21 research outputs found

    Logical Reduction of Metarules

    Get PDF
    International audienceMany forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction, which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times

    Privacy-Preserving Ontology Publishing:: The Case of Quantified ABoxes w.r.t. a Static Cycle-Restricted EL TBox: Extended Version

    Get PDF
    We review our recent work on how to compute optimal repairs, optimal compliant anonymizations, and optimal safe anonymizations of ABoxes containing possibly anonymized individuals. The results can be used both to remove erroneous consequences from a knowledge base and to hide secret information before publication of the knowledge base, while keeping as much as possible of the original information.Updated on August 27, 2021. This is an extended version of an article accepted at DL 2021

    Comparing the Reasoning Capabilities of Equilibrium Theories and Answer Set Programs

    Get PDF
    [Abstract] Answer Set Programming (ASP) is a well established logical approach in artificial intelligence that is widely used for knowledge representation and problem solving. Equilibrium logic extends answer set semantics to more general classes of programs and theories. When intertheory relations are studied in ASP, or in the more general form of equilibrium logic, they are usually understood in the form of comparisons of the answer sets or equilibrium models of theories or programs. This is the case for strong and uniform equivalence and their relativised and projective versions. However, there are many potential areas of application of ASP for which query answering is relevant and a comparison of programs in terms of what can be inferred from them may be important. We formulate and study some natural equivalence and entailment concepts for programs and theories that are couched in terms of inference and query answering. We show that, for the most part, these new intertheory relations coincide with their model-theoretic counterparts. We also extend some previous results on projective entailment for theories and for the new connective called fork.This research has received partial support from the European Cooperation in Science & Technology (COST) Action CA17124. The third author acknowledges the funding of project PID 2020-116201GB-I00 (Ministerio de Ciencia e Innovación, Spain) and also the financial support supplied by the Consellería de Educación, Universidade e Formación Profesional (accreditations GPC ED431B 2022/23 and 2019–2022 ED431G-2019/01). The last author has been supported by the Austrian Science Fund (FWF) grant Y698Xunta de Galicia; ED431B 2022/23Xunta de Galicia; ED431G-2019/0

    BKLM - An expressive logic for defeasible reasoning

    Get PDF
    Propositional KLM-style defeasible reasoning involves a core propositional logic capable of expressing defeasible (or con- ditional) implications. The semantics for this logic is based on Kripke-like structures known as ranked interpretations. KLM-style defeasible entailment is referred to as rational whenever the defeasible entailment relation under consider- ation generates a set of defeasible implications all satisfying a set of rationality postulates known as the KLM postulates. In a recent paper Booth et al. proposed PTL, a logic that is more expressive than the core KLM logic. They proved an impossibility result, showing that defeasible entailment for PTL fails to satisfy a set of rationality postulates similar in spirit to the KLM postulates. Their interpretation of the im- possibility result is that defeasible entailment for PTL need not be unique. In this paper we continue the line of research in which the expressivity of the core KLM logic is extended. We present the logic Boolean KLM (BKLM) in which we allow for dis- junctions, conjunctions, and negations, but not nesting, of de- feasible implications. Our contribution is twofold. Firstly, we show (perhaps surprisingly) that BKLM is more expressive than PTL. Our proof is based on the fact that BKLM can characterise all single ranked interpretations, whereas PTL cannot. Secondly, given that the PTL impossibility result also applies to BKLM, we adapt the different forms of PTL entail- ment proposed by Booth et al. to apply to BKLM

    Inductive logic programming at 30: a new introduction

    Full text link
    Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a hypothesis (a set of logical rules) that generalises training examples. As ILP turns 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main learning settings; describe the building blocks of an ILP system; compare several systems on several dimensions; describe four systems (Aleph, TILDE, ASPAL, and Metagol); highlight key application areas; and, finally, summarise current limitations and directions for future research.Comment: Paper under revie
    corecore