1,881 research outputs found

    Achieving Covert Communication With A Probabilistic Jamming Strategy

    Full text link
    In this work, we consider a covert communication scenario, where a transmitter Alice communicates to a receiver Bob with the aid of a probabilistic and uninformed jammer against an adversary warden's detection. The transmission status and power of the jammer are random and follow some priori probabilities. We first analyze the warden's detection performance as a function of the jammer's transmission probability, transmit power distribution, and Alice's transmit power. We then maximize the covert throughput from Alice to Bob subject to a covertness constraint, by designing the covert communication strategies from three different perspectives: Alice's perspective, the jammer's perspective, and the global perspective. Our analysis reveals that the minimum jamming power should not always be zero in the probabilistic jamming strategy, which is different from that in the continuous jamming strategy presented in the literature. In addition, we prove that the minimum jamming power should be the same as Alice's covert transmit power, depending on the covertness and average jamming power constraints. Furthermore, our results show that the probabilistic jamming can outperform the continuous jamming in terms of achieving a higher covert throughput under the same covertness and average jamming power constraints

    Defeating jamming with the power of silence: a game-theoretic analysis

    Full text link
    The timing channel is a logical communication channel in which information is encoded in the timing between events. Recently, the use of the timing channel has been proposed as a countermeasure to reactive jamming attacks performed by an energy-constrained malicious node. In fact, whilst a jammer is able to disrupt the information contained in the attacked packets, timing information cannot be jammed and, therefore, timing channels can be exploited to deliver information to the receiver even on a jammed channel. Since the nodes under attack and the jammer have conflicting interests, their interactions can be modeled by means of game theory. Accordingly, in this paper a game-theoretic model of the interactions between nodes exploiting the timing channel to achieve resilience to jamming attacks and a jammer is derived and analyzed. More specifically, the Nash equilibrium is studied in the terms of existence, uniqueness, and convergence under best response dynamics. Furthermore, the case in which the communication nodes set their strategy and the jammer reacts accordingly is modeled and analyzed as a Stackelberg game, by considering both perfect and imperfect knowledge of the jammer's utility function. Extensive numerical results are presented, showing the impact of network parameters on the system performance.Comment: Anti-jamming, Timing Channel, Game-Theoretic Models, Nash Equilibriu

    Security in Wireless Sensor Networks: Issues and Challenges

    Get PDF
    Wireless Sensor Network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military. The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future. The inclusion of wireless communication technology also incurs various types of security threats. The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks. We identify the security threats, review proposed security mechanisms for wireless sensor networks. We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks.Comment: 6 page
    corecore