

As in the crisp case we define,

1.4.2 Definition
Let (X,L, T1) and (Y, L, T2) be L-topological spaces and f : X −→ Y , then f is L-continuous
(fuzzy continuous) iff f←(v) ∈ T1 for all v ∈ T2.

In view of Theorem 1.3.2 this means that f is L-continuous iff f← is a frame morphism
from T2 to T1.

A topology (and hence an L-topology) can also be viewed as a mapping. This probably
goes back to [5].

1.4.1 Ordinary (crisp) topological case

If a topology T on a space X (i.e. a frame in P(X) with bottom ∅ and top X) is identified
with a map,

T : P(X) −→ {0, 1} where T (A) = 1 iff A is open, then

1. T (∅) = T (X) = 1

2. T (U ∩ V ) ≥ T (U) ∧ T (V ) for all U, V ∈ P(X)

3. T (
⋃

Ui) ≥
∧

T (Ui) for all Ui ∈ P(X)

(X, T ) is called a topological space.

In emulation of this we could also define,
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1.4.2 L-topological case

(L is a frame with 0 and 1 and order reversing involution.)

If an L-topology T on X (i.e. a frame in LX with 0 and 1) is identified with a map

T : LX −→ {0, 1} where T (a) = 1 if a is L-open, then also

1. T (0) = T (1) = 1

2. T (u ∧ v) ≥ T (u) ∧ T (v) for all u, v ∈ LX

3. T (
∨

ui) ≥
∧

T (ui) for all ui ∈ LX

(X,L, T ) is called an L-topological space.

In what follows we identify the operator T : LX −→ {0, 1} with the frame F = {u ∈
LX : T (u) = 1} in LX , and corresponding “closed sets” with the complements u′(x) ≡ u(x)′

where the second ′ is the order reversing involution of L. If we write T ⊂ T ∗ for two L-
topologies on X , it is in the sense of the frame inclusion : F ⊂ F∗.

The advantage of these viewpoints is that it allows for the following generalization.

1.4.3 (L, M)-topological case

(L is a frame with 0 and 1 and order reversing involution and M is a frame with 0 and 1.)

An (L,M)-topology is a map T : LX −→M such that

1. T (0) = T (1) = 1

2. T (u ∧ v) ≥ T (u) ∧ T (v) for all u, v ∈ LX

3. T (
∨

ui) ≥
∧

T (ui) for all ui ∈ LX

(X,L,M, T ) is called an (L,M)-topological space.

This concept is due to Šostak (see e.g. [18] and [19] in case L = M = [0, 1]) and Šostak and
Kubiak [14] where these spaces are referred to as “(L,M)-fuzzy topologies” (cf. Chapters 3
and 4 of [4]). Mingsheng Ying [28] called the case L = {0, 1} and M = [0, 1] a “fuzzifying
topology”.

1.5 Neighbourhoods

1.5.1 Definition
In (X,L, T ) an α-neighbourhood (α ∈ L, α 6= 1) of a point x ∈ X is a u ∈ T such that
u(x) > α

1.5.2 Definition
In (X,L, T ), L with an order reversing involution ′ a quasi-neighbourhood of a fuzzy point
µx is a u ∈ T such that µx qco u, i.e. µx(x) > u(x)′.

1.5.3 Proposition
In (X,L, T ) (L with an order reversing involution) u ∈ T is an α neighbourhood of x iff u

is a quasi-neighbourhood of µx = (x, α′).

9



Proof. Trivial.
�
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Chapter 2

Crisp Sobriety

In this chapter we define sobriety of a crisp topological space in four different ways and show
that the definitions are equivalent.

2.1 Initial definition and first characterization

2.1.1 Definition ( [8])
Given a topological space (X, T ), ptT (or spectrum of T ) will denote the collection of all
frame maps p from T into the frame {0, 1} (the topology on a singleton space).

2.1.2 Definition
Let

Ψ : X −→ ptT

Ψ(x)(u) = χu(x)

be the characteristic function of u, for x ∈ X and u ∈ T . Then (X, T ) is sober iff Ψ is a
bijection.

2.1.3 Proposition ( [8])
Ψ is injective iff (X, T ) is T0.

Proof. If x, y are distinct points of X then we have Ψ(x) = Ψ(y) iff x and y are contained
in exactly the same open sets of X iff the T0 axiom fails for the pair (x, y).
�

2.1.4 Corollary
(X, T ) sober ⇒ (X, T ) T0

2.1.5 Definition (see Definition 1.2.2)
Let (X, T ) be a topological space. A filter F of open sets is completely prime if for every
family (Oi)i∈I with

⋃

i∈I Oi ∈ F , ∃i ∈ I with Oi ∈ F .

2.1.6 Theorem
A topological space (X, T ) is sober iff every completely prime filter F of open sets is the
filter of open neighbourhoods of a unique x ∈ X .

Proof. Firstly observe that ∀p ∈ ptT , p←(1) is a completely prime filter in T .
Filter :

11



1. X ∈ p←(1)

2.

u, v ∈ p←(1) ⇒ p(u) = 1, p(v) = 1

⇒ p(u ∩ v) = p(u) ∧ p(v) = 1

⇒ u ∩ v ∈ p←(1)

3.

u ∈ p←(1), u ⊂ v ⇒ p(v) = 1 since p(v) ≥ p(u) (p(u) = p(u ∩ v) = p(u) ∧ p(v) = 1)

⇒ v ∈ p←(1)

Completely Prime :
⋃

ui ∈ p←(1) ⇒ p(
⋃

ui) = 1

⇒
∨

p(ui) = 1

⇒ ∃ui s.t. p(ui) = 1

⇒ ∃ui s.t. ui ∈ p←(1)

We need to show that all completely prime filters in T are of the form p←(1) for some
p ∈ ptT . Let F be a completely prime filter of open sets. Define,

p : T → {0, 1}

as

p(u) =

{

1 if u ∈ F
0 if u 6∈ F

Then p is a frame map as can be seen from,

1.

p(X) = 1, p(∅) = 0

2.

p(u ∩ v) =

{

1 if u and v ∈ F
0 u or v 6∈ F

= p(u) ∧ p(v)

3.

p(
⋃

ui) =

{

1 if
⋃

ui ∈ F
0 if

⋃

ui 6∈ F

=
∨

p(ui)

because if
⋃

ui ∈ F , ∃uj ∈ F and so p(uj) = 1 hence
∨

p(ui) = 1. If
⋃

ui 6∈ F then
no ui ∈ F and so

∨

p(ui) = 0. Thus F = p←(1) for a frame map p ∈ ptT .

Now, if (X, T ) is sober then

p←(1) = {u ∈ T : p(u) = 1}

= {u ∈ T : χu(x) = 1 for some unique x ∈ X}

= {u ∈ T : x ∈ u for some unique x ∈ X}

12



Conversely, if F is a completely prime filter in T then

F = {u ∈ T : x ∈ u for a unique x ∈ X}

Thus for any p ∈ ptT

p←(1) = {u ∈ T : x ∈ u for a unique x ∈ X}

= {u ∈ T : χu(x) = 1 for a unique x ∈ X}

so Ψ is a bijection and (X, T ) is sober.
�

2.2 Two other characterizations of sobriety

Sobriety can also be defined in terms of nets. Before doing this we need to introduce some
concepts concerning nets.

2.2.1 Definition ( [23])
Given a topological space (X, T ). A net (xλ)λ∈Λ in X is observative if , given O ∈ T and
xλ ∈ O for some λ ∈ Λ, then the net is eventually in O.
Thus a net is observative iff it converges to each of its points (it is “self converging”).
An observative net is said to strongly converge to x if it converges with respect to T and if
it additionally satisfies that x is an element of every open set which eventually contains the
net. In this case we write xλ −→∗ x.
If (xλ)λ∈Λ is a net on some set and λ ∈ Λ, we denote the λ-tail {xj : j ≥ λ} of the net by
[x]≥λ.

2.2.2 Example
In R with the ordinary topology the constant nets (xλ = r, ∀λ) are observative.
In X = (−∞, k] with the topology {X, ∅, (a, k] : a ∈ X}, xλ = λ ∈ X (with the usual ≤ on
R) is an observative net which converges strongly to k.

In the logical approach to topology, open sets correspond to observable properties of
points and x ∈ O means that x has the property O. Thus an observative net may be
thought of as a stepwise computation where every property established at some stage will
be satisfied eventually. In this setting, being the strong limit means having exactly all the
properties established during the computation.

2.2.3 Definition ( [23])
If (X, T ) is a topological space then b− T , its b-topology, has as a subbase of open sets the
family of all sets which are either T -open or T -closed.

2.2.4 Proposition ( [23])
If (xλ)λ∈Λ is an observative net in (X, T ) then xλ −→∗ x iff xλ −→ x with respect to the
b-topology.

Proof. Suppose xλ −→∗ x and x ∈ A for some T -closed set A. If the net is not eventually
contained in A, then it is frequently in the open set X \ A. The net is observative, hence
[x]≥λ ⊆ X \ A for some tail. But then x ∈ X \ A by strong convergence, a contradiction.
Hence strong convergence implies b-convergence. If on the other hand xλ −→ x with respect
to b − T , then strong convergence follows immediately: An open set O which eventually
contains the net but does not contain x gives rise to a b-neighbourhood X \O of x which is

13



missed by the net.
�

For a net (xλ)λ∈Λ in (X, T ) we construct the derived filter of open sets F(xλ) as follows,

F(xλ) = {O ∈ T : ∃λ ∈ Λ, [x]≥λ ⊆ O}

2.2.5 Proposition ( [23])
A filter derived from an observative net is completely prime.

Proof. Let (xλ)λ∈Λ be observative and
⋃

j∈J Oj ∈ F(xλ). So [x]≥λ∗ ⊆
⋃

Oj . Then ∃j0 ∈ J

such that xλ∗ ∈ Oj0 . Since the net is observative, this implies that some tail is contained in
Oj0 . Thus by definition of F(xλ), Oj0 is a member of it.
�

2.2.6 Lemma ( [23])
If (xλ)λ∈Λ is an observative net then xλ −→∗ x iff F(xλ) = Nx.

Proof. (xλ)λ∈Λ converges strongly to x iff it is true that x ∈ O ∈ T is equivalent to the
existence of some λ ∈ Λ with [x]≥λ ⊆ O.

xλ −→∗ x iff x ∈ O ⇔ ∃λ ∈ Λ, [x]≥λ ⊆ O iff x ∈ O ↔ O ∈ Fxλ

�

2.2.7 Proposition ( [23])
Suppose F is a filter of open subsets of the topological space (X, T ). Then F is completely
prime iff ∀O ∈ F , ∃x ∈ O such that ∀P ∈ T , x ∈ P ⇒ P ∈ F

Proof. In case F has this property and
⋃

j∈J Oj ∈ F , pick x ∈
⋃

j∈J Oj with (x ∈ P ⇒
P ∈ F). Certainly we have x ∈ Oj0 for some j0 ∈ J . Hence Oj0 ∈ F . Therefore, the filter
is completely prime.
Conversely, suppose that O ∈ F does not have this property. This means that for each
x ∈ O there is Px ∈ T with x ∈ Px and Px 6∈ F . Set Ox ≡ Px ∩ O. Then Ox 6∈ F for all
x ∈ O and O =

⋃

x∈O Ox ∈ F . This contradicts complete primality of F .
�

Sünderhauf [23] constructs a net from a completely prime filter as follows.
For each O ∈ F choose x0 ∈ O with the property guaranteed by Proposition 2.2.7. Then
ΛF = {(x0, O) : O ∈ F} is a directed set with respect to (x0, O) ≤ (xS , S) iff S ⊂ O. Then
N : ΛF −→ X , N(x0, O) ≡ x0 is called the net derived from the completely prime filter F .

2.2.8 Lemma ( [23])
A net derived from a completely prime filter is observative.

Proof. Let (x0) be the net derived from the completely prime filter and let x0 ∈ O∗ for
O∗ ∈ T . Then O∗ ∈ F by the choice of x0 and hence (x0, O

∗) ∈ ΛF . If (xS , S) ≥ (x0, O
∗)

then S ⊂ O∗ and xS ∈ S ⊂ O∗ and the net is eventually in O∗.
�
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2.2.9 Proposition ( [23])
Every completely prime filter F equals the derived filter of any of its derived nets.

Proof. If O ∈ F and [x]≥O ⊆ O then O ∈ F(xO). Conversely, O ∈ F(xO) implies [x]≥P ⊆ O

for some P ∈ F . Hence, xP ∈ O, and this implies O ∈ F by the choice of xP .
�

The preceeding results concerning nets provide us with the following theorem, which
constitutes our second characterization of sobriety, now in terms of observative nets.

2.2.10 Theorem ( [23])
A topological space (X, T ) is sober iff every observative net strongly converges to a unique
point.

Proof. (X, T ) sober implies by Theorem 2.1.6 that every completely prime filter of open
sets equals Nx for a unique x ∈ X . So given an observative net (xλ)λ∈Λ, then its derived
filter is completely prime (by Proposition 2.2.5) and is therefore Nx for a unique x. Thus
by Lemma 2.2.6, xλ −→∗ x for a unique x.
Conversely : Suppose every observative net in X strongly converges to a unique x ∈ X .
Then by Lemma 2.2.6, Nx is the derived filter of such a net, and by Proposition 2.2.5 is
completely prime. But by Proposition 2.2.9 every completely prime filter can be derived
from such an observative net, and hence equals Nx. So by Theorem 2.1.6, (X, T ) is sober.
�

The third characterization of sobriety is in terms of irreducible closed sets.

2.2.11 Definition ( [8] see also Definition 1.2.5)
A subset F of a topological space (X, T ) is said to be irreducible closed if it is closed and it
cannot be written as a union F = F1 ∪ F2 where both F1 and F2 are proper closed subsets
of F .

2.2.12 Theorem ( [8])
A topological space is sober iff every non-empty irreducible closed set is the closure of a
unique singleton.

Proof. For each p ∈ ptT , p←(1) is a completely prime filter in T (see proof of Theorem
2.1.6), i.e. p←(0) =↓

∨

{a ∈ p←(0)} (p preserves arbitrary
∨

) is a principal prime ideal in
T (Proposition 1.2.3). So for each p ∈ ptT , there exists a prime element (

∨

{a ∈ p←(0)}) in
T and hence (by Proposition 1.2.6) an irreducible closed set.
Conversely, given an irreducible closed set in X , then its complement in X is a prime
element in T which generates a principal prime ideal in T . Its complement in T is therefore
a completely prime filter in T . (Proposition 1.2.3). By the proof of Theorem 2.1.6, this is
of the form p←(1) for some p ∈ ptT .
So there is a bijection between ptT and the irreducible closed sets in (X, T ) (i.e. a bijection
between ptT and the prime elements in T ). Now if (X, T ) is sober by Definition 2.1.2, there
is a bijection between X and the irreducible closed sets in X . Since for each x ∈ X , its
closure cl{x} is irreducible closed, sobriety implies that every irreducible closed set in X is
the closure of a unique singleton.
Conversely suppose U is an irreducible closed set, therefore U = cl{x} for a unique x ∈ X .
Then X \ U is a prime element in the lattice of open sets of X . Each prime element of T
is associated bijectively with a point p ∈ ptT , therefore we can associate the unique x ∈ X

that generates X \ U with the p ∈ ptT . Therefore ψ is a bijection.
�
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Chapter 3

Properties of Sober Spaces

3.1 Results concerning crisp sobriety

3.1.1 Proposition ( [8])
If (X, T ) is Hausdorff, then Ψ is a bijection.

Proof. If F is a closed subset of a T2 space X containing two distinct points x and y, let U
and V be disjoint open neighbourhoods of x and y. Then F \U and F \V are proper closed
subsets of F whose union is F \ (U ∩ V ) = F i.e. F is reducible. So the only irreducible
closed sets of X are singletons. Therefore X is sober by Theorem 2.2.12.
�

This result (a Hausdorff space is sober) can also be deduced immediately from Theorem
2.1.6 or Theorem 2.2.10. Putting this together with Corollary 2.1.4, we get,

3.1.2 Corollary
(X, T ) Hausdorff ⇒ (X, T ) sober ⇒ (X, T ) T0

3.1.3 Example
R with the ordinary topology, being Hausdorff, is sober whereas R with the cofinite topology,
is T1 but not sober since R itself is irreducibly closed but not the closure of a singleton.
X = {−∞, k] with the topology {X, ∅, {(a, k] : a ∈ X}} is sober since every (irreducible)
closed set (−∞, a] is the closure of a ∈ X .

3.1.4 Definition ( [8])
Define,

Φ : T −→ P(ptT )

Φ(u) = {p ∈ ptT : p(u) = 1}

3.1.5 Proposition ( [8])
Φ is a frame homomorphism T −→ P(ptT ), in particular its image is a topology on ptT .

Proof.
Φ(X) = ptT since p(X) = 1 for all p ∈ ptT

Φ(∅) = ∅ since p(∅) = 0 for all p ∈ ptT

Φ(u) ∩ Φ(v) = Φ(u ∩ v) since p(u ∩ v) = p(u) ∧ p(v) for all p ∈ ptT
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p ∈ Φ(
⋃

ui) ⇔ p(
⋃

ui) = 1 =
∨

p(ui)

⇔ ∃i, p(ui) = 1

⇔ ∃i, p ∈ Φ(ui)

⇔ p ∈
⋃

Φ(ui)

�

We can always consider ptT as a topological space, with topology given by the image of
Φ.

3.1.6 Proposition ( [8])
For any frame T , the space ptT is sober.

Proof. Let F be an irreducibly closed subset of ptT . Its complement in ptT is a prime
open set (Proposition 1.2.6), which we can write as Φ(a) for some a ∈ T ; this a may not be
uniquely determined, since we are not assuming T is a topology, but since Φ preserves joins
there is a unique largest a with Φ(a) = ptT \F , namely the join of all such a. It is now clear
that this a is a prime element of T , since if b∩ c ⊆ a then Φ(b)∩Φ(c) ⊆ Φ(a), whence either
Φ(b) ⊆ Φ(a) or Φ(c) ⊆ Φ(a) and so b ⊆ a or c ⊆ a. Moreover, it is easy to see that the point
p of T defined by this prime element satisfies Ψ(p) = ptT \ Φ(a) = F . So Ψ is surjective.
But if p, q are distinct points of ptT , then there exists a ∈ T with p(a) 6= q(a), so that the
open set Φ(a) contains just one of p and q; thus ptT is a T0 space. So Ψ is injective.
�

In view of this result ptT with the topology {Φ(u) : u ∈ T } is called the soberification of
(X, T ).

3.1.7 Note
1. {Φ(u) : u ∈ T } is a topology on ptT under which Ψ becomes continuous and open

since Ψ←(Φ(u)) = u and Ψ→(u) = Φ(u). Thus if (X, T ) is sober, Ψ is a homeomor-
phism. Of course if (X, T ) is sober it is its own soberification.

2. Note that Φ(u) as a subset of ptT can also be considered as a map from ptT into {0, 1}
where :

Φ(u)(p) =

{

1 if p(u) = 1
0 if p(u) = 0

= p(u).

3.2 Sober spaces and continuous maps

A map f : (X, T1) −→ (Y, T2) is continuous iff f← is a frame morphism from T2 to T1.
In [2] it was proved that:

3.2.1 Theorem
If (X, T1) and (Y, T2) are two topological spaces with (Y, T2) Hausdorff, and µ : T2 −→ T1

is a frame morphism, then there exists a unique continuous function f : X −→ Y such that
f← = µ.

This result can be considerably generalized:

17



3.2.2 Theorem
If (X, T1) and (Y, T2) are two topological spaces with (Y, T2) sober and µ : T2 −→ T1 is a
frame morphism, then there exists a unique continuous function f : X −→ Y such that
f← = µ.

Sobriety of (Y, T2) is also necessary in the following sense,

3.2.3 Theorem
If (Y, T2) is T0 (e.g. Ψ of Definition 2.1.2 is injective) and for every (X, T1) and every frame
morphism µ : T2 −→ T1 there exists an f : X −→ Y such that f← = µ, then (Y, T2) is sober.

On the other hand the T0 requirement can be dropped in the case that f is unique :,

3.2.4 Theorem
If for every (X, T1) and every frame morphism µ : T2 −→ T1 there exists a unique f : X −→ Y

such that f← = µ, then (Y, T2) is sober.

These results are special cases of more general ones. See later in Chapter 5.

3.3 Sobriety of partially ordered sets

3.3.1 Definition ( [8])
Let X be a T0 space, we can define an order on X as follows x ≤ y iff x is in the closure
of {y} (cl{x} ⊆ cl{y}). If this relation holds we say x is a specialization of y, this order is
called the specialization ordering.

The specialization ordering is reflexive, transitive and antisymmetric (antisymmetry is
the T0 axiom) so it is a partial ordering. This allows us to put a partial order on any T0

space. Any continuous map between T0 spaces is necessarily order preserving and the order
is discrete iff X is a T1 space.
Conversely, we want to ask the question, given a poset (X,≤), can we find a T0 topology on
X for which ≤ is the specialization ordering? The answer to this question is yes, as can be
seen by the following results.

3.3.2 Definition ( [8])
If (X,≤) is a poset the Alexandrov topology Υ(X,≤), the collection of all upper sets of X ,
is a maximal T0 topology on (X,≤) for which ≤ is the specialization ordering associated
with this topology.

3.3.3 Definition ( [8])
If (X,≤) is a poset the upper interval topology Φ(X,≤), the smallest topology for which
sets of the form ↓ (x) are closed, is the minimal topology on (X,≤) whose specialization
ordering is ≤.

3.3.4 Proposition ( [8])
Let (X,≤) be a poset, T a T0 topology on X . Then T induces the ordering ≤ iff
Φ(X,≤) ⊆ T ⊆ Υ(X,≤)

Proof. Suppose T induces ≤. Then every T -open set must be an upper set since if
cl{y} =↓ (y) meets an open set U then y ∈ U and so T ⊆ Υ(X,≤). But since ↓ (y) must
be T closed for every y we also have Φ(X,≤) ⊆ T . Conversely if Φ(X,≤) ⊆ T ⊆ Υ(X,≤)
then ↓ (y) is the smallest T closed set containing y and so x ≤ y iff x ∈ cl{y} and T is T0

since it contains the T0 topology Φ(X,≤).
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�

3.3.5 Proposition ( [8])
If (X, T ) is a sober space then the specialisation ordering on X has directed joins. Moreover
if U ∈ T then U is not merely an upper set but also inaccessible by directed joins. ie. S ⊆ X

directed and
∨

S ∈ U imply S ∩ U 6= ∅

Proof. Let S be a directed subset of X . Then the family of subsets {cl{x} : x ∈ S} is also
directed. Let T be the closure of its union. If T = F1 ∪ F2 where F1 and F2 are closed,
then for each x ∈ S we have either x ∈ F1 or x ∈ F2 and by directedness we conclude either
S ⊆ F1 or S ⊆ F2, since the Fi are lower sets. Hence T = F1 or T = F2 i.e. T is irreducible.
So T is the closure of a unique point y, which is readily seen to be the join of S in (X,≤).
Moreover if U is open and y ∈ U , then U meets

⋃

{cl{x} : x ∈ S}, which implies that x ∈ U

for some x ∈ S. So U is inaccessible by directed joins.
�

3.3.6 Definition ( [8])
Let (X,≤) be a poset with directed joins then the set Σ(X,≤) of upper sets which are
inaccessible by directed joins is a topology on X called the Scott topology.

The sets X\ ↓ (x) are inaccessible by directed joins and so Φ(X,≤) ⊆ T ⊆ Σ(X,≤). For
sober topologies we have improved the bounds of Proposition 3.3.4, a sober topology T on
X induces a given partial order ≤ iff Φ(X,≤) ⊆ T ⊆ Σ(X,≤). This leads to the question,
is the Scott topology on a poset with directed joins always sober? Equivalently we can ask
two seperate questions,

1. If (X,≤) has directed joins, is there a sober topology on X inducing ≤?

2. If (X,≤) is induced by some sober topology, is the Scott topology on X sober?

In general the answer to both of these questions is no. The following example is a coun-
terexample to (1) and from it we can obtain a counterexample to (2).

3.3.7 Example ( [7])
Consider the set

X = N × (N ∪ {∞})

We define a partial order on X as follows,

(m,n) ≤ (m′, n′) iff either m = m′ and n ≤ n′ (≤ ∞) or n′ = ∞ and n ≤ m′.

Evidently the elements (m,∞) are all maximal in X , so if one of them is contained in a
directed set S ⊂ X , it must be the greatest member of S. Remarking that if m 6= m′ the
only upper bounds for (m,n) and (m′, n′) in X are elements of the form (m′′,∞), we see
that the only directed subsets of X without greatest members are infinite and therefore
cofinal subsets of {m} × N for some m. Since any such subset has (m,∞) as its only upper
bound, we deduce that every directed subset of X has a least upper bound. On the other
hand, if U is a nonempty Scott-open subset of X , U cannot be contained in N×{∞}, since
each point (m,∞), is a directed join of elements not in this set. Now U contains some (m,n)
with n < ∞, but since it is an upper set it must also contain (m′,∞) for all m′ ≥ n. Any
two nonempty Scott-open subsets of X must therefore intersect, i.e. X is irreducible in the
Scott topology, but it has no greatest member. Lastly, suppose T is any sober topology
inducing the given partial order on X , since T is contained in the Scott topology, X must
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be irreducible (and closed) in it, and so no such topology can exist.

Determining the soberification of (X,Σ(X,≤)) is now not difficult: if F is a proper Scott-
closed subset of X , then it contains only finitely many points of the “top row” N × {∞},
from which it follows that

⋃

{cly : y ∈ F, y 6≤ x} is closed for any maximal element x of
F , and hence, if F is also irreducible, that is the closure of a singleton. Accordingly, the
soberification of (X,Σ(X,≤)) has underlying poset (X+,≤) obtained by adding a single top
element ∞ to (X,≤). Nevertheless, {∞} is open in the Scott topology on X+, since ∞ is
not expressible as a nontrivial directed join, so (X+,Σ(X,≤)) contains (X,Σ(X,≤)) as a
closed subspace and is therefore not sober, which provides our counterexample to (2).
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Chapter 4

Fuzzy Sobriety or L-Sobriety

4.1 Sobriety of L-topological spaces

The following comes from [10] and [16].

4.1.1 Definition
Let (X,L, T ) be an L-topological space with L as in 1.4.4 (i.e. L is a frame with 0 and 1
and an order reversing involution). LptT is the set of all frame maps p from T into L.

4.1.2 Definition
Define,

Ψ : X −→ LptT

Ψ(x)(u) = u(x) ∀x ∈ X, ∀u ∈ T

Ψ is an injection iff x1 6= x2 implies there exists a u ∈ T such that u(x1) 6= u(x2).
We call this property T0.

We say (X,L, T ) is sober iff Ψ is a bijection.

4.1.3 Definition (see also Note 3.1.7(2))
Let u ∈ T then Φ(u) is a fuzzy subset of LptT defined as follows

Φ(u) : LptT −→ L

Φ(u)(p) = p(u)

4.1.4 Proposition
{Φ(u) : u ∈ T } is an L-topology on LptT under which Ψ becomes fuzzy continuous and
fuzzy open.

Proof. The proof that {Φ(u) : u ∈ T } is an L-topology follows that of Proposition 3.1.5

We can see that Ψ is fuzzy continuous because,

Ψ←(Φ(u))(x) = Φ(u)(Ψ(x)) (Zadeh’s extension principle, Definition 1.3.1)

= Ψ(x)(u)

= u(x) for all x ∈ X and all u ∈ T .
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Then Ψ←(Φ(u)) = u for all u ∈ T .

Ψ is fuzzy open since

Ψ→(u)(p) =
∨

x∈Ψ←(p)

u(x) (Zadeh’s extension priciple, Definition 1.3.1)

= p(u)

= Φ(u)(p) for all p ∈ LptT

Thus Ψ→(u) = Φ(u)
�

4.1.5 Corollary
If (X,L, T ) is sober then Ψ is a fuzzy homeomorphism.

We shall now provide examples of fuzzy L-topological spaces which are sober.

4.1.6 Example ( [6])
The fuzzy real line R(I) and the fuzzy unit interval [0, 1](I).

4.1.7 Example ( [20] [21])
The fuzzy Sierpinski space of Srivastava is (X,L, T ) where X = [0, 1], L = [0, 1] and
T = {0,1, id}. T is clearly T0, so Ψ : X −→ LptT is injective. To see the surjectivity of Ψ,
pick any p ∈ LptT . Then p(0) = 0, p(1) = 1 and p(id) = α for some α ∈ L.
Also, by the definition of Ψ,

Ψ(α)(0) = 0,Ψ(α)(id) = α, and Ψ(α)(1) = 1.

Thus Ψ(α) = p. So Ψ is bijective, which implies that the fuzzy Sierpinski space is sober.

4.2 Fuzzy Sobriety for the case L = [0, 1]

Here we follow the work of Singh and Srivastava as contained in [17]

4.2.1 Definition
Let (X, [0, 1], T ) be a fuzzy topological space and α ∈ [0, 1), put ια(T ) = {u←(α, 1] : u ∈ T }.
Then ια(T ) is a topology on X (usually called the α-level topology on X induced by T ).
Let ι(T ) be the topology on X generated by the family {u←(α, 1] : u ∈ T , α ∈ [0, 1)}.

4.2.2 Definition
1. (X, [0, 1], T ) is α-sober (where α ∈ [0, 1)), iff (X, ια(T )) is sober.

2. (X, [0, 1], T ) is strongly sober, iff (X, ια(T )) is sober, ∀α ∈ [0, 1).

3. (X, [0, 1], T ) is ultrasober iff (X, ι(T )) is sober.

4.2.3 Proposition
Every sober fuzzy topological space is ultrasober.
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Proof. Let (X, [0, 1], T ) be a sober fuzzy topological space. Then Ψ1 : X −→ LptT (of
Definition 4.1.2) is bijective. It follows that (X, [0, 1], T ) is T0, whereby Ψ2 : X −→ ptι(T )
(of Definition 2.1.2) is injective. It remains to be shown that Ψ2 is surjective also. This we
show as follows.
For each p ∈ ptT , let p∗ : ι(T ) −→ {0, 1} be defined, first on the subbasic open sets of ι(T ),
as

p∗(u←(α, 1]) =

{

1 if p(u) > α

0 if p(u) ≤ α

where u ∈ T and α ∈ [0, 1). To complete the definition of p∗, the image of an arbitrary ι(T )-
open set U of the form U =

⋃

j∈J (
⋂

k∈Kj
(u←jk(αjk , 1]), where J is an arbitrary index set, for

each j ∈ J , Kj is a finite index set and for each k ∈ Kj , ujk ∈ T , and αjk ∈ [0, 1), is defined
as p∗(U) =

⋃

j∈J (
⋂

k∈Kj
p∗(u←jk(αjk , 1])). It is tedious, but straightforward otherwise, to

verify that p∗ ∈ ptι(T ). Now define a map η : LptT −→ ptι(T ) as η(p) = p∗. We show
that (η ◦ Ψ1)(x) = Ψ2(x) as follows. For x ∈ X , (η ◦ Ψ1)(x) = (Ψ1(x))

∗ and for u ∈ T and
α ∈ [0, 1),

(Ψ1(x))
∗(u←(α, 1]) =

{

1 if (Ψ1(x))(u
←(α, 1]) > α (i.e. µ(x) > α)

0 otherwise

= Ψ2(x)(u
←(α, 1])

Since both (Ψ1(x))
∗ and Ψ1(x) are frame maps, we have (Ψ1(x))

∗(U) = (Ψ2(x))(U) ∀U ∈
ι(T ). Hence η ◦ Ψ1 = Ψ2. In view of this, the surjectivity of Ψ2 will follow from the surjec-
tivity of η, which we prove next. For each q ∈ ptι(T ), define pq : T −→ [0, 1] as

pq(u) =

{

1 if q(u←(α, 1]) = 1 ∀α ∈ [0, 1)
int{β ∈ [0, 1) : q(u←(β, 1]) = 0} otherwise

We show that pq ∈ LptT .

Assertion 1. pq preserves order.
Let for u, v ∈ T , u ≤ v. Then u←(α, 1] ⊆ v←(α, 1] ∀α ∈ [0, 1). Hence q(u←(α, 1]) = 0 if
q(v←(α, 1]) = 0 (as q is a frame map). Thus, {β ∈ [0, 1) : q(u←(β, 1]) = 0} ⊇ {β ∈ [0, 1) :
q(v←(β, 1]) = 0}, whereby inf{β ∈ [0, 1) : q(u←(β, 1]) = 0} ≤ inf{β ∈ [0, 1) : q(v←(β, 1]) =
0}, i.e., pq(u) ≤ pq(v).

Assertion 2. pq preserves finite infima, i.e., for u, v ∈ T , pq(u ∧ v) = pq(u) ∧ pq(v).
Case(1): When pq(u ∧ v) = 1.
We note that

pq(u ∧ v) = 1 ⇔ q((u ∧ v)←(α, 1]) = 1 ∀α ∈ [0, 1)

⇔ q(u←(α, 1] ∩ v←(α, 1]) = 1 ∀α ∈ [0, 1)

⇔ q(u←(α, 1]) ∧ q(v←(α, 1]) = 1 ∀α ∈ [0, 1)

⇔ q(u←(α, 1]) = 1 and q(v←(α, 1]) = 1 ∀α ∈ [0, 1)

⇔ q(u←(α, 1]) = 1 ∀α ∈ [0, 1) and q(v←(α, 1]) = 1 ∀α ∈ [0, 1)

⇔ pq(u) = 1 and pq(v) = 1

⇔ pq(u) ∧ pq(v) = 1
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Case(2): when pq(u ∧ v) 6= 1.
We note that

pq(u ∧ v) = inf{β ∈ [0, 1) : q((u ∧ v)←(β, 1]) = 0}

= inf{β ∈ [0, 1) : q(u←(β, 1] ∩ v←(β, 1]) = 0}

= inf{β ∈ [0, 1) : q(u←(β, 1]) ∧ q(v←(β, 1]) = 0}

= inf{β ∈ [0, 1) : q(u←(β, 1]) = 0 or q(v←(β, 1]) = 0}

= inf{{β ∈ [0, 1) : q(u←(β, 1]) = 0} ∪ {β ∈ [0, 1) : q(v←(β, 1]) = 0}}

= inf{inf{β ∈ [0, 1) : q(u←(β, 1]) = 0}, inf{β ∈ [0, 1) : q(v←(β, 1]) = 0}}

= inf{pq(u), pq(v)}

= pq(u) ∧ pq(v)

Assertion 3. pq preserves arbitrary suprema, i.e.,

∨

j∈J

pq(uj) = pq(
∨

j∈J

uj) ∀{uj : j ∈ J} ⊆ T

Case(1): When
∨

j∈J pq(uj) = 1.
We note that

∨

j∈J

pq(uj) = 1 ⇔ pq(uj) = 1 for some j

⇔ ∀α ∈ [0, 1), q(u←j (α, 1]) = 1 for some j

⇔
∨

j∈J

q(u←j (α, 1]) = 1 ∀α ∈ [0, 1)

⇔ q(
⋃

j∈J

u←j∈J (α, 1]) = 1 ∀α ∈ [0, 1)

⇔ q((
∨

j∈J

uj)
←[0, 1)) = 1 ∀α ∈ [0, 1)

⇔ pq(
∨

j∈J

uj) = 1

Case(2): When
∨

j∈J pq(uj) 6= 1.
Let

∨

j∈J pq(uj) = α α 6= 1. Then

(a) pq(uj) ≤ α, ∀j ∈ J and

(b) for ε > 0, ∃j = j0 with pq(uj0) > α− ε.

From (a), it follows that inf{β ∈ [0, 1) : q(u←j (β, 1]) = 0} ≤ α, ∀j ∈ J ,

i.e., q(u←j (α, 1]) = 0 ∀j ∈ J, i.e.
∨

j∈J

q(u←j (α, 1]) = 0,

i.e., q(
⋃

j∈J

u←j (α, 1]) = 0, i.e., q((
∨

j∈J

uj)
←(α, 1]) = 0. (1)
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From (b) it follows that, for ε > 0, ∃j = j0 with q(u←j0 (α− ε, 1]) = 1,

i.e., for ε > 0,
∨

j∈J

q(u←j (α− ε, 1]) = 1, i.e., q((
∨

j∈J

uj)
←(α− ε, 1]) = 1 (2)

Combining (1) and (2), we get inf{β ∈ [0, 1) : q((
∨

j∈J uj)
←(β, 1]) = 0} = α, i.e. pq(

∨

j∈J uj) =
α. This proves the Assertion. Assertions (1), (2) and (3) together show that pq ∈ LptT .

We now claim that η(pq) = p∗q = q. To see this, it is easily seen that p∗q(u
←(α, 1]) =

q(u←(α, 1]), for any subbasic open set u←(α, 1] of ι(T ) and so, as p∗q and q are frame maps,
we get p∗q(U) = q(U) for any ι(T )-open set U . Thus, η is surjective. Hence (X, ι(T )) turns
out to be sober, i.e., (X, [0, 1], T ) is ultrasober.

4.2.4 Proposition
Every strongly sober fuzzy topological space is ultrasober.

Proof. Let (X, [0, 1], T ) be a strongly sober fuzzy topological space. Then Ψα : X −→
ptια(T ) is bijective, ∀α ∈ [0, 1). Clearly, (X, ι(T )) is T0 as ια(T ) ⊆ ι(T ), whereby Ψ : X −→
ptι(T ) is injective. So, it remains to be proved that Ψ is surjective also. For α ∈ [0, 1), define
ηα : ptι(T )) −→ ptια(T ) as ηα(p) = p ◦ i, where p ∈ ptι(T ), and i : ια(T ) −→ ι(T ) is the
inclusion map. We show that ηα ◦ Ψ = Ψα as follows.
Note that for x ∈ X and u←(α, 1] ∈ ια(T ),

((ηα ◦ Ψ)(x))(u←(α, 1]) = [Ψ(x)]α(u←(α, 1])

= (Ψ(x) ◦ i)(u←(α, 1])

= Ψ(x)(u←(α, 1])

= Ψα(x)(u←(α, 1])

Thus, ηα ◦ Ψ = Ψα.
As Ψα is bijective and ηα ◦ Ψ = Ψα, ηα is surjective. To prove the injectivity of ηα,
suppose p1 6= p2 for p1, p2 ∈ ptι(T ). Then ∃U ∈ ι(T ) such that p1(U) 6= p2(U). Let
U =

⋃

j∈J (
⋂

k∈Kj
u←jk(αjk , 1]), where J is an arbitrary index set, for each j ∈ J , Kj

is a finite index set and for each k ∈ Kj , ujk ∈ T and αjk ∈ [0, 1). Then p1(U) =
∨

j∈J (
∧

k∈Kj
p1(u

←
jk(αjk , 1])) and p2(U) =

∨

j∈J (
∧

k∈Kj
p2(u

←
jk(αjk , 1])). As p1(U) 6= p2(U),

∃ some u←jk(αjk , 1] ∈ ιαjk
(T ) such that p1(u

←
jk(αjk , 1]) 6= p2(u

←
jk(αjk , 1]).

Then (p1 ◦ i)(u←jk(αjk , 1]) 6= (p2 ◦ i)(u←jk(αjk , 1]), i.e., ηα(p1) = ηα(p2), which shows that ηα

is injective. Hence ηα is bijective and (X, ια(T )) is sober, i.e., (X, [0, 1], T ) is ultrasober.
�

We’ll now provide counterexamples to show that the converses of the previous theorems are
not necessarily true. The first example shows that sober 6⇒ α-sober, sober 6⇒ strongly sober,
ultrasober 6⇒ α-sober and ultrasober 6⇒ strongly sober.

4.2.5 Example
Consider the fuzzy Sierpinski space (X, [0, 1], T ) of Srivastava, where X = [0, 1], T =
{0,1, id} with id the identity map on [0, 1], which is known to be sober (see Example
6.1.6 later). Using Proposition 4.2.3, (X, [0, 1], T ) is ultrasober also. Now, it is clear that
ια(T ) = {∅, [0, 1], (α, 1]}. Evidently, ([0, 1], ια(T )) is not T0 and so (X, [0, 1], T ) cannot be
α-sober for any α ∈ [0, 1), whence (X, [0, 1], T ) is not strongly sober also.

The next example shows that α-sober 6⇒ sober, strongly sober 6⇒ sober and ultrasober
6⇒ sober.
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4.2.6 Example
Consider the fuzzy topological space (X, [0, 1], T ), where X = {a, b} and T = {0,1, (α, 1)},
where (a, 1) the fuzzy point with value 1 at a (see Definition 1.3.3). Then ια(T ) =
{∅, X, {a}}, ∀α ∈ [0, 1). Evidently, (X, ια(T )) is sober, ∀α ∈ [0, 1) and so (X, [0, 1], T )
is strongly sober too. As ι(T ) = {∅, X, {a}} = ια(T ), (X, [0, 1], T ) is ultrasober also.
Note, however, that the map Ψ : X −→ LptT (Definition 4.1.2) cannot be onto. For exam-
ple if we fix α ∈ (0, 1), then the function p : T −→ [0, 1], defined as p(0) = 0, p((a, 1)) = α

and p(1) = 1, is clearly such that p ∈ LptT and for no x ∈ X , Ψ(x) = p. Thus (X, [0, 1], T )
cannot be sober.

The next example shows that α-sober 6⇒ strongly sober.

4.2.7 Example
Consider the fuzzy topological space (X, [0, 1], T ), whereX = {a, b, c} and T = {0,1, (0.7, 0.6, 0.1),
(0.8, 0.3, 0.2), (0.8, 0.6, 0.2), (0.7, 0.3, 0.1)}. Then for α ∈ [0, 0.1), ια(T ) = {∅, X}. Clearly,
(X, ια(T )) is not sober for α ∈ [0, 0.1). For α ∈ [0.3, 0.6), ια(T ) = {∅, X, {a, b}, {a}}. The
irreducible closed sets of (X, ια(T )) are {c}, {b, c} and X . Clearly, {c} = c, {b, c} = b and
X = a. Thus, (X, [0, 1], T ) is α-sober, ∀α ∈ [0.3, 0.6) but is not strongly sober.

The following concepts and results from Wutys [27] are needed to provide a counterex-
ample showing that α-sober 6⇒ ultrasober.

4.2.8 Definition
If {Tα : α ∈ [0, 1)} is a family of topologies on X, α ∈ [0, 1), G ∈ Tα, and x ∈ G, then
{Gβ : α < β < σ ≤ 1} is said to be an (LT)-family for (x,G, α) relatively to the family
{Tα : α ∈ [0, 1)} if the following properties hold:

1. ∀β ∈ (α, σ), Gβ ∈ Tβ , x ∈ Gβ ⊂ G

2. ∀β′ ∈ (α, σ), ∀β′′ ∈ (α, σ), β′ < β′′, Gβ′′ ⊂ Gβ′ .

If {Tα : α ∈ [0, 1)} is a family of topologies on X , we say that it has the (LT)-property if
for each α ∈ [0, 1), G ∈ Tα, and x ∈ G, there exists an (LT)-family for (x,G, α) relatively
to {Tα : α ∈ [0, 1)}.
If (X, [0, 1], T ) is a fuzzy topological space, the family {ια(T ) : α ∈ [0, 1)} of its level
topologies turns out to have the (LT)-property.

4.2.9 Proposition ( [27])
If F = {Tα : α ∈ [0, 1)} is a family of topologies on a set X , then there exist fuzzy topologies
T on X having F as their level topologies, i.e., such that ∀α ∈ [0, 1), ια(T ) = Tα iff F has
the (LT)-property.

The following counterexample shows that α-sober 6⇒ ultrasober.

4.2.10 Example
Let X = (−∞, t] ⊆ R be equipped with the topology T = {X, ∅} ∪ {(a, t] : a ∈ X}. Clearly
(X,T ) is sober. Enlarge T to the topology T ∗ on X generated by T together with the
cofinite topology on X . Then the closed subsets of (X,T ∗) are (−∞, a] (where a ∈ X), all
finite subsets, X , and ∅. Each (−∞, a], a ∈ X , is easily seen to be irreducible T ∗-closed but
is not the T ∗-closure of any singleton.
Let us fix k ∈ (0, 1) and for each α ∈ [0, 1), let the topology Tα on X be given by Tα = T ∗

for all α ∈ [0, k) and Tα = T for all α ∈ [k, 1). Then for each α ∈ [0, k), G ∈ Tα, and
x ∈ G, there exists a family {Gβ : Gβ = G, ∀β ∈ (α, k)} which is an (LT)-family relatively
to {Tα : α ∈ [0, 1)}. Again, for each α ∈ [k, 1), G ∈ Tα and x ∈ G, there exists a family
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{Gβ : Gβ = G, ∀β ∈ (α, 1)} which is an (LT)-family relatively to {Tα : α ∈ [0, 1)}.
Thus for each α ∈ [0, 1), G ∈ Tα, and x ∈ G, there exists an (LT)-family for (x,G, α)
relatively to {Tα : α ∈ [0, 1)}. Hence the family {Tα : α ∈ [0, 1)} has (LT)-property.
Thus, by Proposition 4.2.9, there exists a fuzzy topology T on X such that ∀α ∈ [0, 1),
ια(T ) = Tα. This (X, [0, 1], T ) is α-sober for α ∈ [k, 1) but not ultrasober (since T ∗ ⊃ T ⇒
ι(T ) = T ∗ and T ∗ is not sober).

Putting together the foregoing results and counterexamples, we now arrive at the following
conclusion.

4.2.11 Theorem
The following implications exist among the various sobriety concepts in fuzzy topology.
Moreover, no other implications exist between any of these concepts.

Strongly sober =⇒ Ultrasober
⇓ ⇑

α-sober Sober
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Chapter 5

Properties of L-sober spaces

In section 3.2 we referred to the following results. Here again L is as in 4.1.

5.0.12 Theorem ( [10])
(X,L, T1) and (Y, L, T2) are two L-topological spaces with (Y, L, T2) sober. If µ : T2 −→ T1

is a frame map, there exists a unique L-continuous function f : X −→ Y such that f← = µ

Proof. We have ΨX : X −→ LptT1 and ΨY : Y −→ LptT2 with the latter a bijection.
Define G : LptT1 −→ LptT2 as G(p) = p ◦ µ for p ∈ T1 and therefore define f : X −→ Y as
f = Ψ←Y ◦G ◦ ΨX we need to check that f← = µ i.e. if ν ∈ T2 and x ∈ X we need to show
that f←(ν)(x) = µ(ν)(x).

f←(ν)(x) = ν(f(x))

= ν(Ψ←Y (G(ΨX(x))))

= ν(Ψ←Y (ΨX(x) ◦ µ))

Now if Ψ←Y (q) = y (q ∈ LptT2), then ΨY (y) = q i.e. for every ν ∈ T2, q(ν) = ΨY (y)(ν) =
ν(y) by definition of ΨY . So for y = Ψ←Y (ΨX(x) ◦ µ) we have ν(y) = ΨX(µ(ν)) =
µ(ν)(x). Hence f←(ν)(x) = µ(ν)(x) for every ν ∈ T2 and every x ∈ X . Thus f← = µ.

Uniqueness of f : Suppose we also have f̂ : X −→ Y such that f̂← = µ. We must show that
f = f̂ , or that f̂ = Ψ←Y ◦ G ◦ ΨX . Now f(x) = Ψ←Y (G(ΨX (x))) = Ψ←Y (ΨX(x) ◦ µ). And

again Ψ←Y (ΨX(x) ◦ µ) = y iff for every ν ∈ T2, ν(y) = µ(ν)(x) = f̂←(x) = ν(f̂(x)). But this

implies, since ΨY is injective that y = f̂(x). Hence f = f̂ .
�

5.0.13 Theorem ( [10])
If (Y, L, T2) is T0 and for every (X,L, T1) and every frame map µ : T2 −→ T1 there exists
f : X −→ Y such that f← = µ then (Y, L, T2) is sober.

Proof. Since (Y, L, T2) is T0, we have that ΨY is an injection. We therefore only have to
prove that ΨY is surjective (i.e. for every p ∈ LptT2 there exists a y ∈ Y such that for every
ν ∈ T2, p(ν) = µ(y)). Now take X = {x} with T1 = L{x} and any µ : T2 −→ T1. Then by
hypothesis there exists an f : X −→ Y such that ϕ← = µ. Call f({x}) = f(x) = y. Then
for any ν ∈ T2,

µ(ν)(x) = f←(ν)(x)

= ν(f(x))

= ν(y)
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Identify L{x} with L. Then the frame maps µ : T2 −→ T1 are identified with the p ∈ LptT2,
and after that identification µ(ν)(x) = p(ν). We therefore have that for every p ∈ LptT2,
there exists a y ∈ Y such that for every ν ∈ T2, p(ν) = ν(y). Thus ΨY is surjective.
�

We can drop the T0 requirement in Theorem 5.0.13 in the case f unique.

5.0.14 Theorem ( [10])
If for every (X,L, T1) and every frame map µ : T2 −→ T1 there exists a unique f : X −→ Y

such that f← = µ then (Y, L, T2) is sober.

Proof. If (Y, L, T2) is not T0 we can shuffle the points of Y with the same values for all
ν ∈ T2 around without any effect on the frame of the latter, but violating the uniqueness of f .
�
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Chapter 6

Fuzzy sobriety, Semi-Sobriety
and the Hausdorff properties

6.1 The relationship between fuzzy sobriety and semi-
sobriety

The following is contained in [12].

We are to seek a counterpart for Theorem 2.2.12 for fuzzy sobriety. Let (X,L, T ) be an
L-topological space as in 4.1.
Choose α ∈ L, prime and 6= 1. Then

1. for each p ∈ LptT , there exists a prime element in T , viz.
∨

{u ∈ T : p(u) ≤ α} (by
Theorem 1.2.7(3)), and conversely,

2. for each prime element u ∈ T (i.e. ↓ u is a principal prime ideal), there exists a
p ∈ LptT (not necessarily unique. See the following example) such that ↓ u = {v ∈
T : p(v) ≤ α} =↓

∨

{v ∈ T : p(v) ≤ α} (by Theorem 1.2.7(2)). So the prime elements
of T are

∨

{u ∈ T : p(u) ≤ α} for p ∈ LptT , α prime, α 6= 1.

Now if (X,L, T ) is sober, then for each p ∈ LptT , there exists a unique x1 ∈ X such that
p = Ψ(x1) and {u ∈ T : p(u) ≤ α} =↓

∨

{u ∈ T : p(u) ≤ α} =↓
∨

{u ∈ T : Ψ(x1)(u) =
u(x1) ≤ α}.
So by (1) above, in the sober case, the prime element in T associated with p and α is
∨

{u ∈ T : u(x1) ≤ α} for some x1 ∈ X . Furthermore by (2) above, in the sober case, for
every prime element in T , there exists a p ∈ LptT , hence an x1 ∈ X such that the prime
element is

∨

{u ∈ T : u(x1) ≤ α}.

6.1.1 Note
Given a prime element u ∈ T , the corresponding p ∈ LptT of (2) above, in the general L
case is not necessarily unique as can be seen from the following example,

Let X = {x}, a singleton, L = [0, 1], T = LX ∼= L, α = 1
2 ;u ∈ T , u(x) = 1

2 (or u = 1
2 );

p1 = idL = idT and p2 defined as

p2(w) =

{

w if w ∈ ( 1
2 , 1]

√

w
2 if w ∈ [0, 1

2 ]
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Then p←1 [0, α] = p←2 [0, α] =↓ u.

So if (X,L, T ) is sober, the corresponding x1 ∈ X is not necessarily unique. See Example
6.1.6 below. The uniqueness of x1 must therefore not be confused with the injectivity of Ψ
in the general L case.

6.1.2 Definition
A fuzzy topological space (X,L, T ) is semi-sober iff the only non-zero irreducible members
of T ′ are the (β)-T -closures of the singletons of X where β 6= 0 and irreducible in L.
A (β)-T -closure of a singleton x1 ∈ X is the smallest member of T ′ with at least the value
of β at x1.

6.1.3 Note
If L = {0, 1}, α must be 0 and the p ∈ LptT is unique (see Note 1.2.8) and so if (X, {0, 1}, T )
is sober then x1 ∈ X is unique. This is exactly in agreement with Theorem 2.2.12, where
sobriety of (X, {0, 1}, T ) is “every irreducible closed set of X is the closure of a unique
singleton in X”.

6.1.4 Theorem
(X,L, T ) sober ⇒ (X,L, T ) semi-sober.

Proof.

(X,L, T ) sober =⇒ the only prime elements in T are the largest members of T

with value at most α (α ∈ L, α prime, α 6= 1) at an x1 ∈ X .

⇐⇒ the only non-zero irreducible elements in T ′ are the least

members of T ′ with at least the value β (β ∈ L, β

irreducible, β 6= 0) at an x1 ∈ X .

⇐⇒ the only non-zero irreducible members of T ′ are the

“β-closures of singletons of X”.

�

On the other hand, if (X,L, T ) is semi-sober, i.e., the only prime elements of T are the
largest members of T with value at most α (α ∈ L, α prime, α 6= 1) at an x1 ∈ X , then
∨

{u ∈ T : p(u) ≤ α} =
∨

{u ∈ T : u(x1) ≤ α} or {u ∈ T : p(u) ≤ α} = {u ∈ T : u(x1) ≤
α} = {u ∈ T : Ψ(x1)(u) ≤ α}. Thus p(u) = k1 ≤ α iff Ψ(x1)(u) = k2 ≤ α, which does not
necessarily mean that Ψ(x1) = p (the case α = 1 was excluded), unless L = {0, 1} in which
case p(u) = 0 iff Ψ(x1)(u) = 0, hence p(u) = Ψ(x1)(u), or Ψ is surjective.
But semi-sobriety of (X, {0, 1}, T ) does not necessarily imply that Ψ is injective, e.g. If X
is an indiscrete topological space with more than one element, it is not sober (being not T0)
but is semi-sober as its only non-empty irreducible closed set, viz. X , is the closure of every
x in X .

6.1.5 Theorem
In the crisp case (X, {0, 1}, T ), sobriety is equivalent to semi-sobriety plus T0.

A further notable difference in the general L case is the non-uniqueness of the point
x1 ∈ X . This was pointed out in [21] through the first of the following examples :

6.1.6 Example
Let X = [0, 1], L = [0, 1] with T consisting of the following three functions from X into
[0, 1] : the function 0 which is identically 0, the function 1 which is identically 1 and id,
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the identity map (the fuzzy Sierpinski space of Srivastava [21]). The non-zero irreducible
members of T ′ are then 1 and 1 − id. Now 1 − id is the β = 1 closure of 0 whereas 1 is
the β = 1 closure of any x ∈ [0, 1]; or alternatively 1 − id is the β = 1 − x closure of any
x ∈ [0, 1) and 1 is the β = 1 closure of x = 1.
Note that this example is also sober as was shown in Example 4.1.7.

6.1.7 Example
Let X and L be as in the example above with T = {0,1,∆}
where

∆(x) =

{

2x if 0 ≤ x ≤ 1
2

−2(x− 1) if 1
2 ≤ x ≤ 1

Then

v(x) = ∆′(x) =

{

−2x if 0 ≤ x ≤ 1
2

2x− 1 if 1
2 ≤ x ≤ 1

is the β-closure of any point in [0, 1
2 ) ∪ ( 1

2 , 1] whereas 1 is the β = 1 closure of 1
2 . Thus

(X,L, T ) is semi-sober, but not sober since it is not T0, e.g. x = 1
4 and 3

4 cannot be separated
by a member of T

6.1.8 Example ( [13])
X = (−∞, k] on the real line with the topology {X, ∅, (a, k] : a ∈ X} is sober and semi-sober
but not T1 (or T2), whereas R with the cofinite topology is T1 but not sober because R itself
is irreducibly closed but not the closure of a singleton.

Thus in the general case, sobriety is definitely a stronger requirement than semi-sobriety.

6.2 Hausdorff Properties

Semi-sobriety seems to be useful in terms of the Hausdorff properties proposed for (X,L, T ).

6.2.1 Definition ( [22])
(X,L, T ) is fuzzy Hausdorff iff for every pair of distinct “points” in LX , (x1, α), (x2, β),
x1 6= x2, there exist uA and uB from T which are disjoint (i.e. uA ∧ uB = 0) and such that
(x1, α) belongs to uA and (x2, β) belongs to uB (i.e. α ≤ uA(x1) and β ≤ uB(x2)).

6.2.2 Definition ( [9])
(X,L, T ) is quasi fuzzy Hausdorff iff for every pair of distinct points (x1, α), (x2, β), x1 6= x2,
there exist uA and uB from T which are disjoint , and such that α > u′A(x1) and β > u′B(x2).

6.2.3 Corollary ( [12])
If (X,L, T ) is fuzzy Hausdorff, then it is semi-sober.

Proof. If uc is a closed set in (X,L, T ) which is not a β-T -closure of a singleton, then supp
uc must contain two distinct points x1 and x2 say. (Otherwise uc is the fuzzy point (x1, β)
with β reducible, in which case uc is reducible.)
Consider the fuzzy points (x1, uc(x1)) and (x2, uc(x2)). Since (X,L, T ) is fuzzy Hausdorff
there exists u1, u2 open and disjoint such that u1(x1) ≥ uc(x1) and u2(x2) ≥ uc(x2). Then
u′1 ∨ u′2 = (u1 ∧ u2)

′ = 1 and uc = [uc ∧ u′1] ∨ [uc ∧ u′2] with the components containing
(x2, uc(x2)) and (x1, uc(x1)) respectively. Thus uc is reducible. So the only irreducible
closed sets are the β-T -closures (β irreducible) of the singletons. Hence (X,L, T ) is semi-
sober.
�
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6.2.4 Corollary ( [12])
If (X,L, T ) is quasi fuzzy Hausdorff, then it is semi-sober.

Proof. If uc is a closed set in (X,L, T ) which is not a β-T -closure of a singleton, then supp
uc must contain two distinct points x1 and x2 say. (Otherwise uc is the fuzzy point (x1, β)
with β reducible, in which case uc is reducible.)
Consider the fuzzy points (x1, uc(x1)) and (x2, uc(x2)). Since (X,L, T ) is quasi fuzzy Haus-
dorff, there exist u1, u2 from T such that uc(x1) > u′1(x1) and uc(x2) > u′2(x2) and
u1 ∧ u2 = 0. So uc = uc ∧ (u′1 ∨ u′2) = (uc ∧ u′1) ∨ (uc ∧ u′2) and uc ∧ u′1(x2) = uc(x2)
and uc ∧ u

′
2(x1) = uc(x1). Thus uc is irreducible. So the only irreducible closed sets are the

β-T -closures (β irreducible) of the singletons. Hence (X,L, T ) is semi-sober.
�

Note that Example 6.1.7 above is semi-sober but not fuzzy Hausdorff (e.g. the points
( 1
4 ,

1
2 ) and ( 3

4 ,
1
2 ) cannot be seperated by disjoint open sets). Likewise it is not quasi fuzzy

Hausdorff.

6.2.5 Theorem ( [12])
Provided T contains the constant functions (level sets),

1. (X,L, T ) fuzzy Hausdorff =⇒ (X,L, T ) is T1 (singletons/points are closed).

2. (X,L, T ) quasi fuzzy Hausdorff =⇒ (X,L, T ) is T1. Here L = [0, 1], the unit interval.

For the relationship between fuzzy Hausdorff and quasi fuzzy Hausdorff see [9].

Proof.

1. Consider the point (x1, α). Then since (X,L, T ) is fuzzy Hausdorff, for every x 6= x1,
there exists an open set ux ∈ T such that (x, 1) ∈ ux (ux(x) = 1) and ux(x1) = 0.
Then

∨

{ux : x 6= x1} =

{

1 if x 6= x1

0 if x = x1

}

= (x1, 1)′

an open set. So (x1, 1) is closed. Then α ∧(x1, 1) = (x1, α) is closed since α, the
function which is identically α on X , is a member of T ′.

2. Consider the point (x1, α) with 0 < α < 1. Then since (X,L, T ) is quasi fuzzy
Hausdorff, for every x 6= x1 and every ε, 0 < ε < 1−α, there exist ux,ε and vx,ε, disjoint
open sets such that u′x,ε(x) < ε and v′x,ε(x1) < 1− α− ε. So u =

∨

{ux,ε : x 6= x1, ε} is
open and u′(x) =

∧

u′x,ε(x) = 0 for x 6= x1, i.e. u(x) = 1 for x 6= x1.
Also v =

∧

{vx,ε : x 6= x1, ε} is disjoint from u, so v(x) = 0 for x 6= x1 and v(x1) ≥ α,
so u(x1) = 0. Thus u′ = (x1, 1) is closed and so is u′∧ α = (x1, α) since α ∈ T ′ by
assumption.

�

6.2.6 Summary
Some of the results above may be summarized as follows:

1. The Case L = {0, 1}

semi-sober
↑ ↓ +T0

Hausdorff −→ sober −→ T0

↘ ↗
T1
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2. The General (X,L, T ) case.

sober
↓ ↘

fuzzy Hausdorff −→ semi-sober 6−→ T0

(T with constants) ↘ ↗
T1

6.3 Characterizations of semi-sobriety for the case L =
[0, 1]

The question arises as to whether a counterpart to Theorem 2.1.6 for fuzzy sobriety or semi-
sobriety can be proved. Copying the arguments in the proof of Theorem 2.1.6 , we have the
following:

6.3.1 Theorem
If (X,L, T ) is sober, then the only completely prime filters of L-open sets are the α-
neighbourhoods (α prime, α 6= 1) of an x ∈ X where an α-nbd. of x is a u ∈ T with
u(x) > α (Definition 1.5.1).

Proof. We firstly observe that for every p ∈ LptT and α prime, α < p(1), p←(α, 1] is a
completely prime filter in T :

(Note: p ∈ Ψ(X) ⇒ p = Ψ(x) for some x ∈ X

⇒ p(u) = Ψ(x)(u) = u(x) for some x ∈ X and all u ∈ T

⇒ p(1) = 1(x) = 1)

Filter:

1. 1 ∈ p←(α, 1] since p(1) > α.

2.

u, v ∈ p←(α, 1] ⇒ p(u) > α, p(v) > α

⇒ p(u ∧ v) = p(u) ∧ p(v) > α since α is prime

p(u) ∧ p(v) ≤ α ⇒ p(u) ≤ α or p(v) ≤ α if α is prime

⇒ u ∧ v 6∈ p←(α, 1].

3.

u ∈ p←(α, 1], u ≤ v ⇒ p(v) ≥ p(u) > α

⇒ v ∈ p←(α, 1].

Completely prime:

∨

ui ∈ p←(α, 1] ⇒ p(
∨

ui) > α

⇒
∨

p(ui) > α

⇒ ∃ui s.t. p(ui) > α

⇒ ∃ui s.t. ui ∈ p←(α, 1].
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Conversely, every completely prime filter F of open sets is of the type p←(α, 1], α prime and
α < p(1):
Define for β 6= 0

pβ(u) =

{

β if u ∈ F
0 if u 6∈ F

Then

pβ(u ∧ v) =

{

β if u ∧ v ∈ F , i.e. if u and v ∈ F
0 if u ∧ v 6∈ F , i.e. u or v 6∈ F

= pβ(u) ∧ pβ(v)

pβ(
∨

ui) =

{

β if
∨

ui ∈ F
0 if

∨

ui 6∈ F

=
∨

pβ(ui) since F is completely prime.

(If
∨

ui ∈ F , then ∃uj ∈ F and so pβ(uj) = β and hence
∨

pβ(ui) = β; and if
∨

ui 6∈ F
then no ui ∈ F and so

∨

pβ(ui) = 0).
So F = p←(α, 1] for α < p(1) and α prime, for any completely prime filter F (Note that
the p need not be unique). If (X,L, T ) is sober (so p(1) = 1 for all p ∈ LptT ) then every
completely prime filter F of T -open sets is of the type

p←(α, 1] = {u ∈ T : p(u) > α for α 6= 1 and α prime.}

= {u ∈ T : u(x) > α for a unique x ∈ X}.

the filter of open “α-nbds” of x.
�

6.3.2 Corollary
(X,L, T ) sober ⇒ (X,L, T ) semi-sober.

Proof. By Proposition 1.2.3(2) we deduce that sobriety of (X,L, T ) implies that the only
principal prime ideals in T are {u ∈ T : u(x) ≤ α} for α prime, α 6= 1 and x ∈ X . This
statement is equivalent to that of Theorem 6.1.4. In fact Theorem 6.3.1 could have been
deduced from Theorem 6.1.4 using Proposition 1.2.3.
�

6.3.3 Corollary
(X, [0, 1], T ) sober implies that the only completely prime filters of [0, 1]-open sets are the
quasi-neighbourhoods of a fuzzy point µx on X .

Proof. Follows from Proposition 1.5.3 and Theorem 6.3.1.
�

6.3.4 Corollary (First characterization of semi-sobriety)
(X, [0, 1], T ) is semi-sober iff the only completely prime filters of [0, 1]-open sets are the
quasi-neighbourhoods of a fuzzy point µx on X
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Proof. Follows from Definition 6.1.2 and Proposition 1.2.3
�

To find a counterpart for Theorem 2.2.10 at least for the case L = [0, 1], proceed as
follows in emulation of Section 2.2.

6.3.5 Definition
A net (µλ)λ∈Λ in (X,L, T ) is a map (image of a map) from a directed set Λ to fuzzy points.
A net is eventually in u ∈ T iff ∃λ∗ ∈ Λ such that λ ≥ λ∗ ⇒ µx qco u.
A net in (X,L, T ) converges to µy with respect to T iff it is eventually in every u ∈ T which
is a quasi neighbourhood of µy.
A net (µλ) in (X,L, T ) is observative if, given u ∈ T and µλ qco u for some λ, then the net
is eventually in u.
An observative net converges strongly to µx (µλ −→∗ µx) if it converges with respect to T
and it additionally satisfies that µx is quasi-coincident with every u ∈ T which eventually
contains the net.

6.3.6 Definition
Given a net (µλ)λ∈Λ in (X,L, T ), its derived filter of L-open sets is

F(µλ) ≡ {u ∈ T : ∃λ∗ ∈ Λ, µλ qco u for λ ≥ λ∗}

6.3.7 Proposition
A filter derived from an observative net is completely prime

Proof. Let (µλ)λ∈Λ be observative and
∨

j∈J uj ∈ F(µλ). So µλ qco
∨

uj for λ ≥ λ∗. Then
µλ∗ qco

∨

uj and hence by Proposition 1.3.4, ∃j0 ∈ J with µλ∗ qco uj0 . Since the net is
observative, this implies that some tail of (µλ) is qco with uj0 . So by definition of F(µλ),
uj0 ∈ F(µλ).
�

6.3.8 Lemma
If (µλ) is an observative net, then µλ −→∗ µx iff F(µλ) = QNµx

, the quasi-neighbourhoods
of µx.

Proof.

(µλ) −→ µx iff for u ∈ T , µx qco u⇒ ∃λ∗ ∈ Λ, µλ qco u for λ ≥ λ∗.

(µλ) −→∗ µx iff for u ∈ T , µx qco u⇔ ∃λ∗ ∈ Λ, µλ qco u for λ ≥ λ∗.

�

6.3.9 Proposition
Suppose F is a filter of L-open (L = [0, 1]) subsets of (X, [0, 1], T ). Then F is completely
prime iff ∀u ∈ F , ∃ a fuzzy point µx which is quasi-coincident with u and such that ∀v ∈ T ,
µx qco v ⇒ v ∈ F .

Proof.
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1. Suppose F has this property and consider u =
∨

uj ∈ F . Let µx be the point with the
property. Then ∃j such that µx qco uj (Proposition 1.3.4) and uj ∈ T . So uj ∈ F .
Thus F is completely prime.

2. Suppose the condition is not fulfilled. Thus ∃u ∈ F such that ∀µx which is quasi-
coincident with u, we have ∃vx ∈ T such that µx qco vx and vx 6∈ F . Put wx = vx ∧u.
Then wx 6∈ F . However w =

∨

µx qco u wx = u:-

Clearly w ≤ u. So suppose ∃x∗ such that w(x∗) < u(x∗). Then choose ε > 0
so that w(x∗) < u(x∗) − ε and consider the fuzzy point µx∗ defined as µx∗(x

∗) =
1−u(x∗)+ε. So µx∗ qco u and thus ∃vx∗ ∈ T such that µx∗ qco vx∗ , hence µx∗ qco wx∗ ,
i.e. wx∗(x

∗) > 1 − µx∗(x
∗) = u(x∗) − ε. This is a contradiction.

We conclude that F is not completely prime.

�

Construction of a net from a completely prime filter F :-

6.3.10 Definition
For each u ∈ F completely prime choose the µx with the property guaranteed by Proposition
6.3.9. Then ΛF = {(µx, u) : u ∈ F} is directed with respect to (µx, u) ≤ (µy, w) iff w ≤ u.
Then Nx : ΛF −→ X , N(µx, u) = µx is called the net derived from the completely prime
filter F .

6.3.11 Lemma
A net derived from a completely prime filter is observative.

Proof. Let (µx) be the net derived from the completely prime filter and let µx qco u
∗ for

u∗ ∈ T . Then u∗ ∈ F by the choice of µx and hence (µx, u
∗) ∈ ΛF . If (µy, w) ≥ (µx, u

∗)
then w ≤ u∗ and µy qco u

∗ and the net is eventually in u∗.
�

6.3.12 Proposition
Every completely prime filter equals the derived filter of any of its derived nets.

Proof. If µ ∈ F and µλ qco u, for λ ≥ λ∗ then u ∈ F(µλ).
Conversely, u ∈ F(µλ) implies µλ qco u for λ ≥ λ∗ = (µx, w), w ∈ F . Hence µλ∗ qco u which
implies, since F is completely prime, that u ∈ F (Proposition 6.3.9)
�

6.3.13 Theorem (Second characterization of semi-sobriety)
A (X, [0, 1], T ) topological space is semi-sober iff every observative net strongly converges
to a fuzzy point µx.

Proof. (X, [0, 1], T ) semi-sober implies by Corollary 6.3.4 that every completely prime filter
of [0, 1]-open sets are the quasi-neighbourhoods of a fuzzy point µx on X . So given an obser-
vative net (µλ)λ∈Λ then its derived filter is completely prime (by Proposition 6.3.7) and is
therefore the quasi-neighbourhoods of a fuzzy point µx. Thus by Lemma 6.3.8 (µλ) −→∗ µx.
Conversely: Suppose every observative net in X converges strongly to a µx on X . Then by
Lemma 6.3.8, the derived filter of such a net is the quasi-neighbourhoods of the µx and by
Proposition 6.3.7 is completely prime. But by Proposition 6.3.12 every completely prime fil-
ter can be derived from such an observative net, and hence equals the quasi-neighbourhoods
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of µx. So by Corollary 6.3.4, (X, [0, 1], T ) is semi-sober.
�

6.4 The relationships of semi-sobriety towards the con-
cepts of Srivastava as in Section 4.2

6.4.1 Theorem
If (X, [0, 1], T ) is α-sober (α ∈ [0, 1)) and T contains the constant functions then it is
semi-sober.

Proof. By definition of α-sobriety (Definition 4.2.2), the crisp topological space (X, ια(T ))
is sober, and thus by Theorem 2.1.6, the only completely prime filters of ια(T )-open sets
are Nxα

for some xα ∈ X .
Let F be a completely prime filter of [0, 1]-open sets in (X, [0, 1], T ). Then

Fα = {u←(α, 1] : u ∈ F}

= {(u ∨ α)←(α, 1] : u ∨ α ∈ F}

since α(x) ≡ α is in T .
Fα is a completely prime filter of ια(T )-open sets :-
Filter :

1. X ∈ Fα since 1 ∈ F

U, V ∈ Fα ⇒ U = u←(α, 1] , V = v←(α, 1] , u, v ∈ F
⇒ U ∩ V = u←(α, 1] ∩ v←(α, 1]

= (u ∧ v)←(α, 1], u ∧ v ∈ F
∈ Fα

2.

U ∈ Fα, U ⊂ V ⇒ u←(α, 1] ⊂ V where u ∈ F and V ∈ ια(T )

⇒ (u ∨ α)←(α, 1] ⊂ v←(α, 1] for a v ∈ T

⇒ u ∨ α ≤ v , u ∨ α ∈ F

⇒ v ∈ F

⇒ V ∈ Fα

Completely prime :

Let
⋃

Uj ∈ Fα. So

⋃

Uj =
⋃

u←j (α, 1] , uj ∈ F

= (
∨

uj)
←(α, 1]

Now
∨

uj ∈ F and since F is completely prime, ∃j0 such that uj0 ∈ F . Then u←j0 (α, 1] ∈ Fα.
So by Theorem 2.1.6, Fα = Nxα

for some xα ∈ X . Thus ∀u ∈ F , u←(α, 1] ∈ Nxα
or u is an

α-neighbourhood of xα. Thus by Proposition 1.5.3, u is a quasi-neighbourhood of the fuzzy
point (xα, 1 − α). So F = QNµxα

and thus by Corollary 6.3.4, (X, [0, 1], T ) is semi-sober.
�
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6.4.2 Corollary
If (X, [0, 1], T ) is strongly sober and T contains the constant functions, then it is semi-sober.

Proof. Follows from Theorems 6.4.1 and 4.2.11.
�

6.4.3 Theorem
If (X, [0, 1], T ) is ultrasober and T contains the constant functions, then it is semi-sober

Proof. Follow the Proof of Theorem 6.4.1 so as to obtain that for each α ∈ [0, 1), Fα =
{u←(α, 1] : u ∈ F} is the neighbourhood filter Nxα

of a point xα ∈ X . Hence ∀α ∈ [0, 1),
F = QNµxα

. Thus by Corollary 6.3.4, (X, [0, 1], T ) is semi-sober.
�

Reverse implications from semi-sober to ultrasober or strongly sober or α-sober do not
hold according to Section 4.2.
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Chapter 7

Lifting of Sobriety

7.1 Lifting of sobriety and semi-sobriety

A property P of a topological space (ordinary or L-valued) is said to lift if (X, T ∗) has
property P whenever (X, T ) has property P for T ⊂ T ∗. Clearly many seperation axioms
lift eg. T0, T1 and T2.
For ordinary (crisp) topological spaces (X, T ) = (X, {0, 1}, T ) we have,

7.1.1 Theorem ( [13])
If a T0 topological space (X, T ) is sober and T ⊂ T ∗, and if H is irreducibly closed in
(X, T ∗), then H ⊂ clT (x1) for some x1 ∈ clT (H).

Proof. Firstly, clT (H) is irreducibly closed in (X, T ); because if not, clT (H) = F1 ∪ F2, F1

and F2 closed in (X, T ) with clT (H) not contained in either F1 or F2.
NowH = (F1∩H)∪(F2∩H) with both F1∩H and F2∩H closed in (X, T ∗). SoH ⊆ F1∩H or
H ⊆ F2∩H , i.e. H ⊆ F1 or H ⊆ F2. But then clT (H) ⊆ F1 or clT (H) ⊆ F2. Contradiction.
Since clT (H) is irreducibly closed in (X, T ) and (X, T ) is sober, by Theorem 2.2.12, clT (H) =
clT {x1} for some x1 ∈ clT (H). Thus H ⊆ clT {x1}.
�

7.1.2 Corollary ( [13])
Sobriety lifts for T1 topological spaces.

7.1.3 Example ( [13])
Here is a non-T1 sober space where sobriety does not lift: Let X = (−∞, k] ⊂ R with the
sober topology,

T = {X, ∅, (a, k] : a ∈ X}

Enlarge this to the topology T ∗ on X generated by T together with the cofinite topology on
X . Then the closed sets are: (−∞, a], a ∈ X , all finite sets and X and ∅. The sets (−∞, a]
are again irreducible, but are not the closures of singletons since the space is now T1.

7.1.4 Corollary
Referring to Section 4.2, we observe that if ια(T ) is T1, then α-sober ⇒ ultrasober.

7.1.5 Definition ( [13])
An L-topological space (X,L, T ) is T1 iff the map T : LX −→ {0, 1} assigns to the comple-
ment of a fuzzy point the value 1. (L with an order reversing involution)
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We can extend Theorem 7.1.1 to the semi sober L-topological case so as to obtain,

7.1.6 Theorem ( [13])
If (X,L, T ) is semi-sober and T1 and T ⊆ T ∗, then (X,L, T ∗) is also semi-sober.

Proof. Here ∪,∩ and ⊆ in the proof of Theorem 7.1.1 should be read as ∨,∧ and ≤
respectively in LX . Then H ≤ clT {x1}, where clT {x1} denotes the β-closure of x1. Since
(X,L, T ) is T1, clT {x1} = (x1, β) (the fuzzy point µx1

(x1) = β see Definition 1.3.3). Since
H is irreducibly closed in (X,L, T ∗), H is also a fuzzy point (x1, β

∗) where β∗ is irreducible
and 0 < β∗ ≤ β; hence H is the β∗-closure of a singleton, and so (X,L, T ∗) is semi-sober.
�

The converse of the preceding Theorem, if (X,L, T ) is semi-sober and if for any T ∗ ⊇
T , (X,L, T ∗) is semi-sober, then (X,L, T ) is not necessarily T1 as can be seen from the
following two counterexamples, the first a “crisp” case and the second an L-topological one,

7.1.7 Example ( [13])
Consider the two point Sierpinski space ({0, 1}, T ) with T = {∅, {0, 1}, {1}} is sober (hence
semi-sober), but all larger topologies on {0, 1}, and there is only one such, namely the
discrete topology, are sober (semi-sober). However ({0, 1}, T ) is not T1.

7.1.8 Example ( [13])
Take X = {0, 1} and T = {0, ι,1} where ι is the inclusion map of {0, 1} into [0, 1]. Denote
µ : X = {0, 1} −→ [0, 1], defined by µ(0) = α, µ(1) = β by < α, β >. (So ι =< 0, 1 >.)
The irreducibly non-zero L-closed sets are 1 and 1 − ι =< 1, 0 > and 1 = clT (1, 1) while
1− ι = clT (1, 0). So (X,L, T ) is semi-sober.
Now let T ∗ be another L-topology on X with T ⊆ T ∗ and let µ =< α, β > be a non-zero
irreducibly T ∗ L-closed set. Then as < 0, 1 > is T -closed, hence T ∗-closed,

< α, β > ∧ < 1, 0 >=< α, 0 > is T ∗-closed.

If β = 0, then < α, β >=< α, 0 > is clearly clT ∗(0, α).
If β 6= 0 and α = 0, then < α, β >=< 0, β > is clearly clT ∗(1, β).
If β 6= 0 and α 6= 0, then also < α, β >= clT ∗(1, β), for if not we could have an T ∗-closed
set < α′, β > with α′ < α, which would mean that < α, β >=< α, 0 > ∨ < α′, β >,
contradicting the T ∗-irreducibility of < α, β >.
So again, (X,L, T ∗) is semi-sober.
But (X,L, T ) is not T1 since the fuzzy point (1, 1) = ι =< 0, 1 > is not T -closed.

7.2 Further Questions for the Crisp Case

The question as to whether we could find a converse to Theorem 7.1.6 was answered for
sobriety (but not semi-sobriety) in the crisp case by R-E. Hoffman in [3] where he showed
that the following two statements are equivalent,

1. (X, T ) is sober and TD;

2. every space finer than (X, T ) is sober.

The TD property is : every singleton is the intersection of an open and closed set, or
equivalently, for any A ∈ P(X), derA is closed.
It is easy to see that T1 ⇒ TD ⇒ T0. This begs the question to come up with a TD axiom
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for L-topological spaces, weaker than the T1 axiom, which will give an analogous result for
semi-sobriety.

A further interesting question in this connection is, can we have two (crisp) topologies
T and T ∗ on X , T ⊆ T ∗ with (X, T ) sober, |ptT | = |ptT ∗| but (X, T ∗) not sober? The
following example answers the question in the affirmative :
Consider X = Z∩ (−∞, k], k ∈ Z (i.e. all integers up to and including k) with the topology
T consisting of X , ∅ and all (a, k] ∩ Z, a ∈ X (simply (a, k] in what follows).
(X, T ) is sober since the irreducibly closed sets are (−∞, a] ∩ Z (simply(−∞, a] in what
follows), each of which is the closure of {a} (see also Example 6.1.8). ptT consists of, for
a ∈ X ,

pa(l, k] =

{

1 if l < a

0 if l ≥ a

Note that pa(∅) = pa((k, k]) = 0 and

pk(l, k] =

{

1 if l < k

0 if l = a

So |ptT | = |X | = ℵ0. Furthermore Ψ : X −→ ptT defined as Ψ(x)(u) = χu(x) (Definition
2.1.2) gives

Ψ(a)(l, k] =

{

1 if l < a

0 if l ≥ a

= pa(l, k]

Now define T ∗ on X as X ; ∅; (a, k], a ∈ X ; {k}. So the closed sets are ∅, X , (−∞, a],
(−∞, k). (X, T ∗) is not sober since (−∞, k) is irreducibly closed but is not the closure of a
singleton. Further ptT ∗ consists of the following :

1. for a ∈ X

pa(l, k) =

{

1 if l < a

0 if l ≥ a

pa{k} = 0

2.

p′k(l, k) =

{

1 if l < k

0 if l = a

p′k{k} = 1

So |ptT ∗| = ℵ0 + 1 = ℵ0.
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Chapter 8

Semi-sobriety in
(L,M )-Topological spaces

Let (X,L,M, T ) be an (L,M)-topological space and put Tα = T ←{[α, 1]} where [α, 1] =
{β ∈M : β ≥ α}. Tα is a frame in LX (an L-topology on X) for each α ∈M with T0 = LX

and α ≥ β ⇒ Tα ⊆ Tβ .

8.0.1 Definition
In a complete lattice L, x is way below y (x << y) iff for directed subsets D of L, the
relation y ≤ supD implies the existence of a d ∈ D such that x ≤ d.
In L x << y ⇒ x ≤ y.

8.0.2 Definition
A complete lattice L is a continuous lattice if for all x ∈ L, x = sup{u ∈ L : u << x}.

L a frame ⇒ L a continuous lattice ⇒ L a semi-frame, but these implications are not
reversible.

8.0.3 Proposition ( [13])
If M is a continuous lattice, then Tα =

⋂

β<<α Tβ .

Proof. Since α ≥ β ⇒ Tα ⊆ Tβ it follows that Tα ⊆
⋂

β<<α Tβ . On the other hand, if
u ∈ Tβ for all β << α, then since α = sup{β : β << α} we have

[T (u) ≥ β, for all β << α] ⇒ T (u) ≥ α ⇒ u ∈ Tα

�

8.0.4 Definition ( [13])
An (L,M)-topological space (X,L,M, T ) is T1 iff the map T : LX −→ M assigns to the
complement of a fuzzy point on X the value 1 in M .

If (X,L,M, T ) is T1, then all the complements of fuzzy points in LX are in Tα. This
means that for each α ∈M we get a T1 L-topological space (X,L, Tα) after identification of
the frame Tα in LX with Tα : LX −→ {0, 1} through u ∈ Tα iff Tα(u) = 1.
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8.0.5 Definition ( [13])
A T1 (L,M)-fuzzy topological space (X,L,M, T ) is semi-sober of degree ≥ m iff (X,L, Tm)
is semi-sober.

Then in view of Theorem 7.1.6 all the Tα between Tm and T0 = LX are semi-sober.

In the definition above we cannot specify (X,L,M, T ) to be semi-sober of degree m if
m is the supremum of members of M for which (X,L, Tm) is semi-sober, since the infimum
(intersection) of semi-sober topologies is not necessarily semi-sober, as can be seen through
the following example :

8.0.6 Example ( [13])
Consider R with the topology T = {R; ∅; (a,∞) : a ∈ R}. Then (R, T ) is not semi-sober
(nor sober) since R is irreducibly closed but not the closure of a singleton. Now define Tx

on R as the topology which contains T as well as sets of the form {(−∞, b) : b > x}. The
non-empty closed sets are then R, {[b,∞) : b > x}, {[b, b′] : b > x}, {(−∞, a] : a ∈ R}, and
{{b} : b > x}. The first three types are reducibly closed whereas the fourth is reducible for
a > x, but in the case a ≤ x is both irreducibly closed and the closure of {a}. The fifth type
is irreducible and the closure of {b}. So Tx is semi-sober (and sober). But T =

⋂

x∈R
Tx.

On the other hand, given L-topologies {Tα : α ∈ M} on X with α ≥ β ⇒ Tα ⊆ Tβ and
T0 = LX , then T ∗ : LX −→M defined by

T ∗(u) =
∨

{α : u ∈ Tα}

is an (L,M)-topology on X . Now consider T ∗α = T ∗←{[α, 1]}, α ∈ M . Then as in Proposi-
tion 8.0.3, if M is a continuous lattice, then

T ∗α =
⋂

β<<α

T ∗β

8.0.7 Proposition ( [13])
If M is a continuous lattice and β << α, then

⋂

γ<<α

Tγ ⊆ T ∗β and
⋂

γ<<α

T ∗γ ⊆ Tβ .

Proof. Suppose there exists a u such that u ∈ Tγ for all γ << α but u 6∈ T ∗β . Since
sup{γ : γ << α} = α and β << α, there exists a γ0 << α such that γ0 ≥ β. Hence
Tβ ⊆ Tγ0

. Now u ∈ Tγ0
and so T ∗(u) ≥ γ0. Hence u ∈ T ∗γ0

and so u ∈ T ∗β . Contradiction.
The other case follows similarly.
�

8.0.8 Corollary ( [13])
If M is a continuous lattice, then Tα = T ∗α .

Proof.
T ∗α =

⋂

β<<α

T ∗β =
⋂

γ<<α

Tγ = Tα

�

So if all the Tα, α ∈ [0,m] are semi-sober (and the rest not), then (X,L,M, T ∗) obtained
is an (L,M)-topological space which is semi-sober of degree ≥ m (= m).
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