20,352 research outputs found

    Scale-invariant radio jets and varying black hole spin

    Get PDF
    Compact radio cores associated with relativistic jets are often observed in both active galactic nuclei and X-ray binaries. Their radiative properties follow some general scaling laws which primarily depend on their masses and accretion rates. However, it has been suggested that the black hole spin can also strongly influence the power and radio flux of these. Here, we attempt to estimate the dependency of the radio luminosity of steady jets launched by accretion disks on black hole mass, accretion rate and spin using numerical simulations. We make use of 3D GRMHD simulations of accretion disks around low-luminosity black holes in which the jet radio emission is produced by the jet sheath. We find that the radio flux increases roughly by a factor of 6 as the back hole spin increases from a~0 to a=0.98. This is comparable to the increase in accretion power with spin, meaning that the ratio between radio jet and accretion power is hardly changing. Although our jet spine power scales as expected for the Blandford-Znajek process, the dependency of jet radio luminosity on the black hole spin is somewhat weaker. Also weakly rotating black holes can produce visible radio jets. The overall scaling of the radio emission with black hole mass and accretion rate is consistent with the scale-invariant analytical models used to explain the fundamental plane of black hole activity. Spin does not introduce a significant scatter in this model. The jet-sheath model can describe well resolved accreting systems, such as SgrA* and M87, as well as the general scaling behavior of low-luminosity black holes. Hence the model should be applicable to a wide range of radio jets in sub-Eddington black holes. The black hole spin has an effect on the production of visible radio jet, but it may not be the main driver to produce visible radio jets. An extension of our findings to powerful quasars remains speculative.Comment: 10 pages, 6 figures, A&A accepte

    The spin dependence of the Blandford-Znajek effect

    Full text link
    The interaction of large scale magnetic fields with the event horizon of rotating black holes (the Blandford-Znajek [1977] mechanism) forms the basis for some models of the most relativistic jets. We explore a scenario in which the central inward "plunging" region of the accretion flow enhances the trapping of large scale poloidal field on the black hole. The study is carried out using a fully relativistic treatment in Kerr spacetime, with the focus being to determine the spin dependence of the Blandford-Znajek effect. We find that large scale magnetic fields are enhanced on the black hole compared to the inner accretion flow and that the ease with which this occurs for lower prograde black hole spin, produces a spin dependence in the Blandford-Znajek effect that has attractive applications to recent observations. Among these is the correlation between inferred accretion rate and nuclear jet power observed by Allen et al. (2006) in X-ray luminous elliptical galaxies. If the black hole rotation in these elliptical galaxies is in the prograde sense compared with that of the inner accretion disk, we show that both the absolute value and the uniformity of the implied jet-production efficiency can be explained by the flux-trapping model. The basic scenario that emerges from this study is that a range of intermediate values of black hole spins could be powering these AGN. We also suggest that the jets in the most energetic radio-galaxies may be powered by accretion onto {\it retrograde} rapidly-rotating black holes.Comment: ApJ accepte

    Magnetohydrodynamic Simulations of A Rotating Massive Star Collapsing to A Black Hole

    Full text link
    We perform two-dimensional, axisymmetric, magnetohydrodynamic simulations of the collapse of a rotating star of 40 Msun and in the light of the collapsar model of gamma-ray burst. Considering two distributions of angular momentum, up to \sim 10^{17} cm^2/s, and the uniform vertical magnetic field, we investigate the formation of an accretion disk around a black hole and the jet production near the hole. After material reaches to the black hole with the high angular momentum, the disk is formed inside a surface of weak shock. The disk becomes in a quasi-steady state for stars whose magnetic field is less than 10^{10} G before the collapse. We find that the jet can be driven by the magnetic fields even if the central core does not rotate as rapidly as previously assumed and outer layers of the star has sufficiently high angular momentum. The magnetic fields are chiefly amplified inside the disk due to the compression and the wrapping of the field. The fields inside the disk propagate to the polar region along the inner boundary near the black hole through the Alfv{\'e}n wave, and eventually drive the jet. The quasi-steady disk is not an advection-dominated disk but a neutrino cooling-dominated one. Mass accretion rates in the disks are greater than 0.01 Msun/sec with large fluctuations. The disk is transparent for neutrinos. The dense part of the disk, which locates near the hole, emits neutrino efficiently at a constant rate of < 8 \times 10^{51} erg/s. The neutrino luminosity is much smaller than those from supernovae after the neutrino burst.Comment: 42 pages, accepted for publication in the Astrophysical Journal. A paper with higher-resolution figures available at http://www.ec.knct.ac.jp/~fujimoto/collapsar/mhd-color.pd

    A Magnetically-Switched, Rotating Black Hole Model For the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division

    Get PDF
    A model is presented in which both Fanaroff and Riley class I and II extragalactic jets are produced by magnetized accretion disk coronae in the ergospheres of rotating black holes. While the jets are produced in the accretion disk itself, the output power still is an increasing function of the black hole angular momentum. For high enough spin, the black hole triggers the magnetic switch, producing highly-relativistic, kinetic-energy-dominated jets instead of Poynting-flux-dominated ones for lower spin. The coronal mass densities needed to trigger the switch at the observed FR break power are quite small (∌10−15gcm−3\sim 10^{-15} g cm^{-3}), implying that the source of the jet material may be either a pair plasma or very tenuous electron-proton corona, not the main accretion disk itself. The model explains the differences in morphology and Mach number between FR I and II sources and the observed trend for massive galaxies to undergo the FR I/II transition at higher radio power. It also is consistent with the energy content of extended radio lobes and explains why, because of black hole spindown, the space density of FR II sources should evolve more rapidly than that of FR I sources. If the present model is correct, then the ensemble average speed of parsec-scale jets in sources distinguished by their FR I morphology (not luminosity) should be distinctly slower than that for sources with FR II morphology. The model also suggests the existence of a population of high-redshift, sub-mJy FR I and II radio sources associated with spiral or pre-spiral galaxies that flared once when their black holes were formed but were never again re-kindled by mergers.Comment: 14 pages, 2 figures, final version to appear in Sept Ap

    Non-thermal Processes in Black-Hole-Jet Magnetospheres

    Full text link
    The environs of supermassive black holes are among the universe's most extreme phenomena. Understanding the physical processes occurring in the vicinity of black holes may provide the key to answer a number of fundamental astrophysical questions including the detectability of strong gravity effects, the formation and propagation of relativistic jets, the origin of the highest energy gamma-rays and cosmic-rays, and the nature and evolution of the central engine in Active Galactic Nuclei (AGN). As a step towards this direction, this paper reviews some of the progress achieved in the field based on observations in the very high energy domain. It particularly focuses on non-thermal particle acceleration and emission processes that may occur in the rotating magnetospheres originating from accreting, supermassive black hole systems. Topics covered include direct electric field acceleration in the black hole's magnetosphere, ultra-high energy cosmic ray production, Blandford-Znajek mechanism, centrifugal acceleration and magnetic reconnection, along with the relevant efficiency constraints imposed by interactions with matter, radiation and fields. By way of application, a detailed discussion of well-known sources (Sgr A*; Cen A; M87; NGC1399) is presented.Comment: invited review for International Journal of Modern Physics D, 49 pages, 15 figures; minor typos corrected to match published versio

    Maximum Spin of Black Holes Driving Jets

    Get PDF
    Unbounded outflows in the form of highly collimated jets and broad winds appear to be a ubiquitous feature of accreting black hole systems. The most powerful jets are thought to derive a significant fraction, if not the majority, of their power from the rotational energy of the black hole. Whatever the precise mechanism that causes them, these jets must therefore exert a braking torque on the black hole. We calculate the spin-up function for an accreting black hole, accounting for this braking torque. We find that the predicted black hole spin-up function depends only on the black hole spin and dimensionless parameters describing the accretion flow. Using recent relativistic magnetohydrodynamical numerical simulation results to calibrate the efficiency of angular momentum transfer in the flow, we find that an ADAF flow will spin a black hole up (or down) to an equilibrium value of about 96% of the maximal spin value in the absence of jets. Combining our ADAF system with a simple model for jet power, we demonstrate that an equilibrium is reached at approximately 93% of the maximal spin value, as found in the numerical simulation studies of the spin-up of accreting black holes, at which point the spin-up of the hole by accreted material is balanced by the braking torque arising from jet production. Our model also yields a relationship between jet efficiency and black hole spin that is in surprisingly good agreement with that seen in the simulation studies, indicating that our simple model is a useful and convenient description of ADAF inflow - jet outflow about a spinning black hole for incorporation in models of the formation and evolution of galaxies, groups and clusters of galaxies.Comment: 15 pages, 5 figures, accepted for publication in MNRAS. Corrected errors in jet efficiency formula in text and some equations in Appendices. Errors affected text only, results are unchange
    • 

    corecore