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Abstract 

6LoWPAN (IPv6 over Low-power Wireless Personal Area Network) is a standard 

developed by the Internet Engineering Task Force group to enable the Wireless Sensor 

Networks to connect to the IPv6 Internet. This standard is rapidly gaining popularity for 

its applicability, ranging extensively from health care to environmental monitoring. 

Security is one of the most crucial issues that need to be considered properly in 

6LoWPAN. Common 6LoWPAN security threats can come from external or internal 

attackers. Cryptographic techniques are helpful in protecting the external attackers from 

illegally joining the network. However, because the network devices are commonly not 

tampered-proof, the attackers can break the cryptography codes of such devices and use 

them to operate like an internal source. These malicious sources can create internal 

attacks, which may downgrade significantly network performance. Protecting the 

network from these internal threats has therefore become one of the centre security 

problems on 6LoWPAN.  

This thesis investigates the security issues created by the internal threats in 6LoWPAN 

and proposes the use of Intrusion Detection System (IDS) to deal with such threats. Our 

main works are to categorise the 6LoWPAN threats into two major types, and to develop 

two different IDSs to detect each of this type effectively. The major contributions of this 

thesis are summarised as below.  

First, we categorise the 6LoWPAN internal threats into two main types, one that focuses 

on compromising directly the network performance (performance-type) and the other is 

to manipulate the optimal topology (topology-type), to later downgrade the network 

service quality indirectly. In each type, we select some typical threats to implement, and 

assess their particular impacts on network performance as well as identify performance 

metrics that are sensitive in the attacked situations, in order to form the basis detection 

knowledge. In addition, on studying the topology-type, we propose several novel attacks 

towards the Routing Protocol for Low Power and Lossy network (RPL - the underlying 

routing protocol in 6LoWPAN), including the Rank attack, Local Repair attack and DIS 

attack. 
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Second, we develop a Bayesian-based IDS to detect the performance-type internal threats 

by monitoring typical attacking targets such as traffic, channel or neighbour nodes. 

Unlike other statistical approaches, which have a limited view by just using a single 

metric to monitor a specific attack, our Bayesian-based IDS can judge an abnormal 

behaviour with a wiser view by considering of different metrics using the insightful 

understanding of their relations. Such wiser view helps to increase the IDS’s accuracy 

significantly.  

Third, we develop a Specification-based IDS module to detect the topology-type internal 

threats based on profiling the RPL operation. In detail, we generalise the observed states 

and transitions of RPL control messages to construct a high-level abstract of node 

operations through analysing the trace files of the simulations. Our profiling technique 

can form all of the protocol’s legal states and transitions automatically with 

corresponding statistic data, which is faster and easier to verify compare with other 

manual specification techniques. This IDS module can detect the topology-type threats 

quickly with a low rate of false detection. 

We also propose a monitoring architecture that uses techniques from modern 

technologies such as LTE (Long-term Evolution), cloud computing, and multiple interface 

sensor devices, to expand significantly the capability of the IDS in 6LoWPAN. This 

architecture can enable the running of both two proposed IDSs without much overhead 

created, to help the system to deal with most of the typical 6LoWPAN internal threats. 

Overall, the simulation results in Contiki Cooja prove that our two IDS modules are 

effective in detecting the 6LoWPAN internal threats, with the detection accuracy is 

ranging between 86 to 100% depends on the types of attacks, while the False Positive is 

also satisfactory, with under 5% for most of the attacks. We also show that the additional 

energy consumptions and the overhead of the solutions are at an acceptable level to be 

used in the 6LoWPAN environment.  
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CHAPTER 1.   INTRODUCTION 

1.1. Background 

Over the past two decades, the Internet has grown from a small academic network into a 

global, ubiquitous network reaching more than one third of the world’s population. This 

growth will be continued in the future, given the rapid development of technology, both 

in hardware and software. Over the last few decades, sensor devices with the ability of 

sensing and gathering different kinds of information are predicted to be the centre of 

technology development. People have dreamed of a world with billions of sensor devices 

to monitor and control important things. Connected sensors can give humans unlimited 

access to the information they want. Many new applications will become more feasible 

which will evolve human life. This idea is the main content of the “Internet of Things” 

(IoT) concept, with 6LoWPAN as a fundamental technical standard to bring it to real life.  

1.1.1. The Internet of Things 

IoT has been developed rapidly in recent years while attracting the momentum from both 

the academia and the industry. Its main idea is to utilize the standard Internet protocols to 

interconnect smart objects for harvesting data and information. Such devices can bring 

various functions like identification, location, tracking, monitoring, etc. [1, 2]. With the 

fast development in Radio Frequency Identification (RFID), embedded sensors, miniature 

actuators, nanotechnology [3], IoT now has a wide range of real life applications, from 

transportation and logistics, health care, smart environment, to personal and social, 

gaming, robot, city information (see illustration in Figure 1.1) [3]. With IoT, the 

Information and Communication Technology (ICT) is expected to see a paradigm shift 

from human-to-human communication style to human-to-thing, and thing-to-thing [3]. 

Smart objects can connect, exchange information and even make decisions on behalf of 

users. This will bring a new connectivity dimension, which provides connectivity for 

anything, for anyone at anytime and anyplace [4].  
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Figure 1.1. IoT applications in real life 

1.1.2. 6LoWPAN 

The IoT devices have specific characteristics such as short radio range, limited processing 

capability and short battery life. Therefore, implementation of the concept requires a 

communication framework that can efficiently manage these resource constrains. 

6LoWPAN, a proposed standard that utilize IPv6 to connect the IoT devices through an 

adaptation layer, is a promising solution. This standard can allow the use of the existing 

IP infrastructure to maximise the utilisation of available resources, while benefiting from 

the huge address space of IPv6. Moreover, the implementation can be accelerated by 

using previous tools and mechanisms to save time and efforts in development.  

1.1.3. Security Issues in 6LoWPAN 

Due to its open architecture [5], 6LoWPAN security problems need to be considered 

carefully for the standard to be publicly deployable. On implementing 6LoWPAN, most 

of the security threats, which come from 802.15.4, IP network and its adaptation layer, 

become more specific. The 802.15.4 part has weaker security than the IPv6 part. Its 

resource-constrained devices are usually not tampered-proof so attackers can tamper and 
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take control of these devices (see [6]). Once the attackers join the network, they can have 

many different ways to downgrade the performance; for instance, dropping the packets 

that need to be followed, or sending extra packets to neighbours for interrupting their 

operations. Moreover, the distributed manner of this side makes it have limited support 

for security services. Security threats for this part can come from both the external and 

internal attackers and target all the layers. Threats on the IP part, on the other hand, are 

mostly related to user authentication and data integrity. For example, unauthenticated 

users can access the information on the LoWPAN part, or falsify the data sending from 

the sensor. Furthermore, the adaptation layer to connect the two parts, is also vulnerable, 

for instance, the fragmentation attacks that disrupt the operation [7].  

1.2. Motivation  

Many 6LoWPAN applications will strictly require the information security and 

robustness quality of services. Cryptography can be used as the first line of defense to 

satisfy such requirements. However, the sensor devices are normally cheap and non 

tamper-resistant, so the adversaries can bypass the cryptographic to join the network as a 

legal node. Once this can be done, attacker can change the operation of the compromised 

nodes to launch different attacks. For instance, such nodes can cause the disruption of 

route discovery or data forwarding; or modify packet contents from legitimate nodes to 

form severe routing attacks. The purposes of such actions are mainly to downgrade the 

network QoS to disturb the applications. These so-called internal threats are difficult to 

be detected because all malicious nodes are still legal as long as they are authorised by 

the keys. 

Our main motivation is to secure the 6LoWPAN performance from such internal threats. 

In order to do so, we study the behaviours of the internal attackers, and apply the 

understanding of the attacks in the monitoring systems to detect them. The work in this 

thesis has started since 2010. At that time, there was only a little research about internal 

threats in 6LoWPAN. Through time, this topic is getting more and more attention from 

both the academic and industry, which has proved our foreseen about the importance of 

the topic.  
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1.3. Research Questions  

In this thesis, we aim to answer the following research questions:  

1. What are the typical internal threats in 6LoWPAN? What are the potential 

impacts on network performance, and how to measure them? How do internal 

attackers behave?  

2. How to build an Intrusion Detection System(s) to detect internal attackers? The 

system(s) should have a high accuracy of detection, and should be energy-

efficiency to operate within 6LoWPAN resource constraint.  

Through thoroughly analysing and quantifying 6LoWPAN internal threats, we have 

realised internal attacks can be roughly divided into two types:  

 Those who aim to downgrade directly the network performance (performance-

type), targeting mainly traffic, channel, and neighbour nodes. 

 Those who aim to break the optimal topology (topology-type), which target 

protocol operation.  

Our work employs selected network metrics to study the attack impacts and node 

behaviours. The results of such study are used to develop two separate IDSs, namely the 

Bayesian-based and the RPL specification-based, to deal with the two aforementioned 

threat types. We also evaluate the accuracy and energy-efficiency of our IDSs to ensure 

they can operate with little effect on 6LoWPAN performance. 

1.4. Contribution of the Thesis 

During the research, several contributions to knowledge have been emerged as follows.  

Analyse and quantify the internal threats: we have analysed thoroughly 6LoWPAN 

security from different aspects focusing on internal attacks. We categorised such attacks 

into two types: those who aim at manipulating network performance targeting traffic, 

channel, or neighbour nodes (performance-type), and those who aim at breaking optimal 

network topology (topology-type). Our approach put attacks with similar nature regarding 

behaviours and targets into the same group to serve as guideline for justifying the relevant 

countermeasures. The categorisation also suggests that these two types of attacks need 

separate detection systems to deal with, because once type focuses only on node 
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behaviour, which related mainly to performance statistics, while the other type targets 

protocol operations, which will need particular rules to check on protocol behaviours. 

Based on the categorisation, we implemented and studied the impacts of typical 

6LoWPAN internal threats, including the Black Hole/Grey Hole, Jamming, Delaying, and 

Hello Flood in the performance-type, the Sinkhole, Rank, Local Repair, and DIS attack 

in the topology type. Among them, the Rank attack, the Local Repair attack, and the DIS 

attack are novel 6LoWPAN threats that were proposed by us  [8-10]. The study of such 

attacks not only show how severe the attacks can be, but also reveal the important and 

sensitive metrics to consider for detecting anomaly. These results are closely related to 

the construction of the two IDSs proposed in this thesis.    

Develop a Bayesian-based IDS to monitor the network for detecting the 

performance-type internal threats: We proposed a solution to detect the performance-

type of internal threats, which targeting traffic, channel, and other neighbours’ 

behaviours. We first introduced an effective monitoring architecture that involves modern 

technologies like cloud computing and multiple interfaces of sensor devices with Wi-Fi, 

4G, 3G, or GSM, to expand the IDS capability. This architecture help to deal with the 

heavy workload and communication of our proposed Bayesian-based solution, which 

were never thought to be feasible in 6LoWPAN before. Our Bayesian-based IDS mainly 

aim at collecting statistical data of the node behaviours to extract the essential features to 

feed in the Bayesian statistic model to calculate the probability that threats may happen. 

The main advantage of this method is the anomaly judgement based on a wider view 

through considering multiple monitoring metrics at the same time. We show that this 

method is effective in terms of detection ability, while it is also lightweight to be applied 

in the network. 

Profile the RPL and develop a specification-based IDS based on this profile for 

detecting the topology-type internal threats: We proposed a solution to detect the 

topology-type of 6LoWPAN internal threats. RPL is the underlying routing protocol for 

6LoWPAN, so building a specification-based IDS for RPL is one of the most efficient 

ways to detect quickly and accurately any 6LoWPAN attack that breaks its optimised 

topology. We propose a practical approach to semi-auto profile the RPL behaviours, 

which can also be applied to other protocol profiling. Based on the knowledge gained 

from this process, we built a specification-based IDS to secure the RPL and 6LoWPAN 
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from the internal topology attack. Our module showed high effective of detection rate on 

operation, while still saving resources due to the architecture that we apply. Our profiling 

method is also semi-auto, which add more flexible in building and constructing the 

protocol specifications.  

1.5. Thesis Structure 

The structure of the thesis is as follows:  

In Chapter 2, we present an extensive literature review of the previous work in securing 

6LoWPAN. The review first gives a background of the important concepts before 

discussing in depth the vulnerabilities of 6LoWPAN as well as potential countermeasures.  

Chapter 3 describes the framework to assess the internal threats before giving details on 

our categorisation of aforementioned two types of internal threats. In each type, selected 

attacks are implemented while their impacts to network operation and attackers’ 

behaviours are assessed.  The results are analysed to obtain the essential knowledge of 

the attacks and justify sensitive metrics that can be monitored later to detect them.  

Chapter 4 presents the process of building a Bayesian-based IDS to detect the 

performance-type internal threats. The general step-by-step procedure in constructing a 

Bayesian model for judging node behaviours is introduced. Different metrics are studied 

to form the Bayesian structure while simulation data is used to train and test the 

effectiveness of the Bayesian model. An efficient monitoring architecture is also proposed 

to extend the capability of the 6LoWPAN IDS. 

Chapter 5 introduces a practical approach to profile the RPL operation into legitimate 

states, transitions, and corresponding statistic. Based on the profiled model, an RPL 

specification-based IDS is built to detect the 6LoWPAN topology-type internal threats. 

Finally, Chapter 6 draws together the results and conclusions of the whole thesis. 

Possible direction of the future research will also be discussed in this chapter.  
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CHAPTER 2.   LITERATURE REVIEW 

2.1. Introduction  

6LoWPAN and its underlying routing protocol RPL are standards that have been recently 

developed from scratch to serve specific requirements in IoT. There have not been many 

internal threats constructed particularly to the standards yet. However, most of the internal 

threats in wireless sensor network (WSN) are feasible in 6LoWPAN due to their similarity 

in network nature. Consequently, operators can employ common WSN defence 

techniques to secure the network system.  

In this chapter, we first introduce 6LoWPAN operation and its main routing protocol – 

RPL. Such knowledge is needed to understand the attack behaviours and design the 

defence system. We then discuss the standard’s vulnerabilities; particularly focusing on 

the internal threats, and the prominent defending techniques. Cryptography and Intrusion 

Detection System (IDS) are commonly seen as the two lines of 6LoWPAN security. The 

former aims at protecting the system from external attackers, while the latter deals with 

monitoring the network to detect the internal attackers. As this thesis aim at detecting the 

internal threats, we will focus on the IDS solutions. In detail, different issues regarding 

IDS in 6LoWPAN will be considered. This chapter will form the fundamental basis for 

our research through pointing out the potential threats, choosing the suitable monitoring 

techniques, designing a suitable IDS architecture, and providing a framework to evaluate 

the solutions. 

2.2. Overview of 6LoWPAN  

6LoWPAN has been introduced recently, but it has attracted lot of interest from both 

academia and industry. The first two-6LoWPAN specifications, RFC 4919 and RFC 

4944, were released in 2007. The former specifies 6LoWPAN requirements and goals, 

while the latter presents its format and functionalities. Other mechanisms of the standard 

have been improved like header compression, Neighbour Discovery, use cases and 

routing requirements. Zigbee Alliance, a research group specialising in the ad hoc and 

802.15.4 network, announced that it would integrate IETF standards such as 6LoWPAN 

and RPL into its future specifications [11]. 
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2.2.1. 6LoWPAN Topology 

A 6LoWPAN network consists of one or more local LoWPANs, which are all connected 

by IPv6 to the Internet through a gateway (border router). The LoWPAN devices are 

characterised by short radio range, low data rate, low power and low cost, which requires 

optimising operation to save resource for maintaining node life. LoWPAN supports both 

star and peer-to-peer topologies; however, the topology can be changed frequently due to 

uncertain radio frequency, mobility, and battery drain.  

Figure 2.1 shows that for IP network, IP is the only protocol used to connect data link and 

physical layer to upper layer. 6LoWPAN, on the other hand, utilises the 6LoWPAN stack, 

a combination of LoWPAN adaptation layer and IPv6, to connect its WSNs to the 

Internet. The biggest challenging aspect of this combination is to adapt the packet sizes 

between the two layers, which are 1280 octets in IPv6 and 127 octets in LoWPAN. 

6LoWPAN implements the adaptation layer in the border router to process the adaptation 

by fragmenting the packets at IPv6 layer before reassembling them in WSN (802.15.4) 

layer. Besides, the Data Link and Physical layer use protocols specified for sensor devices 

while the Transport layer does not commonly use TCP due to performance efficiency and 

complexity [11].  

Application
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Data Link

Network

Transport

IPv6

LoWPAN

UDP ICMP

Application protocols

IP Protocol Stacks
IoT Protocol Stacks with 

6LoWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

Ethernet MAC

Ethernet PHY

TCP UDP ICMP

HTTP RTP
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Figure 2.1. Comparison of 6LoWPAN and typical IP protocol stacks 

In 2008, another IETF working group, Routing Over Low-power and Lossy network 

(ROLL), was formed to establish a solution for 6LoWPAN network layer. This group 

proposed RPL – Routing protocol for Low-power and Lossy network, which is later 

considered the underlying routing protocol for 6LoWPAN.  
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2.2.2. The RPL Framework 

2.2.2.1. RPL Overview 

Because 6LoWPAN is specifically designed, it also has special routing requirements, 

which are defined in RFC 5867 [12], 5826 [13], 5673 [14] and 5548 [15]. Routing 

protocol for 6LoWPAN must satisfy the following requirements [12-17]:  

 Support different types of communication Unicast/anycast/multicast  

 Adaptive routing with different network condition  

 Constraint-based  

 Support different traffic: multipoint-to-point (sensor nodes to sink manner), point-

to-multipoint (sink broadcasts); and point-to-point traffic (sensor nodes 

communicate to each other) 

 Scalability  

 Configuration and management  

 Node attribute  

 Performance  

 Security.  

The ROLL working group extensively evaluated existing routing protocols, such as 

OSPF, OLSR, RIP, AODV, DSDV, DYMO, DSR, etc. and concluded that none of them 

can satisfy all requirements [18]. Therefore, ROLL proposed RPL, which was specified 

according to all these requirements. This protocol was then considered an underlying 

routing protocol for this network. 

2.2.2.2. RPL Architecture and Operations 

RPL components include sensor nodes, which act as hosts or intermediate routers for 

transmitting packets in WSN; and Local Border Router (LBR), which stays in the network 

edge and communicates through a common backbone such as a transit link [18], to 

translate packets through WSN to the Internet. 6LoWPAN nodes connect with a Directed 

Acyclic Graph (DAG) topology, which contains no loop. The DAG is then separated into 

multiple Destination Oriented Directed Acyclic Graphs (DODAGs). The roots of these 

DODAGs are normally LBR, which connected together and to the Internet through the 

backbone. Each DODAG is considered a logical configuration of physical node, so a node 
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can join multiple DODAGs to support routing optimisation [16]. Figure 2.2 illustrates 

this general architecture.  
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Figure 2.2. 6LoWPAN architecture 

Nodes in DODAG select and optimise the routing path using some node/link metrics, 

called DODAG instances. Some examples of the metrics are: node state, node energy, 

hop count, throughput, latency, link reliability, link colour attribute [16]. Nodes inside 

each DODAG uses a specific metric, which is set in the Objective Code Point (OCP). 

They also share an Objective Function (OF), a function to calculate the value of the route 

towards the sink according to the selected OCP, to rank and select the route. Such value 

is represented through the Rank concept [18]. Nodes with the same rank can be sibling 

nodes, while consecutive rank nodes can be parents and child. Messages transmitting in 

RPL need to follow the Rank rule, which states that packets can only be transmitted by 

either upstream with node along the path having ranks strictly decrease, or downstream 

with ranks strictly increase. This rule was created to prevent routing loops.  

In the establishment phase, the DODAG root starts broadcasting its DODAG Information 

Objective (DIO) messages, which contain information about its rank, OCP and DAG-ID. 

All root neighbours have a direct path toward the root, so they set their rank to 1, add the 

root’s address as their parent’s address, and broadcast this information in their own DIOs. 

Once other network nodes receive these DIOs, they form a set of parent nodes and select 

a preferred parent, which has the best rank among the set. This preferred parent will be 
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their default next hop to forward packet to the root. The nodes on their turns continue to 

calculate their own rank based on the rank of their parent and path cost, and form their 

own DIO, which includes rank, OCP and DODAG-ID, to broadcast. By repeating this 

broadcasting mechanism, DIOs are propagated throughout the network. Every node then 

has a preferred parent to transmit packet, and the DODAG topology is created.  

When a node joins the network for the first time, it can either wait for a DIO or send a 

DODAG Information Solicitation message (DIS) to ask others sending DIO (if the 

waiting time is long). Once this node receives a DIO, it chooses its preferred parent and 

builds a Destination Advertisement Object (DAO) message, which contains its address 

and the parent’s address as a prefix. The DAO is advertised for other nodes to update their 

routing tables or optimising their parents if possible.  

RPL provides two mechanisms to fix the broken links in the maintenance phase. The first 

one, Global Repair, is started by DODAG root sending new DAG sequence number to 

reform the whole topology. Once nodes receive new DIO messages, they start parent 

selection and update link cost again. If a local node suffers from broken links and it does 

not want to wait a long time for Global Repair, it can use Local Repair mechanism. To 

do this, it needs to broadcast the poison message to its children informing that they need 

to find a new preferred parent. It then sends a DIS message to request the new topology 

information, and repeat everything like the first time it joins the network.  

RPL uses the trickle algorithm for scheduling the DIOs broadcast to save resources. In 

this algorithm, each node maintains a trickle time and a DIO counter that serves as 

indicators for the stability of the topology. The “trickle time” interval will decide the 

moment when the node has to send its next DIOs. Each time a node receives a DIO 

without a change compared to the previous DIO; its DIO counter will be increased. Later, 

if the DIO counter exceeds a pre-set value called the “redundancy threshold”, the node 

will reset its DIO counter and double the trickle time. The reason for increasing the trickle 

time is that the DIO counter threshold ensures the stability of the topology over an 

acceptable period, so there is less need of making frequent topology updates. This 

mechanism helps to reduce the number of DIOs generated in order to save network 

resources. On the other hand, if there is any change in the incoming DIO, the node will 

reset its DIO counter to zero and minimise its trigger time. This will allow the network to 

update its topology quickly through fast DIO generation. 
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2.2.3. 6LoWPAN Security Requirements 

RFC4919 [19] specifies a list of security requirements for 6LoWPAN, which mainly aim 

at protecting the communications from the end-users to the sensor network. The detailed 

requirements are:  

 Confidentiality: only authorised users can access the information 

 Authentication: data have only originated from a trusted source  

 Integrity: the received data remain unchanged during transmission 

 Freshness: considers for both data and key to ensure no replayed of old messages  

 Availability: guarantees that the data can be accessible when needed  

 Robustness: providing operation despite the abnormal conditions  

 Resiliency: provides an acceptable level of security even in the case which some 

nodes are compromised 

 Energy efficiency: reduces the control overhead to maximise network lifetime  

 Assurance: the ability to disseminate different information 

These requirements require the combination of different securing approaches. 

Cryptography is considered the first line defense that protecting confidentiality, 

authentication and integrity. This line, however, cannot guarantee other QoS 

requirements like availability, robustness, and resiliency. Therefore, Intrusion Detection 

System (IDS) needs to be used as the second line to monitor and detect the malicious 

sources from the early phase to eliminate long-term damage from the attacks.  

2.3. Vulnerabilities in 6LoWPAN Security  

6LoWPAN is the combination of IPv6 and WSN, so security threats from both sides need 

to be examined. There are also threats towards the adaptation layer to attack the packet 

translation process. On the other hand, the operation of 6LoWPAN is affected by the RPL 

performance, so analysis of threats towards this protocol is also essential. 

2.3.1. Security Threats from the Internet Side 

End-users from the Internet can access information from the sensor once 6LoWPAN is 

implemented. This raises authentication threats, the availability of sensor network, and 

user accountability. The adversaries can access the information illegally if no 
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authentication mechanism is applied. When a communication channel between end-user 

and sensor network is established, the attackers can also eavesdrop the sensitive 

information from the data stream. Besides, the users accountability to access sensor 

network should also be considered [20]. The availability of the communication should be 

guaranteed by protecting the sensor side and adapting the operation of Internet side which 

has resource constraint nature. 

Another type of threat happens when the attackers can get control of the sensor nodes 

through the Internet. For example, the botnet attack [21] creates a botnet inside the sensor 

network for forging the data sending to the sink. The botnet falsifies the data in the user-

end that leads to wrong alarm or decision. Although the sensor botnet does not have 

enough resources for making a successful DDoS attack to other networks; attackers can 

make a DDoS attack to the botnet itself by flooding to drain the resource. 

Cryptography alone cannot defend the DoS attack from the Internet to the sensor network, 

so there is a need for implementing an IDS for analysing the IP traffic between the two. 

Traditional IDS solutions in the Internet or in the sensor network cannot be simply applied 

because of the dissimilarity of traffic pattern. 

2.3.2. Security Threats from the Adaptation Layer 

The adaptation layer is implemented at the border router for translating the packet 

between the two networks. The border router is normally a computer with wired 

connection to the Internet and has strong security protection. However, its packet 

fragmentation and reassembly process still have some vulnerability. 

Kim [7] proposed that fragmentation attack from the IP network can be applied to this 

layer by modifying or reconstructing the packet fragmentation fields like datagram size, 

datagram tag or datagram offset. Examples of the threats are Tiny Fragmentation, Ping of 

Death, Jolt, Teardrop, bank, New Teardrop, or Frag router attack [7]. These attacks can 

cause critical damage to sensor nodes, for instance, re-assemble buffer overflow due to 

packet re-sequence; exhaust the resource because of processing unnecessary 

fragmentation; or shut down, reboot the sensor nodes. 
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2.3.3. Security Threats from WSN Side 

The security threats of WSN have been extensively studied by the research community. 

The attackers can be classified by several schemes: internal – external, passive – active, 

compromising methods, host-based or network-based [22, 23]. The most common 

approach to differentiate an attacker is by identifying whether it initiates from internal or 

external source. An internal attacker uses a source that can participate fully in the network 

communication. This source is either a legitimate node being compromised or a device, 

which gains access by having network secret key. The source can stay either in WSN or 

in the Internet side. On the other hand, external attackers can only have access to network 

from outside through listening or eavesdropping, so its manipulation to the network 

operation is limited compared with the internal attackers. Consequently, defending the 

WSN side from the internal attackers is much more demanding than from the external. 

The other ways to identify an attacker are through their attack approach, which means it 

can be either passive or active, host-based or network-based. For example, a passive 

attacker is the one that mainly manipulates the system based on observing the 

communication instead of interacting with other devices. Another example of 

identification, an active attacker tries to affect to other nodes’ operation without concerns 

about its activities being spotted.  

Techniques for protecting the network from the internal and external attackers are 

different. The external attackers usually use unauthorised listening or Denial-of-Services 

attacks, therefore, the main protecting technique is cryptography. On the other hand, 

insider malicious nodes can be created by several ways: attackers physically capture the 

nodes and reprogram them, attackers use software and devices to breach the cryptographic 

key or inject malicious code [24]. In such cases, the attackers have all the keys, so they 

can easily overcome any cryptography test. However, the consequences of the internal 

attacks are usually the downgrading of network performance, so the IDS approach is more 

suitable to detect the anomaly performance in the early stage.  

A common way to categorise different types of attack is to group them into the targeting 

layer. A summary of one layer-approach categorisation, which were obtained from [22, 

24, 25], is given in the Figure 2.3.  Some of these threats are more dangerous as they can 

be deployed easily and lead to sophisticated attacks. If the system cannot identify them 

early, their effects on network operation may add up in the long-term. One example is the 
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Sybil attack, which uses the packet forging mechanism. Undetected Sybil nodes can 

initiate other attacks like misdirection, exhaustion, unfairness [22], and creates a more 

severe downgrade of network performance. For example, those attacks can make WSN 

unavailable, partitioned, or resource exhausted. Another dangerous attack is the Sinkhole, 

which uses a packet dropping mechanism to attract traffic to specific node. If the system 

cannot detect early, it can generate selective forwarding, black hole attack and combines 

to partition the network [22].  

Attackers can also apply techniques to attack some IPv6 mechanisms like Neighbour 

Discovery and Address Auto-configuration in WSN [26]. If the attackers can bypass these 

mechanisms to spoof the neighbour solicitation/advertisement or the redirect messages, 

they may degrade the routing performance by falsifying the members’ views on topology.  

From Figure 2.3, it can be seen that most of the WSN threats focus on the network layer 

and aims at degrading the network operation. Therefore, it is necessary to assess further 

the routing security, which is RPL in more detail. 
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Figure 2.3. Illustration of potential WSN attacks in 6LoWPAN
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2.3.4. Security Threats from the RPL 

The drawbacks of 6LoWAPN security, such as weak communication links and non 

tamper-resistant nodes, make RPL weak from internal attack. Once a benign node 

becomes an internal adversary, it can break the network operation without being detected 

by cryptographic mechanisms. 

In [27], the authors provided a collection of attacks towards RPL. RPL attacks are divided 

into three groups according to their target, namely Resources, Topology, and Traffic, as 

can be seen in Figure 2.4. According to the authors, attacks towards RPL resource are 

those who aim at making legitimate nodes to perform unnecessary processing in order to 

exhaust their resources; while topology attackers are those who target either making RPL 

sub-optimal or isolated; or eavesdropping and misleading traffic. Such RPL attacks 

taxonomy may show some overlaps. For example, a flooding attack may belong to both 

resource and traffic group, as it exhausts the nodes’ resource and creates 

misappropriations at the same time. Besides, the Rank attack, which manipulating the 

Rank property, can deplete network resources, break optimal topology, and generate bad 

traffic altogether. 
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Figure 2.4. Taxonomy of attacks against RPL [27] 

Our view on RPL attacks is different. We consider RPL a routing protocol, so its main 

objective is to establish and maintain an optimal network topology. Other attacks not 

targeting the optimal network topology will not directly relate to RPL operation. Based 

on that view, we categorised the RPL attacks according to the specific RPL properties 

that the attackers target as can be seen in Figure 2.5.  



 

 

18 

 

RPL attacks

Rank property

Trickle algorithm

DODAG version

Rank attacks

DIO attack

DIS attack

Local Repair attack

DAO DAO inconsistency

...

...

...

...

...  

Figure 2.5. Taxonomy of RPL attacks based on specific property targets 

Our research of RPL attacks is one of the first works that analysed and quantified specific 

threats towards RPL performance. In [8-10], we proposed different kinds of RPL attacks, 

including Rank, Local Repair, DIS, DAO, neighbour, and DIO attacks. Such attacks aim 

at specific mechanisms of RPL such as Rank property, trickle procedure, local repair and 

so on. Similar research from other authors are the work in [28, 29], which focus on the 

Rank property; and [30] emphasises on DODAG version (similar to local repair attack). 

Such work will be discussed further in Chapter 3.   

2.3.5. Categorisation of Internal Attackers 

We categorise the internal attacks into two major types: the performance and the topology 

attacks. The performance attacks are those that target downgrading network performance 

directly. For example, they can decrease the delivery ratio as in Black Hole or Selective 

Forwarding attacks, or increase the delay as in the delay attack. Considering the objectives 

of such threats, this type can be further divided into three other sub-categories, which aim 

at (i) traffic through a node (Black Hole, Grey Hole, Selective Forwarding, …); (ii) 

channel (Jamming, Collision, Exhaustion, …); or (iii) interfering the neighbours (Hello 

Flood, Sybil, …). On the other hand, topology attacks are those that aim at disrupting the 

RPL optimal topology, which later indirectly affect network performance. In our view, 

any internal attacks will fall into one of these two categories. If a network is free from 

these two types, it will always operate with the optimal topology while every node 

performs optimally, then this network can be considered in ideal working condition.  

Some typical attacks in these two categories will be quantified and analysed in detail in 

Chapter 3. Our solutions will also aim at detecting such attacks by using the knowledge 

obtained from analysing their behaviours. We believe the ultimate aims of monitoring a 
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network are to ensure that this network always has an optimal topology, while all nodes 

working with optimal performance.  

The next sections will review the two common defence approaches that can be applied, 

which are the cryptography as the first line to prevent external attackers, and the Intrusion 

Detection System (IDS) to detect the internal attacker sources. 

2.4. Cryptography Techniques 

Cryptography always involves encrypting the messages in operation. The approach aims 

at protecting the following points:  

 Authentication: only authenticated user, who has the right key, can decrypt and 

read the messages 

 Integrity: message content should not be changed during transmission 

 Confidentiality: no one can understand the message without the key.  

We will consider these cryptographic requirements in both the WSN and IPv6 side of 

6LoWPAN.  

Common cryptographic approaches in WSN use Advance Encryption Standard (AES) for 

securing the link layer with several operating modes. However, most of the modes do not 

ensure integrity requirements [19]. Message authentication and encryption mechanisms 

could be implemented by the transceiver chip of specialised hardware. Nevertheless, 

given the resource constraint of sensor nodes, the processing time and overhead created 

by such mechanisms may downgrade network performance or shorten nodes’ lifetime. 

Hence, a lot of research work have focused on finding more lightweight cryptographic 

solutions for WSN recently, such as, TinyEEC [31] and NanoEEC [32]. These 

improvements may help to provide viable encryptions for link layer messages; however, 

the link-layer mechanism only ensures hop-by-hop security, while the network requires 

secured end-to-end communication. Moreover, there is no authentication or key 

management to support the host. Several key distribution methods like pre-distribute, key 

pool, have been proposed for WSN, but they lack of scalablity. Another vulnerability of 

the key management system is that at the bootstrap time, an adversary can sit among other 

nodes without being required to authenticate, so they can obtain the keys freely.  

From the IPv6 side, common cryptographic solutions use IPsec to secure data exchange. 

It looks promising to extend IPsec to 6LoWPAN because if it can be done, an end-to-end 
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security will be established from the Internet to WSN. In addition, there will be no need 

for a trustworthy gateway. However, the public key cryptography encryption in IPSec is 

too heavy for resource-constrained devices in WSN. Besides, exchang key is also a 

challenge. The Internet Key Exchange from IPsec is not feasible because of using heavy 

signalling messages, which do not fit the small WSN packet size and the energy efficiency 

requirement.  

Recent research has made significant efforts in transforming IPSec into a feasible solution 

for 6LoWPAN. For example, authors in [33, 34] showed ways to combine RSA (Rivest-

Shamir-Adleman) and ECC (Elliptical Curve Cryptography)  techniques for a light 

weight and adaptable encryption. Liu and Ning proposed pairwise key pre-distribution 

[35] and DHB-KEY [36] for simplifying the key distributions. Raza et al. [37] provided 

a 6LoWPAN-IPsec Specification including definitions for Authentication Header (AH) 

to safeguard the integrity of the whole IPv6 datagram, including application data, IPv6 

headers and Encapsulation Security Payload (ESP) extension headers for securing 

application data. With such improvements, IPsec was thought to be a potential security 

solution for IP based WSN [38-40]. 

Although research shows significant improvements in using cryptography in 6LoWPAN, 

its application still has to overcome many issues. Moreover, the approach is only helpful 

while protecting 6LoWPAN from external attacks, but lack ability to detect and eliminate 

the internal attacks. This is because cryptography cannot detect attackers who can show 

the legal keys. A network using only cryptography is therefore, weak against internal 

attacks aiming at network performance such as DoS or battery, resource attacks like 

jamming, exhaust attack.  

Overall, cryptography alone cannot provide total security for 6LoWPAN. There is a need 

for implementing an IDS in order to monitor internal attackers to prevent long-term 

damage effect. IDS is an efficient way for detecting attacker bypassing the cryptography 

line, as well as monitoring and ensuring a normal network performance.   

2.5. IDS Techniques 

IDS aims to detect internal attacks by analysing and identifying their abnormal 

behaviours. Once the anomaly is detected, the IDS can raise alarm and deploy appropriate 

mechanisms to eliminate the attack sources. Since the internal attackers are assumed to 

have all the keys to operate legitimately as the normal nodes, the cryptography line 
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defence will not be able to detect them. As a result, 6LoWPAN will need IDS as a second 

defence line to detect any attackers that passed the first line.  

2.5.1. Overview of IDS 

IDS is a well-known network security approach which has attracted a lot of research 

interest since the 70s decade [41]. The technology development has changed the 

communication environment from wired, wireless, Ad hoc to sensor network recently. 

IDS solutions have also changed from feature selection, data collection, and analysis 

techniques to adapt to network environment. WSN nature is different from other networks 

in terms of device characteristics and resource availability. Hence, an IDS working in 

WSN should also be optimised regarding these features, data collection and 

computational work. Moreover, IDS in 6LoWPAN need to be more optimised due to the 

requirements of network scalability.  

IDS approaches are often divided by misuse, anomaly-based and specification-based 

type. A misuse IDS defines patterns of the known attacks. When monitoring the network 

operation, if it discovers any data that matches the pattern it will raise alarm. This method 

can provide low false-alarm rate, but it is not favoured because 6LoWPAN internal 

attacks are not be well defined yet.  

Another method, anomaly-based IDS focuses on classifying the normal network 

behaviours, then monitor and compare to detect any anomaly. The method computes the 

deviations between the monitored data and the legitimate pattern. If the deviation exceeds 

a threshold, it will raise an alarm. Anomaly-based IDS has the ability to detect new attacks 

because it considers the performance deviation rather than specific behaviours. It also 

does not consume many resources. However, the false-alarm rate is still high because the 

system cannot differentiate clearly between the misuse and malicious behaviours.  

On the other hand, the specification-based IDS profiles the normal operations of the 

network in detail and monitors any behaviours that break this specification. The profiling 

works are usually done by specialists. Specification-based IDS also has the ability to 

detect the new attacks, if these attacks make the network behave differently from the 

patterns. The accuracy of the specification-based tends to be higher than the anomaly-

based because the comparison is concrete and clear. However, its disadvantages lie on 

the needs of expertise, which will not be flexible when the system needs to upgraded due 

to discovering new vulnerability. 



 

 

22 

 

In the next section, we will review different IDS solutions for WSN, categorising into two 

main groups: anomaly and specification-based. 

2.5.2. Anomaly-based IDS 

This section reviews some of the most popular anomaly-based techniques for WSN, 

which are Artificial Intelligent, Data Mining, Agent Based IDS, and Statistics-based 

approach.  

2.5.2.1. Artificial Intelligent  

Artificial Intelligent (AI) techniques have been applied widely in wired IDS and now the 

solutions are moving to the WSN. The main application techniques are (i) Semantic-based 

(ii) Fuzzy Logic (iii) Game Theory, and (iv) Bio-inspired. 

In the semantic-based technique, the solutions focus on extracting the features of WSN 

and constructing security ontology to build formal semantics for the network. The 

semantics are then normalized for checking performance. Examples in this direction are 

the work of Mao [42] and Chen [43]. Mao [42] defined four layers of the network, which 

are network, semantic, model and co-operative layer, and presented the relations between 

these layers as a pattern to check the normal operation. On the other hand, Chen [43] 

transferred WSN nodes into the ontology concept and calculated the relationship of the 

whole network to define threshold in relationship. This threshold serves as a reference for 

the node to monitor and discover any of its anomaly neighbours. This approach is, 

however, difficult to build in a diverse 6LoWPAN environment, where the system has a 

wide range of node types and relationships.  

Choosing a threshold value for the behaviours is also an important issue in IDS. If the 

threshold is too low, the detection sensitivity may be low because of recognising normal 

nodes as attackers. Moreover, if it is too high, the system accuracy may not high because 

of not being able to detect the threats. For these reasons, the fuzzy logic approach is used 

for setting a dynamic IDS threshold. 

Lee et al. [44] used the number of cluster nodes, the value of the key dissemination limit, 

and the distance from the base station to each cluster to calculate the fuzzy threshold and 

broadcast it periodically. This method adapts the topology changes due to the movement 

of the nodes so it can drop false reports. However, it requires the BS to store and calculate 
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the distance toward cluster nodes and energy consumption so it still consumes many 

resources. 

Sang and Tae [45] used four factors: the node energy level, neighbour node list, message 

transmission rate, and error rate in the transmission to calculate the dynamic threshold for 

detecting DoS attacks. The integrated fuzzy threshold is easy to be calculated. However, 

the threshold for each parameter is chosen by experiment, so there is no guarantee that 

the solution will work in a different network environment. 

Parekh and Cam [46] used a Directed Acyclic Graph and Probability table to represent 

the dynamic site condition to calculate the threshold value for minimizing the false alarm 

rate. The sensors are selectively chosen to assign weights to their sensed reading so that 

they can improve the quality of detection. The disadvantage of this method is that it 

requires knowing the network topology as well as the roles of sensor nodes, so it will 

decrease the scalability when implementing in 6LoWPAN. 

The fuzzy approach provides an adaptive way to deal with the environment changes and 

improves the accuracy of the network, but it needs a stronger theoretical model for dealing 

with different network environments in 6LoWPAN. 

Game theory solutions, on the other hand, aim at modelling the network security as a 

game between players with contradiction objectives. The game type can be either non-

cooperative or cooperative, zero-sum or non-zero-sum. The objective is to discover the 

optimised strategies for the players, called the Nash Equilibrium.  

Rong et al. [47] defined a simple payoff matrix with probability measures for the IDS to 

protect important nodes in the network effectively from the DoS attack. Estiri [48] 

proposed a repeated game model for detecting the dropping packet attacks which reward 

the node reputation every time it forwards and cooperates, while punishing every time it 

does not. After a number of repeated times, the average number of packets dropped is 

shown to get to a stable level and the malicious nodes either to stop the attack or to be 

exploited. Estiri [49] also proposed a Bayesian game with incomplete information to 

present the interaction between malicious and normal nodes in terms of signalling. 

The gaming approach is a strong tool and promising for improving the detection accuracy. 

However, some main concerns of this approach are the rational assumption of the players; 
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the complexity of modelling the real network; and the large computation that consumes 

significant WSN resources. 

The Bio-inspired approaches migrate from the animal behaviours and model these for 

optimising the security solutions. Banerjee et al. [50] combines the Emotional Ants and 

the conventional machine learning technique for keeping track of the intruder trials. The 

IDS agent works as the ant agent and later is transformed to be the emotional ant agent 

for making decisions. The main advantages of this solution are the ability to perceive 

behavioural patterns, deliberate and act based on a self-organising principle combining 

with probability values. 

Soroush [51] also used a Boosting Ant Colony based Data Mining for extracting a 

classification rule set from a network dataset. The pheromone and Entropy function are 

used to direct each tour of the ants and iteratively continues to extract a final set of rules, 

which were later used as detection patterns in the larger dataset. This method is an 

effective way to mine the data; however, it consumes time and resource to obtain the 

results. 

Overall, the main advantage of the AI techniques is the ability to extract value information 

about malicious from the data with high accuracy. Its main drawback is, nevertheless, to 

consume a large value of resource on training and testing data. 

2.5.2.2. Data Mining  

The Data Mining approach mainly apply machine-learning techniques to derive the 

detection rules. In this approach, the system is implemented with a distributed 

configuration. In order to reach a high accuracy, it requires great computational power 

and a large memory space. Some techniques in this direction focus on classifying the data 

in order to reduce the IDS analysis work. 

Xiong et al. [52] proposed the Support Vector Machine (SVM) technique to classify the 

feature subset as a positive feedback factors. Such factors can be adjusted for later use in 

Ant Colony Optimisation. The method reduced the feature subset while improving the 

classification accuracy. 

Kaplantis et al. [53] also used SVM with polynomial kernel or Radial Basis Function 

(RBF) model for detecting Selective Forwarding and Black Hole attacks. The chosen 

parameters for monitoring are bandwidth and hop count within a sliding window. This 
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solution minimised the false positive rate, however, it consumes singificant resources in 

computing and communicating, which prevents the scalability and adaptability to 

network environment. 

2.5.2.3. Agent-based IDS 

Agent-based IDS provide a technique to split the workload through distributed IDS so 

that it can accelerate IDS operation. There are two common types of agent-based 

methods: autonomous distributed agents and mobile agents.  

In the autonomous distributed agent-based IDS, agents can keep track of traffic while 

sharing information with other agents [54]. Zhang et al. [55] reports the implementing of 

a multi-agent based IDS, where they considered four types of agents: Basic agent, 

Coordination agent, Global Coordination agent, and Interface agents. Each agent runs a 

different task and has its own sub-categories. For instance, the basic agent includes 

Workstation agents, Network segment agents and Public server agents, which work on 

the workstations, the subnet level, and public server level respectively. In this way, any 

complex system will be divided into much simpler systems to manage more simply. 

However, such uses of many agents also increases the overhead, computational 

bottleneck as well as transmission delay generating by the communication between the 

agents.  

The other method is the mobile agents, which are similar to distributed agents, but they 

also can move throughout the network to detect attacks. A mobile agent is a self-

controlling program segment moving from node to node, doing both data transmission 

and IDS computation. In mobile agent based computing paradigms, a task specific 

executable code traverses the relevant sources to collect the data. Mobile agents can 

reduce the communication cost greatly by relocating the processing function to the data, 

instead of bringing the data to a central processor [56]. Authors in  [57] proposed the 

mobile agent approach to detect the Sinkhole attack in AODV protocol. Their mobile 

agents inform sensor nodes of their legitimate neighbours so they will not listen to the 

traffics generated by malicious ones. However, since the mobile agents travel the whole 

network only once, some malicious nodes cannot be detected by the mobile agents. 

Furthermore, the effectiveness of the detection system will rely on the travelling path of 

the mobile agents, which requires optimisation of this path.  



 

 

26 

 

2.5.2.4. Statistical-based IDS 

The statistical methods using several mathematical models for analysing the dataset to 

identify a threshold pattern to detect the anomaly behaviours. Some of the main 

techniques are (i) Mathematical model, (ii) Hidden Markov chain, and (iii) Bayesian 

Network.  

The mathematical approaches use some statistical models such as linear or non-linear. 

Phuong et al. [58] used the Cumulative Sum to detect changes based on the cumulative 

effect of the changes made in the random sequence instead of checking every variable 

threshold. The model is easy to compute, strong, light-weighted and not resource 

consuming. However, the model accuracy rate is not high due to the lack of cooperation 

between the monitored nodes. 

Ponomarchuk [59] analysed the number of received packets in a time window of a given 

length and inter-arrival time of packets for detecting anomaly behaviours. The packet 

Reception Rate was calculated based on the binomial distribution, while the inter-arrival 

time was based on the exponential distribution. The method provides low computation 

cost and low memory requirements for storing data. However, the model does not take 

into account the effect of the wireless network environments, which is crucial in practical 

implementation of 6LoWPAN.  

The Hidden Markov Model (HMM) technique can profile the normal and abnormal 

patterns when analysing the data. Song et al. [60] used a Weak HMM, which is a non-

parametric version of HMM to state the transition probabilities to loosen the rules of reach 

ability. The detecting mechanism is done by the scoring scheme and the deviation alarm. 

This approach showed the effectiveness in detecting several kinds of attacks, but the false 

positive error rate is high and the system still requires a large amount of resources. This 

needs to be improved before applying in the 6LoWPAN environments. 

A Bayesian network (BN) is a technique that reflects the interactions between variables 

which represent primary causes and their relations that lead to the final outcome for a 

query [61]. In general, BN can be considered as graphical probabilistic models for 

multivariate analysis. The model is formed as a directed acyclic graph, which have 

associated probability distribution functions. The variables are characterised by the graph 

nodes, while relations between these variables are illustrated by the graph edges. The 

strengths of such relations are described through the Conditional Probability Tables. 
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BN has been applied successfully and widely in different network security issues. There 

are several work applying BN in WSN. Momani [62] combines the data trust and 

communication trust to infer the overall trust between nodes. The author showed the need 

to combine these two trust values for preventing misleading or breaking down threats of 

the network. The new trust model is represented by the Bayesian Fusion Algorithm, which 

combines these two trust values. Building the trust value for each node is important to 

show its reputation. The reputed sources are then can be used to justify which node is 

malicious.  

Another direction of applying Bayesian method is to clarify the relationship between the 

network operation parameters to the attack possibility. When the system has a reference 

model of this relationship, it can detect the attack sources through the collected data. An 

example of this approach is the work in [63], which used a Bayesian Trust Model for 

calculating the MAC sub-layer data of WSN to mitigate the unfairness and consequent 

created by the DoS attacks. This solution can be generalised and adapted to other 

protocols by adjusting the networks and trust model parameters.  

BN has several advantages that make it suitable to be utilised in detecting the 

performance-type attacks. First, this model can be trained through the historical 

performance data  [64]. In detail, we can set up and simulate a number of common 

network scenarios, obtain the trace data, and extract the relevant metrics to study the 

relations. Such relations between these metrics can also be assessed through statistic 

model. Second, the model can predict even when some event observations are missing. 

For example, at the time of decision, if the system is unable to observe the state of some 

events, it can still give brief predictions based on the remaining events. Third, the model 

can provide the internal relations between the metrics. This brings a more robust way to 

justify the events to compare with methods, which considering only a specific variable. 

The core of this method is the “Bayes’ theorem” introduced by Reverend Thomas Bayes 

in 1763, which allowed to obtain or update the probability of a hypothesis to be true, 

given a number of observations. The Bayes’s theorem is presented as follows. Given A 

and B as two events to be observed. Assume that P(A), P(B) is the probability of the event 

A or B occur respectively, P(A, B) is the probability when both the event A and B occur, 

while P(A/B), P(B/A) is the event A occur if B occur, and the event B occur if A occur, 

respectively. Then we have:  
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𝑃(𝐴, 𝐵) = 𝑃(𝐴) ∗  𝑃 (
𝐵

𝐴
) = 𝑃(𝐵) ∗  𝑃(𝐴/𝐵) 

Therefore 𝑃(𝐴/𝐵)  =
𝑃(

𝐵

𝐴
)∗ 𝑃(𝐴)

𝑃(𝐵)
 

The probability results will change according to the number of observations (reflecting 

through the corresponding probability) revealed. This model can give brief result even if 

only a small number of evidence observed. On the other hand, the more evidences the 

system absorbs, the more accurate it will be.  

We present a brief example of forming and predicting using the Bayesian model as a 

background for readers to be familiar with the method, as we will apply it for detecting 

the performance internal threats later. In Figure 2.6 (a), the Bayesian model is given with 

four events to observe, which are Cloudy, Rain, Sprinkle, and Wet Floor; and one event 

to predict, i.e. Slippery. The arrows represent the cause-effect relationships between such 

events, for example, the Cloudy may cause the Rain or Sprinkler. The details of such 

relationships are described through the CPT given besides each node. Figure 2.6 (b) gives 

the prediction of the Slippery event (83.1%) when there is no evidence of the four 

observed evidence. Figure 2.6(c) shows there is 86.42% of Slippery if the Cloudy is 

observed. However, if the Cloudy is observed (Cloudy = T) and Sprinkler and Rain are 

observed to not occur (Sprinkle = F and Rain = F), then the chance of Slippery will 

decrease to 27%, which is shown in Figure 2.6 (d). 
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Figure 2.6. An example of the using Bayesian model to predict 

Overall, anomaly IDS can adapt to different network environments, attacks and co-

ordination attacks. Due to the difficulty in differentiating between misbehaviour and 

malicious nodes, it usually has a high false alarm rate. Other disadvantages include the 

time-consuming for analysing a large amount of data and the possibility that adversary 

can re-train the system to accept attack behaviours. Among a number of anomaly-based 

IDS we have reviewed, we prefer the Bayesian approach to detect the performance-type 

attacks in 6LoWPAN because of its outperforms in judging based on insight 

understanding of the system and the use of training data. 
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2.5.3. Specification-based Approach 

Specification-based approach can derive the abstraction of the network operation; hence, 

it can simplify the feature selection and tailor monitoring to the needs of their own 

systems. Moreover, it can scale well and simplify the test operation for justifying a set of 

events, which constitutes a violation. It can also take advantage of the knowledge about 

possible attacks of system operators , and provide accurate attack detection with low false 

alarm rates [65, 66].  

The main techniques used for these specifications are the state machine transitions, 

machine learning for pattern recognition and statistical analysis to derive automatically 

program specifications [65, 66]. In the literature, there are many specifications on some 

protocols working in environment similar to 6LoWPAN such as AODV, OLSR and CoP 

(Connectionless Routing Protocol). 

Ning et al, [67] analysed changes on AODV operations in attack conditions. They mainly 

focused on the fields in the two messages RREQ and RRPL. Authors in [68] showed that 

some fields of the Route Request and Route Reply messages such as ID, Hop Count, 

header and Sequence Number can lead to  threats like Man-in-the-middle or Tunnelling 

attack. Moreover, Grönkvist et al. [69] added other attacks like Forged Sequence number 

and Forged Hop count. Based on those analyses, the work in [69] provided different ways 

to specify the Route Request and Route Reply messages of the protocol based on the 

Finite State Machine (FSM) technique. The main idea is to analyse the received messages 

for detecting anomaly in transitions, which are defined in the threat identifications. 

Tseng et al. [70] proposed an Optimized Link State Routing Protocol specification, which 

used an extended FSM technique with a backward checking algorithm to determine the 

corresponding transitions from the last event. Possible changes in the fields of Hello and 

topology control messages are also defined. The state transition analysis was also used 

for modelling host and network based intrusions. Orset et al. [71] proposed an extended 

FSM solution, which specify the formal specifications of the correct OLSR behaviours 

and uses a backward checking algorithm to detect run-time violations of the 

implementations. The authors develop several semantic rules for checking the 

specifications more quickly. 

Mostarda [72] specified the operation of CoP by defining a Global Automaton based on 

some basic routing properties. The system can check the node states based on this 
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Automaton. The authors mentioned two ways to monitor the transitions, by either adding 

a field in the control messages to show the transition state, or sniffing to find the unique 

chain of rules that matches the sequence of invocations. Some semantic rules were also 

defined for simplifying the checking progress. 

In order to apply specification-based IDS to 6LoWPAN, RPL operations need to be 

profiled. The prominent attacks towards RPL also need to be analysed to extract specific 

changes they will create for this specification model. If we can profile the operation of 

RPL accurately, the specification-based approach will be suitable because the detection 

issue will be simplified by verifying node behaviours with this profile.  

A summary of different IDS for solutions is given in Figure 2.7 below. 

 

Figure 2.7. Summary of different IDS solutions for WSN 

In the next section, we will discuss some main issues when building an IDS for 

6LoWPAN. 
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2.6. Issues on Building IDS in 6LoWPAN 

The previous sections shows that the most effective solution to detect 6LoWPAN internal 

threats is to monitor network behaviours. However, on building an IDS for 6LoWPAN, 

there are several issues that have not been well studied, including:  

 The impacts of internal threats on RPL network and node performance have not 

been studied well enough 

 The effective features for detecting the internal threats have not been justified well 

enough  

 The legitimate behaviours of the RPL have not been profiled  

 The design of IDS to match 6LoWPAN operation is not identified 

 The approach to evaluate the effectiveness of the IDS is not clarified 

These issues will be discussed in detail in this section.  

2.6.1. Studying the Impact of the Internal Threats 

Studying the impact of the internal threats on the network performance in general and 

node behaviour in particular, is important because such work help to understand the 

damaging level of the attacks. There is not much research of attack impacts on 

6LoWPAN, despite many similar studies available widely in other similar networks. Due 

to the relative newness of 6LoWPAN/RPL design as well as the discovery of several 

novel attacks on such network, the impacts of the internal threats may not be the same 

like in other network.  

Study of the attack impact can involve many factors. Weerasinghe and Fu [73] studied 

the impact of Black Hole attack on mobile Ad hoc network showed that the number of 

attackers, the size of the network (number of network nodes and the terrain set up), and 

node properties may affect attack impact significantly. Riecker et al [74] observed that 

topology setup and traffic are also among the factors that may change the impact. For 

example, in the Jamming attack, a sparse topology will show more severe impact on the 

percentage of dropped packet rather than a dense topology. In [9], we also show that even 

in a grid topology where most of the positions in the setup topology have the same node 

density and node property, Rank attack initiated in different positions of the network will 

create different impacts. As a result, it is complicated to study all the potential impact of 

an attack if considering all the relevant potential influencing factors.  
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The main reason of the diffrences on studying the attack impact on different network 

setup lies in the way we consider the impact. Assessment of impact on a particular metric 

is done through measuring the deviation of this metric between the normal and attacked 

scenario. In some of the network conditions, the benign node may behave similarly to the 

malicious node. For instance, in a dense network, the benign nodes tend to have more 

traffic load and have to work harder than in a sparse network. Hence, the packet dropping 

rates and end-to-end delay metrics measured in a dense network seem to be worse than 

these in a spare network. Attack initiated in a dense network will have deviations between 

benign and adverse node smaller than that of attack initiated in a sparse network [74].  

Our approach to study the attack impact in this thesis is to maximise the deviation between 

the benign and attacked scenario of each metric through setting up ideal network 

conditions. We choose a small size network with nodes in random position and average 

traffic. Besides, the nodes are distributed equally, which means the number of neighbours 

for each node is similar. To discover the trend of the attacks, we initiate them in different 

positions of the network and find the common changes to the performance metrics. By 

doing so, it will be easier to detect the sensitive metrics as well as exclude the irrelevant 

metrics, which are not affected by the attacks. The detailed work to solve this issue will 

be presented in Chapter 3.  

2.6.2. Identifying the Features for the Anomaly-based IDS 

Given the review in Section 2.5, building an anomaly-based IDS is the best approach to 

deal with the performance-type threats. In other networks, there are many features for 

classifying the attackers’ behaviours. For example, in the wired network, a set of 41 

features conducted in the KDDCup’99 IDS dataset is utilised commonly in many research 

efforts [21]. However, the literature on building anomaly-based IDS for 6LoWPAN 

remains the issue of choosing the right features for reducing the monitored data and 

effectively detect the attacks.  

In order to detect the internal threats in WSN, a number of data features were proposed. 

Da Silva et al. [75] suggest to monitor the following features: 

1. The time between two consecutive messages for detecting the negligence (sending 

message too slowly) or exhaustion (sending message too quickly)  

2. Payload: for discovering integrity attacks, which make changes to the packet 

payload 
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3. Delay: detect attacks that make high delay in sending the messages such as Black 

Hole or Selective Forwarding  

4. Repetition: detect DoS attack  

5. SenderID: for detecting wormhole, Hello Flood attack – this parameter can also 

be applied in discovering Neighbour Discovery attacks of IPv6 and Sybil, which 

create a strange SenderID  

6. Number of collisions: detect attacks, which cause large number of collisions such 

as jamming attacks.  

Strikos [76] added the following parameters:  

1. Number of lost packets: a higher packet loss rate can be a sign of dropping, 

modifying or jamming attacks  

2. Number of modified packets: this shows the threats of integrity attacks  

3. The amount of energies used by the network: this is for preventing the network 

partition by control the energy consumption distributed in the network. 

Each chosen feature only shows its effectiveness in protecting the network from one or 

some threats but not all. The IDS in 6LoWPAN, however, cannot be implemented to 

monitor all the parameters for all the threats because of its limited resources. Therefore, 

the defence system needs to prioritise the threats dependent on the scenario, while 

choosing only the most important performance metrics that need to be monitored. The 

chosen metrics should also cooperate in an optimal way to allow the network monitor all 

these priority attacks.  

Our approach to select the features for the anomaly-based IDS is based on the studying 

of attack impacts in Chapter 3. The detail justifications of the features and their uses are 

presented in Chapter 4.  

2.6.3. Profiling the Benign RPL Behaviours 

Anomaly-based IDS seems not to be helpful for detecting topology attacks. This is 

because malicious nodes may look like normal regarding all the performance metrics. On 

the other hand, the abnormal topology set up by the attackers cannot be measured through 

the statistical metrics. As a result, we develop a specification-based IDS using benign 

behaviours profile of the RPL to detect the topology attacks. Our approach to solve this 

issue is introduced in Chapter 5.  
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2.6.4. IDS Placing 

Placing the IDS and distributing the monitoring nodes in WSN is other issues to be 

considered. Common approaches for such issues are the network-based, host-based and 

the hierarchical deployment.  

The network-based approach, which puts the monitoring module on the base station to 

receive and analyse all the monitored data from the nodes, can utilise the strong resource 

ability of the base station. Another good thing is that it can use the global view to detect 

co-operation attacks. However, this architecture creates a lot of communication overhead 

on intermediate nodes, which need to forward the monitoring data to the base station. 

Besides, the monitoring data can also be falsified in the middle, which make the 

architecture bad at detecting the local attacks. 

In host-based approach, IDS agents are implemented in every node. Such nodes will 

monitor, analyse the monitoring data and judge themselves. This method can reduce the 

monitored traffic but putting more computational work, which will consume node 

resources and shorten its lifetime. On the other hand, this approach can detect local attacks 

accurately, but it is lack of a global view for protecting co-operation attacks. 

The hierarchical approach [77, 78] combines the two aforementioned placements by 

clustering the network. IDS agents are put on three levels as shown in Figure 2.8. The 

first level is the cluster members, which are used to monitor their neighbour behaviours 

and collect audit data. These nodes can analyse their own collected data to identify 

malicious neighbours. The second level is the cluster heads, which used as coordinators 

to aggregate audit data from their cluster nodes, analyse and make decisions to identify 

the intrusions. The highest level is the base station, which collect the monitoring data 

from its cluster heads and detects attacks throughout the network. 

The main advantages of this architecture lie on detecting distributed attacks and providing 

scalability. The audit data collected from different views also makes this architecture 

more robust and fault tolerant [77]. The overhead is created mainly by communication 

between the clusterhead rather than by monitoring traffic between a clusterhead and its 

members. Such overhead can be reduced significantly if clusterheads apply new 

technology such as multiple communication interfaces, to separate the monitoring traffic 

and the network traffic.  
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Figure 2.8. Hierarchical approach in putting IDS agents on WSN 

The choices of IDS placement depend on the IDS techniques used and the security 

resource available in the network. In case of 6LoWPAN, a network-based architecture is 

not suitable for 6LoWPAN security because it will create a huge IDS traffic towards the 

sink. Host-based IDS is also not feasible because it shorten the host life when overusing 

its resource for monitoring. Therefore, we propose a hierarchical architecture with the use 

of additional interface in each monitoring node for deploying IDS that can save resources 

and extend the IDS capability in this thesis. The detailed architecture will be presented in 

Chapter 4.  

2.6.5. Evaluating the Effectiveness of the Approaches 

The literature commonly uses the True and False Positive rate to evaluate the precision 

of the IDS. The True Positive rate can also be called the Detection Rate as it shows the 

percentage of malicious behaviours that the IDS can detect. On the other hand, the False 

Positive rate represents the IDS sensitivity as it shows the percentage of legitimate 

behaviours, which are detected as intrusions. The formula to calculate these two metrics 

are:  

 True Positive Rate (TPR): 𝑇𝑃𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
.  

 False Positive Rate (FPR): 𝐹𝑃𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
.  

Where: 

 True Positive (TP): is the total correctly detected malicious behaviours. This 

happens when the IDS correctly raises alert for a malicious event.  

 False Positive (FP): happens when the IDS erroneously raises a false alarm over 

a legitimate behaviour in the network.  
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 True Negative (TN): happens when the IDS correctly judges a legitimate 

behaviour as normal.  

 False Negative (FN): happens when the IDS erroneously judges a malicious 

event as normal. 

Besides, an efficient IDS should also save the limited node resources, therefore, another 

evaluation metric is the resource consumption. The more energy and power the network 

uses, the shorter its lifetime and the IDS effective are. In order to assess the impact to the 

resource consumption, we utilise the network energy usage and node power consumption 

as presented in [79]. The formula to calculate these metrics are as follow: 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒖𝒔𝒂𝒈𝒆 (𝒎𝑱) = (19.5𝑚𝐴 ∗ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 + 21.8𝑚𝐴 ∗ 𝑙𝑖𝑠𝑡𝑒𝑛 + 1.8𝑚𝐴 ∗ 𝐶𝑃𝑈 +

0.0545 ∗ 𝐿𝑃𝑀) ∗ 3𝑉/4096 ∗ 8   (1) 

𝑷𝒐𝒘𝒆𝒓 𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 (𝒎𝑾) =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑎𝑔𝑒 (𝑚𝐽)

𝑇𝑖𝑚𝑒(𝑠)
        (2) 

2.7. Chapter Summary 

In this chapter, a thorough review of security threats towards 6LoWPAN was given. We 

have pointed out that the internal attackers in such network are potentially more 

dangerous and more significant than the external in terms of downgrading network 

performance. Internal attackers are also able to initiate a variety of attacks, which make 

them even more difficult to be detected. Cryptography solutions as the first line of defence 

are still being developed, but have to overcome big issues of node resource constraint as 

well as scalability requirement. Those solutions are also not effective when dealing with 

the internal attackers. Different IDS solutions categorized into anomaly-based and 

specification-based are reviewed as the second line of defence to protect 6LoWPAN from 

internal threats. Our review shows that there should be an anomaly-based IDS for 

detecting the performance-type attacks, while a specification-based IDS integrating RPL 

profile will be the best approach to detect the topology attacks. Such IDS solutions are 

still missing in the literature, so filling in this gap will be the main aims of this thesis. We 

also reviewed the most prominent issues of developing an IDS, including feature 

selection, RPL profiling, IDS placing, and the parameters for evaluating the effectiveness 

of the IDS.  
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Given the two categories of 6LoWPAN internal threats, there is a need to analyse and 

quantify those attacks to understand their effects to the network performance. The results 

will be essential to develop the relevant IDS. These are the missions of the next chapter. 
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CHAPTER 3.   BEHAVIOURS OF TYPICAL 6LoWPAN 

INTERNAL THREATS AND THEIR IMPACTS TO 

NETWORK PERFORMANCE 

3.1. Introduction  

As discussed in Section 2.3.5, we categorise the internal threats in 6LoWPAN into two 

types: the performance-type and the topology-type. In performance attacks, the internal 

malicious sources focus mainly on manipulating the traffic going through them, the 

communication channel around, and the operation of other neighbours. For instance, 

attackers can drop all or part of the packets going through them, or create jam to make 

the channel around always busy. On the other hand, the topology attacks involve any 

threats that break the optimal topology of the network, for example, creating loops, 

attracting traffic, or generating heavy overhead. Internal attackers often combine these 

two types to increase the impact. For example, they can first use the topology attack to 

gain the traffics towards a malicious source and then manipulate these traffics through 

performance attacks applied in this source.  

This chapter will quantify the impact of typical attacks in these two categories.  We also 

analyse the key attackers’ behaviours to form the basis knowledge for developing the IDS 

in later chapters.   

For the performance-type attack, we choose some prominent and common attacks at 

physical, MAC and network layer, which manipulate the traffic through the malicious 

sources (The Black Hole, Grey Hole, and Delaying attack), the channel performance 

(Jamming attack), or the neighbours (the Hello Flood attack). A short introduction of each 

attack is given as below: 

 Network/Routing attack: The malicious node drops all (Black Hole) or part 

(Grey Hole) of the traffic that passes through it, which causes data loss. The 

malicious node can gain more impact on network performance by advertising 

itself as having the shortest route to destination to have more traffic from the 

neighbours. 
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 Delaying attack: the malicious node stops forwarding the packets passing 

through it, making the other receiver wait and thus add delay to the transmission 

[80]. 

 Physical level attack: A malicious node or other device purposefully tries to 

interfere with physical transmission and reception of wireless communication. 

The authors of [81] and [82] distinguish four types of a jammer. (i) a constant 

jammer continually emits the radio channel even when it is busy (ii) attackers 

continuously broadcast dump packet (iii) jammer alternates between sleeping and 

jamming randomly, and (iv) jammer stays quiet when the channel is idle but starts 

transmitting a radio signal as soon as it senses activity on the channel. For 

simplicity, in this thesis, we will consider only the first two types of this attack.  

 Signalling: uses laptop class or high power device to send the Hello messages to 

the whole network to make other nodes confused about unreachable neighbours.  

Based on the analysis of these four typical attacks, we also discuss the similarity of the 

behaviours of other attacks, including the selective forwarding, the exhaustion, the 

collision, the Sybil and Clone ID, and the Wormhole attack.  

For the topology attack type, we discuss some particular variations including the 

Sinkhole, the Rank, the Local repair, and the DIS attack. Most of these attacks have been 

discussed in our previous work [8-10, 83]. Their attack mechanisms are summarised as 

follows.  

 The Sinkhole attack: the malicious source will propagate its rank with a good 

value, normally the same rank of the sink. As a result, its neighbours will select it 

as their preferred parent and send traffic to that node. The Sinkhole attack is often 

combined with other traffic-attacks to manipulate the traffic it attracted.  

 The Rank attack: after the attack is triggered, the malicious source changes the 

way it processes the DIO messages from other neighbours so that it will get the 

node with the worst rank as the preferred parent. This kind of attack will create 

un-optimised route for all the packets that go through the malicious source.  

 The Local repair attack: after the attack is triggered, the malicious node starts 

broadcasting local repair messages periodically, though there is no problem with 

the link quality around the node. Other nodes upon receiving the local repair 

messages will need to recalculate the route that is related to the malicious nodes. 
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This kind of attack creates more control overhead messages, as well as some 

packet dropping because of temporarily unavailable route.  

 The DIS attack: after the attack is triggered, the malicious nodes will send the 

DIS messages periodically to its neighbours. The DIS messages can be sent in two 

ways, which will lead to a different response from the receivers. The first way is 

to broadcast the DISs to make receivers reset their DIO timer as the broadcast 

DISs mean that the topology around is changed. The second way is to unicast this 

DIS message to all nodes in the neighbour list, the receivers upon receive will 

unicast DIO message to the sender. Both of these ways add more control overhead 

on the network. 

In this chapter, we first present the metrics to evaluate the attack impact and the general 

evaluation scenarios. We then go more detail into studying of the behaviours of the 

aforementioned attacks. For each attack, we will go through the three steps:  

1. Implementation of this attack in Cooja-Contiki, a well-known simulation and 

real time platform designed for 6LoWPAN [84];  

2. Discuss the simulation results of the evaluation scenarios;  

3. Obtain the specific attack behaviours.  

The study of those attacks in this chapter will be fundamental for developing the IDS 

module in the next chapters.  

3.2. Metrics that Represented Attack Impact and Node 

Behaviours 

To understand the attack impact, we select the three most sensitive and relevant metrics, 

which are as follows. 

 Packet delivery ratio is calculated by the percentage of the number of packets 

received per number of packets sent. The attacks targeting adding collisions and 

packet drop, which will lead to significant change to this metric.  

 End-to-end delay is the average time that a message needs to transfer from the 

source to the sink. This metric is sensitive when the network is under collision and 

delay attacks. An observed low end-to-end delay does not always imply a good 

network performance. For example, too many packets dropped can make 



 

 

42 

 

communication on the radio channel faster, which also leads to a low end-to-end 

delay. 

 Routing control overhead is the total number of DIO, DAO, DIS messages 

generated by all the nodes during network run time. One of the most important 

goals of 6LoWPAN design is to minimise the routing control overhead to save 

communication and computational resources. Therefore, an abnormal increase in 

routing control overhead may indicate an attack on topology. 

On the other hand, to understand the changes on the node behaviours, we track its local 

parameters regarding both protocol operation and communication performance. At each 

node, we measure the number of control messages generated and the change in rank 

metrics to reflect the RPL behaviours. As discussed in Section 2.2, these metrics reflect 

the stability of the network. For the communication, we choose varied local metrics from 

different layers to reflect the potential changes in performance behaviours. These metrics 

include forwarding rate, forwarding delay, power consumption, packet collision ratio, 

and signal strength. A summary of the metric definitions is given below.  

 Number of control messages generate: we will consider the number of DIO, 

DAO, and DIS messages generated by a single node during the simulation time 

 Change in rank: the rank of the nodes through time will be recorded to measure 

how many times it changes 

 Forwarding rate: the number of packets that are forwarded per the number of 

packets that are required to be forwarded in a period of time   

 Forwarding delay: average time between receiving a packets and forwarding this 

packet to the next neighbour  

 Power consumption rate: the power that a node consumes after a period of time  

 Packet collision ratio: the number of collisions reported by the nodes through 

time 

 Signal strength: the signal strength of the node through time, which represented 

by the RSSI metric at the receiver   

In order to see the impact of the attacks better, we also divide the simulation time in 

multiple fixed-size periods, called window times. Monitoring the trends of the metrics 

through the window times will allow us to understand the attack impacts on network 

performance and node behaviours better. For each attack, we will report metrics that are 

observed to have significant change when comparing the normal to the malicious source.  
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3.3. Setting Scenarios for Evaluation 

As discussed in Section 2.6.1, we choose a small size network with ideal working 

conditions to maximise the deviation between the benign and attacked scenarios to detect 

the sensitive metrics more easily. Our simulations were conducted with Coola Contiki-

2.6, a simulation tool environment that provides support for RPL. Our simulated network 

consists of 25 fixed nodes placed randomly in a 250x250m area; each node has a 

transmission range of 50m. In these 25 nodes, there is a sink placed near the top left corner 

and 24 senders placed randomly around the sink. Every sender sends packets to the sink 

at the rate of one packet every 15 seconds.  

It is well known in WSN that the location of the attackers will create different impacts on 

network performance, i.e. impact of the attackers located near the sink will be more severe 

than that of the attackers located near the border. Therefore, we will evaluate the attack 

impact in different locations of the network. For comparison, in each attack, we 

compromised the nodes with the same locations to eliminate the impact of the attack 

location. Every simulation was repeated 10 times using 10 different random seed; the 

results were averaged over those runs to be more accurate.   

We first set up a normal scenario with no attacker and normalize the simulation results 

for comparing with the compromised scenario in the later stage. We choose some random 

nodes to implement the particular attack code and invoke it at a specific time. This 

specific time is set to be 60 seconds after the network starts so that the network is in its 

stable condition. Each simulation scenario is run for 330 seconds, but the senders only 

send 30 packets (so the sending stops after around 300 seconds). The reason for doing 

that is to eliminate any effect on performance results from the uncompleted transmission. 

The network performance for the compromised scenarios are then compared with those 

in the standard scenarios to reveal the impact of each attack. 

Figure 3.1 illustrates the network topology setup in our scenarios. In this figure, the green 

node (marked number 1) is the Sink; the other yellow nodes are the senders, which send 

messages towards the Sink. In the compromised scenarios, some of the yellow nodes will 

change the operation code to become the internal attackers. Figure 3.2 shows the 

connectivity of the network in Figure 3.1. The common parameters used in these 

simulations are summarised in Table 3.1. 
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In our previous work which quantifying 6LoWPAN attack impacts [9, 10], we implement 

an extensive simulation of attackers manipulated in every position of the network. The 

results of these works point out that positions which are near the sink and/or having many 

child nodes are the locations that attackers can create the most impact. This observation 

is also in line with common-knowledge in the literature. Hence, in this thesis, we only 

initiate the attacks at positions with such characteristics to study the maximum effects 

that attacks can create to network performance. The impact of the node performance will 

depend on the load that it needs to forward. If a high traffic node is compromised, the 

overall performance of the network will be downgraded significantly. Therefore, attacks 

on nodes with similar forwarding load tend to have similar impact on network 

performance. As nodes forward packets from the other nodes towards the sink, the nearer 

the node to the sink, the more load it will have. When nodes have the same number of 

hops towards the sink, in as equally distributed network, their forwarding loads will be 

similar. Hence, the experiments can focus only on several typical nodes that represent 

different path length towards the sink, rather than focus on all the nodes. For the 

experiment in this chapter, those typical nodes chosen to implement the attacks are the 

five nodes. As can be seen from the topology figure, those nodes form a backbone to 

forward packets from other nodes, with different number of hops towards the sink. Impact 

of attack on other nodes can be referred to impact of those typical nodes, given the 

corresponding path length. The chosen five positions are node 6, 22, 8, 9, 10. The 

improvements to compare with the work in [9, 10] is that we add several node 

performance features (listed in Section 3.2) to study the attacker behaviours in more 

detail.  
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Figure 3.1. Network scenario set up 
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Figure 3.2. Connectivity map 

Table 3.1. Common simulation parameters 

Parameters Value 

Simulation Platform Cooja Contiki 2.6 

Number of nodes 24 senders and 1 sink 

Traffic model Constant bit rate 

Sending rate 1 packet every 15 seconds 

Simulation run time 330 seconds 

Number of sending packets per each sender 20 packets 
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3.4. Assessing Typical Performance-type Internal Threats 

Overall, there are three major ways to downgrade the network performance directly 

through the malicious sources. First, the attackers can manipulate the traffic going 

through them, for example, dropping, delaying, or adding more traffic to attacking the 

next hop in the forwarding flow. By doing so, the attackers can affect network 

performance in multiple aspects, for instance, they can lower the forwarding rate, or 

increase the forwarding delay, and power consumption. Second, the attackers can also 

manipulate the channel by creating more collisions to prevent the communication. This 

type of behaviours will make the neighbours send packets more slowly because they need 

to wait for the channel to be free, or need to resend the packets after the collisions, not to 

mention the power waste for such activities. Finally, the attacker can create fake ID or 

send fraudulent messages to make the neighbours think that there are new nodes around. 

The neighbours will then waste more resource and perform less effectively because of 

processing this information, which later downgrades the network performance in general. 

Within the scope of this thesis, we only select several typical attacks to assess. Those 

attacks need to represent the three aforementioned attack methods, while showing clear 

behaviours for better understanding the attack mechanisms.  

In detail, for the traffic attack type, we choose the Black Hole/Grey Hole and the Delaying 

attack. The Jamming attack is selected for understanding the abnormal channel 

behaviours, while the Hello Flood attack is picked to represent the abnormal neighbour 

activities. Assessments of such attacks are given in detail in the following sections.  

We will also discuss other attacks’ behaviours based on the analysis of common 

characteristics with the typical attacks at the end of this section. 

3.4.1. Black Hole/Grey Hole Attack  

The Black Hole attackers will drop all the packets that are forwarded through them. To 

increase the attack impact, attackers first try to advertise itself as providing the best route 

to the destination to attract as much traffic as possible (this can be considered as 

combining with other attacks, for instance, Sinkhole). After getting the essential traffic, 

it will start the packet dropping.  

The Grey Hole attack can be considered a different form of the Black Hole attack. The 

difference is that instead of dropping all of the packets, the Grey Hole attackers select 
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only part of the traffic through it to drop. By doing so, the Grey Hole attackers can still 

gain the trust from the neighbours and bypass the justification of having bad behaviours.  

To assess the impact of the Black Hole/Grey Hole as a single attack, we only implement 

the dropping behaviour after the attackers attract essential traffics.  

3.4.1.1. Attack implementation 

The implementations of these two types of attacks are given in the pseudo code as in 

Figure 3.3 below. 

Figure 3.3. Pseudo code of Black Hole and Grey Hole attacks 

The dropping conditions for the Grey Hole attack can be varied with at least two options 

as follows:  

 Dropping based on time, e.g. forwarding all the packets that come in the first half 

of a period and dropping all the packets that come in the remaining time of such 

period 

 Dropping based on node ID, e.g. forward all the packets that come to the odd ID 

nodes but drop all the packets that come to the even ID nodes.  

In this particular simulation, we set the Grey Hole node to drop 20% of the packets that 

passed through it using time as the condition.  

3.4.1.2. Impacts on Network Performance 

Table 3.2 and 3.3 shows the simulation results of the Black Hole and Grey Hole attack, 

respectively, to compare with the normal network performance scenario. As can be seen 

from these tables, the average end-to-end delay, the total overhead, total collisions, and 

total rank change metrics in the attack scenarios are similar to that of the normal scenario. 

On the other hand, the global delivery ratio is changed significantly, but only when the 

attacks are initiated at node 6, 22, and 8. Figure 3.4 depicts such changes in more detail. 

As can be seen from the figure, the Black Hole/Grey Hole attacks create more packet loss 

//Start the Blackhole attack after t 

second  

1: on_receving_packets_to_forward { 

2: if (time < t) 

3:           {operate_like_normal;} 

4: else  {drop_packets; } 

5: } 

 

//Start the Grey Hole attack after t second  

1: on_receving_packets_to_forward { 

2: if (time < t) 

3:           {operate_like_normal;} 

4: else  { 

5:  if (dropping_condition) {drop_packets; }  

6: Else {operate_like_normal;} } 

7: } 
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when they are implemented nearer to the sink. Performance logged of local forwarding 

over the whole network shows that the positions help the nodes to attract traffic, for 

example, node 6, 22, and 8 in Black Hole attack scenario has a traffic of 259, 158, and 

115 packets that need to be forwarded through it, respectively. Because those nodes drop 

most of these packets, the global delivery ratio decreases significantly. A similar 

phenomenon was also observed with the Grey Hole attack.  

In case of initiating at node 9 and node 10, the Black Hole/Grey Hole attackers do not 

affect to the network performance because such positions are near the border of the 

network, and the neighbours of such nodes also have other routing option to avoid the 

dropping route.  

Table 3.2. Performance comparisons between the normal and Black Hole attack scenarios  

Scenario Global 

Delivery 

ratio 

Average 

End-to-end 

delay (ms) 

Total 

Overhead 

Total 

collisions 

Total 

Rank 

changes 

Normal 1 531.27 371 98 111 

Att at 6 0.53 495.33 375 125 110 

Att at 22 0.71 449.31 381 99 112 

Att at 8 0.79 439.16 378 85 112 

Att at 10 1 538.57 374 98 111 

Att at 9 1 551.27 378 98 111 

 

Table 3.3. Performance comparisons between the normal and Grey Hole attack scenarios 

Scenario Global 

Delivery 

ratio 

Average 

End-to-end 

delay (ms) 

Total 

Overhead 

Total 

collisions 

Total 

Rank 

changes 

Normal 1 531.27 371 98 111 

Att at 6 0.78 500.36 369 98 115 

Att at 22 0.88 487.75 378 97 113 

Att at 8 0.91 487.15 377 98 103 

Att at 10 1 539.67 375 98 111 

Att at 9  1 534.26 378 98 111 
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Figure 3.4. Global delivery ratio comparisons between the normal and Black Hole/Grey Hole attack 

scenarios 

3.4.1.3. Attack Behaviours  

We can conclude some important points from the simulations as follow. First, the 

6LoWPAN RPL does not have any effective mechanism to detect or react to the Black 

Hole/Grey Hole attacks. From the protocol point of view, the dropping behaviour of the 

forwarder is silent to the sender. The senders only check the ACK messages from the 

forwarder. Once received such ACK, they assume the forwarder got the packets and will 

do the remaining forwarding. As such, the forwarders can drop the packets without being 

detected. Second, the metrics that are sensitive to the Black Hole/Grey Hole attack are all 

the metrics related to the local forwarding process, including the local forwarding traffic, 

and the local forwarding rate. Both of these metrics need to be considered in judgement 

because the use of a single metric does not always give correct result. For example, 

considering when a node is asked only to forward two packets during the simulation time, 

and it drops one packet, the forwarding rate in this case will be 0.5, which is very low, 

but it is unlikely that this node is the Grey Hole attacker. However, if significant traffic 

is observed in a node, but its forwarding rate is significantly low, there will be a high 

chance of the Black Hole/Grey Hole attackers. 

3.4.2. Delaying attack 

In the delaying attack, the malicious nodes will stop the traffic, which goes through it for 

a while after forwarding. This attack threatens the particular sensor network application, 

which require real time traffic. The delaying behaviours help the attackers still gain the 

credit of forwarding packets, yet making the neighbours have less opportunities to 



 

 

50 

 

forward data to others due to run out of waiting time. The main objective of this attack is 

to create traffic disruption.   

3.4.2.1. Attack Implementation 

The implementation of the delaying attack is given in the pseudo code below. In detail, 

the attackers start the attack after t seconds waiting on the network. Since then, for every 

traffic going through them, they will be waiting for a pre-set time before forwarding the 

packets. In our implementation, we choose the waiting time around 2 seconds. The 

Pseudo code for implementing the delaying attack is given as in Figure 3.5 below.  

 

 

 

 

3.4.2.2. Impacts on Network Performance 

Table 3.4 shows the simulation results of the delaying attack to compare with the normal 

network performance scenario. As can be seen from the table, the attack does not create 

significant impacts when it sits near the border of the network, e.g. node 9, 10. The nearer 

to the sink the attacker is, the more severe impact it can cause to the network performance. 

The average delay has significant change, which is up to 150%, while the total overhead, 

collisions and rank changes measured in the network are even increased more, from 

around 150% to more than 200%. On the other hand, the global delivery ratio shows a 

slightly decrease between 94 to 96%. The consequences of these changes lead to more 

energy consumed, with up to 10% increase in computational power, and up to 31% 

wasting more in communication energy. Comparisons of the energy consumed in these 

scenarios are illustrated in Figure 3.6.  

  

//Delaying attack after t seconds  

1: on_receving_packets_to_forwards {  

2: if (time > t) {  

3:  waiting_for_an_attack_period; 

4:   forward_packets; } else { 

5:    forward_packets}  

6: }} 

 
Figure 3.5. Pseudo code implementation of delaying attack 
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Table 3.4. Performance comparisons between the normal and delaying attack scenarios 

Scenario Global 

Delivery 

ratio 

Average 

End-to-end 

delay (ms) 

Total 

Overhead 

Total 

collisions 

Total 

Rank 

changes 

Normal 1 531.27 371 98 111 

Att at 10 1 544.35 376 102 111 

Att at 9  1 539.27 398 98 113 

Att at 22 0.96 569.29 546 153 176 

Att at 8 0.95 696.95 507 206 179 

Att at 6 0.94 784.77 602 215 162 
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Figure 3.6. Comparison of the computational energy consumption between the normal and delaying 

attack scenarios 

Local performance logged data also reveals that most of the packet dropping was caused 

by the attacker nodes. The reason is that the forwarding packets were kept too long in the 

malicious nodes’ limited size buffer. These packets will be dropped once the incoming 

packets go over the buffer size.  

3.4.2.3. Attack Behaviours  

When monitoring the attackers’ local behaviours, we see clearly the abnormal increase of 

forwarding delay and packet dropping due to the limited buffer size. Besides, the rank 

metric was updated more often, which leads to the increase of number of DIO messages, 

from two to three times compare with the normal scenarios. This is because the RPL uses 

the Expected Transmission Count (ETX) as the main metric when calculating the node 

rank, and due to unpredicted forwarding/dropping packet behaviour, this metric changed 
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frequently. This change is reflected through the DIO messages sent from the attackers. 

Consequently, the nodes around this malicious node also need to recalculate and update 

its rank. As a result, there will be overhead and collisions generated in the network.    

3.4.3. Jamming attack  

3.4.3.1. Attack Implementation 

The main goal of the jamming attacker is to block the communications nearby by 

disrupting the neighbours’ ability to transmit or receive packets. There are different ways 

to jam the network, for example, using the high power transmission to dominate the 

transmission of other surrounding nodes, or keep making the communication channel 

busy to prevent neighbours sending/receiving packets of the neighbours. Most of the 

literature regarding jamming attacks have followed the classical classification of Xu et al. 

[81], in which the authors divided the attack into 4 main following types:  

1. Type I - Constant jammers: This jammer transmits the messages constantly without 

following the MAC protocol, for example, sending the messages even when hearing busy 

signal in the channel.  

2. Type II - Deceptive jammers: This jammer constantly injects dump packets into the 

network to keep other nodes to remain in the receiving state. 

3. Type III - Random jammers: This can be considered as an energy efficient attack for 

jammers that have limited power supply. The jammer randomly chooses a period of time 

to sleep and a random period to jam. When the jammer is in the jam state, it can perform 

either constant or deceptive jamming. 

4. Type IV - Reactive jammers: The previous types of jammers are considered as active 

jammers, which attack regardless of the communication state of the victim nodes. In 

reactive jamming, jammers will remain silent and will only jam when they sense valid 

traffic being exchanged in the network. This type of jammers is harder to detect compared 

to the active jammer types. 
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The common behaviours of these four types are to send the signal or packet without caring 

about the availability of the channel, to create more collisions and make the channel busy 

as long as possible. The difference between these types is that they choose the time to 

start the attack to save the resource and make it difficult for the defender to detect. As our 

main concern is to study the attacks’ behaviours, for simplicity, we only choose type I (J-

I) and type II (J-II) of jamming attack to implement in 6LoWPAN Contiki. The 

implementation makes the jamming attacker send packets without caring about the state 

of the channel (J-I), and broadcast a dump packet periodically after initiating (J-II). The 

Pseudo code for this implementation is given in Figure 3.7 below.  

3.4.3.2. Impacts on Network Performance  

Table 3.5 and 3.6 show the simulation results of the Jamming attacks to compare with the 

normal network performance scenario. These tables indicate that the average end-to-end 

delay and the total collisions have the most significant changes. In J-II, the average end-

to-end delay increase from 640ms to 760ms, about 120%-140% of the normal scenario.  

The total collisions increase even more, with about 165%-268% to compare to the normal 

scenario value. Total overhead and total rank changes increase slightly, which indicates 

that the optimal topology is affected insignificantly, while the high global delivery ratios 

imply only a small amount of packets are dropped. Given that a jamming attacker will 

create many collisions, the sending packets of the surrounding nodes will be delayed, or 

need to be resent after the collisions. Therefore, end-to-end delay will be increased. When 

looking in more detail at the collisions, we observed that the centre of the network, i.e. an 

area consisting of node 4, 22, 21, 8, 19, 9, and 20, has the most collisions regardless of 

the attacking positions. Hence, we can conclude that the jamming attack does not only 

affect to the performance of the surrounding nodes, but it also spreads the impact on a 

Figure 3.7. Implementation of two types of Jamming attack J-I and J-II 

//J-II after t seconds  

1: if (time > t) { 

2: time_count = 0;   

3: while (counting_time)  { 

4:  if (time_count > period) { 

5:   broadcast(dump_packet);  

6:  time_count = 0;}  

7: }} 

 

//J-I after t seconds  

1: if (time > t) { 

2: is_channel_busy = FALSE;   

//Will send packets even in busy channel  

3: }  
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larger area, because its neighbours in their turns will continue to affect the behaviours of 

their surrounding nodes.  

Table 3.5. Performance comparisons between the normal and J-I scenarios 

Scenario Global 

Delivery 

ratio 

Average 

End-to-

end 

delay 

(ms) 

Total 

Overhead 

Total 

collisions 

Total 

Rank 

changes 

Normal 1 531.27 371 98 111 

Att at 9  1 528.11 381 117 113 

Att at 10 1 559.95 366 130 111 

Att at 22 0.98 569.35 387 126 120 

Att at 6 0.97 579.2 412 196 119 

Att at 8 0.99 607.88 407 147 117 

Table 3.6. Performance comparisons between the normal and J-II scenarios 

Scenario Global 

Delivery 

ratio 

Average 

End-to-end 

delay (ms) 

Total 

Overhead 

Total 

collisions 

Total 

Rank 

changes 

Normal 1 531.27 371 98 111 

Att at 8 0.99 639.18 389 214 123 

Att at 10 0.99 655.27 395 195 135 

Att at 22 1 733.62 399 201 130 

Att at 6 1 759.93 369 162 117 

Att at 9  0.99 760.06 410 263 137 

As the collisions will lead to packet retransmissions, an additional overhead regarding the 

communication and computational consumption is also observed. Figure 3.8 and 3.9 

indicate the comparisons of the computational and communicational energy consumption 

between the normal and jamming attack scenarios. The figures clearly show the additional 

overhead created, which is up to 5% in J-I and 8% in J-II in case of CPU usage, and up 

to 17.4% in type 1 and 24.4% in type 2 in the case of transmitting handling. These will 

significantly decrease the node lifetime, given their resource constraint nature.  
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Figure 3.8. Comparison of the computational energy consumption between the normal and 2 types of 

jamming attack scenarios 
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Figure 3.9. Comparison of the communication energy consumption between the normal and two types of 

jamming attack scenarios 

3.4.3.3. Attack Behaviours  

The main metric to identify the jamming attackers’ behaviour is the collision that this 

node creates. In J-I, the more traffic that goes through the attacker’s area, the more 

collisions it will cause. On the other hand, in case of J-II, the attacker creates the 

maximum collisions not when it sits in the high traffic area, but when it has more 

connections with nodes that are in the high traffic area. This is because the constant 
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dumping of sent packets in that case will interfere with the performance of those high-

traffic nodes, and add more collisions in more areas rather than just affecting a single 

area. The power consumption metric is sensitive, especially in J-II, because the attackers 

operate constantly, so it will consume significantly more energy compared with that in 

the normal case.  

3.4.4. Hello-flood  

In some routing protocols for wireless ad hoc and WSN, the Hello messages are used to 

announce themselves to their neighbours. A node, which receives such a message, may 

assume that it is within a radio range of the sender and take into account of this sender 

when selecting the route. In case of 6LoWPAN RPL, the DIO messages play the role of 

such a Hello packet.  

Hello Flood attackers can utilise its large transmission power (for example, using the 

laptop when pretending to be an internal node) to broadcast these Hello messages to all 

over the network. Such behaviour could convince every other node in the network that 

the attacker is its neighbour. The consequence is that, if the attacker advertises a high 

quality routing information, it will attract traffic from many nodes in the network. 

However, such nodes cannot send their packets to the advertiser due to the limit in 

transmission power and they will be confused about the communication. Because 

exchanging the neighbour information is very important in maintaining the optimal 

topology in RPL, the Hello-DIO messages may create significant impact on the network 

performance.  

3.4.4.1. Attack Implementation  

The implementation of the Hello Flood attack was first introduced in [85]. In that work, 

the authors implemented the HELLO flood by letting a malicious node have the ability to 

send data to all other nodes in the network, but only nodes physically close to the attacker 

can respond. Our implementation follows this principle, however, we focus more on the 

attack impact and the behaviours of the attackers, rather than just observing the protocol 

reaction as in [85]. For implementation, the signal strength of the attacking node is also 

set to -10dBm, a considerably larger than normal signal strength of the sensor nodes (from 

-50 to -70 dBm) to send the signal over the network. Besides, the attackers are set to have 

direct connection to all the nodes in the network. An illustration of the Hello Flood 

implementation is given in Figure 3.10 below.  
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Figure 3.10. Implementation of the Hello flood attack on node 6 

3.4.4.2. Impacts on Network Performance  

Table 3.7 shows the simulation results of the Hello Flood attack to compare with the 

normal network performance scenario. As can be seen from this table, the average end-

to-end delay, the total overhead, the total collisions and the total rank changes are the 

metrics that have significant changes under this attack. On the other hand, the global 

delivery ratio seems to have no change, which indicate that the benign nodes can still 

route the packets correctly to the sink. Our observation on the detailed communication 

shows that there is no traffic going through the attacker node, even when this attacker sit 

near the sink, e.g. node 6. The reason is not only because of the fake route that the senders 

cannot reach, but also due to the strong signal of the attackers that prevents the 

communication. Because we do not implement other mechanism to advertise the routing 

information, the attacker will use the benign rank information. Therefore, the nearer the 

attacker to the sink, the higher rank value it will have, and this will attract more rank 

change from other nodes. This explains the significant increase in the number of rank 

changes, collisions and overhead when this attack is initiated in node 6. However, the 

most severe impact of the attack happens when it is implemented at node 8, which has 

worse rank than node 6. The potential reason for this phenomenon is that node 8 sitting 

near the centre of the network, so its strong signal strength will affect a wider range of 

nodes. For example, node 6’s distances toward the border nodes like 13, 17, 15, 14, 12 

are much further than the furthest distance of node 8 to other nodes, hence it will not have 

as strong impact as node 8.  



 

 

58 

 

Table 3.7. Performance comparisons between the normal and Hello flood attack scenarios 

Scenario Global 

Delivery 

ratio 

Average 

End-to-end 

delay (ms) 

Total 

Overhead 

Total 

collisions 

Total 

Rank 

changes 

Normal 1 531.27 371 98 111 

Att at 22 0.98 421.99 429 315 108 

Att at 9  0.99 456.48 409 116 102 

Att at 10 1 510.55 395 67 101 

Att at 6 0.98 547.11 511 341 143 

Att at 8 0.96 685.61 1022 127 361 

3.4.4.3. Attack Behaviours  

The prominent characteristic of the Hello Flood attackers is that they have an abnormal 

signal strength, which is out of range of the normal sensor device. This characteristic 

cannot hide because the attackers need such a strong signal strength to send the packets 

to far distances. Another important observation is that the attacker may advertise high 

routing information value to attract traffic, but from the simulation, even in these cases, 

there is only limited traffic that choose to go through this node. Apart from those 

behaviours, there is not much significant evidence to detect this attack from other metrics. 

This is because the limited traffic goes through the attackers make them almost silent 

under the monitoring of the communication, so they look like having similar behaviours 

to other benign leaf nodes. 

3.4.5. Other Similar Attack Considerations 

This section analyses several common attacks that are similar to the afore-discussed 

attacks, including the selective forwarding, the exhaustion, the collision attack, the Sybil 

attack, and the Wormhole attack.  

The selective forwarding: this attack was first described by Karlof and Wagner [86]. In 

a simple form of selective forwarding attack, malicious nodes try to stop the packets in 

the network by refusing to forward or drop the messages passing through them. There are 

some different forms of selective forwarding attack. In one form of the selective 

forwarding attack, the malicious node can selectively drop the packets coming from a 

particular node or a group of nodes. This behaviour will cause a DoS attack for nodes that 

need those nodes to forward the packets. We have assessed similar behaviour in the Grey 

Hole attack in Section 3.4.1. In another form, the selective forwarding can also behave 

like a Black Hole attacker, in which it refuses to forward every packet except the control 
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messages. With such behaviours, the sensitive metrics to this attack are the local 

forwarding load and the local forwarding rate. 

The exhaustion attack: this attack is launched by the adversary from multiple ends of 

the network with the intent of exhausting the limited energy resources of the victim nodes 

[87]. As a result of the attack, target nodes are overwhelmed with higher than normal 

intensities of traffic inflow, that will lead to the rapid exhaustion of their limited energy 

resources; incapacitating them from further participation in crucial network operations. 

There are several ways to implement the exhaustion attack, for example, requiring the 

victims to send the CTS acknowledgement constantly by sending continuously the RTS 

packet [88]; or using strong power source to interfere with the channel [87]. These 

behaviours are similar with the behaviours of the Jamming and Hello flood, so the 

sensitive metrics to this attack are the local collision rate and the nodes’ RSSI.  

The collision attack: According to the author of [88], the collision attack happens when 

the adversaries sending out some packets to disrupt the current communication of the 

victims. The MAC protocol in every network is responsible for controlling the media 

channel by arranging the order of the nodes sending packets, therefore, if a node act 

selfishly without caring about the state of the channel, it will easily disrupt the 

communication. This attack’s behaviour is similar to the Jamming attack type 1 as 

discussed before. The sensitive metric to monitor is the local collision rate. 

The Sybil attack and the Clone ID attack: The concept of Sybil (or multiple-identity) 

attacks was first proposed by Douceur in P2P networks [89], and it is defined as a single 

node has multiple identities to disrupt the accordance among the entities and physical 

devices in a network. A malicious node forges multiple identities to mislead the network 

and let the neighbour nodes to believe that they have several trusted neighbours [90]. In 

a clone ID attack, which is similar to the Sybil attack, an attacker copies the identities of 

a valid node onto another physical node. This can, for example, be used in order to gain 

access to a larger part of the network or in order to overcome voting schemes [85]. These 

two types of attacks aim at creating illegitimate neighbours to confuse the victims’ 

communication, just like the behaviour of the Hello Flood attack. Hence, the RSSI metric 

is sensitive to this kind of attack as well. For example, there is a very low probability for 

two nodes in different location with different resource to have the same RSSI, so the 

difference on RSSI between the nodes can be used to detect the Sybil attack. Similarly, it 

is also impossible that a node has two different RSSI values, given that it stays at the same 
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place, so the difference on RSSI through time of a node will help to detect the Clone ID 

attack. Other metrics to consider are the advertise rank and the traffic. The reason of using 

these metrics is that whenever we observe that nodes, which advertise good rank but 

having only little traffic, those nodes will need to be suspected.  

The Neighbour attack: After the attack is triggered, the malicious node will replicate 

any DIO messages that it receives and broadcast them again [10]. The victims who receive 

this type of message may think that it has a new neighbour, which is not in range. 

Moreover, if the new neighbour advertises a good rank then the victims may request it as 

the preferred parent and change the route to the out range neighbours. This attack is also 

similar to the Sybil, Clone ID, and Hello Flood attack. The behaviours of these attackers 

can also be detected through the abnormal signal strength, as well as abnormal traffic 

regarding the advertise routing information. 

The Wormhole attack: A wormhole is an out of band connection between two nodes 

using wired or wireless links. Wormholes can be used to forward packets faster than via 

normal paths. A wormhole in itself is not necessarily a security breach; for example, a 

wormhole can be used to forward mission critical messages where high throughput is 

important, and the rest of the traffic follows the normal path [85]. Therefore, the 

wormhole attacker normally combines with other attacks for a more serious security 

threat. The behaviours of the wormhole alone are legitimate to the network, therefore, the 

detection sign of this attack is usually the detection signs of other attacks that were 

launched based on the Wormhole attack.   

Apart from these performance-type attacks, there is another type that not aiming directly 

at either the traffic, channel, or neighbours, which is the topology attacks. Unlike the node 

performance attack, we will not see any straight impact on the nodes’ local performance, 

the communication channel or the anomaly in the signal strength. Instead of that, the 

internal attackers change the protocol behaviours to break the optimal network topology. 

As a result, with an un-optimal topology, even when the network nodes perform to their 

maximum capability, the network performance is still downgrade. We will consider 

attacks falling in this category in the next section.   

3.5. Assessing Typical Topology-type Internal Threats 

Because the 6LoWPAN uses the RPL as its underlying routing protocol, we will only 

assess topology attacks, which aim specifically at RPL. The most common topology 
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attack in every sensor network routing protocol is the Sinkhole attack, which can also be 

applied to RPL, so we will first consider this attack. The remaining RPL attacks are 

selected from our work [8-10, 83], including the Rank attack, the Local Repair attack, 

and the DIS attack. For each attack, we will follow the similar structure as in Section 3.4, 

in which we first present the attack implementation, assess the impact of the attack to the 

network performance, before obtaining specific characteristics of the attackers.  

3.5.1. The Sinkhole Attack  

In Sinkhole attacks [86], a malicious node advertises an artificial beneficial routing path 

and attracts many nearby nodes to route traffic through it. An attacker can launch a 

Sinkhole by advertising a better rank thus attracting nodes down in the DODAG to select 

it as the parent. RPL, however, uses the link-layer quality to calculate routes, which make 

Sinkhole, attack less effective in RPL-based networks. 

3.5.1.1. Attack Implementation  

The implementation of RPL Sinkhole attack was introduced in [85]. In that work, the 

authors implemented the attack by changing the advertised rank through the DIO 

messages. Any delay normally used to reduce network congestion is also removed in 

order to allow the malicious node to be the first node to advertise such a beneficial route. 

We will follow this way of implementation; however, we will focus mainly on the impact 

of this attack on the network performance and the behaviours of the attackers, rather than 

just observing the protocol reaction. 

3.5.1.2. Impacts on Network Performance  

Table 3.8 shows the simulation results of the RPL Sinkhole attack to compare with the 

normal network performance scenario. As can be seen from the table, it is interesting that 

the Sinkhole attack started at the border of the network have a lot more impact on the 

network performance to compare with those started near the sink, which is unlike any 

other attacks we have seen. The reason is simply that Sinkhole attackers in the network 

border will attract the traffic to go far from the sink, hence creating more dropping rate, 

delay and overhead. In case the Sinkhole attacker sits near the sink, because this node 

does not do any other attacking mechanism, it will forward the packet to the real sink, so 

the network performance does not downgrade a lot. The low average end-to-end delay 

observations in the cases where the attackers sit at node 9 and node 10 do not mean that 
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the attacked network transfers data faster than the normal network. Given that these two 

cases have a very low global delivery ratio, many packets were dropped. We do not count 

those dropped messages in the average end-to-end delay, hence, this does decrease this 

metric on the overall. On the other hand, the power consumptions in the attacked 

scenarios are similar to that in the normal network scenario. Like the observation of 

authors in [85], we also saw that the 6LoWPAN RPL cannot eliminate this attack, most 

of the nodes in the coverage area of the attacker chooses it as the preferred parent during 

the simulation time.  

Table 3.8. Performance comparisons between the normal and Sinkhole attack scenarios 

Scenario Global 

Delivery 

ratio 

Average 

End-to-end 

delay (ms) 

Total 

Overhead 

Total 

collisions 

Total 

Rank 

changes 

Normal 1 531.27 371 98 111 

Att at 9  0.55 419.98 506 135 147 

Att at 8 0.57 620.46 487 165 143 

Att at 10 0.64 414.85 499 131 153 

Att at 6 1 524.55 392 103 121 

Att at 22 1 692.05 410 167 137 

3.5.1.3. Attack Behaviours 

In any IDS, the monitoring node is normally not designed to monitor the sink. Therefore, 

it is difficult to verify whether a node advertises the rank of the sink is the legitimate sink 

or not, especially given that this node has managed to remain hidden by not doing any 

other attacking mechanisms. The only potential way to detect the Sinkhole attack is at the 

time the attacker initiates the Sinkhole attack. Before that time, this node should have a 

rank, which is not as good as the sink rank. Because the sink never changes the rank in a 

session, so when we observe that a node changes its rank to a value as good as the sink 

rank, the monitoring system should suspect this node of being under Sinkhole attack. This 

may be the only effective sign that helps to detect the Sinkhole attack.  

3.5.2. Rank Attacks 

The RPL routing rule stated that “rank strictly increases in the Downstream direction and 

strictly decreases in the Upstream direction” [18]. This rule is created to prevent the nodes 

from creating un-optimised path or loop path. Considering a scenario when the source - 

node 1 sends the packet to the destination - node N through intermediate nodes 2, 3, 4, 

…, n-1. Assume the rank of these N nodes are R1, R2, R3, …, Rn-1, Rn consequently. The 

rank rule states that if node 1 sends packets upward to node N then the condition R1 ≥ R2 
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≥ R3 ≥ … Rn-1 ≥ Rn must be satisfied; or if the route is downward then R1 ≤ R2 ≤ R3 ≤ … 

Rn-1 ≤ Rn must be satisfied. The senders and receivers along the route have the 

responsibility to check these conditions and inform any broken of this rule by setting the 

Rank-Error bit in the RPL Packet Information [18].  

Once the rank rule is broken between a parent and a child node, the consequence can be 

(i) un-optimised path is created (ii) if the attack is initiated in the route discovery phase, 

some optimised paths may be disrupted, which mean they exist but will never be 

discovered, and (iii) a loop can be created without any detection. These consequences 

definitely downgrade the network performance in many important aspects, such as 

delivery rate, delay, and overhead. 

Rank manipulation at first was not thought to be an attack mechanism. Only authors in 

[7] measure the healing procedure of RPL network operation after sudden changes in 

node rank. The experiment in this work is that after running for a pre-set time, a node 

increases its Rank to equal to the highest Rank value of its neighbours, and wait for a 

period of time to check the RPL healing process. The observed consequences include the 

appearance of loops between the node and its children and more control messages are 

generated, which indicate the unstable of the topology. Our research  [8] [9] proposed that 

internal attackers can manipulate the rank rule to downgrade the network performance.  

3.5.2.1. Attack Implementation 

In [9], we presented in detail the four mechanisms that the attackers can use to twist the 

rank rule to break the optimal topology, based on the fact that the attackers can flip its 

best parent according to the rank and choose whether to update to other nodes. After the 

attack is triggered, the malicious node changes the way it processes the DIO messages 

from other neighbours so that it will choose a random node with a worse rank as the 

preferred parent during its operation. These four mechanisms are summarised in Table 

3.9 as follows.  
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Table 3.9. Types of Rank attack studied 

4 types of Rank 

attack 

Attackers choose whether making a permanent/non-

permanent new parent, or flip the best parent over time 

Attackers choose 

whether 

update/not 

update the new 

rank to the 

neighbours 

RA type 1 (RA-I): having 

permanent new parent, 

updating the new rank info to 

its neighbours 

RA type 2 (RA-II): having 

permanent new parent, not 

updating (hiding) the new rank 

info to its neighbours 

RA type 3 (RA-III): flip the 

new parent, updating the new 

rank info to its neighbours 

RA type 4 (RA-IV): flip the 

new parent, not updating 

(hiding) the new rank info to its 

neighbours 

 

The implementations of these four types are described through the pseudo codes as in 

Figure 3.11 (general manipulating mechanisms) and Table 3.10 (detail operation of each 

Rank attack type). 

 

 

 

 

 

 

 

 

 

 

Table 3.10. Detail implementation of each RA type 

//Type 1: Attack after t seconds  

1: nodeatt_flag = FALSE  

2: nodeDIO_update_att_flag = FALSE  

3: If (time > t) { 

4: nodeatt_flag = TRUE; 

5: } 

/*Type 2: Start attack after t seconds, 

disable the DIO update */ 

1: nodeatt_flag = FALSE  

2: nodeDIO_update_att_flag = FALSE  

3: If (time > t) { 

4: nodeatt_flag = TRUE; 

5: nodeDIO_update_att_flag = TRUE 

6: }  

//Compromising the choice of parent by selecting the worst parent 

1: best_parent(parent p1, parent p2) { 

2:  if (nodeattack_flag == TRUE) { 

3:  return p1_metric > p2_metric ? p1 : p2; 

4:  } 

//p_metric: the cost of the route towards the sink 

5: } 

 

//DIO update_flag:only update DIO if the flag is disabled 

1: If (nodeDIO_update_attack_flag == FALSE) { 

2: Update DIO; }  

 

//3. Disabling DAO when having new illegitimate preferred parent  

1: Select_preferred_parent(){ 

2: If (nodeattack_flag == FALSE) { 

3:  DAO_output;  

4: } 

5: } 

 

Figure 3.11. General Rank attack implementation 
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/*Type 3: Start attack after t seconds, then 

time is divided by multiple p-second 

periods, attack happen in only first half of 

each period*/ 

1: nodeatt_flag = FALSE  

2: nodeDIO_update_att_flag = FALSE  

3: if (time > t) { 

4:    period = (time - 1)/p; 

5:    check = period – int(period);  

6:    if (check < 0.5) { 

7:            nodeatt_flag = TRUE; 

8:    else { nodeatt_flag = FALSE;} 

9: }} 

/*Type 4: Start attack after t seconds, then 

time is divided by multiple p-second 

periods, attack happen in only first half of 

each period. The rank info is not updated 

to the neighbours/* 

1: nodeatt_flag = FALSE  

2: nodeDIO_update_att_flag = FALSE  

3: if (time > t) { 

4:    period = (time - 1)/p; 

5:    check = period – int(period);  

6:    if (check < 0.5) { 

7:            nodeatt_flag = TRUE; 

8: nodeDIO_update_att_flag = TRUE; 

9:    else { nodeatt_flag = FALSE; 

10: nodeDIO_update_att_flag = 

FASLE;} 

11: }} 

3.5.2.2. Impacts on Network Performance 

Figure 3.12 to 3.15 show the comparison of performance metrics between the four Rank 

attack types and the normal scenarios, including the global delivery ratio, end to end 

delay, overhead, and number of collisions, respectively. As can be seen from the figures, 

RA-I and II have the least impact among the four types. RA-II has more effect on the end-

to-end delay while RA-I has more impact on the delivery ratio. The nature of RA-I and II 

is very similar, the only difference is that RA-I allows other nodes around the malicious 

source to optimise the topology through updating the DIO messages while RA-II does 

not. As a result, the average end-to-end delay in RA-I is likely to be smaller than in RA-

II. On the other hand, RA-I requires more additional control messages to maintain the 

optimised topology, so it may cause more packet collisions. This in turn reduces the 

delivery ratio to be less than for RA-II. 

RA-IV on the other hand, has more probability of creating the greatest impact on network 

performance in both the delivery ratio and the end-to-end delay. RA-III of Rank attack 

has smaller impacts on global delivery ratio and average end-to-end delay compared with 

RA-IV, but significantly higher than RA-I and II. For these two types of attacks, the 

reason for having a higher delay than the first two types is that these two types create 

many changes in the topology by frequently changing the preferred parent of the 

malicious node. The nodes around the affected area also have to spend more time updating 

the route, which adds more delay to overall performance. The delivery ratio is decreased 

because more control overhead is generated, which leads to more packet collisions. RA-

IV has a larger impact on end-to-end delay compared with RA-III because it does not 
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allow updating of the optimised topology, so there will be more non-optimised routes in 

the network.  
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Figure 3.12. Comparison of the Global delivery ratio between the normal and four types of Rank attack 

scenarios 
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Figure 3.13. Comparison of the average End to end delay between the normal and four types of Rank 

attack scenarios 
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Figure 3.14. Comparison of the overhead between the normal and four types of Rank attack scenarios 
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Figure 3.15. Comparison of the number of collisions between the normal and four types of Rank attack 

scenarios 

3.5.2.3. Attack Behaviours 

In cases of RA-I and II, the number of generated DIOs is larger compared with the normal 

performance, but that happened only for a short time after the attack. On the other hand, 

in cases of RA-III and IV, a significant number of DIOs were generated more constantly 

during the attack time. RA-III did not have many nodes that need to change the topology; 
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however, it still showed many generated DIOs. This suggests that the increase in the 

number of DIOs can have some other causes, for example, the change in the forwarding 

load of the neighbours around the malicious node makes those nodes distribute different 

routing information during this period. This, therefore, prevents the increase of DIO 

counter and DIO trickle time interval, and as a result, will make the node generate more 

DIOs than in the normal case. 

In Rank attack, when the monitoring node looks at the performance of the nodes around, 

it can see the changes in the performance such as there are additional overhead and 

collisions created, however, it will not know the real reasons behind these anomalies. 

Therefore, it is necessary that the monitoring node specify and check the rank relation 

between the child and parent nodes frequently to detect this kind of attack.  

3.5.3. Local Repair Attack 

During the network operation, the link between a parent and a child node may not remain 

the same quality as it was in the route establishment phase. Hence, the maintenance phase 

is important for ensuring the quality of the link over time. The Local Repair mechanism 

is designed for RPL to re-establish a new optimal route between two nodes once the 

current link between them is broken. This is essential to maintain the optimal topology; 

however, the adversary can manipulate this mechanism to initiate more frequent Local 

Repair, which can lead to a frequent change in the network topology. We call such an 

attack the Local Repair attack [8, 10, 83].  

3.5.3.1. Attack Implementation  

A node in RPL can start the local repair progress in two ways. The first way is the 

poisoning mechanism by changing its rank to infinitive and broadcast this rank to all of 

its neighbours. Those neighbours once receiving and updating the rank information of 

that node will need to find a new parent towards the root. The second way to do local 

repair is to change DODAG ID value of the node. This metric is unique to each DODAG 

and show which LoWPAN the node belongs to. A node changes its DODAG ID means 

that it lefts that DODAG and now belongs to a new DODAG neighbour. As a result, all 

of its child nodes need to do a local repair to find for a new preferred parent. The main 

difference between these two types is that in the former case, the child node can still 

choose the adversary as a parent, while in the latter case, the adverse node will be 
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considered as not belong to the current DODAG, hence, may not be chosen as a parent 

node anymore.  

Our implementation of the Local Repair attack in this thesis is similar to our 

implementation in [10], in which a malicious node starts broadcasting the local repair 

messages periodically though there is no problem with the link quality around the node. 

We consider the attack within a single DODAG only, so we skip the implementation for 

the DODAG type. The setting is that after the first 60 seconds of the network operation, 

the adverse node will start the local repair process every 30 times. 

3.5.3.2. Impacts on Network Performance 

Table 3.11 shows the simulation results of the Local repair attack to compare with the 

normal network performance scenario. As can be seen from the table, many performance 

metrics were affected significantly, including the average end-to-end delay (up to 33.7% 

slower), the total collisions (up to 3 times larger), and the total rank change (up to 140% 

higher). The reason is that every time Local Repair attack is generated, the route 

establishing and maintenance functions are invoked not only in the compromised node, 

but also in its child nodes because of the detachment of the parent. The route 

establishment and maintenance require related nodes to recalculate their rank from start; 

therefore, these procedures will involvea lot of control messages traffic and rank changes. 

On the other hand, the global delivery rate remains the same, which indicates that the 

route update only delays the message sending but not dropping them.  

Table 3.11. Performance comparisons between the normal and Local repair attack scenarios 

Scenario Global 

Delivery 

ratio 

Average 

End-to-end 

delay (ms) 

Total 

Overhead 

Total 

collisions 

Total 

Rank 

changes 

Normal 1 531.27 371 98 111 

Att at 6 1 532.39 813 141 101 

Att at 8 1 614.69 837 192 150 

Att at 9  1 630.57 790 333 161 

Att at 10 1 707.56 831 195 135 

Att at 22 1 710.8 848 204 112 

3.5.3.3. Attacker Behaviours 

From the view of the monitoring node, the monitored node will initiate the Local Repair 

mechanism frequently. In RPL, the node is supposed to do the local repair only if the 

links towards its parent list are all broken. The Local Repair adverse initiates the Local 

Repair not because of this reason; however, there is no way that the monitoring node can 
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verify that. Therefore, it cannot justify whether that the monitored node is benign. The 

only way to differentiate between the normal and attacker node is to add statistics in 

monitoring the frequency of a node doing Local Repair mechanism. The underlying 

symptom for detecting the attacker is that the normal node does not have many Local 

Repair initiating more than a threshold number in a periodic of time.    

3.5.4. The DIS Attack 

One of the most important requirements for designing RPL is that the routing overhead 

needs to be limited as much as possible, to preserve the resource and lengthen the network 

lifetime. On the other hand, attackers are always interested in making the nodes waste 

more resources by creating overhead. Attackers presented in the previous sections have 

the ability to increase the routing overhead; however, it is not direct but only as the 

consequences of other mechanisms. In this section, we introduce the DIS attack as a direct 

way to keep the overhead of the neighbours to be always in high level [10].  

For this kind of overhead attack, we focus on the trickle algorithm (see Section 2.2.2.2 

for more detail), which is specifically designed for RPL to limit the overhead created. The 

trickle value is increased through time if there is no significant change on the routing 

topology, for example, new node joining the network, or Local Repair and so on. A high 

trickle value indicates that a smaller amount of control messages will be generated. The 

DIS attackers try to keep this value in its neighbours to be minimum by frequently sending 

the DIS. The neighbours once receive the DIS will understand that the topology is 

unstable, and sending control messages more frequent to keep update the information. 

Consequently, the minimum trickle time may be set in a wide range of area in the network, 

which create significantly overhead. If this continues, the overheads are created more and 

more, the node becomes exhausted faster and network performance will be downgraded. 

3.5.4.1. Attack Implementation  

Our implementation is similar to our work in [10]. The main purpose of the attack is to 

increase more DIOs through manipulating the use of DIS. The DIS messages can be sent 

two ways, which will lead to a different response from the receivers. The first way is to 

broadcast DIS, the receivers upon receive will have to reset the DIO timer as they realise 

that there is something unstable with the topology around. The second way is to unicast 

this DIS message to all nodes in the neighbour list, the receivers upon receive will unicast 

DIO message to the sender. Both of these ways add more control overhead on the 
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network. The differences of these two types of DIS attacks are that one type (DIS1) forces 

the receivers to decrease their DIO timer while the other (DIS2) forces the receivers to 

unicast their DIO messages to the compromised node. For simplicity, in this thesis, we 

only assess the behaviour of the DIS1. Detailed assessment of these two attacks can be 

found in [10]. 

3.5.4.2. Impacts on Network Performance  

Table 3.12 shows the simulation results of the DIS type 1 attack to compare with the 

normal network performance scenario. As can be seen from the table, the global delivery 

ratio remains the same, which indicates that this attack does not lead to packet dropping. 

On the other hand, the routing overhead creates by decreasing the trickle time make the 

total number of generated control messages increase significantly, from 163% to 194%. 

This leads to the following changes. First, the collisions are increased up to 91% because 

of more communication made caused by new routing information was updated. Second, 

ranks are changed more frequently up to 81% due to the unstable topology. Third, the 

average end-to-end delay is slightly increased up to 26% due to the retransmission created 

by the collisions together with the waiting time for processing the control messages.  

Table 3.12. Performance comparisons between the normal and the DIS type 1 attack scenarios 

Scenario Global 

Delivery 

ratio 

Average 

End-to-end 

delay (ms) 

Total 

Overhead 

Total 

collisions 

Total 

Rank 

changes 

Normal 1 531.27 371 98 111 

Att at 8 1 572.12 605 110 137 

Att at 22 1 608.97 674 116 128 

Att at 10 1 614.44 612 140 180 

Att at 6 1 650.78 722 151 151 

Att at 9  1 671.96 642 187 202 

Figure 3.16 shows the consumption of energy regarding the computation and 

communication in each of the simulated scenarios. As can be seen from the figure, the 

computational waste increases significantly from 48% (when attacker at node 8) to 76% 

(when attacker at node 9), while the communicational waste increases from 9% (when 

attacker at node 8) to 14% (when attacker at node 9). The energy waste was mainly caused 

by the processing and communicating of the additional control overhead. A further 

checking through time showing that unlike the normal scenario, where the overhead is 

decreased through time, the waste in the attacked scenarios almost remains the same. This 

indicates that the DIS attack can significantly shorten the network lifetime. 
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Figure 3.16. Comparison of the computational energy consumption between the normal and DIS type 1-

attack scenarios 

3.5.4.3. Attack Behaviours 

The only difference between the DIS attacker and the normal node is that it broadcasts 

the DIS messages frequently. The monitoring node cannot check the reason behind this 

action, therefore, it cannot decide whether the node is benign or not. Nodes around the 

adverse node have many anomalous activities such as sending control messages more 

often, updating rank many times more, or having more collisions. However, these 

activities are caused by the sending of DIS messages from the adverse rather than the 

direct manipulation in the nodes themselves. Therefore, to detect this kind of attack, the 

DIS processing needs to be profiled to form the legitimate pattern.  

3.6. Chapter Summary 

This chapter has discussed several typical internal threats towards 6LoWPAN, 

categorised into two types: the performance-type and the topology-type. We summarised 

the impacts of the attacks and the key behaviours of the attackers in Table 3.13 below. 

The impacts of each specific attack on the network performance are also illustrated by the 

impact map in Figure 3.17, represented through the three dimensions, including the End 

to end delay, the delivery ratio, and the control overhead generated. The sensitive metrics 

to specific type of attacks are also summarised in Table 3.14. 
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Table 3.13. Summary of prominent internal attacks towards 6LoWPAN 

Type of attacks  Attack impact Key behaviours of 

attackers 

Black Hole/Grey 

Hole attack  

Black Hole: change the global 

delivery ratio significantly, 

especially when attacker sitting 

near the sink 

Grey Hole: downgrade global 

delivery ratio 

Having low forwarding 

rate given a significant 

traffic goes through 

Delaying attack Adding global end to end delay, 

increase dropping rate, gaining 

more overhead, collisions, 

topology changes, and consume 

significant more energy 

Abnormal increase in 

forwarding delay; update 

the rank metric more 

often; sending more DIO 

Jamming attack  Increase the global end-to-end 

delay, create more collisions on 

the network, which leads to 

consume more energy  

Abnormal increase in 

collisions around the 

attackers 

Hello Flood attack Increase the global end-to-end 

delay, total overhead, total 

collisions and total topology 

changes 

Abnormal high signal 

strength; advertise good 

routing value, but little 

traffic goes through  

Sinkhole attack Increase the global end-to-end 

delay, packet dropping rate, and 

overhead 

Time when a node 

changing its rank from a 

low value to the sink rank 

Rank attack  Adding delay, reduce delivery 

rate, adding control overhead 

Abnormal in choosing 

preferred parent (break 

the rank rule), frequent 

change in rank 

Local repair Adding delay, control overhead, 

and collisions 

The frequency of local 

repair is abnormal 

DIS attack Increase overhead, rank changes 

and collisions 

The abnormal in sending 

DIS 
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Figure 3.17. Impact map of internal threats toward 6LoWPAN RPL performance (End to End delay, 

Delivery ratio, and Overhead).  

Red colour indicates the direct performance attacks, Blue colour indicates the topology attacks, and the 

size of the circle indicates the routing overhead created.   

Table 3.14. Summary of sensitive metrics to each attacks 

Type of attacks/Metrics 1 2 3 4 5 6 7 8 

Black Hole         

Grey Hole         

Delaying         

Jamming         

Hello Flood         

Sink Hole         

Rank         

Local Repair         

DIS         
Metrics list: 1) Forwarding Rate 2) Forwarding Delay 3) Power Consumption 4) Packet collision 5) RSSI 

change 6) RSSI value 7) Number of Rank changes 8) Number of generated control messages. The green 

colour indicates that the metric is sensitive to the Bayesian model 

Overall, we can see that the performance-type attacks aim at the traffic, channel, or 

neighbour operation around the adverse, while the topology attacks focus more on the 

protocol process. Although both of these internal threats aim at downgrading the network 

performance, they are different in nature. As a result, different IDS should be developed 

to detect these two types. IDS which focuses on the local performance of the nodes is best 

to detect the first type of attacks, while IDS which concentrates on a proper protocol 
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specification is best to detect the second type. Our system will therefore be designed to 

deal with these two types of internal threats separately. In the next chapter, we will present 

the BN method for detecting the performance-type attacks by collecting and judging node 

behaviours statistically from the collected data. 
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CHAPTER 4.   A BAYESIAN BASED IDS FOR 

DETECTING THE PERFORMANCE THREATS 

4.1. Introduction  

The last chapter studied the impacts of the internal attacks towards the network 

performance and the specific characteristics of the malicious source. This chapter will 

deal with the first type of internal attackers in 6LoWPAN. In detail, knowledge from the 

last chapter will be used to develop an IDS for detecting the typical performance-type 

threats.  

Performance attackers usually have significant anomalous behaviours such as packet 

dropping, delaying, and collisions with neighbours and so on. As a result, anomaly-based 

IDS is often applied in detecting such internal threats. Proposed solutions in anomaly-

based IDS normally focus on a single metric to deal with particular attack, for example, 

the dropping rate metric is usually used for detecting the Black Hole or selective 

forwarding attack. Even in a system which is claimed to protect the network from multiple 

internal attackers like in [75], the author combine the list of key metrics for the common 

attacks, yet use them separately to deal with each attack. The use of a single performance 

metric as symptom to judge an attack may lead to limited views of the node behaviours, 

which may mislead the judgment. For example, we consider the use of only the dropping 

rate metric to justify whether a node initiates a selective forwarding attack in [75]. 

According to the author, a node with a high dropping rate is likely the selective 

forwarding attacker. However, a legitimate node which has a lot of forwarding load while 

having low energy left may also drop a lot of packets. Regarding the drop rate metric 

only, the behaviours of this node are similar to the behaviours of the selective forwarding 

attackers. In such a case, the use of this single metric may lead to a false judgment because 

the deviation between the legitimate and the malicious nodes’ behaviours is small.  

Chapter 3 has shown that for threats that aim at downgrading the network performance 

directly, there are local metrics of a node, which are sensitive when this node has 

abnormal behaviours. Therefore, if we can observe the suspicious change of such metrics, 

we will be aware of the occurrence of an internal attacker. The nature of this problem 

makes it suitable to be solved by Bayesian Network model, where these metrics can be 

considered as the evidences to judge a behaviour. The BN model can provide a wider and 
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deeper view in terms of considering multiple evidences, which will lead to detection that 

is more accurate. Other advantages of BN model can be found more in Section 2.5.2.4. 

However, to the best of our knowledge, at the time of writing this thesis, there is no 

proposed BN solution in detecting 6LoWPAN internal threats. The reasons are that 

Bayesian method requires quantifying computation load and memory storage, which may 

lessen the node lifetime when implementing in 6LoWPAN. Moreover, in order to 

construct the Bayesian model, a significant amount of data regarding node performance 

need to be collected and processed to train the model, which is quantifying to do in 

6LoWPAN.  

In this chapter, we will develop a Bayesian model, which takes into accounts the sensitive 

metrics that relate to the performance-type, and their interrelations. We first present a 

designed architecture that combines 6LoWPAN with other technologies likeWi-Fi, 4G, 

3G or GSM, cloud computing, and multiple interfaces in sensor devices, to enable the use 

of BN in 6LoWPAN. With our proposed architecture, we believe that the IDS is capable 

of deploying more robust analysis techniques due to the extensive storage and 

computation capacity. Given the available list of the sensitive metrics and the large 

amount of data, which can be collected, the integrated BN can provide high accuracy by 

integrating the insightful expert understanding of the relations between the evidences in 

assessing a phenomenon. Besides, it can predict even with missing observed data, which 

gives flexibility for the detection. We describe the construction of the BN structures 

(nodes, edges and parameter) from understandings of the performance threats and training 

with the extensive simulation. After the construction, BN model can give numerical 

assessment for behaviours of the monitored nodes. Such model is then integrated with the 

monitoring nodes. Next time, given the real time data collected from the monitoring 

nodes, the BN module can give the judgement for every observed behaviour.  Lastly, we 

check the effectiveness of the model through assessing its detection ability towards the 

typical attacks in Chapter 3, including the Black Hole, Grey Hole, Delay, Jamming, and 

Collision attack. 

4.2. Enabling the Use of Bayesian Technique in 6LoWPAN  

The main issues when applying Bayesian technique are the requirements of processing 

and storing capability in the monitoring nodes given the high computation workload and 

large amount of IDS data. This issue can be solved by delegating such work for an IDS 

server. In the traditional IDS for WSN, such IDS server is the sink, which is normally a 
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computer and has strong capability in processing and storing data compared with other 

sensor nodes. Nevertheless, placing IDS in the sink has several limitations. First, the 

communicational overhead created by sending the IDS data to the sink is significant and 

will increase quickly when network scale increase, which limit the scalability of the 

method. Moreover, a common understanding of IDS is that the more data that the system 

can collect, both in the number of monitoring metrics and the length of the monitoring 

duration, the more accurate it is. However, data collection involve cost and management 

challenges if recorded in a long time. Given the large number of nodes in 6LoWPAN, 

even recording a single metric in a certain long period can create storage and process 

issue for the sink as a single computer. Recently, the advance in Big Data research can 

help to solve this problem [91].  

To eliminate the communicational overhead, the IDS data should be ideally sent through 

a different channel, dealing with the extensive IDS workload, the IDS server should have 

much higher processing and storing capability than the sink. The former goal is solvable 

by providing an additional interface in the monitoring nodes to allow them to send IDS 

data directly to the IDS server. Research on allowing sensor nodes to have multiple 

interfaces has been started since mid-2000, for example, the work in [92, 93]. Recently, 

developments in technology enable sensor devices to have interfaces, which can send data 

with high speed, long distance, and low power consumption through standards like Wi-

Fi, 4G, 3G or GSM. The IDS data therefore can be effectively sent to the IDS server using 

such technology. The use of such backbone to transmit the monitoring information to the 

server is feasible, given such technology is popular and having low price on 

implementation. On the other hand, the latter goal can be solved by employing technology 

like Cloud Computing [94]. With Cloud Computing, the storage and computation work 

will be shared by other computers, so the capability is extended much more, while the 

cost for implementing is modest. The extension of this design will allow to apply not only 

Bayesian technique but also many other complex detection algorithms with high accuracy 

to detect the internal threats in 6LoWPAN.  

Figure 4.1 below illustrates the idea of using additional interfaces and cloud computing 

to enable the use of BN in 6LoWPAN IDS. In this design, the monitoring nodes (brown 

nodes) use their 802.15.4 interface to communicate with other nodes like normal, to fulfill 

the 6LoWPAN role. On the other hand, they have an additional interface, which allow 

them to send data directly to the IDS server through the base station. IDS data of the 

monitored nodes will be collected and preprocessed in the monitoring nodes before 
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sending. At first, the IDS server can use the collected data to train the BN module. After 

the training phase, it can use the constructed BN to assess the monitored nodes’ 

behaviours. The processing and storing capability of the IDS server can be expanded 

significantly when it runs on cloud-computing infrastructure to share the workload with 

other computing resources in the cloud.   

Internet
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PC

Gateway
Gateway

IDS server

Cloud computing
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IPv6

Data receiver from 

server side

Share computation and 

storage work load
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Figure 4.1. Design for enabling Bayesian technique in 6LoWPAN IDS  

4.3. BN Constructing Process 

Section 4.2 has pointed out the design that enables the use of Bayesian IDS in 6LoWPAN. 

In this section, we will present our general step-by-step procedure to construct a BN to 

judge behaviours based on observed evidences. This procedure is formed through our 

extensive study of the Bayesian literature. The background of  BN can be found in Section 

2.5.2.4. Here we only present the four main steps to construct the BN, which are 

illustrated in Figure 4.2 below:  

 Nodes forming and data set acquiring: the main objective of the BN is to answer 

a query about a phenomenon based on the observations of different causes that 

relate to the query. The first step of constructing the BN is therefore to identify 

the metrics that represented these causes and acquire the data set of these metrics 

through time. Such metrics will later be the Bayesian nodes. 

 Structural learning: the structure of a BN reflects the relations between their 

nodes. Such relations can be learned statistically based on the data set acquired in 
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the first step. These relations will later be the edges between the Bayesian nodes. 

The direction of the edge represents the cause and effect relation, i. e. the cause is 

the parent node (tail of edge arrow), while the effect is the child node (head of the 

edge arrow).   

 Parametric learning: this step will calculate the parameters such as Bayesian 

nodes’ probability and CPT in order to enable the BN to do the querying.  

 Implementing the constructed Bayesian model: This step presents the way to 

use the model for judging the node behaviours based on the recorded data.  

The following sections will explain how the steps are processed.  
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Figure 4.2. Steps to construct a BN 

4.3.1. Nodes Forming and Data Set Acquiring 

In order to answer the query about an effect, first, all the relevant causes that lead to this 

effect need to be identified. The chosen causes reflect the understanding of the Bayesian 
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developer about the effect, so they can come from both the literature and the experiments. 

In our case, the causes are all the related metrics that have sensitive reactions to the change 

of the attackers’ behaviours. Such metrics have been derived from the literature as well 

as assessed through simulations as shown in Chapter 3. After the identifying process, we 

will have a set of metrics N = {N1, N2,…, Nn}, which represented as the nodes of the BN. 

For each metric, we acquire its data set by sampling through a window time with fixed 

length, in order to see both the normal and the abnormal changes in the node’s behaviours. 

This data will serve as the training data to form the relations between the metrics.  

4.3.2. Structural Learning 

This phase will build the structure of the Bayesian model through justifying the relations 

between the nodes. The two common approaches to form the relations are the supervised 

and unsupervised learning. The former integrates the expert knowledge related to the 

model to decide the relations, while the latter obtains the relations based on some 

probabilistic testing models through on the acquired training data. The supervised 

learning approach can provide the expert understanding of the querying model; however, 

it does not reflect the training data, which may vary depending on different scenarios. 

Given the acquired data in the time series form from Section 4.3.1 and the knowledge of 

the effect from Chapter 3, we will be able to apply both of the supervised and 

unsupervised approaches in learning the Bayesian structure. In detail, the relation 

between a pair of node Ni and Nj in the BN can be assessed through a probabilistic method 

to test the correlation between the data set of these two nodes. If the test showed a 

statistically significant correlation, the relation will be represented as a connected edge 

between these two nodes, otherwise, there is no edge to be assigned. The direction of the 

edge will come from further reasoning of the cause-effect relations between these 

particular nodes. At the end of this phase, a set of edges E = {E1, E2,…, Em} will be 

performed which represent all the learned relations of the Bayesian nodes. Such relations 

reflect both the acquired data in Section 4.3.1 and the knowledge of the effect through the 

literature.  

4.3.3. Parametric Learning 

This phase will set the probabilistic parameters to enable the Bayesian model to calculate 

the assessment query. In detail, the probability of each Bayesian child and the CPT in the 

parents need to be identified. As the BN requires the discrete input in each node, we first 
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need to specify the method to transform a numerical input of a metric to a state input. 

This can be done through setting the upper and lower numerical thresholds for each state 

of a metric. The procedure to set these thresholds for 6LoWPAN Bayesian will be 

presented in more detail in Section 4.4.3.1. Given the BN structure from Section 4.3.2 

and the data set in the state form, we can use specific BN software to learn the BN 

parameters. For example, a tool like SamIam [95] can be used to implement the 

parametric learning algorithm (i. e. Expectation-maximisation learning (EM)) to generate 

the BN probabilistic values. Moreover, the tool also helps to further increases the 

accuracy of the model by providing the sensitivity analysis function, in which users can 

apply some constraints to the BN model to adjust the inaccurate answers given by the 

model.  

With the first three phases, we can construct a BN, which is able to give the answer to a 

query regarding the phenomenon. In case of 6LoWPAN node behaviour monitoring, we 

can feed the numerical input data of the metrics to this model. The model will then give 

a numerical output, which reflects the behaviour assessment.  

4.3.4. Implementing the Constructed Bayesian Model 

This phase first shows how the constructed Bayesian model be applied to the monitoring 

nodes. In detail, the monitoring nodes will collect the numerical data of each metric from 

the monitored nodes periodically as the input.  The Bayesian model will process such data 

through three modules as follows: 

i. The input module, which takes the numerical-state converting reference of each 

metric to transform the numerical input to the state input; 

ii. The calculation module, which takes the input as the state form to feed in the 

constructed BN, and give a numerical output regarding the probability of each 

states of the query; 

iii. The decision module, which transforms the numerical outputs to the final 

assessment of this behaviour. 

After processing through these three modules, the output of a sample data from a 

monitored node can be either Normal or Abnormal depending on the detection threshold. 

During network operation, the sampling data regarding the relevant metrics of a 

monitored node will be sent to the monitoring node periodically. The integrated BN 



 

 

83 

 

model in the monitoring node will give the decision for each of the monitored node’s 

behaviours based on the data it collected.  

4.4. Proposed Solution  

In this section, we apply the steps presented in the last section to construct a Bayesian 

IDS for 6LoWPAN.  The data flow of the whole process is illustrated in Figure 4.3 below. 

As can be seen from the figure, in order to train the BN, the monitoring nodes need to 

send relevant data sets of their monitored nodes to the IDS server. In this chapter, we will 

reflect this work through processing the Contiki Cooja simulation trace files as a proof-

of-concept. We first collect the trace files from Contiki Cooja simulations. To extract the 

relevant metrics, before the simulation, we need to mark the relevant Contiki code to 

output in the trace file the part that contains the corresponding information. For example, 

in order to derive the end-to-end delay metric, we need to mark the times when a packet 

was sent and received (the packet is characterised by its sender’s ID and the sequence 

number, and the end-to-end delay is the difference between the sent and received time). 

The list of metrics, which need to be derived, are justified in Section 4.4.1. The output of 

Step 1 is a table contain numerical data of metrics as shown in Figure 4.3. These numerical 

data will be used to test the correlations between the metrics to build the structure of the 

Bayesian model in Step 2. Before training this model, we need to set up a numerical-state 

converting reference through the approach, which will be presented in Section 4.4.3. Such 

reference will later be used to convert the numerical data from the output of Step 1 to the 

state form. The converted state data will be used to train the system to generate the 

probability of the child nodes and the CPT in each BN parent node in Step 3. Finally, in 

Step 4, for testing the module in each scenario, we implement the Bayesian module on 

the IDS server and run the simulations to check the effectiveness of the IDS. The details 

of these processes are described in the next sections. 
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Figure 4.3. Detailed steps to construct a BN
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4.4.1. Nodes Forming and Data Set Acquiring 

4.4.1.1. Nodes Forming 

As discussed in Chapter 3, the internal attackers can downgrade the network performance 

through the three main ways: 

1. To manipulate the traffic that goes through it  

2. To manipulate the communication channel 

3. To disrupt neighbours operations.  

We will focus only on the local metrics that are sensitive to these three types of 

behaviours.  

The selected metrics to be considered in this chapter are as follows.  

 Forwarding rate: represents the number of packets that are forwarded out of 

the number of packets that need to be forwarded. This metric is sensitive when 

the monitored nodes have the dropping behaviours.  

 Forwarding delay: represents the average time between receiving a packet, 

and forwarding this packet to the next neighbour. This metric is sensitive when 

the monitored nodes have the adding delay behaviours.  

 Power consumption: represents the computational and communicational 

consumption of a node. This metric is sensitive when the monitored nodes 

create channel interruption. For example, if a node has high power 

consumption but it does not receive or forward many packets, this node is 

suspected of using the power for jamming or interrupting the channel, which 

affect other nodes’ performance.  

 Traffic load: represents the number of data packets that were sent to this node 

for forwarding purpose. This metric is mainly used in accordance with other 

metrics to further cross check the legitimate behaviours. For example, nodes, 

which have high traffic load, will not be able to have high performance like 

nodes with low traffic load because they have more packets to process. 

Without considering this metric, the IDS may not understand the correct 

reason behind a downgrade of node performance; hence, the detection will 

have lower accuracy.  
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 Packet collision ratio: represents the state of the communication channel. 

This metric is sensitive when the channel is under attack.  

 Signal strength: this metric is obtained from the RSSI values of the monitored 

nodes that are measured at the monitoring node. Our Bayesian model 

differentiates RSSI into two metrics, which are the RSSI value and RSSI 

change. The RSSI value metric will be out of a normal range when the attacker 

increases its power to send the control messages further than its coverage 

range, to create the confusions of the neighbour ID. On the other hand, the 

RSSI change metric records the number of abnormal changes that the 

monitored nodes have. The RSSI can be lowered through time, but it cannot 

change too much in a period. Therefore, if we observe significant changes in 

the RSSI of a node, we suspect that this node may have fake/replicated ID 

issue. 

A summary of the features and their use is given in Table 4.1 below.  

Table 4.1. Features used for the BN 

Metrics Usage 

Forwarding rate Sensitive to the dropping behaviours 

Forwarding delay Sensitive to the delaying behaviours 

Power consumption rate Sensitive to the channel interruption behaviours. 

Traffic load Used in cross-check with other metrics  

Packet collision ratio Sensitive to abnormal channel behaviours 

RSSI value Sensitive to the neighbour attacks, which create RSSI 

out of normal range 

RSSI changes Sensitive to the fake/replicated ID attacks, in which one 

node has too different RSSI value in small periods.  

4.4.1.2. Data Set Acquiring 

We acquire the dataset of the justified metrics from the last section through simulation 

trace files. We run two types of simulations with the same network topology set up, the 

normal network condition and the attacked condition.  For the attacked condition, we 

initiate the malicious code of each of the four performance-type internal threats in several 

positions of the network, similar to the set up in Chapter 3. For each simulation, we record 

relevant metrics in each node through sampling in a fixed window time. In order to do so, 

we add some relevant “marking” in the normal Contiki OS code, so as later these 

“markings” will help to extract the metrics from the log files. For example, to extract the 

“Forward load” metric, we first mark the Contiki OS code in a way that can output the 

time when a node receives data packets that required further forwarding, and the time that 

this node actually forwards this packet. We count the number of packets that were 
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received and forwarded to that node in a period through the window time, and record 

them as the data samples for the “Forward load” metric of the node. We also marked the 

state of the behaviour in each time, in which all the behaviours from the normal nodes are 

marked as FALSE, while all other behaviours from the malicious nodes after running the 

attacking code are marked as TRUE. These acquired data will be used for further BN 

training. Table 4.2 below show several examples of these acquired data.  

Table 4.2. Example of dataset acquired from a node through window time 

Metrics/time Period 1 Period 2 Period 3 Period 4 …. 

Forwarding rate (%) 100% 100% 100% 85%  
Forwarding delay (ms) 257 364 854 1274  
Power consumption (%) 151051 217028 303834 236852  
Traffic load (no of packets) 2 3 4 3  
Packet collision ratio (%) 4 5 7 4  
RSSI change (%) 0 0 0 0  
RSSI value (dBm) -54 -54 -54 -54  

ATTACK FALSE FALSE FALSE TRUE  

4.4.2. Structural Learning  

Our ultimate purpose of constructing a BN model is to use it to answer the query that 

whether a node’s behaviour is abnormal. This query is represented as the final node 

“IsAttack” as shown in Figure 4.4. In order to answer that query, we have used the seven 

metrics that are sensitive to the performance-type internal threats in the last section. Every 

behaviour of the monitored node will be assessed through these metrics. In case the nodes 

are normal, the collected data regarding these metrics will always be in a certain 

legitimate range. On the other hand, if an attacker initiates any performance-type attack, 

defender will be able to observe some abnormal patterns in the recorded data. Such 

anomaly will be the evidence that will lead to the alarm decision. These seven metrics 

will be used as the evidence or “cause” nodes of the BN. In this section, we will identify 

the relations between these nodes, which are represented in the form of the Bayesian 

edges. In order to do so, first, we will apply the understanding of the attack behaviours 

obtained from Chapter 3 to construct a general BN. We then use the acquired training 

data from Section 4.3.1 to study further relations between the nodes in this structure. 

Given the evidence and the effect nodes in a Bayesian model, the easiest and most 

common constructed model is the naive Bayes. In this form, every evidence has an edge 

connected directly to the “effect” node, which indicates that all the evidences play same 

level influence to answer the query, and there are no direct relations between the 

evidences. This naive model for 6LoWPAN IDS is illustrated in Figure 4.4 below.   
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Figure 4.4. The naive Bayesian model for 6LoWPAN RPL 

We do not use this naive Bayes for our model, because this model cannot reflect the 

insightful understandings of the threats, which were studied in Chapter 3. These 

understandings need to be integrated into the Bayes model to increase the accurateness 

and effectiveness. Moreover, the IsAttack node has 7 inputs, which will make its CPT to 

be too large. For example, assume that each input can have either 1 of the 4 states (i.e. 

High, Medium, Low, Abnormal), the total entries of the CPT that need to be implemented 

in the query node will be 47
 = 16384, which is too large and not effective.   

In Chapter 3, we have categorised the performance-type internal attack behaviours 

through three main types, including abnormal traffic, abnormal channel, and abnormal 

neighbour. Our Bayesian IDS assume that if a node is an internal attacker of the 

performance-type, their behaviours will be abnormal in at least one of these three 

categorisations, namely the traffic, channel or neighbour. On the other hand, if we can 

observe an abnormal behaviour in any of these categories, we can suspect the occurrence 

of an internal attacker following the performance-type.  

The IsAttack query can be divided into the three smaller queries as follows: 

 Abnormal Traffic: checking whether there is any abnormal behaviour in Traffic 

of the monitoring node 

 Abnormal Channel: checking whether there is any abnormal behaviour in Channel 

around the monitoring node 

 Abnormal Neighbour: checking whether the monitoring node has any abnormal 

behaviour in making other nodes to take it as a neighbour.  
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Before answering whether a behaviour is abnormal of the performance-type, the Bayesian 

model will first answer whether that behaviour falls in any of these three abnormal 

categories.  

We construct three BN nodes for the three aforementioned abnormal categories as shown 

in Figure 4.5. Each node can have either True or False state. A “True” state indicates that 

the behaviour is abnormal, while a “False” state indicates a normal behaviour. If the input 

state of any of the Abnormal Channel, Abnormal Traffic, and Abnormal Neighbour is 

True, the state of Is Attack need to be True. On the other hand, the state of Is Attack node 

is only “False” when the input states of all of its parents are “False”. All of these 

conditions are reflected in the CPT of Is Attack node, as presented in Figure 4.5 below. 
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Figure 4.5. States and CPT of the query nodes 

In Chapter 3, we showed the metrics that are sensitive to each of the sub-categories in the 

performance-type internal threats. Hence, for each of the sub-query, we will take only the 

metrics that are sensitive to the related category as its input. By reducing the number of 

inputs, we will reduce significantly the size of the CPT tables at the querying node.  

According to Chapter 3, attacks that aim at node traffic will create abnormal change in 

the three metrics {Forwarding Delay, Forwarding Rate, and Power Consumption}. 

Therefore, whenever there are abnormal changes regarding these metrics, we can suspect 

the occurrence of traffic attacks. However, we also need to identify other events, which 
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can also create the changes at this traffic to eliminate any false decision. These events are 

analysed as follows: 

 Traffic load: We see that the traffic load towards the node can be also another 

reason for such changes. For example, if a node has more traffic load, it will be 

more likely to have a higher forwarding delay, forwarding rate, and power 

consumption due to more work to be processed. Therefore, the Bayesian regarding 

the traffic module also needs to consider the Traffic Load metric to eliminate any 

false alarm of detecting an abnormal traffic behaviour caused by the high traffic.  

 Environment condition: this factor can affect the network performance, for 

example, the weather condition can affect the signal of the communication, hence 

decrease the forwarding rate. The simulation tool available to us (i.e. Contiki and 

Cooja), however, cannot reflect properly this factor. The best representation they 

can provide is to set the transmission rate to be a fixed level during the whole 

simulation, which makes the variable constant all the time, so it does not reflect 

the reality as well as not helpful for the training. As a result, we did not include 

this factor in the study. However, this feature can be easily aware by the operators 

(e.g. they will know about weather condition or any environment incidents 

happens in the implementation area of the network), so we suggest that apart from 

the results given by the IDS, they can take this factor into account. For example, 

if the system raises the alarm while the current time has bad weather, or some 

incident is happening, the operator can assume this is created by environmental 

factors rather than by the internal attackers.  

 Other internal attack behaviours: Chapter 3 showed that the channel attacks 

can create abnormal changes in forwarding rate as well as forwarding delay, 

neighbour attack can affect the forwarding delay, and topology attacks may create 

impacts to all of these inputs. However, these attacks will be reflected in different 

IDS modules that are directly related to them rather than including in this module. 

In case of the performance-type internal threats, the Bayesian IDS will give 

probability outputs for the state of each sub-query (for example: Abnormal Traffic 

20% False, 80% True; Abnormal Channel 70% False, 30% True; Abnormal 

Neighbour: 100% False, 0% True) and the final query. In case the final query 

returns a positive output, we can look further at the sub-query outputs to see what 

types of internal attacks are more likely to happen in the network. On the other 
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hand, in case of the topology attacks, we will develop a specification-based IDS 

module in Chapter 5 to deal with, so we can skip them in this module.  

Whenever the IDS observes evidences of abnormal performance regarding these metrics, 

it can give high probability output in concluding of a traffic attack. As a result, we can 

form this sub-query as shown in Figure 4.6. 
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Figure 4.6. Bayesian model for the query of Abnormal Traffic node 

Similarly, from the knowledge obtained in Chapter 3, we use the four metrics {Power 

Consumption, Forwarding Delay, and Forwarding Rate, Packet Collision} to predict the 

sub-query of Abnormal Channel; and we use the two metrics {RSSI changes, RSSI value} 

to predict the query of the Abnormal Neighbour. The Bayesian model for these two 

queries are given in Figure 4.7. 
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Figure 4.7. Bayesian model for the query of Abnormal Channel and Abnormal Neighbour node  

The relations between the metrics can be derived from the data acquired from Section 

4.4.1. In detail, we calculate the Pearson correlation between every pair of the input 

metrics based on the acquired time series data of the normal scenario to see the relations 

between them. The relations between the nodes need to be studied because such relations 

will help to identify better BN input. For example, if the monitoring node cannot properly 

collect the information regarding an input, it can predict this input based on information 



 

 

92 

 

coming from other input that has direct relation to that input. Note that we only consider 

data in the normal scenario because these relations were created by the normal network 

operating mechanisms. In case of attack scenarios, the attackers can manipulate the input 

data up to their choices; hence, any relations if detected cannot be explained by the real 

relations and therefore are not reliable. 

The results of the Pearson correlations based on the acquired data in Section 4.4.1 are 

represented in Table 4.3. From the table, we only see three pairs with strong statistical 

correlation, which are the {Traffic Load, Forwarding Delay} (5% statistically 

significance), {Traffic Load, Power Consumption} (10% statistically significance), and 

{Power Consumption, Forwarding Delay} (10% statistically significance). The negative 

sign of the coefficient in the table indicates that the two metrics have inversely 

proportional relation, which mean the value of one metric increase will lead to the 

decrease of the other metric’s value. Similarly, the positive sign of the coefficient shows 

the direct proportional relation of the two metrics. 

Table 4.3. Statistical correlation between the variables in the normal performance scenarios (only show 

the coefficient of the relations with significant statistic (<10%) – the blue cells)  

Variables 
Power 

Consmp. 

Traffic 

Load 

Forward 

Delay 

Forward 

Rate 

Packet 

Collision 

RSSI 

Change 

RSSI 

value 

Power 

Consmp. 
       

Traffic 

Load 
0.314       

Forward 

Delay 
-0.142 0.223      

Forward 

Rate 
-0.149 -0.100 -0.447     

Packet 

Collision 
0.378 0.252 0.508 -0.256    

RSSI 

Change 
-1 - - - -   

RSSI 

value 
- - - - - -  

We will assess further the cause-effect direction among these correlated metrics. In 

normal performance, the nodes need to receive a packet first before it can process and 

forward. The more packets that are sent to the node, the more power it needs to consume 

to process and forward them. Besides, when there are more packets sent to a node, the 

                                                 

1 RSSI values recorded from a normal node are mostly constant through time; hence, there are no 

correlations with other metrics. Similarly, the RSSI change is almost 0 through simulation time, therefore, 

no correlations to other metrics can be calculated. 
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processing queue is longer so the time to forward the packets will be more delay. Hence, 

it can be considered that the traffic is the cause that creates the effect of the forwarding 

and power consumption behaviours. As a result, the Traffic Load metric will be the parent 

of the Forwarding Rate and the Power Consumption metric. On the other hand, the Traffic 

Load is not correlated to the Forwarding Rate because in the normal condition, nodes 

have the retransmit mechanism to make the dropping rate as low as possible, which tend 

to assure the delivery of the packets. Likewise, the Forwarding Rate and the Power 

Consumption are correlated because they both have the same cause, which is the Traffic 

Load. For this pair, we cannot identify which metric is the cause of the other. However, 

the correlation implies that if we know the state of a node, we can predict the state of the 

other node, so we will choose the metric, which is easier to acquire data as the cause. In 

this case, we choose the Power Consumption as the cause and the Forwarding Delay as 

the effect.  

Combining the models in Figure 4.5, 4.6, 4.7, and the statistical correlations in Table 4.3, 

and the justification of the cause-effect relations, we construct the Bayesian-based model 

for 6LoWPAN RPL as shown in Figure 4.8. 
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Figure 4.8. The structure of the constructed BN model 

4.4.3. Parametric Learning 

In this section, we present the method to set up the value for identifying the node states 

and the CPT using the acquired data in Section 4.4.1. Before using the acquired data, we 

need to eliminate all the low quality part that may falsify the model. In detail, the data 

regarding all the nodes’ operation in the first minute does not reflect the real performance, 

because the nodes are in its setting up stage. Hence, we will eliminate this data. The 

filtered dataset will be used to set up the parametric for the Bayesian model.  
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4.4.3.1. Setting up the Node States  

Setting up thresholds to convert the numerical data to the state-form is not an easy task. 

The reason is that when a node sitting in different network locations, it will have different 

performance pattern at each location. For example, the “High” traffic that observed in a 

border node may be considered “Low” for a node sitting near the sink. Defining specific 

threshold for each network node does not help, because during the operation, the changes 

of routing will lead to significantly changes in the performance pattern of the node 

(legitimately), while such changes cannot be obtained from the training phase. Besides, 

even when the threshold for differentiating Normal and Abnormal performance is set, 

there is no mechanism to consider a node of which behaviour are always near the 

“Abnormal” range. As a result, the attackers can adjust the behaviours so that they create 

impacts only at a certain level, which significantly affect the performance but not exceed 

the threshold to prevent the chance of being detected by the monitoring node. Although 

the impact in short-term is not a lot, attackers can create massive downgrade of network 

performance in the long-term while the IDS cannot detect them.  

In this section, we first establish the states for each of the metrics. We then propose a 

method to set up the state thresholds, which create the range for each state and allow 

transforming any numerical data into state form. We also include a mechanism to punish 

the node if they have poor performance in long-term to detect the attacks, which lower 

the effect just to pass the IDS threshold.  

For the five variables: Power Consumption, Traffic Load, Forwarding Rate, Forwarding 

Delay, and Packet Collision, we propose to have four states in each node, including Low, 

Average, High, and Abnormal. In a normal condition, a legitimate node only has its 

behaviours fall into either Low, Average, or High state. The Abnormal range is recorded 

in the attacked scenarios. Our method to define the node state is based on the distribution 

of the acquired data rather than based on the value. 

Take the Power Consumption as an example, after obtaining these metrics from the 

training data set, we will divide them into two set Pnormal = {P1n, P2n, …, Pkn} is the 

collection of power consumption value in the normal scenario simulation, while Pabnormal 

= {P1a, P2a, …, Pla} is the collection of that value in the attacked scenario. For the normal 

set, we will define the 2 states threshold {α, β} according to the distribution of the metric 

data. In detail, we set:  
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1. Plow is a value that less than α% of the acquired data on the Pnormal set have smaller 

value than. As a result, any data of P falls into the [0, Plow] range will later be 

transformed to the “Low” state. 

2. Phigh is a value that less than β% of the P members has larger value than. As a 

result, any data of P that fall into the [Phigh, Pmax] will later be transformed to the 

“High” state. 

3. Any data that fall into the [Plow, Phigh] will be transformed to the “Medium” state. 

In this particular IDS setting, we choose α = β = 15%, but these parameters can be adjusted 

to adapt when applying in other scenarios. The illustration of such division is given in 

Figure 4.9.  
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Figure 4.9. Division of Power Consumption variable into low, average, high states 

We then use the abnormal data set to set up the Abnormal state as follows. 

Let’s call:  

Pn_max = max(Pnormal) 

Pn_min = min(Pnormal) 

Pa_max = max(Pabnormal) 

Pa_min = min(Pabnormal) 

In case Pn_max < Pa_min then there is no intersection between the Pnormal and Pabnormal set, and 

Pabnormal is set to Pa_min can help to easily identify the normal and abnormal power 

consumption. This case is illustrated in Figure 4.10(a). 
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On the other hand, if Pn_max > Pa_min, there will be an intersection between Pnormal and 

Pabnormal. This case is illustrated in Figure 4.10(b). In such case, if an observed value is in 

this intersection, we cannot decide whether it is a high normal or a low abnormal value. 

If we detect it as an abnormal value, then the chance for false detection is high. However, 

if we detect it as a normal value, attackers may take advantage of this by lower the short-

term impact to create long-term damage. In order to overcome this issue, we propose to 

add an abnormal counter to each metric, which will increase by 1 every time the node’s 

performance value fall into the intersection area. If this counter reaches a counter 

threshold, then the value will be set to the abnormal state. If a value is observed at the 

abnormal state, there will be a higher chance that the monitored node is under attack.  

Value of P

Pmin Plow Pmax

Pabnormal_min

Pabnormal_max

Value of P

Pmin Plow

Pmax
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Figure 4.10. Example of setting state for a Bayesian variable given the normal and abnormal data set 

We do similar state setting for other variables. For the Forwarding Rate, the setting up 

threshold is opposite to other node, because the lower the value, the more chance will 

display anomalous behaviour. On the other hand, the RSSI Value will have two states; 

the Normal state indicates that this value is in the normal range according to the device 

specification, while the Abnormal state indicate that this value is out of the normal range. 

Similarly, the RSSI Change also has two states including Normal and Abnormal. The 

Abnormal state indicates that there is an abnormal change of the RSSI Value of a node, 

in which the deviation of the RSSI Value between two times are larger than a certain 

threshold. 

After setting up the thresholds, we can translate the data into the state data. For example, 

the data in Table 4.2 can be transformed into state data as shown in Table 4.4 below.  

Table 4.4. Example of state transformed data acquired from a node during time 

Metrics/time Period 1 Period 2 Period 3 Period 4 …. 

Forwarding rate (%) High High High Abnormal  
Forwarding delay (ms) Low Low Medium High  
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Power consumption (%) Low Low Medium High  
Traffic load (no of packets) Low Low Low Low  
Packet collision ratio (%) Low Low Low Low  
RSSI change (%) Normal Normal Normal Normal  
RSSI value (dBm) Normal Normal Normal Normal  
ATTACK FALSE FALSE FALSE TRUE  

4.4.3.2. Setting up the Conditional Probability Table  

The last sections of this chapter provide a method to transfer the data set in the numerical-

form into state-form and the BN structure. We use the SamIam, a common applied BN 

tool [95] to construct the BN with the formed structure, and train the parametric through 

the SamIam’s EM learning function with the acquired state-form data. The EM learning 

algorithm is an iterative method for finding maximum likelihood or maximum a posteriori 

(MAP) estimates of parameters in statistical models, where the model depends on 

unobserved latent variables. This algorithm is used widely in setting up the BN with 

training data. After the training, we will have a CPT set up for every query and sub-query 

node in the BN. We apply the BN model with the acquired parametric to the whole state-

form data set to filter the inaccuracy answer, i. e., the False Positive (FP) and the False 

Negative (FN) cases. High frequency inaccuracy cases are adjusted by the Sensitivity 

Analysis function providing by SamIam, for instance, putting the constraints to increase 

the probability of Positive in the answer of the query in FP cases with malicious 

behaviours detected as benign or to increase the probability of Negative in FN cases with 

benign behaviours detected as malicious. After adjusting the parametric, we have a BN 

that is ready to answer the query with the corresponding input data. 

4.4.4. Implementing the Constructed Bayesian Model 

After the steps from Section 4.4.1 to Section 4.4.3, we have constructed a theoretical 

Bayesian-based IDS model that can take the statistics of the performance data, transfer 

them into Bayes nodes’ state, and give the probable answer to the IDS query. In this 

section, we will present the detailed architecture of the monitoring IDS for the real 

network operation based on the design in Section 4.2, where we suggested the use of 

additional interface to transfer the IDS data between the monitoring nodes and the IDS 

server through a base station. Examples of the additional interfaces to be used are Wi-Fi, 

3G, or GSM, which allows high speed communication, large coverage, with low cost of 

implementing and operating. 
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We will consider the distributing options as reviewed in Section 2.6.4. For the network-

based approach, placing the monitoring module at the sink is not suitable because a huge 

amount of IDS data will need to be transferred to the sink, which will create both the 

overhead and storage issues. On the other hand, in host-based approach, asking every 

node to send the IDS data to the server means that every 6LoWPAN node needs to have 

an additional interface, which is not necessary. The hybrid approach based on cluster 

monitoring seems to be the most suitable for several reasons as follows. First, only the 

cluster head nodes need to have the additional interface to communicate with IDS server 

so it will save the resources. We can plan the situations of such monitoring nodes in the 

network so that they can cover the whole network easily. Second, local work in each 

cluster is not much and manageable for the cluster head. As a result, there will be only a 

small amount of overhead generated.  

The detailed designs are as follows. Besides the sink, the network will consist of two 

types of nodes, the monitored nodes are with normal Contiki-firmware and the monitoring 

nodes are with modified Contiki-firmware to record the relevant messages from the 

monitored nodes and extract the IDS metrics. The monitoring nodes are provided an 

additional interface so that it can send the extracted data to an IDS server through a base 

station. The Bayesian learning and monitoring process is done on the server side. For 

learning, the server will collect all the data from its monitoring nodes and do the 

parametric setup as presented in the previous sections. For monitoring, it will feed the 

data from a particular node in a specific period into the constructed BN and give the 

output through the three modules as shown in Section 4.3.4. Depend on the topology 

design, the monitoring nodes are distributed in the network so as they can cover the whole 

area, while each monitoring node can form a cluster of around 12 nodes for managing the 

workload. The monitoring node is set as the cluster head and nodes inside its coverage 

are the cluster members. Each node can belong to more than one cluster. When such case 

happens, there will be more information from the monitored node sent to the server, so it 

can cross check to verify further. 

Because all the cluster members are the neighbour of the cluster head, the head can record 

all the broadcasting control messages and the unicast message toward itself. We set the 

cluster head to listen to the data packets that go in and out of each of its cluster members. 

By analysing the source and the destination in these packets, we can identify the 

Forwarding Load (number of packets that need to be forwarded from the monitored 

nodes), Forwarding Delay (the average time since a packet was sent to a monitored node 
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to the time it was forwarded), and Delivery Rate (percentage between the number of 

packets which were sent to a monitored node and the number of packets which were 

forwarded out of this node). The RSSI value is recorded through extracting the packet 

property every time the cluster head receives packets from its members. Through the 

recorded RSSI of the cluster members, the cluster head can derive the RSSI Value and 

RSSI Change data. The only missing metric is the Power Consumption; in which we will 

modify the cluster member code further to make them report this metric to the cluster 

head periodically. The value of the period time is set up depends on the particular 

scenario.  

Our design can provide several advantages as follows. First, the cluster head does not 

have to run heavy computation from IDS algorithms. As a result, it can save resources 

and have longer life. Second, there will be much less overhead from the IDS because the 

IDS data is transferred by different communication channel. Moreover, the speed of IDS 

data transfer will be much faster, which allow to make the decision quickly when 

detecting the malicious source. Third, the complexity of the IDS algorithms can be 

extended to further improving the accuracy because the computing capability of the server 

will be much stronger than that of a sensor node. Fourth, it can expand the scale of the 

system due to generating only little overhead.  

In the next section, we will present a case study of applying the whole process as 

presented in this section in a 6LoWPAN scenario to evaluate the effectiveness of the 

solution. 

4.5. A Case Study of Building and Testing the Bayesian-based 

Module  

Our constructed Bayesian structure from Section 4.4 is obtained from the understanding 

of the performance-type attacks and network behaviours, so it can be remained for every 

scenario. However, its parametric values (i. e. node probability and CPT) need to be 

trained every time before applying to a specific situation.  

In this section, we present a case study of constructing the BN from start until the testing 

phase of the detection effectiveness of the system. 
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4.5.1. Simulation Set up 

We do not reuse the scenario in Chapter 3 for evaluation in this chapter because we create 

that scenario only for easily detecting the sensitive metrics to the performance-type attack 

and their trend. It also does not take into account the form of clusters with the cluster 

heads to monitor the cluster members. In this chapter, we set up a larger and more 

complex network with the appearance of cluster heads. We assume that the cluster heads 

will send the IDS traffic that they record from their cluster members to a server through 

an additional channel (i. e. Wi-Fi, 3G, 4G, GSM). The server will have the Bayesian code 

implemented with three modules as presented in Section 4.3.4. It will judge the IDS data 

for each of the cluster member nodes in the network. The cluster heads are assumed to 

have higher security protection so as their monitoring data of other cluster member are 

reliable. On monitoring, the cluster heads are set to listen to the data packets that go in 

and out of each of its cluster members, while other members will report its power 

consumption to the cluster head every one minute. Cluster heads will process the data that 

they observe from the sensor nodes to extract the seven metrics as justified in Section 

4.4.1.1. As the implementations of multiple interface sensors are not yet available in 

Contiki, we run the detection process through analysing the simulation trace files as the 

proof-of-concept.   

Our application scenario consists of 100 nodes placed in a 600x600m area; each node has 

a transmission range of 50m. The time to run a simulation with Cooja Contiki is long (a 

simulation with the setup describe in this chapter in our computer (Ubuntu 13, i7 3720QM 

processor, 24GB RAM) took about 8 hours to complete). Due to a large number of 

simulations that need to be done and limited time and resource, we could not simulate 

with larger number of nodes. We placed the IDS cluster heads manually so that each head 

can cover from 8-10 cluster members. We did not spread the nodes all over the network, 

because that will shorten the largest number of hops towards the sink. Instead, we set up 

the cluster heads to form the two backbones 29-13-32-42-60-46-84, and 29-13-32-17-44-

72-98. By doing so, we can measure the effect of the attacks with more number of hops, 

more traffic with the same number of nodes. The topology set up is shown in Figure 4.12 

below. There is one sink placed in the top left (the green node in Figure 4.11) and 11 IDS 

cluster heads (the yellow nodes) to cover the operation of the remaining 88 nodes in the 

network (the sky blue nodes). The connectivity map of the network set up is expressed in 

Figure 4.12. Every node sends packet to the sink at the rate of one packet every 60 seconds 

for 31.5 minutes.  
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Figure 4.11. Topology set up for testing BN module 
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Figure 4.12. Connectivity map of the set up topology 
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We run 10 different simulation scenarios for the normal network condition with different 

simulation seeds to generate normal performance data set. For each of the attacks, 

including Black Hole, Grey Hole, Delaying, Jamming type 2, and Hello Flood attack, we 

implement the attacks in two random positions to simulate and collect the anomalous data 

set. Each of the attacking node will initiate the attack after the network starts for 1 minute. 

The detail parameters set up for those scenarios are summarised in Table 4.5 below.  

Table 4.5. General set up for collecting training data set for Bayesian-based module 

Attack type Parameter set up 

Black Hole The dropping rate is set to 100% 

Grey Hole The dropping rate is set to 20% 

Delaying The adding delay is set to 2 seconds 

Jamming type 2 Period of broadcast dump packet = 15 seconds 

Hello Flood RSSI of the attackers is set to -10 dBm 

4.5.2. Numerical-state Reference Set up  

Following the state discretions method presented in Section 4.4.3.2, we achieved the 

following set up for each parameter in Table 4.6. 

Table 4.6. Threshold set up for each parameters in the Bayesian module 

Variables Low Medium High Abnormal 

Forwarding rate (%) 80-90% 90-95% >95% <80% 

Forwarding delay (ms) <200 200-1000 1000-3500 >2000 

Power consumption 

(CPU + transmit) 
<181818 

181818-

236415 

236415-

384019 
>352522 

Traffic load 

(number of packets) 
<3 3-44 44-93 >93 

Packet collision rate <5% 5-15% 15-30% >30% 

RSSI value Normal value: -70 to -30 dBm > -30 dBm 

RSSI change 
Normal: not different more 

than 20% through time 

Change more than 20% 

Two nodes have the same 

RSSI value 

For RSSI changes, each cluster head node will record the corresponding RSSI value for 

each of its neighbours and check if the RSSI value is changed significantly through time 

(20% difference), or check whether the RSSI value is the same for the two neighbours.  

We then transform the data set collected from Section 4.5.1 into state-based data. The 

data will have the format like the examples given in Table 4.7 below. 

Table 4.7. Examples of state recorded 

Forwarding 

Rate 

Forwarding 

Delay 

Power 

Consumption Traffic Load 

Number of 

Collisions  

RSSI 

changes 

RSSI 

values 

High Low Low 

Abnormal 

High 

Abnormal 

High Normal Normal 

N/A N/A Low N/A Low Normal Normal 

High High High Medium Low Normal 

Ab-

normal 
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4.5.3. Evaluation Results and Discussion  

4.5.3.1. Detection Efficiency 

For each of the attacks, including Black Hole, Grey Hole, Delaying, Jamming type 2, and 

Hello Flood attack, we implement the relevant attack code in a random position of 88 

normal senders. The attacks are initiated after 1 minute when the topology establishment 

phase is done.  

We consider the set of states collected at the cluster head for each monitoring node every 

1 minute is a test input. We know the result of this input because we already know the 

position of the attacker, so if this input belongs to the attacker, the result is TRUE and 

vice versa. The Bayesian-based IDS will judge this test input based on the training data 

as in Section 4.5.1. We set the threshold for alarming an attack is when Bayesian query 

return the TRUE state with a value, which is more than 80%. We will match the judgment 

of the Bayesian-based module and the result from the testing data to see the effectiveness 

of the system.  

Table 4.8 below shows the TPR and FPR of the Black hole attack, Grey hole, Delaying, 

Jamming attack and Hello flood attack. 

Table 4.8. TPR and FPR of Black Hole attack, Grey Hole attack, Delaying, Jamming attack and Hello 

flood attack 

 TPR(%) FPR(%) 

Black Hole 100 0 

Grey Hole 90 0 

Delaying 100 4.2 

Jamming 86.67 9.39 

Hello flood 100 0 

For simplicity, from now we call Power Consumption, Traffic Load, Forwarding Delay, 

Forwarding Rate, Packet Collision, RSSI value, and RSSI change as PCon, TLoad, 

FDelay, FRate, PCol, RValue, and RChange respectively. The state of the BN nodes 

including High, Low, Medium, Abnormal High, Abnormal Low, Normal, and No 

Information will be represented as H, L, M, AH, AL, N, and N/A respectively. When we 

mention a sample of the data set in the state form, states in such sample will belong to the 

BN nodes following this order [Power Consumption, Traffic Load, Forwarding Delay, 

Forwarding Rate, Packet Collision, RSSI value, RSSI change]. For example, a sample of 
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[H, L, H, L, A, N, N] means that the state of Power Consumption is High, Traffic Load is 

Low, and so on.  

For the Black hole attack, our BN module not only shows a high TPR at 100%, but also 

does not raise false alarm with the FPR at 0%. The detection of the Black hole attack is 

straightforward and many other IDSs can reach the TPR of 100% just by checking the 

dropping rate of the monitored node. However, our Bayesian judges based on the view of 

multiple metrics, therefore, even in the case the state of FRate is AL, it may still reserve 

the alarm decision. For example, with the input [L, L, N/A, AL, L, N, N] the IsAttack 

answer is 75.59% True, which is under the 80% threshold, so there will be no alarm. This 

setting helps to reduce the FPR when compared to other IDSs by preventing the false 

alarm in case that the FRate is very low, but it is not the attack because the actual number 

of dropping packets is also very low due to a low FLoad. Figure 4.13 indicates the BN 

for a sample recorded at node 23 (the position of the Black hole attacker) at minute 3, 

which have input as [L, M, N/A, AL, L, N, N]. The FDelay cannot be measured because 

all the packets go through that node were dropped. However, with the Medium FLoad 

and Low PCon, the model can estimate it has 60% chance for the FDelay state to be 

Medium. The calculation of the Abnormal traffic node returns 88.13% that this record is 

an abnormal traffic behaviour, which encourages the system to raise the alarm (which is 

true) with 91.6% confidence. On the other hand, the Abnormal Low Forward Rate does 

not lead to the conclusion of Abnormal Channel behaviour (68.71% true) because the 
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Packet Collisions state is Low. Therefore, if we trace back to the sub-query prediction 

result, we will see the main cause and the type of the abnormal behaviour. 

 

Figure 4.13. A sample of the Black Hole attack 

Regarding the Grey Hole attack, the module achieved a 0% FPR, which can be explained 

similarly as explaining in the case of Black Hole attack. On the other hand, the TPR is at 

90%. Checking the recorded states of the FRate, we observed that it flipped between L 

and N state at the first 3 periods, and since period 4th, it is stick with the AL state. This is 

because counting bit as presented in Section 4.4.3.2 was activated after 2 times the 

dropping rate falls in the intersection of the L and AL states. For the first 3 samples, the 

module cannot detect the attack, hence the judging results when the FRate node flipped 

between these two states are significantly different. Figure 4.14 and 4.15 show the records 

of the Bayesian node at minute 4 and 5 respectively. The only difference between these 

two records is the state of the FRate metric. If this state is L, the Abnormal Traffic node 

value is 71.38%, which make the query result to be 77.91%, not enough confidence to 

raise the alarm. On the other hand, if this state is AL, the Abnormal Traffic node value is 

85.05%, which make the result to be 89.13% and raise a true positive alarm. This example 

shows the advantage of using the counting bit of the states, because if we do not use this 

bit, the Grey hole node’s Forwarding Rate state will continue flipping between the L and 
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AL value, making the decision flipping from the Abnormal/Normal answer, and will 

lower the TPR. 

 
Figure 4.14. Sample of the Grey Hole attack at node 23 at 4th minutes 

 
Figure 4.15. Sample of the Grey Hole attack at node 23 at 5th minutes 

Regarding the Delaying attack, we achieved a TPR rate at 100% with 4.2% of FPR. For 

the Delaying attack, the observed FDelay state in the attacker is always AH, so the BN 

module can detect malicious behaviours accurately. For example, Figure 4.16 shows the 

record of a True Positive sample of node 23 (attacking is also at node 23). It can be seen 

that an AH state in FDelay has made the AbnormalTraffic to 81.88%, which makes the 

IsAttack query raise alarm with 92.45% confidence. Besides, it is also important to note 

that the AbnormalChannel node also rose to 58.32%, regardless of a Low state in PCol. 

This reflects the insightful understanding with which the system was implemented that 

FDelay and FRate also can be seen as the symptoms for Abnormal Channel attack.  



 

 

107 

 

 

Figure 4.16. True positive Record of the Delaying attack at node 23 

Figure 4.17 shows a False Positive case where a normal node behaviour is detected as 

abnormal. This is node 14, which has AL state in FRate metric because of dropping 

packets from node 23. When a node attacks the traffic of other nodes, the victims’ 

behaviours will be affected significantly. Because the anomaly IDS system only judge 

the variables regarding the nodes’ performance, such FP cases are difficult to be avoided. 

However, after detecting the malicious sources, if we can remove them to eliminate their 

impacts to the other nodes, the FPR will decrease significantly. 

 

Figure 4.17. False positive record of the Delaying attack at node 23 

Regarding the Jamming attack, we achieved a TPR of 86.67%, while the FPR is at 9.39%. 

We get a high FPR because of similar reasons as justified in the Delaying attack. In detail, 
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the behaviours of the Jamming attack node and the other nodes around it are quite similar, 

considering the metrics chosen in our Bayesian model. For example, the PCol of the area 

around the attacker is always high because the channel is manipulated during the attacking 

time. The FDelay and the FRate of nodes in this area are also affected by the Jamming 

behaviours, which increase the traffic in channel through sending dumb packets. The 

Bayesian model is not very effective in detecting the Jamming attacker, however, the 

trend of unstable performance of the area around help the system to spot the anomaly 

created by the Jamming attacker accurately. Once the affected area was pointed out, we 

can do further analysis to detect the attacker, for example, the attacker can be predicted 

as the node which is in the centre of the detected abnormal set.  

Regarding the Hello Flood attack, we achieved an ideal TPR rate at 100% and 0% of FPR. 

This is because in this attack, the attacker is always detected because of having an out of 

normal range RSSI. In detail, the BN module always raises alarm with any input where 

RValue or RChange is with Abnormal or True state.  

The use of RSSI in our simulation has a limitation, in which the Contiki-Cooja does not 

model the ways that RSSI of a node change through time. As such, node RSSI is a 

constant value, which make the IDS module detect the attack more easily. Applying a 

proper RSSI changing model will allow to see the how the IDS deal with the changes, 

however, we believe that the effectiveness of the IDS will not be decreased when such 

changes are applied. This is because in reality, if checking in a small sampling period of 

the IDS data, the RSSI changes are minor, which make the RSSI change and anomaly 

values will be significant and detected by the IDS easily.  

Similarly, attacks towards neighbour ID like Sybil attack, Clone ID attack, and Neighbour 

attack will be detected through the same RSSI checking mechanisms. An illustration of 

the BN for the Hello flood attack is shown in Figure 4.18 below.  
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Figure 4.18. Record of the Hello Flood attack 

4.5.3.2. Energy Efficiency 

We measure the IDS overhead only in the Contiki side. Computing overhead created by 

putting the real IDS work on the IDS server through additional interface communication 

does not need to be evaluated because of the extensive capability in the server side given 

the cloud computing. There will be more power consumption at the cluster head created 

by using the additional interface to send the IDS data to the server, however, such power 

consumption is insignificant because the size of the data is small given the data are pre-

processed to extract only the relevant metrics, while communication in additional channel 

does not take much power. 

We ran the simulation with and without our IDS integration and obtained the energy and 

power consumption as calculated in formula (1) and (2) in Section 2.6.5. In normal RPL 

network, the energy is around 192J, while in the RPL with IDS integration, the average 

energy consumption is about 197J, which represents an increase of 2.6%, which is at 

acceptable and insignificant level. As a result, we can conclude that the module is energy 

efficient and can be scalable. 

4.6. Chapter Summary 

This chapter looked at detecting the performance-type internal threats, which aiming 

particularly at the traffic, channel, or neighbour. The considered attacks include the Black 

Hole, Grey Hole, Delaying, Jamming, and Hello Flood attack. We have presented a four-
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step framework to construct a BN to apply in 6LoWPAN. In detail, we identified the 

seven metrics, which are used as evidences to judge a node’s behaviour. The metrics 

include the Power Consumption, Traffic Load, Forwarding Delay, Forwarding Rate, 

Packet Collisions, RSSI Change and RSSI Value. We proposed the counting bit for each 

metric in the BN as a way to judge the node behaviour in long-term. For every scenario, 

our IDS requires a training phase that involves the collecting of simulating trace data from 

both the normal and the attacked scenarios. We have implemented a statistical Bayesian 

module to calculate the probability of the attacks given the input states of the Bayes nodes. 

The testing results show that this system can effectively detect the performance-type 

attacks with high TPR and low FPR in most of the attacks. The accurateness of the IDS 

can be improved further if additional mechanism is developed to eliminate the impacts of 

the malicious source after being detected. We also showed that our IDS architecture is 

energy efficient and well scalable. 

In Chapter 3, we have pointed out that the anomaly-based IDS is not very effective in 

detecting the topology attacks. The Bayesian-based IDS in this chapter is not an exception 

because the statistical monitoring does not reflect well the detail of protocol operation. 

We believe that a proper profiling of the routing protocol operation will be needed for 

constructing a specification-based IDS for detecting this type of attacks. Without protocol 

specification, both the TPR and FPR of the IDS will be worse because the system cannot 

differentiate between the attackers and the victims of the attackers, of which behaviours 

may be at the same level of anomaly due to the attack impacts. Therefore, in the next 

chapter, we will specify the RPL operation and construct a specification-based IDS from 

this profile to deal with this topology attack. This specification-based module together 

with the Bayesian-based module in this chapter will help the system to detect most of the 

typical internal attacks presented in this thesis.   
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CHAPTER 5.   A SPECIFICATION-BASED IDS FOR 

DETECTING 6LOWPAN TOPOLOGY THREATS  

5.1. Introduction  

In the last chapter, a Bayesian-based IDS was developed to detect the performance-type 

internal threats by judging node behaviours through evidences at traffic, channel, or 

neighbour using the statistical data from the seven metrics. Those evidences, however, 

are not very effective when judging the topology attackers. This is because the metrics 

mainly focus on the local performance of the nodes, while locally; the topology attackers 

do not perform any worse than they should. Moreover, the topology attackers break the 

optimal topology, so their neighbours are likely to have the same performance pattern as 

them. Therefore, these nodes and their neighbours are likely to receive the same 

judgements. This will make either the FPR of the Bayesian-IDS or any anomaly-based 

IDS to be high. Therefore, another separate IDS module needs to be developed to deal 

with the topology attacks. Because 6LoWPAN uses RPL as its underlying protocol, the 

specification-based IDS in this chapter indicates the specification of RPL operations.   

The specification-based IDS detects the attackers’ behaviours if they do not follow the 

expected behaviours as specified. This approach has the advantage of employing the 

knowledge of routing protocol to detect the illegitimate behaviours quickly. So far, 

specification-based detection has been applied to privileged programs, applications, and 

several sensor and ad hoc network protocols [68, 96]. There are also several RPL 

specifications [83, 97] but they are either in the conceptual form or are being developed 

for a different purpose than detecting the 6LoWPAN topology attacks.  

In this chapter, we will develop, implement, and verify a specification-based IDS for RPL 

to detect the topology attacks in RPL-based network. Unlike a conceptual RPL 

specification built based on specialist knowledge in [83], this chapter develops a practical 

RPL operation model based on a semi-auto profiling technique, which then can be 

integrated to the monitoring agent to detect the topology attacks. Briefly, our approach 

involves the use of simulation trace files to generate an Extended Finite State Machines 

(EFSM - a Finite State Machine with statistical information about the transitions and 

states) for RPL. The technique of analysing the trace files to form the EFSM, which was 

inspired from [98], will help to quickly build a reliable profile compared to doing it 
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manually. We show how to implement this specification-based model to the network with 

a cluster architecture as applied in the previous chapter. We illustrate that our algorithm 

can effectively detect most of the typical topology attacks in real-time and with small 

amount of overhead.  

The structure of this chapter is as follows. Section 5.2 discusses the related works that 

aim at securing the RPL, while Section 5.3 describes our specification-based approach to 

form the RPL profile. Section 5.4 presents the evaluation of the proposed solution and 

giving discussion. 

5.2. Approaches to Secure the RPL 

Initial work on securing RPL was done by Tsao [99], which focused on protecting RPL 

control messages (DIO, DIS, and DAO) as well as the routing information in IPv6 Hop-

by-Hop Option Header and Routing Header. The authors suggest that RPL security 

objectives should be: 

1. Participants of the DIO, DIS, and DAO message exchanges are authenticated.  

2. The received DIO, DIS, and DAO messages are not modified during 

transportation.  

3. The received DIO, DIS, and DAO messages are not retransmissions of previous 

messages. 

4. The content of the DIO, DIS, and DAO messages may be made legible to only 

authorised entities.  

Their solution focuses on adding encryption mechanism for those control messages. 

These cryptography mechanisms are given more detail in [18]. In the topology-type 

attacks, malicious nodes may change the way to process the control messages rather than 

manipulating them because it will be more difficult to be detected. For example, in the 

Rank attack, the attackers break the Rank rule rather than modifying any control message. 

Therefore, it is not enough to use just cryptography to protect the control messages.  

The only IDS for protecting the 6LoWPAN-RPL topology attacks, to the best of our 

knowledge, is the work of Raza et al. [79]. Based on that there are several efforts to 

develop the system, such as the work of Matsunaga et al. [100] as an effort to solve the 

synchronisation issue of the monitoring architecture.  



 

 

113 

 

Raza et al. [79] proposed SVELTE, an anomaly-based IDS for securing the RPL protocol 

with two phases including collecting and analysing the IDS data. In the collecting phase, 

the DODAG root (which is also the monitoring node of all nodes in the network) will 

request its network members to send information about itself and its neighbours. The 

information that each member has to send includes the RPL Instance ID, the DODAG ID, 

the DODAG Version Number, all neighbours and their corresponding ranks, the parent 

ID, the node’s rank, and a timestamp. On receiving the information, the monitoring node 

starts the analysing phase by using such data to form the network map, evaluate the rank 

consistency and check the legitimacy of the rank rules between any parent-child pair. 

Overall, Raza’s IDS defines a normal node as a node that has consistent rank value and 

follow the rank rule. Reflecting on the attacks presented in Section 3.5, this solution does 

not consider the cases when the attackers generate a lot of additional routing control 

message to break the stability of network topology (Local repair or DIS attack). In such 

cases, the malicious nodes still follow the rank rule and have a consistent rank yet 

downgrade significantly the network performance.  

There are a number of works in specifying routing protocols in wireless sensor or ad hoc 

network to detect internal threats. In such environments, the routing protocols are usually 

profiled manually by experts through its theoretical specifications. This method is applied 

in a majority of specification-based proposed solutions [68], however, as involving 

human expertise, it is lack of flexibility (i. e., depended on the availability of the experts) 

and hard to verify. For example, there exist several specifications for AODV protocol, 

but it is difficult to compare or verify their effectiveness. To overcome this problem, the 

authors in [98] proposed a technique based on Inductive Logic Programming (ILP) 

method to induce a hypothesis from individual observations and background knowledge. 

The authors collect examples of the protocol executions through extensive simulation 

traces and derive an abstract model of protocol behaviour from them. This solution has 

the advantage of fast profiling generation with the ability of validating the correctness of 

such specification.  

There are also several RPL specifications, but none of them satisfied the purpose of 

detecting the RPL topology attacks. For example, the specification work in [97], which 

was only developed for the purpose of conformance testing. In more detail, the authors 

first tried to specify the behaviours of the host, router, and border router. They then 

generated test samples, which included optimal sequences of states for each particular 

node type, to verify if the actual nodes’ behaviours follow these sequences. If the 
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behaviours of the node are as expected, the protocol is concluded to have accurate 

implementation and vice versa. This RPL specification may not be simply applied for the 

attack detection purpose for several reasons. First, the testing phase assumes that they 

will have an actual view of the node behaviours, while the IDS only provides the node 

behaviours through the view of a monitoring node. The difference is that what the 

monitoring node sees may not be equal to what actually happens on the monitored node 

given the synchronisation issue. Second, the sequence of a node’s behaviour that the 

monitoring node collected may not reflect the real sequences because sometimes the 

information about an activity can be missed. Moreover, the sequence consists of many 

redundant states and transitions, unlike the optimal test sequence, which requires a more 

effective way to verify. Third, the RPL specification does not reflect some crucial rules 

that limit the attackers to attack the optimal topology, such as a node needs to propagate 

consistent ranks with what are reflected from its neighbours, a node needs to follow the 

rank rule in any case, or a node needs to not generate redundant control messages.  

In the next section, we will develop a specification-based IDS based on the ILP technique 

while employing the data collection enhanced from [79] to detect the topology-type 

internal threats. 

5.3. Proposed Solution 

Our solution consists of two phases. In the first phase, we aim at getting a specification-

based model for the IDS. We first simulate the network operation in the normal condition 

to get the trace file. We then define all the states that relate to the network topology 

stability and analyse the transitions between those states based on similar algorithms 

presented in [98]. As discussed in Section 5.2, the approach of using the trace file to 

generate the operation rules has multiple advantages compared with profiling a protocol 

from analysing its documents. The generated module can be improved further by expert 

knowledge added from the insightful understanding of the protocol. We also record the 

statistic of the states and their transitions, as we know that for some states, the more 

transitions between them, the more instable the network is. Hence recording the statistic 

of the important states and setting the threshold for transitions between them will help to 

detect the topology internal threats more effectively. In the second phase, we translate the 

knowledge of the specification-based model to the detection algorithm to implement in 

the IDS server to check the nodes’ behaviours. We will use the architecture proposed in 

the previous chapter to implement the IDS.  
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5.3.1. Profiling the RPL 

To profile the RPL protocol, we used the traces of legitimate protocol behaviours 

generated from the Contiki-Cooja simulation platform [84]. There are many different 

behaviours implemented in the protocol, for example, to start a node operation, or to turn 

the radio cycle on or off. However, as the focus is to protect the optimal topology, we 

only consider behaviours that related to the optimal and stable topology, in particular, the 

route establishment and the route maintenance processes. In profiling those behaviours, 

our specification-based module sets the rules to guarantee that if the internal attackers 

start to compromise any of the topology operations, they will be detected.  

Assume that the network has n + 1 sensor node sending the packets to the sink. Such node 

has ID from 1, …, n while ID of the sink is n+1. Let 𝐶𝑀𝑘
𝑖  be the ith

 control message 

collected from node k, which is extracted from the trace file and rearranged following the 

time order. Let Nk be the total number of control messages collected from node k. We first 

develop a simple algorithm to extract the states, transitions, and their statistics in each 

node as below.  

Algorithm 1. Extracting states and transitions 

Require: Trace file from simulation with marking relevant states 

1: for k = 1 to n do 

2:      for i = 1 to Nk – 1 do  

3:           PState = StateExtract(Ni) //Get previous state from Ni  

4:           CState = StateExtract(Ni+1) // Get current state from Ni+1 

5:           CTran = NewTran(PState, CState) // Get current transition  

6:           if CTran ∉ AllTrans[k] do 

7:                 AllTrans[k] = Add(AllTrans[k], CTran) // Add transition to list 

8:                 AllTransStatistic[k] = AddStatistic(AllTrans[k], CTran) // Add statistic 

9:           else  

10:               AllTransStatistic[k] = AddStatistic(AllTrans[k], CTran) // Add statistic 

11:         end if  

12:     end for 

13: end for 

At the end of Algorithm 1, we generate a set of concrete states, transitions, and 

corresponding statistic data for each node. For example, we extract the relevant trace to 

node 3 and observe the following messages: [Node 3 broadcasts DIS - Node 3 receives 

DIO from node 5 - Node 3 receives DIO from node 7 - Node 3 receives DIO from node 9 

- Node 3 calculates the preferred parent and send a new DIO]. This trace then will be 

recorded as [Node 3 broadcast DIS – Node 3 receives DIOs (3 times) – Node 3 process 

received DIO – Node 3 send a new DIO]. Figure 5.1 illustrates an example of the results 

recorded from Algorithm 1 for Node 3. As can be seen from Figure 5.1, the flow of the 
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in and out messages to Node 3 is represented in CM[3] on the left, while the transition 

merge and relevant statistics are represented in AllTrans[3] on the right. 

Node 3 receive DIO 

from node 5

Node 3 

broadcasting DIS

Node 3 receive DIO 

from node 7

Node 3 receive DIO 

from node 9

Node 3 process the 

received DIOs and 

sending its new DIO

Node 3 sending DAO 

to its preferred parent

Node 3 broadcasting 

DIS

Receive DIOs

Processing DIO

Sending DAO to 

preferred parent

Sending new DIO

3 times

1 time

1 time

1 time

CM[3] AllTrans[3] with Statistics

Node 3 process the 

received DIOs and 

sending its new DIO

 

Figure 5.1. Example of the results of Algorithm 1 

The results of the Algorithm 1 are sets of states, transitions and corresponding statistic 

for each node. Algorithm 2 will merge those sets one by one to form an abstract of RPL 

operation.  

Algorithm 2. Form the specification-based IDS for RPL   

Require: AllTrans[k], AllTransStatistic[k], k = 1..n 

1: FinalSpe = AllTrans[1] 

2: FinalSpeStatistic = AllTransStatistic[1] 

3: for i = 1 to n do  

4:      FinalSpe = Merge(FinalSpe, AllTrans[i]) 

5:      FinalSpeStatistic = Merge(FinalSpeStatistic, AllTransStatistic[i])               

6: end for  

The Merge function first compare the states of two Transitions. It only adds to the 

FinalSpe the states and transitions that it does not yet have. It also compares the statistic 

pattern and only records the pattern with significant different trend.  

At the end of Algorithm 2, we obtain a Specification-based module as shown in Figure 

5.2 below. 
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Figure 5.2. Specification-based IDS for RPL through trace file analysis 

The generated RPL specification module consists of 8 states: The sending DIS, sending 

DIO, receiving DIO (DIOr), sending no-change DIO, processing DIOs, sending new 

(changed) DIO, Sending DAO, repair, and new node joining. From the statistical data 

recorded, we obtain the following observations:   

1. Nodes only move to the Sending DIS state when it first starts, joins, or 

involves in a link repair procedure. As a result, nodes only visit the Sending 

DIS state a few times during the network performance.  

2. Nodes in the centre tend to have more transitions compared to the nodes at the 

border. The reasons are that centre nodes have more neighbours than border 

nodes, while their neighbours are also more likely to update the routing 

information than the border nodes’ neighbours are.  

3. In the processing DIOs state, nodes have to follow the rank rule strickly. 

4. After a long enough time of running, when the network topology becomes 

stable, the node will visit mostly the Sending no-change DIO state. However, 

such visit is not too often, because the DIO trickle time is always extended in 

a stable network.   

5. The five states sending DIS, sending new DIO, sending DAO, repair, and 

new node joining indicate the instability of the network topology. When the 

node is in one of these states, the transitions are expected to happen more 

often, because the DIO trickle time is set to minimum.  

Start

Sending DIS

Receiving 
DIOs

Processing 
DIOs

Sending no-
change DIO

Sending new 
DIO

Sending DAO

New node 
joining

Repair

Getting a new parent or 
remove a parent

Topology update

Choosing the preferred 
parent, adjusting 

the parent set

Request topology 
information

Collecting topology 
information
from the
neighbors

Topology is 
stable

S1

S2

S3 S4

S5

S6

S7S8



 

 

118 

 

In the next section, we will use the knowledge obtained from this section to design and 

implement a Specification-based IDS for securing the topology attacks toward the RPL 

network.  

5.4. Evaluation Results and Discussions  

To investigate further the effectiveness of the IDS, we implement the five types of attacks 

as discussed in Chapter 3 in Contiki-Cooja [13] and see how the IDS module can detect 

them. This session first presents the simulation setup and then discuss about the results 

achieved.  

5.4.1. Designing and Implementing the Specification-based for RPL-based 

Network 

5.4.1.1. IDS Design  

We employ similar monitoring architecture as discussed in Section 4.2 and 4.4.4 of the 

previous chapter, in which the monitoring nodes have two interfaces, one is for 

communicating in 6LoWPAN, and the other is for sending the IDS data to the IDS server. 

The monitoring nodes will stay as the cluster head to collect the IDS data from its cluster 

members.  

We do not make the cluster head change to promiscuous mode to eavesdrop on all the 

radio communication around because it will drain its battery out quickly, while the 

obtained information in this case also has only limited use. Because all the cluster 

members are neighbours of the cluster head, the head can record all the broadcasting 

control messages and the unicast message toward itself. For the missing information, we 

make the cluster head request its members to report periodically. The period time is set 

up depending on the particular scenario. Once the members receive such request, they 

need to send their neighbour lists with corresponding ranks, the preferred parent, and its 

own rank.  

In our solution, the procedure to ask the cluster member to send the data to the cluster 

head will be similar to Raza’s work. However, Raza’s solution suffers from the 

synchronisation issue, for example, in case the data from the neighbour is collected later 

or sooner than data from the node, which make the crosschecking process unreliable. 

Matsunaga et al. [100] pointed out this issue through the following example as can be 

illustrated in Figure 5.3. Let A is a normal node in the network and N is its neighbour. At 
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time t1 when A broadcast its DIO, its rank is 3 and N record rank of A as 3 in its memory. 

At time t2, A updates its rank to 4 but because it is not the time to send the new DIO yet, 

so A does not send any new DIO, and N still store the rank of A as 3. Sooner after t2, at 

t3, the root requests nodes to send IDS information. According to Raza’s solution [79], 

node A will send its rank as 4 (its current rank) while node N informs the root that the 

actual rank of A is 3. The rank information of node A that it and node N reported is not 

the same because the recording time was not synchronised. This synchronisation issue 

makes the root consider that the rank of A is not consistent; hence detect A as malicious 

node, which create a false detection.  

Matsunaga et al. [100] proposed an improvement for Raza’s solution by letting the nodes 

send only the rank information in its latest broadcast DIO,  rather than the latest rank it 

has. Moreover, they separate the rank inconsistent threshold when detecting the 

consistency, in which if there is time difference when receiving the report rank 

(information from the node itself) and the monitor rank (information from the node’s 

neighbours), the threshold will be higher than it is in the case there is no time difference. 

Such improvements are claimed to decrease the false detection rate of Raza’s solution. 

Node A

Node N

Root

R(A) = 3

RN(A) = 3 Request

Node N reports Node A rank = 3

while Node A reports its rank = 4

t1

t2

R(A) = 4
t

t

t
t3

Next time to send DIO

Reply

 

Figure 5.3. Synchronisation issue in Raza's solution 

However, Matsunaga’s solution still cannot overcome the synchronisation issue. For 

instance, based on Figure 5.3, we add node P as node A’s parent and N is the neighbour 

of both A and P. At time t1, P has rank 2, A has rank 3. In time t1’ P updates its rank to 3, 

hence it broadcasts this new information to the neighbours. At time t2, node A receives 

this information and increase its new rank to 4 without updating its rank for the neighbour 

yet. At time t3, the root requests every node to send IDS information. According to 

Matsunaga, P will report its rank as 3 because it has already sent the new DIO before the 

root request. On the other hand, node A will also report its rank as 3 because its next DIO 
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is scheduled after the root asked for report. Both of these reports are considered consistent 

under the view of node N. Now, A and P has the same rank as 3, both are considered 

consistent, but according to the rank rule, P is the parent of A so it should have a lower 

rank than A. As a result, both A and P may be considered as malicious source. The 

illustration for this example is given in Figure 5.4 below.  
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Figure 5.4. Synchronisation issue in Matsunaga's solution 

In order to solve this synchronisation issue, we propose to add the sequence number 

information in the DIO and DIS messages. We will use the reserved bytes in the DIO and 

DIS message format (readers can refer to [101] for the format of DIO and DIS messages) 

for this purpose, so the actual size of such messages will remain the same. The 

synchronisation issue is solved because sequence number indicate specifically which 

packets the information belongs to; hence, the server can know whether to verify 

information from two different sources.       

5.4.1.2. IDS Implementation 

Given the design in Section 4.4.4, the cluster head will record the following information 

for each of its members.  

 DIS sequence, number of DIS received 

 DIO sequence, number of DIO received 

 List of neighbours, each neighbour has 

o Node ID  

o Rank 

o The sequence of the DIO that provides this info 

o DIS sequence, number of DIS received 
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o DAO sequence, number of DAO received, and a parent bit (if there is no DAO 

message sent, or if there is a DAO message require to remove the parent 

relationship, then the parent bit is 0, otherwise it will be set to 1) 

 Preferred parent ID 

We develop a detection algorithm based on the Specification-based module in Section 

5.3.1 using this provided information to implement in the IDS server. The algorithm 

consists of 5 modules:  

1. M1: Checking the DIS message, alarm if the received DIS is fake or sending too 

much.  

2. M2: Checking the sequence of DIO message, alarm if the received DIO is fake 

3. M3: Checking the rank consistency, alarm if the rank of the member is different 

to the rank reported by its neighbour or the cluster head, given the same DIO 

sequence. Penalise the neighbours if they do not have the latest DIO message. 

Alarm if there is any DIO message reported by the neighbours or cluster head that 

has newer DIO sequence than the member itself 

4. M4: Check the rank rule between every pair of parent and child  

5. M5: Check the instability of the network area around a member through the 

relevant states and observations. Penalise if there is any instability and reward if 

no change happened.  

The detail algorithm with these modules is as below. 

Algorithm 3. Detecting topology attacks from cluster head view 

 

Module 1: Check whether DIS message is illegitimate 

1: On receiving DIS { 

2:    record SourceID, DIS_seq_new; 

3:    DIS_count[SourceID]++; 

4:    if DIS_seq_new ≤ DIS_seq_current then 

5:        alarm fake DIS; 

6:        else DIS_seq_current = DIS_seq_new 

7:    end if 

8:    if DIS_count[SourceID] > thresholdDIS_count then 

9:          alarm DIS attack; 

10:  end if     } 

 

Module 2: Check whether there is any fake DIO 

1: On receiving DIO  { 

2:    record SourceID, DIO_seq_new, rank; 

3:    DIO_count[SourceID]++; 

4:    if DIO_seq_new ≤ DIO_seq_current then 
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5:        alarm fake  DIO; 

6:        else DIO_seq_current = DIO_seq_new 

7:    end if   } 

 

Module 3: Check the rank inconsistency 

1:   After receiving reports from all of the members { 

2:       for each Member in Cluster do { 

3:          if Member.DIO_seq < CH.Member.DIO_seq then 

4:               alarm fake DIO; 

5:          end if 

6:          for each Neighbour in Member.Neighbour do 

7:                if Member.DIO_seq < Neighbour.Member.DIO_seq then 

8:                      alarm fake DIO; 

9:                else if Member.DIO_seq < Neighbour.Member.DIO_seq then                          

10:                       Neighbour.fault = Neighbour.fault + 0.5 //penalised 

11:              else if Member.DIO_seq == Neighbour.Member.DIO_seq then                                                     

12:                       if Member.rank != Neighbour.Member.Rank then 

13:                              alarm fake DIO; 

14:                       end if 

15:              end if 

16:         end for 

17:      end for } } 

 

Module 4: Check the rank rule  

1:  for each Member in Cluster do 

2:       if Member.rank + MinHopRankIncrease < Member.parent.rank then 

3:              alarm rank attack; 

4:       end if 

5:       for each Neighbour in Member.Neighbour do { 

6:               if Member.DAO.parent == 1 then 

7:                     if Member.rank - MinHopRankIncrease > Member.child.rank  then 

8:                           alarm rank attack; 

9:                     end if 

10:            end if 

11:    end for 

12: end for } 

 

Module 5: Check the stability of the network part which relate to a cluster member 

//Setting the initial stability evaluation for each member in cluster 

1: for each Member in Cluster do 

2:       Member.stability = thresholdstability 

3: end for 

//Penalise if stability condition is observed to be not satisfied 

4: for each Member in Cluster { 

5:       if IsRepairAfterPeriod then 

6:                Member.stability -= 2 //penalised -2 on stability 

7:       end if 

8:       if IsChangeAfterPeriod(Member.DIO) || IsChangeAfterPeriod(Member.DAO) ||                           

ssssssssssssIsNewNodeJoiningAfterPeriod then 

9:               Member.stability -= 0.5 // penalised 0.5 on stability 

10:     end if } 

//Checking every period of time 

11: if IsCheckingPeriod then 

12:      for each Member in Cluster do 

13:            if Member.stability < 0 then 
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14:                  alarm Member instability; 

15:            end if 

16:            if Member.fault > thresholdfault then 

17:                  alarm Member fault;// member fault is recorded in module 3 

18:            end if 

19:       end for 

20: end if 
The thresholds used in the algorithm are summarised in Table 5.1 below. 

Table 5.1. The thresholds used in the algorithm 

Threshold Meaning 

thresholdDIS_count Alarm if a node visit the DIS state more than 

thresholdDIS_count  in the monitoring time.  

thresholdfault Alarm if a node not updating info from the neighbours 

thresholdinstability Alarm if node visit the instability states S1, S5, S6, S7, 

S8 more than a thresholdinstability in the monitoring time  

5.4.2. Simulation Set up  

We reuse the topology set up in Chapter 4, as presented in Section 4.5.1 and Figures 4.11 

and 4.12. To recall, our simulation scenario consists of 100 nodes placed randomly in a 

600x600m area, each node has a transmission range of 50m. There is one sink placed in 

the top left and 11 IDS cluster heads to cover the operation of the remaining 88 nodes in 

the network. Every node sends packet to the sink at the rate of 1 packet every 60 seconds. 

We implement the specification-based module from Section 5.3 in the IDS server. The 

cluster heads are chosen manually so that they can cover the monitoring of all the nodes 

in the network. Cluster heads collect the IDS data from cluster members in the form 

shown in Section 5.3 before sending to the IDS server. The period time that the cluster 

head requests its members to report the IDS information is 2 minutes. The thresholds are 

set up with the following values: thresholdDIS_count= 3; thresholdfault = 2; and 

thresholdinstability = 10. Note that thresholdDIS_count= 3 and thresholdfault = 2 are the two 

fixed values to detect the anomaly in breaking the RPL operation. This is because in a 

normal network, a normal node would not normally exceed these two thresholds. On the 

other hand, the thresholdinstability = 10 is set due to analysing the statistical data in the trace 

files, which is applicable for our particular scenarios. In the other scenario, this threshold 

can be changed accordingly. If the operators wants to have a stable network most of the 

time, this value can be decreased. If they feel that the environment may create unstable 

topology, they can increase this value to prevent the increase of IDS sensitivity. 

We implemented each of the four types of attacks in Section 3.5, including Sinkhole 

attack, Rank attack, Local Repair, and DIS attack, in a random position of 88 normal 

senders. The attacks are initiated after 3 minutes when the topology establishment phase 
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is done. As the implementations of multiple interface sensors not yet available in Contiki, 

we run the detection process through analysing the simulation trace files as the proof-of-

concept. The summary of the simulation parameters is shown in Table 5.2 below.  

Table 5.2. The simulation parameters 

Parameters Value 

Simulation platform  Cooja Contiki 2.6 

Number of nodes  99 senders, 1 sink 

Number of cluster head 11 

Number of attackers 1 

Traffic model  Constant bit rate 

Sending rate 1 packet every 60 second 

IDS require info every 2 minutes 

Simulation run time 31.5 minutes 

5.4.3. Simulation Results and Discussions 

5.4.3.1. Detection Efficiency 

We divided the RPL attacks discussed in Section 3.5.2 into two groups, which have 

similar results when detected by our IDS. The first group contains the Rank attack, 

Sinkhole attack - the threats which are detected only by the specified states. The second 

group includes the Local Repair and the DIS attacks, which involved both the 

specification states and statistic collection to reveal.  

Table 5.3 below shows the TPR and FPR of the Rank attack (RA), Sinkhole attack (SA) 

after 4 minutes, when the Rank attack already initiated (at minute 2) and the IDS has just 

collected the first two IDS data packets from its neighbour. As can be seen from the table, 

we obtained ideal IDS results, where the TPR is 100% and the FPR is 0%. These results 

can be explained as follows.  

Table 5.3. TPR and FPR of Rank attack, sinkhole attack and Neighbour attack after 4 minutes 

 TPR(%) FPR(%) 

RA 100 0 

SA 100 0 

The DIO sequence checking in Module 2 and 3 ensure that there is no inconsistency in 

DIO and Rank information between the IDS data reported by the neighbours. As a result, 

the cluster head will know most of the parent-child relationships and their accurate 

corresponding ranks.  

Regarding the Rank attack, given its nature, which is choosing the worst parent as the 

preferred parent and changing it frequently, the cluster head will detect the behaviour of 
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breaking the rank rule and raise an alarm about the child node for choosing inappropriate 

parent. Therefore, the Rank attack is detected quickly with high accuracy.  

Regarding the Sinkhole attack, our implementation lets the attacker keeps informing that 

it has the rank of the Sink to attract its neighbours. As the attacker is not the actual Sink, 

before initiating the attacks, it would have a preferred parent. Moreover, this parent-child 

relationship would be recorded by one of the cluster heads. When the attacker manipulates 

its new rank to the Sink’s rank, such relationship will become illegal, because the child 

now has a better rank than the parent does. This illegal relation will be detected by Module 

4 of our IDS.  

Our IDS shows high accuracy results not long after the attack initiating. However, when 

letting the IDS works for a long time, when the TPR is still ideal, the FPR increases 

significantly and makes the IDS become less accurate. For example, the TPR and FPR 

after 10 minutes detecting RA, SA and NA scenarios are shown in Table 5.4 below. The 

table shows that the FPR increase to about 2-5%. The reason is that the initiated attacks 

in the tampered nodes have affected its neighbours around, make those nodes work the 

same way as the attackers, and therefore become difficult to separate.  

Table 5.4. TPR and FPR of Rank attack, sinkhole attack and Neighbour attack after 10 minutes 

 TPR(%) FPR(%) 

RA 100 5.25 

SA 100 3.28 

In order to minimise the FPR, the nodes which are detected as the malicious source should 

be removed from the network, for example, by adding to a blacklist and asking all other 

relevant nodes to skip nodes in that list. After removing the nodes, the IDS will stop 

judging for a certain time to help to stabilise the network before restarting in a new 

detection cycle.  

The second group of attacks includes the Local repair and the DIS attack. The difference 

between this group and the first group is that in this group, observing that a node visiting 

a state is not enough to conclude that this node is a malicious node.  This observation is 

considered only as part of the statistical evidence. Only when a node visits a state more 

than a threshold of times during a period, the IDS has the right to raise alarm about the 

threat.  

The mechanisms to detect attacks in the second group are as follows. In Local repair 

attack, after initiating the local repair mechanism, the node sends the poison messages to 
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the neighbourhood in which its rank is reset to be infinite and it needs to resend the DIS 

to obtain the surrounding routing information. The local repair will be reported after 

several times initiated according to Module 1. On the other hand, the local repair also 

invokes the high instability value in Module 5, so it will also be reported by this module. 

In the DIS attack, the attacker needs to send DIS messages to force the neighbour to 

change the DIO trickle time, or to send the unicast DIO back. In both cases, it will increase 

the DIS statistic in Module 1; and this will be reported by the IDS.     

Table 5.5 and 5.6 below present the TPR and FPR detection of this group after 8 and 12 

minutes respectively. As can be seen from the tables, after 8 minutes, the IDS may not 

collect enough information in any of the cases so it cannot detect the Local repair attack 

and DIS attack, which results in a high FN and low TPR. On the other hand, after 12 

minutes, the IDS collect all the needed information, so the FN and TPR are ideal. 

However, the Local repair and DIS attack is given long time enough to manipulate the 

neighbours around the malicious node to create the instability in the topology. Such 

instability is presented through the high rate of FP and FPR, which make the IDS, become 

less accurate because of detecting normal nodes as attackers. Therefore, there is a trade-

off between the TPR and FPR in detecting threats in this group.  

Table 5.5. TPR and FPR of Rank attack, sinkhole attack and Neighbour attack after 8 minutes 

 TPR(%) FPR(%) 

LA 86.36 0.67 

DIS 94.32 3.03 
Table 5.6. TPR and FPR of Rank attack, sinkhole attack and Neighbour attack after 12 minutes 

 TPR(%) FPR(%) 

LA 100 6.78 

DIS 100 5.92 

Unlike the first group of attacks, where the attackers are always detected first before any 

False Positive happens, in the second group, a benign node can be detected as malicious 

before the attackers are revealed. Therefore, using a blacklist or other mechanism to 

eliminate the detected nodes in this case may not be appropriate. An alternative solution 

is to adjust the frequency threshold to adapt to the frequency of the corresponding Local 

repair/DIS attack in specific scenario through learning from simulation. A good chosen 

threshold will optimise the detection rate and accurateness of the IDS.   

Our IDS aims at monitoring the optimal network topology and its stability, which is 

something broader than just monitoring the node performance. Hence, it will also have 
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the ability to detect other topology attacks that are not mentioned in this chapter, if those 

attacks break the optimal topology and create network instability. 

5.4.3.2. Energy Efficiency 

Similar to Section 4.5.3.2, we will not consider the overhead in communicating between 

the cluster heads and the IDS server, and the computing waste at the server side.  

From the 6LoWPAN side, we run the simulation in RPL-collect network with and without 

our IDS integration. We obtain the energy and power consumption as calculated in 

formula (1) and (2) in Section 2.6.5. In normal RPL network, the energy is around 190J, 

while in the RPL with IDS integration, the average energy consumption is about 202J, 

which represents an increase of 6.3%, which can be considered small level of overhead. 

The average power consumption in each node increases slightly 6.3% with 1.2mW in IDS 

integration scenario to compare with 1.05mW in normal scenario. This indicates that the 

network lifetime will not be affected much once implementing the IDS.  

With our architecture design, adding more nodes in IDS-cluster forms will not make 

nodes in the network consume more energy, therefore we can extend the scale of the 

network easily. The overhead of the added IDS for the adding nodes will be local and not 

affect to the previous setup of the network. Hence, we can conclude that the cluster 

monitoring structure is resource efficient and can expand well to the large-scale network. 

5.5. Chapter Summary  

This chapter looked at detecting the topology attacks towards RPL performance, 

particularly in breaking its optimal topology and creating the instability. The considered 

attacks include the Rank, the Sinkhole, the Local Repair, and DIS attack. Our detection 

solution involves semi-auto building a specification-based IDS model for protecting RPL-

based network topology. The main idea is to learn the states, transitions, and relevant 

statistics based on the analysing the trace file.  The generated model will be integrated in 

the IDS server, which receives IDS data from cluster heads through a clustering 

monitoring architecture. The simulation results show that our IDS is energy efficiency 

and scalable, while providing high detection rates and accurateness in revealing most of 

the topology attacks.  

The combination of the specification-based IDS in this chapter and the Bayesian-based 

IDS in Chapter 4 will form a robust IDS module, which can detect most of the potential 
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internal threats to the 6LoWPAN network. Such a combination is feasible given the IDS 

architecture designed in this thesis, because there are not overhead created when 

combining the two IDS modules while the computation and storage workload are put at 

the IDS server side, which has extensive capability due to the use of cloud computing 

technology. In the next chapter, we will conclude the thesis and give the future plan. 
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CHAPTER 6.   CONCLUSION AND FUTURE WORK 

This chapter will summarise all the research efforts presented in the previous chapters 

together with their overall achievement to the aim and objective of the research. After 

that, all possible modifications, which could improve the performance of the presented 

research solutions, will be discussed in detail as future work. 

6.1. Contribution of the Research  

This thesis has focused on the design, implementation, and evaluation of IDS solutions 

for detecting the internal attackers in 6LoWPAN network.  

First, we have categorised the internal threats into two main types: the performance-type 

and the topology-type. The common objectives of the former are the traffic towards the 

neighbours, the channel around the malicious nodes, and the creating of the fake 

neighbours to confuse the communication of other nodes. On the other hand, the latter 

particularly focuses on manipulating some RPL properties, which are designed 

specifically for the optimizing purpose, for instance, the Rank for optimizing the 

connection between the parent node and the child, the repair mechanisms for route 

maintenance, or the DIO trickle time for reducing the overhead. We have proposed 

different novel ways of manipulating those properties to downgrade the network 

performance significantly, like presented in the Rank attack, the Local Repair and the DIS 

attack. We have also studied the typical threats in each type, which are the Black Hole, 

Grey Hole, Delaying, Jamming or Hello flood, in the performance-type; and the Sinkhole, 

Rank, Local Repair, and DIS attack in the topology-type. For each of the attack, we 

studied the general impact to the network performance through the delivery rate, delay, 

and control overhead. We also identified the sensitive metrics that changed significantly 

when there is an abnormal behaviour. We later employed these metrics as the evidences 

to determine the occurrence of the internal attackers.  

Second, for detecting the performance-type attack, we develop a BN as a statistical tool 

to monitor multiple metrics. The development process consists of four phases, from 

identifying the BN nodes and their dataset; supervised and unsupervised learning the 

structure of the nodes; learning the parametric between the nodes; to implement this 

model into the network. Our Bayesian module uses the simulation trace data from normal 

as well as different attacked scenarios for training. Such training data provide the 
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thresholds for differentiating the nodes’ states, the potential cause-effect relations 

between the nodes, while also serves as the input for parametric learning. To compare 

with other solutions, our Bayesian-based IDS module can take into account 

simultaneously more input metrics, which will enable a deeper understanding of the 

behaviour. The module can also record the history of nodes’ performance by using a 

counter of near-abnormal state, which allows to judge the node long-term behaviours. For 

example, when a node has continuously bad performance, but still out of the abnormal 

range, our IDS can turn the judgement to the abnormal state using this counter bit, which 

helps to detect attackers which aiming at long-term through lowering their short-term 

impact to bypass the IDS. The simulation experiments as presented in Chapter 4 shows 

that our module achieved a detection rate from 87% to 100%, while mostly having a false 

positive rate under 5%, which is an encouraging result for IDS approaches. Moreover, the 

estimated overhead created by this module is insignificant, which allows the 

implementation in real scenarios.  

Third, for detecting the topology-type attack, we develop a specification-based IDS for 

RPL. By comparing to the main properties in the RPL profile, we can judge the nodes’ 

behaviours to see if they follow a legitimate pattern or not. We specified the RPL through 

studying both the simulation traces of the normal and attacked scenarios, as well as 

employing the expert understanding on the protocol manual. The result of this studying 

is a model of relevant RPL states, transitions, and statistic based, which were utilised 

further in implementing the Specification-based IDS module in 6LoWPAN. In 

implementation, we also proposed to add the sequence number property in the spare field 

in the RPL DIO and DIS control messages, to solve the synchronisation issue of the 

previous RPL data collection solution.  

For both of the Bayesian-based and Specification-based, we use a clustering architecture 

that allows the cluster heads to collect the IDS data from its cluster members before 

sending such data to the IDS server. We propose to provide cluster heads with an 

additional interface to communicate effectively with the server side, while the IDS server 

can use the cloud computing to expand its capability. The simulation results show that 

this monitoring architecture is energy efficient and highly scalable. 

Each of IDS modules is designed for detecting a specific type of internal attacks. The use 

of a single module, therefore, will not be effective to deal with all the internal threats. For 

example, the BN module cannot effectively detect the topology attack because such 
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attacks create similar behaviour patterns between the attackers and their neighbours, 

which will create either high false alarm rate or unable to detect the attackers. On the 

other hand, the use of the RPL Specification-based module only cannot detect effectively 

the performance-type attacks because most of these attackers satisfy the legitimate RPL 

behaviours. With the IDS architecture proposed in this thesis, 6LoWPAN can run both 

the Bayesian-based and Specification-based simultaneously without much overhead 

created, because the cluster heads only do the recording, pre-processing, and sending the 

IDS data to the IDS server. The main computing and storing workload are at the IDS 

server, which has extensive capability due to applying of cloud computing technology. 

As a result, the combined system will be able to deal with most of the typical internal 

attacks. However, the combination of these two IDSs can still be optimised further. For 

example, to reduce the redundancy in the monitoring information that the cluster members 

reported to the cluster heads, or to combine the algorithms to further decrease the 

computing workload. Due to the limited time and resource, such work will be left as future 

work. 

In our view, a 6LoWPAN can only be guaranteed to be free from the internal threats when 

and only when (i) every node works with its optimal capability, including having optimal 

traffic, strong communication channel, and all the nodes have legitimate neighbours; and 

(ii) nodes in the network always operate follow optimal topology and protocol rules. By 

designing and building the two aforementioned IDS modules aiming directly at these two 

objectives, we have achieved the IDSs, which have the ability to detect most kind of the 

typical internal threats, which is an important contribution to the security of 6LoWPAN.   

6.2. Future Work  

This section presented some future potential work, which can follow on from the research 

in this thesis, to strengthen the proposed solutions as well as open new research directions: 

 The last chapters have proposed the two different IDSs, the Bayesian-based and 

the Specification-based modules to detect two different types of the internal 

threats. These two modules now operate independently in 6LoWPAN; however, 

a combination of them may optimise the monitoring procedure as well as reduce 

the overhead. Due to the limitations of time and resource, such combinations 

could not be developed properly in this thesis. Potential combination directions 

can be integrating the Specification-based approach as part of the Bayesian-based 
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approach. In this way, the properties to monitor of the Specification-based should 

be re-optimised and assessing the relations with other properties in the Bayesian-

based, to provide more closed relations. These relations may improve the 

accurateness or reduce the system’s overhead accordingly. 

 The BN module has the strong ability in statistically answering different problem 

with the network performance. Hence, the module can be extended to other issues 

like routing optimisation, or Medium Access Control. The use of BN with 

different metrics in different layers may create a promising cross layer design that 

achieves better performance results.  

 The protocol profiling techniques in Chapter 5 can be widely applied to many 

other routing protocols in different networks for similar security purpose.  

 Recently, technology development regarding studying Big data, Hadoop platform, 

and cloud computing has promised to bring the Internet application to a new level. 

The application of these technologies provides faster processing yet larger data 

consideration, which will significantly improve the accurateness and effectiveness 

of our solution. Hence, our future work is also to implement our systems using 

these technologies to extend their capability. 

 Due to the limitations of time and resource, our research focused only on a single 

attacker using single attack to downgrade the network. In reality, attackers can 

make their attack much more complex to inflict more damage. For example, 

malicious sources can apply different attacking mechanisms in a specific order to 

increase the impact yet change the behavioural patterns so that the detecting 

system cannot detect them. On the other hand, adversaries can initiate the attack 

simultaneously in several positions of the network. Attack sources in this case can 

cooperate to maximize the damage or bypass the detection system. We will extend 

our IDS to deal with these multiple attack issues in the future.  
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