26 research outputs found

    Java is type safe -- probably

    Get PDF
    Amidst rocketing numbers of enthusiastic Java programmers and internet applet users, there is growing concern about the security of executing Java code produced by external, unknown sources. Rather than waiting to find out empirically what damage Java programs do, we aim to examine first the language and then the environment, looking for points of weakness. A proof of the soundness of the Java type system is a first, necessary step towards demonstrating which Java programs won't compromise computer security. We consider a type safe subset of Java describing primitive types, classes, inheritance, instance variables and methods, interfaces, shadowing, dynamic method binding, object creation, null and arrays. We argue that for this subset the type system is sound, by proving that program execution preserves the types, up to subclasses/subinterfaces

    Towards a Java Subtyping Operad

    Full text link
    The subtyping relation in Java exhibits self-similarity. The self-similarity in Java subtyping is interesting and intricate due to the existence of wildcard types and, accordingly, the existence of three subtyping rules for generic types: covariant subtyping, contravariant subtyping and invariant subtyping. Supporting bounded type variables also adds to the complexity of the subtyping relation in Java and in other generic nominally-typed OO languages such as C# and Scala. In this paper we explore defining an operad to model the construction of the subtyping relation in Java and in similar generic nominally-typed OO programming languages. Operads, from category theory, are frequently used to model self-similar phenomena. The Java subtyping operad, we hope, will shed more light on understanding the type systems of generic nominally-typed OO languages.Comment: 13 page

    ECOOP'97 - Object-Oriented Programming

    Get PDF

    Attribute Computations in the DPoPb Graph Transformation Engine

    Get PDF
    One of the challenges of attributed graph rewriting systems concerns the implementation of attribute computations. Most of the existing systems adopt the standard algebraic approach where graphs are attributed using sigma-algebras. However, for the sake of efficiency considerations and convenient uses, these systems do not generally implement the whole attribute computations but rely on programs written in a host language. In previous works we introduced the Double Pushout Pullback (DPoPb) framework which integrates attributed graph rewriting and computation on attributes in a unified categorical approach. This paper discusses the DPoPb’s theoretical and practical advantages when using inductive types and lambda-calculus. We also present an implementation of the DPoPb system in the Haskell language which thoroughly covers the semantics of this graph rewriting system

    Formal Semantics for Java-like Languages and Research Opportunities

    Get PDF
    The objective of this paper is twofold: first, we discuss the state of art on Java-like semantics, focusing on those that provide formal specification using operational semantics (big-step or small-step), studying in detail the most cited projects and presenting some derivative works that extend the originals aggregating useful features. Also, we filter our research for those that provide some insights in type-safety proofs. Furthermore, we provide a comparison between the most used projects in order to show which functionalities are covered in such projects. Second, our effort is focused towards the research opportunities in this area, showing some important works that can be applied to the previously presented projects to study features of object-oriented languages, and pointing for some possibilities to explore in future researches

    Scopes Describe Frames: A Uniform Model for Memory Layout in Dynamic Semantics

    Get PDF
    Semantic specifications do not make a systematic connection between the names and scopes in the static structure of a program and memory layout, and access during its execution. In this paper, we introduce a systematic approach to the alignment of names in static semantics and memory in dynamic semantics, building on the scope graph framework for name resolution. We develop a uniform memory model consisting of frames that instantiate the scopes in the scope graph of a program. This provides a language-independent correspondence between static scopes and run-time memory layout, and between static resolution paths and run-time memory access paths. The approach scales to a range of binding features, supports straightforward type soundness proofs, and provides the basis for a language-independent specification of sound reachability-based garbage collection

    What is Java binary compatibility?

    No full text
    Separate compilation allows the decomposition of programs into units that may be compiled separately, and linked into an executable. Traditionally, separate compilation was equivalent to the compilation of all units together, and modi cation and re-compilation of one unit required re-compilation of all importing units. Java suggests a more exible framework, in which the linker checks the integrity of the binaries to be combined. Certain source code modi cations, such asaddition of methods to classes, are de ned as binary compatible. The language description guarantees that binaries of types (i.e. classes or interfaces) modi ed in binary compatible ways may be re-compiled and linked with the binaries of types that imported and were compiled using the earlier versions of the modi ed types. However, this is not always the case: some of the changes considered by Java as binary compatible do not guarantee successful linking and execution. In this paper we study the concepts around binary compatibility. We suggest a formalization of the requirement of safe linking and execution without re-compilation, investigate alternatives, demonstrate several of its properties, and propose a more restricted de nition of binary compatible changes. Finally, we prove for a substantial subset of Java, that this restricted de nition guarantees error-free linking and execution.

    A programming logic for Java bytecode programs

    Get PDF
    One significant disadvantage of interpreted bytecode languages, such as Java, is their low execution speed in comparison to compiled languages like C. The mobile nature of bytecode adds to the problem, as many checks are necessary to ensure that downloaded code from untrusted sources is rendered as safe as possible. But there do exist ways of speeding up such systems. One approach is to carry out static type checking at load time, as in the case of the Java Bytecode Verifier. This reduces the number of runtime checks that must be done and also allows certain instructions to be replaced by faster versions. Another approach is the use of a Just In Time (JIT) Compiler, which takes the bytecode and produces corresponding native code at runtime. Some JIT compilers also carry out some code optimization. There are, however, limits to the amount of optimization that can safely be done by the Verifier and JITs; some operations simply cannot be carried out safely without a certain amount of runtime checking. But what if it were possible to prove that the conditions the runtime checks guard against would never arise in a particular piece of code? In this case it might well be possible to dispense with these checks altogether, allowing optimizations not feasible at present. In addition to this, because of time constraints, current JIT compilers tend to produce acceptable code as quickly as possible, rather than producing the best code possible. By removing the burden of analysis from them it may be possible to change this. We demonstrate that it is possible to define a programming logic for bytecode programs that allows the proof of bytecode programs containing loops. The instructions available to use in the programs are currently limited, but the basis is in place to extend these. The development of this logic is non-trivial and addresses several difficult problems engendered by the unstructured nature of bytecode programs
    corecore