
Java is Type Safe | Probably

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

email: sd and se @doc.ic.ac.uk

Abstract. Amidst rocketing numbers of enthusiastic Java programmers
and internet applet users, there is growing concern about the security
of executing Java code produced by external, unknown sources. Rather
than waiting to �nd out empirically what damage Java programs do, we
aim to examine �rst the language and then the environment looking for
points of weakness. A proof of the soundness of the Java type system is a
�rst, necessary step towards demonstrating which Java programs won't
compromise computer security.
We consider a type safe subset of Java describing primitive types, classes,
inheritance, instance variables and methods, interfaces, shadowing, dy-
namic method binding, object creation, null and arrays. We argue that
for this subset the type system is sound, by proving that program exe-
cution preserves the types, up to subclasses/subinterfaces.

1 Introduction

Before the �rst complete Java language description was available [13] use of the
language was extremely widespread and the rate of increase in usage is steep.
The language may not have reached a stable point in its development yet: there
exist di�erences between the language descriptions [16, 17, 13], and there are
many suggestions for additional features [19, 2]. Several studies have uncovered
aws in the security of the Java system [11], and have pointed out the need for
a formal semantics.
Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Clos. The main features of the language
are primitive types (character, integer, boolean, oat), classes with inheritance,
instance/class variables and methods, interfaces for class signatures, shadow-
ing of instance variables, dynamic method binding, exceptions, arrays, strings,
class modi�ers (private, protected, public etc), �nal/abstract classes and methods,
nested scopes, separate compilation, constructors and �nalizers. The philoso-
phy of the language designers was to include only features with already known
semantics, and to provide a small and simple language.
Nevertheless, we feel that the introduction of some new features in Java, as
well as the speci�c combination of features, justi�es a study of the Java formal
semantics. The use of interfaces, reminiscent of [9, 5] is a simpli�cation of the
signatures extension for C++ [3] and is { to the best of our knowledge { novel.
The mechanism for dynamic method binding is that of C++, but we know of

no formal de�nition. Java adopts the Smalltalk approach whereby all object
variables are implicitly pointers.
Furthermore, although there are a large number of studies of the semantics of iso-
lated programming language features or of minimal programming languages [1],
there have not been many studies of the formal semantics of actual programming
languages . In addition, the interplay of features which are very well understood
in isolation, might introduce unexpected e�ects.
Experience con�rms the importance of formal studies of type systems early on
during language development. Ei�el, a language �rst introduced in 1985, was
discovered to have a loophole in its type system in 1990 [8, 18]. Given the growing
usage of Java, it seems important that if there are loopholes in the type system
they be discovered early on.
We aim to argue that the type system of Java is sound, in the sense that unless
an exception is raised, the evaluation of any expression will produce a value of
a type \compatible" with the type assigned to it by the type system.
We were initially attracted to Java, because of its elegant combination of several
tried language features. For this work we were guided by the language descrip-
tions, [17], [13]. We found the language description complete and unambiguous,
in the sense that any question relating to semantics could be answered unam-
biguously by [13]. However, we discovered some rules to be more restrictive than
necessary, and the reasons for some design decisions were not obvious. We hope
that the language authors will publish a language design rationale soon.

1.1 The Java subset considered so far

In this paper we consider the following parts of the Java language: primitive
types, classes and inheritance, instance variables and instance methods, inter-
faces, shadowing of instance variables, dynamic method binding, object creation
with new, the null value, arrays, and some exceptions[12].
We chose this Java subset because we consider the Java way of combining classes,
interfaces and dynamic method binding to be both novel and interesting. Fur-
thermore, we chose an imperative subset right from the start, because the ex-
tension of type systems to the imperative case has sometimes uncovered new
problems, (e.g. multi-methods for functional languages [7], and for imperative
languages in[4], the Damas and Milner polymorphic type systems for functional
languages [10], and for the imperative extension [21]). We considered arrays,
because of the known requirement for run time type checking.
We describe the language as in the [13] de�nition with the exception of method
binding, which we model as described in [17], because it imposes a weaker re-
quirement. Namely, [17] requires methods that hide methods from superclasses
or superinterfaces to have a return type that can be widened to the return type
of the hidden method, whereas [13] requires them to have the same type. Be-
cause the �rst requirement is weaker, our soundness result automatically applies
to the new, stricter version of Java as in [13].

1.2 Our approach

We de�ne Javas, a safe subset of Java containing the features listed previously,
a term rewrite system to describe the Javas operational semantics and a type
inference system to describe compile-time type checking. We prove that program
execution preserves the types up to the subclass/subinterface relationship.
We aimed to keep the description straightforward, and so we have removed some
of the syntactic sugar in Java, e.g. we require instance variable access to have the
form this.var as opposed to var, and we require the last statement in a method
to be a return statement. These restrictions simplify the type inference and term
rewriting systems.
The type system is described in terms of an inference system. In contrast with
many type systems for object oriented languages, it does not have a subsump-
tion rule, a crucial property when type checking message expressions, c.f. 3.2.
Contrary to Java, Javas statements have a type { and thus we can type check
the return values of method bodies.
The execution of Java programs requires some type information at run-time
(e.g. method descriptors as in ch. 15.11 in [13]). For this reason, we de�ne Javase,
an enriched version of Javas containing compile-time type information to be
used for method call and �eld access. Interestingly, it turns out, that in con-
trast to Java and Javas, Javase does enjoy a \substitution property". Hence in
Javase the replacement of a subexpression of type T by another subexpression
of a subtype of T, does not a�ect the type of the overall expression { up to the
subclass/subinterface relationship. This should not be surprising, since the lack
of a substitution property in Java was probably the reason for the introduction
of method descriptors in the �rst place.
The operational semantics is de�ned for Javase as a ternary rewrite relationship
between con�gurations, terms and con�gurations. Con�gurations are tuples of
terms and states. The terms represent the part of the original program remaining
to be executed. We describe method calls through textual substitution.
We have been able to avoid additional structures such as program counters and
higher order functions. The Javas simpli�cations of eliminating block structure
and local variables allow the de�nition of the state as a at structure, where
addresses are mapped to objects and global variables are mapped to primitive
values or addresses. Objects carry their classes (similar to the Smalltalk abstract
machine [15], thus we do not need store types [1], or location typings [14]).
Objects are labelled tuples, where each label contains the class in which it was
declared. Array values are tuples too, and they are annotated by their type and
their dimension.
This paper is organized as follows: In section 2 we give the syntax of Javas. In
section 3 we de�ne the static types for Javas, and the mapping from Javas to
Javase. In section 4 we describe states, con�gurations and the operational se-
mantics for Javase. In section 5 we prove the Subject Reduction Theorem. In
section 6 we give an example. Finally, in section 7 we outline further work and
draw some conclusions.

2 The language Javas

Javas describes a subset of Java, including classes, instance variables, instance
methods, inheritance of instance methods and variables, shadowing of instance
variables, interfaces, widening, method calls, assignments, object creation and
access, the null value, instance variable access and the exception NullPointExc,
arrays, array creation and the exceptions ArrStoreExc, NegSzeExc and IndOutBn-
dExc. We have not yet considered initializers, constructors, �nalizers, class vari-
ables and class methods, local variables, class modi�ers, �nal/abstract classes
and methods, super, strings, numeric promotions and widenings, concurrency,
the handling of exceptions, packages and separate compilation.
There are slight di�erences between the syntax of Javas and Java which were
introduced to simplify the formal description. A Java program contains both
type and evaluation information. The type information consists of variable dec-
larations, parameter and result types for methods, and interfaces of classes. The
evaluation information consistent statements in method bodies. In Javas this
information is split into two: type information is contained in the environment
(usually represented by a �), whereas evaluation information is reected in the
program (usually represented by a p). An example can be seen in section 6.
We follow the convention that Javas keywords appear as keyword, identi�ers as
identifier, nonterminals appear in italics as Nonterminal, and the metalan-
guage symbols appear in roman (e.g. ::=, (,*,)). Identi�ers with the su�x Id

(e.g. VarId) indicate the identi�ers of newly declared entities, whereas identi�ers
with the su�x Name (e.g. VarName) indicate a previously declared entity.

2.1 Programs

A program consists of a sequence of class bodies. Class bodies consist of a se-
quence of method bodies.
Method bodies consist of the method identi�er, the names and types of the
arguments, and a statement sequence. We require that there is exactly one return
statement in each method body, and that it is the last statement. This simpli�es
the Javas operational semantics without restricting the expressiveness, since it
requires at most a minor transformation to enable any Java method body to
satisfy this property.
We need only consider conditional statements, assignments and method calls.
This is because loop, break, continue and case statements can be coded in terms
of conditionals and loops; try and throw statements belong to exceptions which
are outside the scope of the current state of our investigations.
We consider values, method calls, and instance variable access. Java values are
primitive (e.g. literals such as true, false, 3, 0c0 etc), references or arrays. Refer-
ences are null, or pointers to objects. The expression new C creates a new object
of class C, whereas the expression new T[m1]:::[mn][]1:::[]k, n+ k � 1 creates a n+k-
dimensional array value. Pointers to objects are implicit. We distinguish variable
types (sets of possible run-time values for variables) and method types, as can
be seen in �gure 1.

Program ::= f (ClassBody)� g
ClassBody ::= ClassId ext ClassName f (MethodBody)� g
MethodBody ::= MethId is (� ParId : VarType.)� f Stmts ; return [Expr] g
Stmts ::= � j Stmts ; Stmt

Stmt ::= if Expr then Stmts else Stmts

j Var := Expr

j Expr

Expr ::= Value

j Var

j Expr.MethName (Expr�)
j new ClassName

j new SimpleType (([Expr])+([])�) j([])+)
Var ::= Name

j Var.VarName
j Var[Expr]
j this

Value ::= PrimValue j null
PrimValue ::= intValue j charValue j byteValue j : : :
VarType ::= SimpleVarType j ArrayType
SimpleType ::= PrimType j ClassName j InterfaceName
ArrayType ::= SimpleType[] j ArrayType[]
PrimType ::= bool j char j int j : : :
MethType ::= ArgType ! (VarType j void)
ArgType ::= (VarType (�V arType)�)

Fig. 1. Javas programs

2.2 The environment

The environment, usually denoted by a � , contains both the subclass and in-
terface hierarchies and variable type declarations. It also contains the type def-
initions of all variables and methods of a class and its interface. StandardEnv
should include all the prede�ned classes, e.g. Object and all the classes described
in chapters 20-22 of [13], but at the moment it is empty. Declarations consist of
class declarations, interface declarations and identi�er declarations.
A class declaration introduces a new class as a subclass of another class (if
no explicit superclass is given, then Object will be assumed), a sequence of
component declarations, and optionally, interfaces implemented by the class.
Component declarations consist of �eld identi�ers and their types, and method
identi�ers and their signatures. Method bodies are not declarations; they are
found in the program part rather than the environment.
An interface declaration introduces a new interface as a subinterface of several
other interfaces and a sequence of components. The only interface components in
Javas are methods, because interface variables are implicitly static, and we have

Env ::= StandardEnv j Env ; Decl
StandardEnv ::= �
Decl ::= ClassId ext ClassName impl (InterfName)�

f (VarId : VarType)� (MethId : MethType)� g
j InterfId ext InterfName�f (MethId : MethType)� g
j VarId : VarType

Fig. 2. Javas environments

not yet considered static variables. Variable declarations introduce variables of
a given type.

� = � 0; C ext C0 impl : : :f: : :g; � 00

� ` C v C

� ` C v C0
` Object v Object

� = � 0; C ext C0 impl : : :I : : :f : : : g; � 00

� ` C :imp I

� ` C v C0

� ` C0 v C00

� ` C v C00

� = � 0 I ext : : : ; I0 ; : : :f : : : g; � 00

� ` I � I

� ` I � I0

� ` I � I0

� ` I0 � I00

� ` I � I00

Fig. 3. subclass and subinterface relationships

The subclass v and the implements :imp relations are de�ned by the inference
rules in �gure 3. Every class introduced in � is its own subclass, and the assertion
� ` C v C indicates that C is de�ned in the environment � as a class. The
direct superclass of a class is indicated in its declaration. Object is a prede�ned
class. The assertion � ` C :imp I indicates that the class C was declared in
� as providing an implementation for interface I. The subclass relationship
is transitive. Every interface is its own subinterface and the assertion � `
I � I indicates that I is de�ned in the environment � as an interface. The
superinterface of an interface is indicated in its declaration. The subinterface
relationship is transitive.

De�nition 1 For a method type MT= T1� : : :�Tn ! T, we de�ne the argument
types and the result type:

{ Args(MT) = T1 � : : :� Tn
{ Res(MT) = T

Variable types (i.e. primitive types, interfaces, classes and arrays) are required
in type declarations; method types (i.e. n argument types, and a result type,
with n�0) are required in method declarations. The assertion � ` T 3V arType

means that T is a variable type, � ` AT 3ArgType means that AT is a method
argument type, and � ` MT 3MethType means that MT is a method type.

� ` C v C

� ` C 3V arType

� ` I � I

� ` I 3V arType

� ` T 3V arType

� ` T[] 3V arType

` int 3V arType

` char 3V arType

` bool 3V arType

� ` T 3V arType

� ` Ti 3V arType i 2 f1; :::ng; n � 0
� ` T1 � : : :� Tn 3ArgType

� ` T1 � : : :� Tn ! T 3MethType

Fig. 4. method and variable types

The widening relationship, described in �gure 5, exists between variable types. If
a type T can be widened to a type T0 (expressed as � ` T <wdn T0), then a value
of type T can be assigned to a variable of type T0 without any run-time casting or
checking taking place. This is de�ned in chapter 5.1.4 [17]; chapter 5.1.2 in [17]
de�nes widening of primitive types, but here we shall only be concerned with
widening of references. Furthermore, for the null value, we introduce the type
nil which can be widened to any array, class or interface.

� ` T 3V arType

� ` T <wdn T

� ` T v T0

� ` T <wdn T0
� ` T � T0

� ` T <wdn T0
� ` T <wdn Object

� ` nil <wdn T

� ` T � T

or � (T) = T0[]
� ` T <wdn Object

� ` T <wdn T0

� ` T[] <wdn T0[]

� ` T v T0

� ` T0 :imp T
00

� ` T00 � T000

� ` T <wdn T000
� ` nil <wdn nil

Fig. 5. widening relationship

2.3 Well-formed declarations and environments

It is easy to see that the relations v, :imp, � and <wdn are computable for any
environment. In this section we describe the Java requirements for variable, class
and interface declarations to be well-formed. We indicate by � ` � 0

3, that the
declarations in environment � 0 are well-formed, under the declarations of the
larger environment � . We need to consider a larger environment � because Java
allows forward declarations (e.g. in section 6 the class Phil uses the class FrPhil
whose declaration follows that of Phil). We shall call � well-formed, i� � ` � 3.
Therefore, the assertion � ` � 0 3 is checked in two stages: The �rst stage estab-
lishes the relations v, :imp, � and <wdn for the complete environment � , and
the second stage establishes that the declarations in � 0 are well-formed one by
one, according to the rules in this section. Not surprisingly, the empty environ-
ment is well-formed. We need the notion of de�nition table lookup, i.e. � (Id),

� ` � 3

� ` � 0 3

� ` T 3V arType

� 0(x) = Undef
� ` � 0; x : T 3

Fig. 6. well-formed declarations

which returns the de�nition of the identi�er Id in � , if it has one.

De�nition 2 For an environment � , with unique de�nitions for every identi-

�er, we de�ne � (id) as follows:

{ � (x) = T i� � = � 0; x : T; � 00

{ � (C) = C ext C0 impl I1; : : :Infv1 : T1; : : :vm : Tm; m1 : MT1; : : :mk : MTkg i�

� = � 0; C ext C0 impl I1; : : :Infv1 : T1; : : :vm : Tm; m1 : MT1; : : :mk : MTkg; � 00

{ � (I) = I ext I1; : : :Infm1 : MT1; : : :mk : MTkg i�

� = � 00; I ext I1; : : :Infm1 : MT1; : : :mk : MTkg; �
00

{ � (I) = Undef otherwise

The chapters 8.2 and 9 in [13] describe restrictions imposed on component (i.e. variable
or method) de�nitions in a class or interface. We �rst introduce some functions
to �nd the class components:

{ FDec(�; C; v) indicates the nearest superclass of C (possibly C itself) which
contains a declaration of the instance variable v and its declared type;

{ FDecs(�; C; v) indicates all the �eld declarations for v, which were declared
in a superclass of C, and possibly hidden by C, or another superclass.

{ MDecs(�; C; m) indicates all method declarations (i.e. both the class of the
declaration and the signature) for method m in class C, or inherited from one
of its superclasses, and not hidden by any of its superclasses;

{ MSigs(�; C; m) returns all signatures for method m in class C, or inherited and
not hidden by any of its superclasses.

An example can be found in section 6.

De�nition 3 For an environment � , containing a class declaration for C, i.e.

� = � 0; C ext C0 impl I1; : : :Infv1 : T1; : : :vk : Tk; m1 : MT1; : : :ml : MTlg; � 00, we

de�ne:

{ FDec(�; Object; v) = Undef for any v

FDec(�; C; v) = (C; Tj) i� v = vj
FDec(�; C; v) = FDec(�; C0; v) i� v 6= vj 8j 2 f1; :::kg

{ FDecs(�; C; v) = f(C0; T) j � ` C v C0; (C0; T) = FDec(�; C0; v)g
{ MDecs(�; Object; m) = ;
MDecs(�; C; m) = f (C; MTj) j m = mj g
[f (C00; MT00) j (C00; MT00) 2 MDecs(�; C0; m); and

8j 2 f1; :::lg : if m = mj then Args(MTj) 6= Args(MT00) g
{ MSigs(�; C; m) = f MT j 9C00 with (C00; MT) 2MDecs(�; C; m) g

Similar to classes, we introduce the following functions to look up the interface
components: MDecs(�; I; m) is all the method declarations (i.e. the interface
of the declaration and the signature) for method m in interface I, or inherited
{ and not hidden { from any of its superinterfaces; MSigs(�; I; m) returns all
signatures for method m in interface I, or inherited { and not hidden { from a
superinterface.

De�nition 4 For an environment � , containing an interface declaration for I,

i.e. � = � 0; I ext I1; : : :Infm1 : MT1; : : :mk : MTkg; �
00 we de�ne:

{ MDecs(�; I; m) = f (I; MTj) j m = mj g [f (I0; MT0) j
9j 2 f1; :::ng with (I0; MT0) 2MDecs(�; Ij; m)
and 8i 2 f1; :::kg if m = mi then Args(MT0) 6= Args(MTi) g

{ MSigs(�; I; m) = f MT0 j 9I0 : (I0; MT0) 2 MDecs(�; I; m) g

The following lemma says that if a type T inherits a method signature from
another type T0 i.e. if (T0; MT) 2 MDecs(�; T; m), then T0 is either a class or an
interface exporting that method, and no other superclass of T, which is a subclass
of T0 exports a method with the same identi�er and argument types. Also, if a
class C inherits a �eld declaration for v, then there exists a C0, a superclass of C
which contains the declaration of v.

Lemma1. For any environment � , type T, T0 and identi�ers v and m:

{ (T0; MT) 2MDecs(�; T; m) =)

� � ` T v T0 and � (T0) = T0 ext : : : impl : : :f: : :m : MT : : :g and

8C 6= T0; T00 with: � ` C v T0; � ` T v C :
� (C) 6= C ext : : : impl : : :f: : :m :Args(MT)! T00g
or

� � ` T � T0 and � (T0) = T0 ext : : :f: : :m : MT : : :g and

8I 6= I0; T00 : with � ` I � T0; � ` T � I :
� (I) 6= I ext : : :f: : :m : Args(MT)! T00g

{ FDec(�; C; v) = (C0; T0) =) � (C0) = C0 : : :f: : :v : T : : :g and � ` C v C0

and 8C00; T00 with � ` C v C00; � ` C00 v C0 : � (C00) 6= C00 ext :::impl:::f:::v : T00g

When a new class is declared as C ext C0 impl I1; : : :Infv1 : T1; : : :vk : Tk; m1 :
MT1; : : :ml : Tlg, [13] imposes the following requirements:

{ there can be sequences of superinterfaces, instance variable declarations, and
instance method declarations;

{ the previous declarations are well-formed;
{ there is no prior declaration of C
{ there are no cyclic subclass dependencies between C0 and C

{ the declarations of the class C0, interfaces Ij and variable types Tj may
precede or follow the declaration for C { this is why we require � ` C0 v C0,
rather than � 0 ` C0 v C0;

{ the MTj are method types;
{ instance variable identi�ers are unique;
{ instance methods with the same identi�er must have di�erent argument
types;

{ a method overriding an inherited method must have a result type that widens
to the result type of the overridden method { here we follow [17] instead of
[13] which requires the result types to be identical; we prefer the former
because it is a more general de�nition;

{ \unless a class is abstract, the declarations of methods de�ned in each direct
superinterface must be implemented either by a declaration in this class, or
by an existing method declaration inherited from a superclass" - again we
follow [17] instead of [13], and we require the implementing method to have
a result type that widens to the result type of the interfaces method, instead
of requiring them to be identical.

When a new interface I is introduced as I ext I1; : : :Inf m1 : MT1; : : :ml : Tlg, the
following requirements must be satis�ed:

{ there may be sequences of superinterfaces and instance method declarations;
{ the previous declarations are well-formed;
{ there is no prior declaration of I;
{ there are no cyclic subinterface dependencies between I and Ij;
{ the Ij are interfaces { whose declaration may precede or follow that of I;
{ the MTj are method types;
{ instance methods with the same identi�er must have di�erent argument
types;

n � 0; k � 0; l � 0
� ` � 0

3

� 0(C) = Undef
NOT � ` C0 v C

� ` C0 v C0

� ` Ij � Ij j 2 f1; :::ng
� ` Tj 3V arType j 2 f1; :::kg
� ` MTj 3MethType j 2 f1; :::lg
vi = vj =) i = j j; i 2 f1; :::kg
mi = mj =) i = j or Args(MTi) 6= Args(MTj) j; i 2 f1; :::lg
8j 2 f1; :::lg MT 2MSigs(�; C0; mj);Args(MT) = Args(MTj) =)

� ` Res(MTj) <wdn Res(MT)
8m; 8j 2 f1; :::kg AT! T 2MSigs(�; Ij; m) =)

9T0 with AT! T0 2 MSigs(�; C; m); � ` T0 <wdn T

� ` � 0; C ext C0 impl I1; : : :Infv1 : T1; : : :vk : Tk; m1 : MT1; : : :ml : MTlg 3

n � 0; l � 0
� ` � 0 3

� 0(I) = Undef
NOT � ` Ii � I j 2 f1; :::ng
� ` Ij � Ij j 2 f1; :::ng
� ` MTj 3MethType j 2 f1; :::lg
mi = mj =) i = j or Args(MTi) 6= Args(MTj)
MT 2MSigs(�; Ii; mj); Args(MT) = Args(MTj) =)

� ` Res(MTj) <wdn Res(MT) 8j 2 f1; :::kg; i 2 f1; :::ng
� ` � 0; I ext I1; : : :Inf m1 : MT1; : : :ml : MTlg 3

Fig. 7. class and interface declarations

{ a method overriding an inherited method (a method is inherited if de�ned
in one of the superinterfaces, and it is overridden if it has the same identi�er
and same argument types) must have a result type that widens to the result
type of the overridden method { as for classes, here too we follow [17] instead
of [13].

2.4 Properties of well-formed environments

Lemma2. If � ` � 3, then � contains at most one declaration for any iden-

ti�er, and there are no cycles in the v and � relationship.

In the following lemma we show that two types that are in the subclass rela-
tionship are classes, that v is reexive, transitive and antisymmetric, that the

subclass hierarchy forms a tree, that two types that are in the subinterface re-
lationship are interfaces, and that � is transitive, reexive and antisymmetric.
Note, that unlike v, � does not form a tree:

Lemma3. If � ` � 3, then:

{ � ` C v C0 =) � ` C v C and � ` C0 v C0

{ � ` C v C0 and � ` C v C00 =) � ` C0 v C00 or � ` C00 v C0

{ The v relationship is a partial order.

{ � ` I � I0 =) � ` I0 � I0 and � ` I � I

{ The � relationship is a partial order.

The following lemma says that widening is reexive, transitive and antisym-
metric; that if an interface widens to another type, then the second type is a
superinterface of the �rst; that if a type widens to a class, then the type is a
subclass of that class; that if a class widens to an interface I, then the class
implements a subinterface of I; that if an interface widens to another type, then
the interface is identical to the type, or one of its immediate superinterfaces is a
subinterface of that type.

Lemma4. If � ` � 3, then:

{ � ` I � I and � ` I <wdn T =) � ` I � T

{ � ` C v C and � ` T <wdn C =) � ` T v C

{ � ` C v C and � ` C <wdn I and � ` I � I =)
9C0; I0: � ` C v C0, � ` C0 :imp I

0 and � ` I0 � I

{ � = � 0; I ext I1 : : :Inf: : :g; � 00, and � ` I <wdn T =)
I = T or � ` Ik � T for a k 2 f1; :::ng

{ The <wdn relationship is a partial order.

If a type T widens to another type T0, and T0 has a method m, then there exists
in T a unique method m with the same argument types, and whose return type
can be widened to that of T0. Note that we follow the more general rule from
[17] as opposed to [13].

Lemma5. If � ` � 3, for types T and T0, with � ` T <wdn T0, and MT0 2
MSigs(�; T0; m) :

91MT 2MSigs(�; T; m) with Args(MT) = Args(MT0):
Furthermore, � ` Res(MT) <wdn Res(MT0)

From now on we assume implicitly that all environments are well-formed.

3 The type rules

Type checking is described in terms of a type inference system. In parallel with
type checking the program is slightly modi�ed, and enriched with type informa-
tion. The Javas-program is turned into a Javase-program. The enriching of the
program by type information is described by the mapping Comp:

Comp : Javas �! Javase

3.1 Javase, enriching Javas

Some compile-time type information is necessary for the execution of Javamethod
calls and of instance variable access. This information is calculated when type
checking, and needs to be available during execution.
Therefore, we de�ned Javase, an extended version of Javas, which includes the
appropriate type information. Furthermore, terms like �i represent references to
objects, which will be necessary for describing the operational semantics. Also,
in order to describe method evaluation without using closures, in Javas we al-
low an expression to consist of a sequence of statements. Finally, execution of
Javase programs may raise the exceptions NullPointExc, indicating an attempt
to access an instance variable of the null pointer, ArrStoreExc indicating an at-
tempt to assign a value of the wrong class to an array component, IndOutBn-
dExc indicating an index out of the array bounds, and NegSzeExc, when attempt-
ing to create a new array value of a negative size. The syntax of Javase may be
obtained from the syntax of Javas by applying the modi�cations and additions
in �gure 8:

Expr ::= : : :
j Expr.[ArgType]MethName(Expr�) instead of Expr.MethName(Expr�)
j Stmts

Var ::= : : :
j Var.[ClassName]VarName instead of Var.VarName
j �i i an integer

Value ::= : : : jRefValue jException
RefValue ::= �i i an integer

Exception ::= NullPointExc j ArrStoreExc
j IndOutBndExc j NegSzeExc

Fig. 8. type rules for Javase

3.2 Types for Javas

The types for variables, primitive values and null are described in �gure 9.
The type rules for assignments, return statements, statement sequences and
conditionals are given in �gure 10. An expression of type T0 can be assigned to
a variable of a type T, if T0 can be widened to T. A statement sequence has
the same type as its last statement. A return statement has void type, or the
same type as the expression it returns. A conditional consists of two statement
sequences of the same type.

` null : nullT

Compf[null; �]g = null
` true : bool

Compf[true; �]g = true
` false : bool

Compf[false; �]g = false

i is an integer
` i : int

Compf[i; �]g = i

c is a character
` c : char

Compf[c; �]g = c

� ` x : � (x)
Compf[x; �]g = x

Fig. 9. types of primitive values and variables

� ` v : T

� ` e : T0

� ` T0 <wdn T

� ` v := e : void

Compf[v := e; �]g =
Compf[v; �]g := Compf[e; �]g

� ` stmts : T

� ` stmt : T0

� ` stmts; stmt : T0

Compf[stmts ; stmt; �]g =
Compf[stmts; �]g ; Compf[stmt; �]g

� ` return : void

Compf[return; �]g = return

� ` e : T

� ` return e : T

Compf[return e; �]g = return Compf[e; �]g

� ` stmts : T

� ` stmts0 : T

� ` e : bool

� ` (if e then stmts else stmts0) : T

Compf[if e then stmts else stmts0; �]g =
if Compf[e; �]g then Compf[stmts; �]g else Compf[stmts0; �]g

Fig. 10. types of statements

Figure 11 contains the type rules for newly created objects or arrays. For a
class C, the expression new C has type C. For a simple type T, the expression
new T[e1] : : : [en][]1 : : : []k is a n+k-dimensional array of elements of type T.
Figure 12 contains the type rules for array and �eld accesses. The possibility of a
runtime exception is described with the operational semantics in �gures 20 and
18. Only classes have �elds.
Figure 13 contains the type rules for method bodies and method calls, as in ch.
15.11, [17]: A method is applicable if the actual parameter types can be widened
to the corresponding formal parameter types. A signature is more special than
another signature, if and only if it is de�ned in a subclass or subinterface and
all argument types can be widened to from the argument types of the second

� ` C v C

� ` new C : C

Compf[new C; �]g = new C

n � 0; k � 0; n+ k � 1
� ` T 3V arType; a simple type
� ` ei : int i 2 f1; :::ng
� ` new T[e1] : : : [en][]1 : : : []k : T[]1 : : : []n+k

Compf[new T[e1] : : : [en][]1 : : : []k; �]g =
new T[Compf[e1; �]g]:::[Compf[en; �]g][]1:::[]k

Fig. 11. object and array creation type rules

� ` v : T[]
� ` e : int

� ` v[e] : T

Compf[v[e]; �]g =
Compf[v; �]g[Compf[exp; �]g]

� ` v : T

FDec(�; T; f) = (C; T0)
� ` v:f : T0

Compf[v:f; �]g = Compf[v; �]g:[C]f

Fig. 12. array and �eld access type rules

signature; this de�nes a partial order. The most special signatures are the minima
of the \more special" partial order.

De�nition 5 For an environment � , variable types T and Ti, i 2 f1; :::n+ 1g,
and identi�er m, the most special declarations are de�ned as follows:

{ ApplM eths(�; m; T; T1� : : :� Tn) = f(T0; MT0) j (T0; MT0) 2 MDecs(�; T; m)
and MT0 = T01 � : : :� T0n ! T0n+1 and � ` Ti <wdn T0i for i 2 f1; :::ngg

{ (T; T1 � : : :� Tn ! Tn+1) is more special than (T0; T01 � : : :� T0n ! T0n+1) i�
� ` T <wdn T0 and � ` Ti <wdn T0i for all i 2 f1; :::ng

{ MostSpec(�; m; T; T1 � : : :� Tn) =
f(T0; MT0) j (T0; MT0) 2 ApplM eths(�; m; T; T1� : : :� Tn) and

if (T00; MT00) 2 ApplM eths(�; m; T; T1 � : : :� Tn) and (T00; MT00) is more
special than (T0; MT0) then T00 = T0 and MT0 = MT00g

The signatures of the more speci�c applicable methods are contained in the
set MostSpec(; ; ;). A message expression is type correct when this set contains
exactly one pair. The argument types of the signature of this pair is stored as
the method descriptor, c.f. ch.15.5 in [13], and the result type of the signature is
the type of the message expression.
The renaming of the variables in the method body (i.e. stmts[z1=x1; : : : ; zn=xn])
is necessary in order to avoid name clashes and also, in order for the lemma 9

� ` ei : Ti i 2 f1; :::ng; n � 1
MostSpec(�; m; T1; T2 � :::� Tn) = f(T; MT)g
� ` e1:m(e2:::en) : Res(MT)
Compf[e1:m(e2:::en); �]g =
Compf[e1; �]g:[Args(MT)]m(Compf[e2; �]g:::Compf[en; �]g)

mBody = m is �x1 : T1 : : : �xn : Tn:f stmts g
xi 6= this i 2 f1; :::ng
z1; : : : ; zn are new variables in �
stmts0 = stmts[z1=x1; : : : ; zn=xn]
�; z1 : T1 : : :zn : Tn ` stmts0 : T0

� ` T0 <wdn T

� ` mbody : T1 � : : :� Tn ! T

Compf[mBody; �]g = m is �x1 : T1 : : :�xn : Tn:fCompf[stmts; �]gg

Fig. 13. types of method calls and bodies

to hold { as pointed out in [20]. Furthermore, it is worth noticing, that the rules
describing method bodies do not determine T, the return type of the method;
this is taken from the environment � , when applying the rule describing class
bodies, as in �gure 14.
Figure 14 contains the type rules for class bodies and programs. A class body
cBody satis�es its declaration, � (C), if it provides a method body for each of the
method declarations contained in � (C) .
Note, that the method bodies mBodyi are type checked in the environment
�; this : C, which does not contain the instance variable declarations v1 : T1
: : :, vk : Tk. Thus, by the type system, we force the use of the expression this:vj
as opposed to vj.
A program p = f cBody1; : : :cBodyn g is well-typed, if it contains a class body
for each declared class, and if all class bodies, cBodyi, are well-typed and satisfy
their declarations. Furthermore, each class is transformed by Comp.
The following two functions will be needed for the operational semantics. The
function MethBody (m; AT; cBody) �nds the method body with identi�er m and
argument types AT, in the class body cBody { if any exists. It can easily be
seen that because of the requirements for classes in 2.3, if the environment � is
well-formed, the function MethBody(m; AT; cBody) returns either an empty set or
a set with one element.

De�nition 6 For a class body cBody = C ext C0 f mBody1; : : :mBodyn g, declared
in � as � (C) = C ext C0 impl : : :f m1 : MT1 : : :mn : MTn g, we de�ne:
MethBody (m; AT; cBody) = fmPSj j mBodyj = m is mPSj and Args(MTj) = ATg

The function MethBody (m; AT; C; p) �nds the method body with identi�er m and
argument types AT, in the nearest superclass of class C { if any exists. It returns

n � 0; k � 0; m � 0
� ` � 3
� (C) = C ext C0 impl I1 : : :Inf v1 : T1 : : :vk : Tk; m1 : MT1 : : :ml : MTl g
cBody = C ext C0 f mBody1; : : :mBodyl g
� (this) = Undef
mBodyi = mi is mPrsStsi i 2 f1; :::lg
�; this : C ` mBodyi : MTi i 2 f1; :::lg
� ` cBody : � (C)
Compf[cBody; �]g = C ext C0 fCompf[mBody1; �]g : : :Compf[mBodyl; �]gg

C1 : : :Cn are all the classes de�ned in � n � 0
p = f cBody1; : : :cBodyn g
cBodyi = Ci ext : : :f : : : g for i 2 f1; :::ng
� ` cBodyi : � (Ci) i 2 f1; :::ng
� ` p : �
Compf[p; �]g = f Compf[cBody1; �]g : : :Compf[cBodyn; �]g g

Fig. 14. type rules for class bodies and programs

a single pair consisting of the class containing the appropriate method body, and
the method body itself or the empty set if none exists.

De�nition 7 For a program p = f cBody1; : : :cBodyn g, we de�ne:
MethBody(m; AT; C; p) =

let cBody = C ext C0 f : : : g in
let mBody = MethBody (m; AT; cBody) in
if mBody = ; then

if C0 = Object then ;
else MethBody (m; AT; C0; p)

else (C; mBody)

3.3 Properties of the Javas type system

The following lemma says, that in a well-typed Javas program any class that
widens to a superclass or superinterface provides an implementation for each
method exported by the superclass or superinterface.

Lemma6. For any well-formed environment � , variable types T, T1, : : :,Tn,
Tn+1, class C and a Javas program p, if:

{ � ` p : �
{ � ` C <wdn T

{ T1 � : : :Tn ! Tn+1 2MSigs(�; T; m)

then

{ 9T0n+1; C
0 : (C0; T1 � : : :Tn ! T0n+1) 2MDecs(�; C; m); and

� ` T0n+1 <wdn Tn+1 and � ` C v C0 and

{ MethBody (m; T1 � : : :Tn; p; C) = (C0; �x1 : T1; : : :�xn : Tn:f stmts g) and

�; this : C0; x1 : T1; : : :xn : Tn ` stmts : T00n+1 and � ` T00n+1 <wdn T0n+1

3.4 Absence of the subsumption rule

The type inference system described in the previous sections does not have a
subsumption rule. The subsumption rule says, that any expression of type T,
also has type T0 if T is a subtype of T0. In the case of Java, where subtypes are
expressed by the <wdn relation, it would have had the form:

� ` e : T

� ` T <wdn T0

� ` e : T0

For example, in section 6, the type of aPhil.like is Phil, but the type of
pascal.like is Food, although �0 ` aPhil : Phil, �0 ` pascal : FrPhil,
and �0 ` FrPhil <wdn Phil. In fact, introduction of the subsumption rule would
make this type system non-deterministic { although [6] develops a system for
Java which has a subsumption rule, and in which the types of method call and
�eld access are determined by using the minimal types of the expressions.

3.5 Extending the type rules to Javase

The Javase syntax is in most parts identical to that of Javas. For these cases the
type rules are identical. The only cases where the syntax di�ers are method call,
�eld access, and the object references �i. These are shown in �gure 15.
The type of a reference depends on the class of the object pointed at in the
current state � (states will be introduced in section 4), therefore, the type of a
Javase term depends on both the environment and the state, and type assertions
for Javase terms t have the form �; � ` t : T.
If an object is stored at address �i, then its class is the type of the reference
�i. If a k-dimensional array of T is stored at �i, then the k-dimensional array of
T, T[]1:::[]k is the type of this reference. Objects and array values are de�ned in
section 4.
The di�erence between the type of a �eld access expression in Javas and Javase is,
that in Javase the type depends on the descriptor (i.e. C) instead of the type of
the variable at the left of the �eld access (i.e. T).
In Javase method calls we search for appropriate methods, using the descriptor
signature (T2 � : : :� Tn), instead of the types of the actual expressions (T02; : : :T

0

n).
For this search we �rst examine the class of the receiver expression for a method
body with appropriate argument types, and then its superclasses:

De�nition 8 Given environment � , types T1, : : :Tn, argument types AT=T2 �
: : :� Tn and an identi�er m, we de�ne:

�(�i) =<< : : : >>C

�; � ` �i : C

�(�i) =<< : : : >>T[n1]:::[nk]

�; � ` �i : T[]1:::[]k

�; � ` v : T

�; � ` T <wdn C

FDec(�; C; f) = (C; T0)
�; � ` v:[C]f : T0

�; � ` ei : T0i i 2 f1; :::ng; n � 0
�; � ` T0i <wdn Ti i 2 f2; :::ng
FirstFit(�; m; T01; T2 � : : :� Tn) = f(T; MT)g
�; � ` e1:[T2 � : : :� Tn]m(e2 : : :en) : Res(MT)

Fig. 15. types for Javase

FirstFit(�; m; T1; AT) = f(T; MT) j (T; MT) 2MDecs(�; T1; m) and Args(MT) = ATg

Lemma7. For a well-formed environment � , types T01, T1 : : :Tn, argument

types, AT = T2 � : : :� Tn, where � ` T1 <wdn T01:

{ the set FirstFit(�; m; T1; AT) contains up to one element

{ 9T0; MT0 : FirstFit(�; m; T01; AT) = (T0; MT0) =)
9T; MT : FirstFit(�; m; T1; AT) = (T; MT) and

� ` T <wdn T0 and � ` Res(MT) <wdn Res(MT0)

3.6 Properties of the Javase type system

We expect the type of a Javase-expression to be related to the type of the
original Javas-expression. In fact, they are identical. The type system assigns
unique types to any well-typed Javas or Javase term.

Lemma8. For types T, T0, state �, environment � , Javas term t, and Javase
term t0:

{ � ` t : T =) �; � ` Compf[t; �]g : T

{ � ` t : T and � ` t : T0 =) T = T0.

{ �; � ` t0 : T and �; � ` t0 : T0 =) T = T0.

{ Expressions containing exceptions are not type correct.

4 The operational semantics

Figure 16 describes the run time model for the operational semantics.
Firstly, we need a notion of state. The state is at; it consists of mappings from
identi�ers to primitive values or to references, and from references to objects or
arrays.
Every object is annotated by its class. An object consists of a sequence of labels
and values. Each label also carries the class in which it was de�ned; this is needed
for labels shadowing labels from superclasses, cf [13] ch. 9.5. For example, as in
section 6, << like Phil: �5, like FrPhil: croissant >>FrPhil is an object

of class FrPhil. It inherits the �eld like from Phil, and has the �eld like from
FrPhil.
Arrays carry their dimension and type information, and they consist of a se-
quence of values for the �rst dimension. For example <<3; 5; 8; 11>>int[], is a
one dimensional array of integers.
Con�gurations are tuples of Javase terms and states, or just states. The oper-
ational semantics is a mapping from programs and con�gurations to con�gura-
tions. For a given program p, the operational semantics maps con�gurations to
new con�gurations.

State ::= (Ident �! (Value))�[(RefValue �! ObjectOrArray)�

ObjectOrArray ::= Object j Array
Object ::= << (LabelName ClassName : Value)�>>ClassName

Array ::= << (Value)� >>ArrayType

Con�guration ::= < Javase-term, state > [< state >

; : Javaseprogram �! Con�guration �! Con�guration

;p : Con�guration �! Con�guration

Fig. 16. Javase runtime model

Next, we de�ne some operations on states and objects.

4.1 State and object modi�cations, ground terms

We require objects to be constructed according to their class, array values to
conform to their dimension and to consist of values of appropriate types, and
variables to contain values of the appropriate type.

De�nition 9 A value val weakly conforms to a type T in an environment �
and a state � i�:

{ if val is a primitive value, then T is a primitive type, and val2T;
{ if val=null, then T is a class, interface or array type;

{ if val=�j and T is a class or interface, then there exists a class C with:

� ` C <wdn T, and �(�j) = << ::: >>C;

{ if val=�j and T = T0[]1:::[]k for a simple type T0 and k � 1, then there exists

integer n and type T00 such that :

� ` T00 <wdn T0, �(�j) = <<val0; :::valn�1>>
T00 []

1
:::[]

k .

A value val conforms to a type T in an environment � and a state � i� val weakly

conforms to T in � and � and

{ if val=�j and �(�j) = << v1 C1 : val1; : : :vn Cn : valn >>
C, then for all

labels v, classes C0, types T0 with (C0; T0) 2 FDecs(�; C; v), there exists a

k 2 f1; :::ng such that vk = v, Ck = C0, and valk weakly conforms to T0 in �
and �;

{ if val=�j and �(�j) = <<val0; :::valn�1>>
T
0 []

1
:::[]

k , then 8i 2 f0; :::n� 1g :
vali weakly conforms to T0[]2:::[]k.

Furthermore, a state � conforms to an environment � i� for all identi�ers x,

and integers i

{ if � (x) 6= Undef then �(x) conforms to � (x) in � and �;
{ if �(�i) =<< : : : >>C, then �i conforms to C in � and �;
{ if �(�i) = <<:::>>T[]

1
:::[]

n , then �i conforms to T[]
1
:::[]

n
in � and �.

Also, an environment � conforms to environment � 0 i�

{ for any identi�er x, if � 0(x) 6= Undef, then � (x) = � 0(x);
{ for any identi�er x, if � 0(x) = Undef 6= � (x), then x is declared in � as a

variable.

Lemma9. Given two environments � , � 0, where � conforms to � 0,

{ � ` � 3 =) � 0 ` � 0 3;

{ for any program p: � 0 ` p : � 0 =) � ` p : � ;
{ for any term t, and type T: � 0 ` t : T =) � ` t : T;

{ � ` T <wdn T0 () � 0 ` T <wdn T0;

{ for T1...Tn : FirstFit(�; m; T1; T2 � :::� Tn) = FirstFit(� 0; m; T1; T2 � :::� Tn).

De�nition 10 For object obj = <<l1 C1 : val1; l2 C2 : val2; : : :ln Cn : valn>>C
0

,

state �, value val, identi�er or reference z, class C, �eld identi�er f, an m � 0,
array arr = <<val0; : : :valn�1>>

T[]
1
:::[]

m and integer value k we de�ne:

{ the access to �eld f declared in class C as obj(f,C):
obj(f; C) = vali where f = li and C = Ci

{ the access to component f, C of an object stored at a reference z in state � :
�(z; f; C) = �(z)(f; C)

{ the access to the kth component of arr, arr[k] :
arr[k] = valk if 0 � k � n� 1

arr[k] = IndOutBndExc otherwise

{ a new state, �0 = �[z7!val], such that:
�0(z) = val

�0(z0) = �(z0) for z0 6= z :

{ a new object, obj0 = obj[f; C7!val], and a new state, �0 = �[z; f; C7!val] :
obj0(f; C) = val

obj0(f0; C0) = obj(f0; C0) if f 6= f0 or C 6= C0

�0 = �[z7!�(z)[f; C 7!val]]

{ a new array, arr0 = arr[k 7!val], and a new state, �0 = �[arr; k7!val] :

arr0[k] = val

arr0[j] = arr[j] if j 6= k

�0 = �[arr7!arr[k7!val]]

< stmts; � >;p < �0 >

< stmts; stmt; � >;p < stmt; �0 >

< stmts; � >;p < stmts0; �0 >

< stmts; stmt; � >
;p < stmts0; stmt; �0 >

< e; � >;p < e0; �0 >

< if e then stmts else stmts0; � >
;p < if e0 then stmts else stmts0; �0 >

< if true then stmts else stmts0; � >
;p < stmts; � >

< if false then stmts else stmts0; � >
;p < stmts0; � >

< return; � >;p < � >

< e; � >;p < e0; �0 >
< return e; � >;p < return e0; �0 >

val is ground
< return val; � >;p < val; � >

Fig. 17. statements

We distinguish ground terms which cannot be further rewritten, and l-ground
terms, which are \almost ground", since they may not be further rewritten if
they appear on the left hand side of an assignment:

De�nition 11 A Javase term t is

{ ground i� t is a primitive value, or if t=�i for some i;

{ l-ground i� t is ground, or t=id for some identi�er id, or t= �i.[C]f for

a class C and a �eld f and integer value i, or t = �i[k] for some integer

values i and k.

4.2 Program execution

Figures 17-20 describe the operational semantics of Javase, in terms of the ;p -
relationship.
Figure 17 describes the execution of statements. Statement sequences are evalu-
ated from left to right. In conditional statements the condition is evaluated �rst;
if it evaluates to true, then the �rst branch is executed, otherwise the second.
A return statement terminates execution. A statement returning an expression
evaluates this expression until ground and replaces itself by this ground value {
thus modelling methods returning values.

< id; � >;p < �(id); � >

�(�i) 6= null
< �i:[C]f; � >;p < �(�i; f; C); � >

< v; � >;p < v0; �0 >
< v:[C]f; � >;p < v0:[C]f; �0 >

< v; � >;p < v0; �0 >
< v[e]; � >;p < v0[e]; �0 >

< e; � >;p < e0; �0 >

< �i[e]; � >;p < �i[e0]; �0 >

�(�i) 6= null
k an integer value
< �i[k]; � >;p < �(�i)[k]; � >

�(�i) = null
< �i:[C]f; � >;p < NullPointExc; � >

�(�i) = null
k an integer value
< �i[k]; � >;p < NullPointExc; � >

Fig. 18. variables

In �gure 18 we describe the evaluation of variables, �eld access and array access.
Variables (i.e. identi�ers, instance variable access or array access) are evaluated
from left to right. The rules about assignment in 20 will prevent an expression
like x or �i.[C]v from being rewritten any further if it is the left hand side of an
assignment. They would allow an expression of the form u[C1].w[C2].x[C3].y

to be rewritten to an expression of the form �j[C3].y for some j. Furthermore,
there is no rule of the form < �j; � >;p < �(�j); � >. This is because there is
no explicit dereferencing operator in Java. Objects are passed as references, and
they are dereferenced only implicitly, when their �elds are accessed.
Array access as described here adheres to the rules in ch. 15.12 of [13], which
require full evaluation of the expression to the left of the brackets. Thus, with
our operational semantics, a[(a = b)[3]] corresponds to a[b[3]]; a = b.
In �gure 19 we describe the creation of new objects or arrays, cf. ch. 15.8-15.9
of [13]. Essentially, a new value of the appropriate array or class type is created,
and its address is returned. The �elds of the array, and the components the
object are assigned initial values (as de�ned in ch. 4.5.5. of [13]) of the type to
which they belong.

De�nition 12 The initial value of a simple type is de�ned as follows:

{ 0 is the initial value of int

{ 0 0 is the initial value of char

{ false is the initial value of bool

{ null is the initial value of any class or interface

Figure 20 describes the evaluation of assignments. The left hand side is evaluated
�rst, until it becomes l-ground. Then the right hand side is evaluated, up to the

�i is new in �
v0 = << f1 C1 : v1; :::fn Cn : vn >>

C

8(C0; T0) 2 FDecs(�; C; f)
9k : fk = f; Ck = C0

vk initial value for T0

< new C; � >;p < �i; �[�i 7!v0] >

n � 0
T is a simple type
�i is new in �
v0 = v1::: = vn�1 is initial for T
�0 = �[�i 7!<<v0; :::vn�1>>

T[]]
< new T[n]; � >;p < �i; �

0 >

1 � j � k; k � 1; m � 0
ni ground for i 2 f1; :::j� 1g
< nj; � >;p < n0j; �

0 >

< new T[n1]:::[nk][]1:::[]m; � >;p

< new T[n1]:::[n0j]:::[nk][]1:::[]m; �
0 >

m � 1; n � 0
�i new in �

�0 = �[�i 7!<<null0; :::nulln�1>>
T[]

1
:::[]

k]
< new T[n][]2:::[]k; � >;p < �i; �

0 >

k � 1; m � 0
ni ground for i 2 f1; :::kg
nj < 0 for some j 2 f1; :::kg
< new T[n1]:::[nk][]1::[]m; � >;p < NegSzeExc; � >

n � 0; k � 2; m � 0; �0 = �
T is a simple type
< new T[n2]:::[nk][]1:::[]m; �i >;p < �ji ; �i+1 > i 2 f0; :::n1� 1g
�ji is new in �ni i 2 f0; :::n1g

�0 = �n[�jn1
7!<<�j0 ; :::; �jn1�1

>>T[]
1
:::[]

k+m]

< new T[n1]:::[nk][]1:::[]m; � >;p < �jn ; �
0 >

Fig. 19. object and array creation

point of obtaining a ground term. Then the state is modi�ed accordingly. Note
that we have no rule of the form < �j := value; � >;p : : :. This is because in
Java overwriting of objects is not possible { only sending messages to them, or
overwriting selected instance variables.
Figure 21 describes the evaluation of method calls. Expressions are evaluated left
to right, cf ch. 9.3 in [17]. The �rst rule describes rewriting the kth expression,
where all the previous expressions (i.e. ei; i 2 f1; :::k� 1g) are ground. The sec-
ond rule describes dynamic method look up, taking into account the argument
types, and the statically calculated method descriptor AT, and where t[t0=x] has
the usual meaning of replacing the variable x by the term t0 in the term t.

v is not l-ground
< v; � >;p < v

0
; �

0
>

< v:=e; � >;p < v
0:=e; �0

>

v is l-ground
< e; � >;p < e

0
; �

0
>

< v:=e; � >;p < v:=e0
; �

0
>

val is ground
id is an identi�er

< id:=val ; � >;p

< �[id7!val] >

�(�i) 6= null

val is ground

< �i:[C]v:=val; � >;p

< �[�i;v;C7!val] >

�(�i) = null

val is ground

< �i:[C]v:=val; � >;p

< NullPointExc; � >

�(�i) = null

val;k ground

< �(�i)[k]:=val; � >;p

< NullPointExc; � >

val is ground
�(�i)[k] = IndOutBndExc

< �i[k]:=val; � >;p

< IndOutBndExc; � >

val is ground
�(�i)[k] 6= IndOutBndExc

�(�i) = <<:::>>
T[]

1
:::[]

m

val conforms weakly to T in �

< �i[k]:=val; � >;p

< �[�(�i);k7!val] >

val is ground
�(�i)[k] 6= IndOutBndExc

�(�i) = <<:::>>
T[]

1
:::[]

m

val does not conform weakly to T; �

< �i[k]:=val; � >;p

< ArrStoreExc; � >

Fig. 20. assignment

4.3 Properties of the operational semantics

The operational semantics is deterministic:

Lemma10. For any con�guration with a state that conforms to the environ-

ment, and any Javase term, the relation ;p determines at most one step.

Lemma11. For any Javase term t, state � and environment � , if t does not

contain an assignment to �i as a subterm, and < Compf[t; �]g; � > ;p <
t0; � >, then t0 does not contain an assignment to �i as a subterm.

5 Soundness of the Javas type system

The subject reduction theorem says, that any well-typed Javase term either
rewrites to a term which will lead to an exception or rewrites to another well-
typed term of a type that can be widened to the type of the original term.

ei is ground, for all i 2 f1; :::k� 1g; n � k � 1
< ek; � >;p < e0k; �

0 >

< e1:[AT]m(e2; : : : ; ek; : : :en); � >;p < e1:[AT]m(e2; : : : ; e0k; : : :en); �
0 >

vali is ground i 2 f1; :::ng; n � 1
�(val1) =<< : : : >>C

AT = T2 � : : :� Tn
MethBody (m; AT; C; p) = (C0; �x2 : T2 : : : �xn : Tn:f stmts g)
zi are new identi�ers in �
�0 = �[z1 7!val1] : : : [zn 7!valn]
stmts0 = stmts[z1=this; z2=x2; : : :zn=xn]
< val1:[AT]m(val2; : : :valn); � >;p < stmts0; �0 >

Fig. 21. method calls

Theorem 1 Subject Reduction For a state � that conforms to an environ-

ment � , a Javase program p with � ` p : � , a non-ground Javase term t that

contains no assignments of the form �i:= : : : ; and type T with �; � ` t : T,

there exist �0, t0 such that:

{ < t; � >;p < t0; �0 >, and
� 9t00; �00 : < t0; �0 >;p

� < t00; �00 > and t00 contains an exception

or

� 9� 0; T0 : � 0 conforms to � , �0 conforms to � 0, and � 0; �0 ` t0 : T0,

and � ` T0 <wdn T

or

{ < t; � >;p < �0 > and �0 conforms to �

Furthermore, if t is a variable, and not l-ground, then < t; � >;p < t0; �0 >
and t0 is not ground. Also, if t is not l-ground and not an array access, then

T = T0.

Theorem 2 Soundness Take any Javas term t, a well-formed environment

� , a type T with � ` t : T a Javas program p with � ` p : � , and a state �
that conforms to � . Then there exists a Javase program p0, p0 = Compf[p; �]g,
a Javase term term t0, and a state �0, such that:

{ The execution of < Compf[t; �]g; � >;p0
� does not terminate

or

{ < Compf[t; �]g; � >;p0
� < t0; �0 > and t0 contains an exception as a subterm

or

{ T 6= void, and < Compf[t; �]g; � >;p0
� < t0; �0 > and t0 is ground;

and 9T0 : �; �0 ` t0 : T0; � ` T0 <wdn T and �0 conforms to �

or

{ T = void, and < Compf[t; �]g; � >;p0
� < �0 > and �0 conforms to �

6 An example

The following, admittedly contrived, Java program serves to demonstrate the
concepts introduced in the previous sections. It can have the following inter-
pretation: Philosophers like philosophers. When a philosopher thinks about a
problem together with another philosopher, then, after some deliberation they
refer the problem to a third philosopher. When a philosopher thinks together
with a French philosopher, they produce a book. French philosophers like food,
and when they think together with another philosopher, they �nally refer the
question to a French philosopher (this way of method overriding is allowed in
[17]).

class Phil f
Phil like ;
Phil think(Phil y)f : : : g
Book think(FrPhil y)f : : : g

g
class FrPhil extends Phil f

Food like ;
FrPhil think(Phil y)f like = oyster ; ... gg

FrPhil aPhil ; FrPhil pascal ;
... pascal.like ; pascal.think(pascal) ; pascal.think(aPhil) ;
... aPhil.like ; aPhil.think(pascal) ; aPhil.think(aPhil) ;
aPhil = pascal ;
... aPhil.like ; aPhil.think(pascal) ; aPhil.think(aPhil) ;

The functions FDec(; ;), FDecs(; ;), MSigs(; ;), and MDecs(; ;) are as follows:
FDec(�0; Phil; like) = (Phil, Phil)

FDec(�0; FrPhil; like) = (FrPhil, Food)

FDecs(�0; Phil; like) = f (Phil, Phil) g
FDecs(�0; FrPhil; like) = f (Phil, Phil),

(FrPhil, Food) g

MDecs(�0; Phil; think) = f (Phil, Phil! Phil),
(Phil, FrPhil ! Book) g

MDecs(�0; FrPhil; think) = f (FrPhil, Phil! FrPhil),
(Phil, FrPhil! Book) g

MSigs(�0; Phil; think) = f Phil! Phil, FrPhil! Book g
MSigs(�0; FrPhil; think) = f Phil! FrPhil, FrPhil! Book g

The corresponding Javas environment �0 is:

�0 = Phil ext Object f like : Phil, think : Phil ! Phil,
think : FrPhil ! Book, g

FrPhil ext Phil f like: Food, think : Phil ! FrPhil g

The corresponding Javas program is p:

p = fPhil ext Object f think is � y:Phil.f : : : g,
think is � y:Phil.f : : : g g,

FrPhil ext Phil f think is
� y:FrPhil.f this.like := oyster ; : : : g g

... g

The program p would be mapped to p0, the following Javase program:

p0 = Compf[p; �0]g = f
Phil ext Object f think is � y:Phil. f : : : g,

think is � y:FrPhil. f : : : g g
FrPhil ext Phil f think is � y:FrPhil.

f this.[FrPhil]like := oyster ; : : : g g
pascal.[Phil]like ; pascal.[FrPhil]think (pascal) ;

pascal.[Phil]think (aPhil) ;
aPhil.[Phil]like ; aPhil.[FrPhil]think (pascal) ;

aPhil.[Phil]think (aPhil) ;
aPhil = pascal ;
aPhil.[Phil]like ; aPhil.[FrPhil]think (pascal) ;

aPhil.[Phil]think (aPhil) ;
g

The state �0 conforms to the environment �0:
�0(aPhil) = �2

�0(�2) = << like Phil: �4, like FrPhil: croissant >>FrPhil

�0(�4) = << x Phil: null >>Phil

Execution of the method call aPhil.[Phil]think (aPhil) results in the follow-
ing rewrites
< aPhil:[Phil]think(aPhil); �0 >;p0 < �2:[Phil]think(aPhil); �0 > ;p0

< �2:[Phil]think(�2); �0 > ;p0 < (w:[FrPhil]like:=oyster; : : :); �1 >;p0

< (: : :); �2 >
where �1, �2 are:

�1(aPhil) = �0(aPhil) = �2

�1(w) = = �2

�1(w0) = = �2

�1(�2) = �0(�2) = <<like Phil:�4, like FrPhil:croissant>>FrPhil

�1(�4) = �1(�4) = <<like Phil:null >>Phil

�2(aPhil) = �1(aPhil) = �2

�2(w) = �1(w) = �2

�2(w0) = �1(w0) = �2

�2(�2) = = << like Phil:�4, like FrPhil:oyster >>FrPhil

�2(�4) = �1(�4) = << like Phil: null >>Phil

If we consider the \environment extension" as in theorem 1, then in the third step
of the reductions, we would have the environment � 0 = �0; w : FrPhil; w0 : FrPhil.
The states �1, �2 conform to � 0.

Execution of an array creation expression new int[1][2][][], for the state �0:
< new int[1][2][][]; �0 > ;p0 < �7; �5 > where �5 and �6 are new in �0, and
have the following contents in �5:

�5(�5) = <<null; null; null>>int[][][]

�5(�6) = <<null; null; null>>int[][][]

�5(�7) = <<�5; �6>>
int[][][][]

7 Conclusions and future work

We have given a formal description of the operational semantics and type system
for a substantial subset of Java. We consider this subset to contain many of the
features which together might have led to di�culties in the Java type system.
By applying some simpli�cations we obtained a straightforward system which
we believe does not diminish the application of our results.
We aim to extend the language subset to describe a larger part of Java, and
we also hope that our approach may serve as the basis for other studies on the
language and possible extensions.

8 Acknowledgments

We are greatly indebted to several people, who read previous versions of this work
and gave us valuable feedback and uncovered aws: Peter Sellinger, David von
Oheimb, Safraz Kurshid, Donald Syme, Yao Feng, Steve Vickers, an anonymous
FOOL4 referee for feedback, and Guiseppe Castagna.
We would also like to express our appreciation to Bernie Cohen for awakening
our interest in the application of formal methods to Java and especially to all
our students whose overwhelming interest in Java convinced us that this work
needed to be undertaken.

References

1. M. Abadi and L. Cardelli. A semantics of object types. In LICS'94 Proceedings,
1994.

2. Joseph A. Bank, Barbara Liskov, and Andrew C. Myers. Parameterized types and
Java. In POPL'97 Proceedings, January 1997.

3. Gerald Baumgartner and Vincent F. Russo. Signatures: A language extension for
improving type abstraction and subtype polymorphism in C++. Software{Practice
& Experience, 25(8):863{889, August 1995.

4. John Boyland and Giuseppe Castagna. Type-safe compilation of covariant special-
ization: A practical case. In ECOOP'96 Proceedings, July 1996.

5. P. Canning, William Cook, and William Oltho�. Interfaces for object-oriented
programming. In OOPLSA'89, pages 457{467, 1989.

6. Giuseppe Castagna. Parasitic Methods: Implementation of Multimethods for Java.
Technical report, C.N.R.S, November 1996.

7. Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for over-
loaded functions with subtyping. Information and Computation, 117(1):115{135,
15 February 1995.

8. William Cook. A Proposal for making Ei�el Type-safe. In S. Cook, editor,
ECOOP'87 Proceedings, pages 57{70. Cambridge University Press, July 1989.

9. William Cook, Walter Hill, and Peter Canning. Inheritance is not subtyping. In
POPL'90 Proceedings, January 1990.

10. Luis Damas and Robin Milner. Principal Type Schemes for Functional Languages.
In POPL'82 Proceedings, 1982.

11. Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security: From HotJava
to Netscape and beyond. In Proceedings of the 1996 IEEE Symposium on Security

and Privacy, pages 190{200, May 1996.
12. Sophia Drossopoulou and Susan Eisenbach. Is the Java type system sound? In Pro-

ceedings of the Fourth International Workshop on Foundations of Object-Oriented

Languages, January 1997.
13. James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation.

Addison-Wesley, August 1996.
14. R. Harper. A simpli�ed account of polymorphic references. Technical Report

CMU-CS-93-169, Carnegie Mellon University, 1993.
15. Daniel Ingalls. The smalltalk-76 programming system design and implementation.

In POPL'78 Proceedings, pages 9{15, January 1978.
16. The Java language speci�cation, October 1995.
17. The Java language speci�cation, May 1996.
18. Bertrand Meyer. Static typing and other mysteries of life, December 1995.
19. Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into prac-

tice. In POPL'97 Proceedings, January 1997.
20. Peter Sellinger. private communication, October 1996.
21. Mads Tofte. Type Inference for Polymorphic References. In Information and

Computation'80 Conference Proceedings, pages 1{34, November 1980.

