762 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    A General Security Approach for Soft-information Decoding against Smart Bursty Jammers

    Full text link
    Malicious attacks such as jamming can cause significant disruption or complete denial of service (DoS) to wireless communication protocols. Moreover, jamming devices are getting smarter, making them difficult to detect. Forward error correction, which adds redundancy to data, is commonly deployed to protect communications against the deleterious effects of channel noise. Soft-information error correction decoders obtain reliability information from the receiver to inform their decoding, but in the presence of a jammer such information is misleading and results in degraded error correction performance. As decoders assume noise occurs independently to each bit, a bursty jammer will lead to greater degradation in performance than a non-bursty one. Here we establish, however, that such temporal dependencies can aid inferences on which bits have been subjected to jamming, thus enabling counter-measures. In particular, we introduce a pre-decoding processing step that updates log-likelihood ratio (LLR) reliability information to reflect inferences in the presence of a jammer, enabling improved decoding performance for any soft detection decoder. The proposed method requires no alteration to the decoding algorithm. Simulation results show that the method correctly infers a significant proportion of jamming in any received frame. Results with one particular decoding algorithm, the recently introduced ORBGRAND, show that the proposed method reduces the block-error rate (BLER) by an order of magnitude for a selection of codes, and prevents complete DoS at the receiver.Comment: Accepted for GLOBECOM 2022 Workshops. Contains 7 pages and 7 figure

    Cascading attacks in Wi-Fi networks: demonstration and counter-measures

    Full text link
    Wi-Fi (IEEE 802.11) is currently one of the primary media to access the Internet. Guaranteeing the availability of Wi-Fi networks is essential to numerous online activities, such as e-commerce, video streaming, and IoT services. Attacks on availability are generally referred to as Denial-of-Service (DoS) attacks. While there exists signif- icant literature on DoS attacks against Wi-Fi networks, most of the existing attacks are localized in nature, i.e., the attacker must be in the vicinity of the victim. The purpose of this dissertation is to investigate the feasibility of mounting global DoS attacks on Wi-Fi networks and develop effective counter-measures. First, the dissertation unveils the existence of a vulnerability at the MAC layer of Wi-Fi, which allows an adversary to remotely launch a Denial-of-Service (DoS) attack that propagates both in time and space. This vulnerability stems from a coupling effect induced by hidden nodes. Cascading DoS attacks can congest an entire network and do not require the adversary to violate any protocol. The dissertation demonstrates the feasibility of such attacks through experiments with real Wi-Fi cards, extensive ns-3 simulations, and theoretical analysis. The simulations show the attack is effective both in networks operating under fixed and varying bit rates, as well as ad hoc and infrastructure modes. To gain insight into the root-causes of the attack, the network is modeled as a dynamical system and its limiting behavior is analyzed. The model predicts that a phase transition (and hence a cascading attack) is possible when the retry limit parameter of Wi-Fi is greater or equal to 7. Next, the dissertation identifies a vulnerability at the physical layer of Wi-Fi that allows an adversary to launch cascading attacks with weak interferers. This vulnerability is induced by the state machine’s logic used for processing incoming packets. In contrast to the previous attack, this attack is effective even when interference caused by hidden nodes do not corrupt every packet transmission. The attack forces Wi-Fi rate adaptation algorithms to operate at a low bit rate and significantly degrades network performance, such as communication reliability and throughput. Finally, the dissertation proposes, analyzes, and simulates a method to prevent such attacks from occurring. The key idea is to optimize the duration of packet transmissions. To achieve this goal, it is essential to properly model the impact of MAC overhead, and in particular MAC timing parameters. A new theoretical model is thus proposed, which relates the utilization of neighboring pairs of nodes using a sequence of iterative equations and uses fixed point techniques to study the limiting behavior of the sequence. The analysis shows how to optimally set the packet duration so that, on the one hand, cascading DoS attacks are avoided and, on the other hand, throughput is maximized. The analytical results are validated by extensive ns-3 simulations. A key insight obtained from the analysis and simulations is that IEEE 802.11 networks with relatively large MAC overhead are less susceptible to cascading DoS attacks than networks with smaller MAC overhead

    Improving Energy Efficiency and Security for Pervasive Computing Systems

    Get PDF
    Pervasive computing systems are comprised of various personal mobile devices connected by the wireless networks. Pervasive computing systems have gained soaring popularity because of the rapid proliferation of the personal mobile devices. The number of personal mobile devices increased steeply over years and will surpass world population by 2016.;However, the fast development of pervasive computing systems is facing two critical issues, energy efficiency and security assurance. Power consumption of personal mobile devices keeps increasing while the battery capacity has been hardly improved over years. at the same time, a lot of private information is stored on and transmitted from personal mobile devices, which are operating in very risky environment. as such, these devices became favorite targets of malicious attacks. Without proper solutions to address these two challenging problems, concerns will keep rising and slow down the advancement of pervasive computing systems.;We select smartphones as the representative devices in our energy study because they are popular in pervasive computing systems and their energy problem concerns users the most in comparison with other devices. We start with the analysis of the power usage pattern of internal system activities, and then identify energy bugs for improving energy efficiency. We also investigate into the external communication methods employed on smartphones, such as cellular networks and wireless LANs, to reduce energy overhead on transmissions.;As to security, we focus on implantable medical devices (IMDs) that are specialized for medical purposes. Malicious attacks on IMDs may lead to serious damages both in the cyber and physical worlds. Unlike smartphones, simply borrowing existing security solutions does not work on IMDs because of their limited resources and high requirement of accessibility. Thus, we introduce an external device to serve as the security proxy for IMDs and ensure that IMDs remain accessible to save patients\u27 lives in certain emergency situations when security credentials are not available

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Robust Wireless Communication for Multi-Antenna, Multi-Rate, Multi-Carrier Systems

    Get PDF
    Abstract Today's trend of migrating radio devices from hardware to software provides potential to create flexible applications for both commercial and military use. However, this raises security concerns, as malicious attackers can also be generated easily to break legitimate communications. In this research work, our goal is to design a robust anti-jamming radio framework. We particularly investigate three different aspects of jamming threats: high-power jammers, link attacks on rate adaptation, and jamming in multicarrier systems. The threats of high-power jamming to wireless communications today are realistic due to the ease of access to powerful jamming sources such as the availability of commercial GPS/WiFi/cellular devices on the market, or RF guns built from microwave ovens' magnetron. To counter high-power jamming attacks, we develop SAIM which is a hybrid system capable of resisting jammers of up to 100,000 times higher power than legitimate communication nodes. The system robustness relies on our own antenna structure specially designed for anti-jamming purpose. We develop an efficient algorithm for auto-configuring the antenna adaptively to dynamic environments. We also devise a software-based jamming cancellation technique for appropriately extracting original signals, which is more robust than traditional MIMO approaches, as pilot signals are not required in SAIM. In spite of the robustness of SAIM, our design is more appropriate for malicious environments with powerful jammers, where mechanical steering is feasible, e.g., military applications. Residential and commercial wireless communication systems are still vulnerable to even limited-power jamming, as in today's standard wireless protocols, rate information is exposed to adversaries. Rate-based attacks have been demonstrated to severely degrade the networks at very low cost. To mitigate rate-based attacks, we develop CBM, a system capable of hiding rate and -at the same time -increasing resiliency against jammers up to seven times higher than regular systems, where rate is exposed. We achieve the resiliency boost by generalizing Trellis Coded Modulation to allow non-uniform codeword mapping. We develop an efficient algorithm for finding good non-uniform codes for all modulations in {BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM}. To conceal rate information, we devise an efficient method for generating cryptographic interleaving functions. In recently deployed communication networks such as WiFi and LTE systems, MIMO and OFDM are the two main techniques for increasing bandwidth efficiency. While MIMO increases the channel capacity by spatial processing on multiple received signals, OFDM mitigates impacts of dynamic variations in wide-band channels and allows frequency reuse with overlapping carriers. Synchronization is a key for high-throughput performance in MIMO and OFDM systems. In this work, we study impacts of jamming attacks specifically targeting to control channels in WiFi and LTE networks. Our study focuses on efficient techniques for both jamming and anti-jamming in multicarrier systems

    Intrusion Detection System for detecting internal threats in 6LoWPAN

    Get PDF
    6LoWPAN (IPv6 over Low-power Wireless Personal Area Network) is a standard developed by the Internet Engineering Task Force group to enable the Wireless Sensor Networks to connect to the IPv6 Internet. This standard is rapidly gaining popularity for its applicability, ranging extensively from health care to environmental monitoring. Security is one of the most crucial issues that need to be considered properly in 6LoWPAN. Common 6LoWPAN security threats can come from external or internal attackers. Cryptographic techniques are helpful in protecting the external attackers from illegally joining the network. However, because the network devices are commonly not tampered-proof, the attackers can break the cryptography codes of such devices and use them to operate like an internal source. These malicious sources can create internal attacks, which may downgrade significantly network performance. Protecting the network from these internal threats has therefore become one of the centre security problems on 6LoWPAN. This thesis investigates the security issues created by the internal threats in 6LoWPAN and proposes the use of Intrusion Detection System (IDS) to deal with such threats. Our main works are to categorise the 6LoWPAN threats into two major types, and to develop two different IDSs to detect each of this type effectively. The major contributions of this thesis are summarised as below. First, we categorise the 6LoWPAN internal threats into two main types, one that focuses on compromising directly the network performance (performance-type) and the other is to manipulate the optimal topology (topology-type), to later downgrade the network service quality indirectly. In each type, we select some typical threats to implement, and assess their particular impacts on network performance as well as identify performance metrics that are sensitive in the attacked situations, in order to form the basis detection knowledge. In addition, on studying the topology-type, we propose several novel attacks towards the Routing Protocol for Low Power and Lossy network (RPL - the underlying routing protocol in 6LoWPAN), including the Rank attack, Local Repair attack and DIS attack. Second, we develop a Bayesian-based IDS to detect the performance-type internal threats by monitoring typical attacking targets such as traffic, channel or neighbour nodes. Unlike other statistical approaches, which have a limited view by just using a single metric to monitor a specific attack, our Bayesian-based IDS can judge an abnormal behaviour with a wiser view by considering of different metrics using the insightful understanding of their relations. Such wiser view helps to increase the IDS’s accuracy significantly. Third, we develop a Specification-based IDS module to detect the topology-type internal threats based on profiling the RPL operation. In detail, we generalise the observed states and transitions of RPL control messages to construct a high-level abstract of node operations through analysing the trace files of the simulations. Our profiling technique can form all of the protocol’s legal states and transitions automatically with corresponding statistic data, which is faster and easier to verify compare with other manual specification techniques. This IDS module can detect the topology-type threats quickly with a low rate of false detection. We also propose a monitoring architecture that uses techniques from modern technologies such as LTE (Long-term Evolution), cloud computing, and multiple interface sensor devices, to expand significantly the capability of the IDS in 6LoWPAN. This architecture can enable the running of both two proposed IDSs without much overhead created, to help the system to deal with most of the typical 6LoWPAN internal threats. Overall, the simulation results in Contiki Cooja prove that our two IDS modules are effective in detecting the 6LoWPAN internal threats, with the detection accuracy is ranging between 86 to 100% depends on the types of attacks, while the False Positive is also satisfactory, with under 5% for most of the attacks. We also show that the additional energy consumptions and the overhead of the solutions are at an acceptable level to be used in the 6LoWPAN environment
    • …
    corecore