
Tractability Frontier of Data Complexity in Team Semantics

ARNAUD DURAND, IMJ-PRG, CNRS UMR 7586, Université de Paris, France

JUHA KONTINEN, Department of Mathematics and Statistics, University of Helsinki, Finland

NICOLAS DE RUGY-ALTHERRE, Université de Lorraine, France

JOUKO VÄÄNÄNEN, Department of Mathematics and Statistics, University of Helsinki, Finland and Institute for

Logic, Language and Computation, University of Amsterdam, The Netherlands

We study the data complexity of model-checking for logics with team semantics. We focus on dependence, inclusion, and independence

logic formulas under both strict and lax team semantics. Our results delineate a clear tractability/intractability frontiers in data

complexity of both quantifier-free and quantified formulas for each of the logics. For inclusion logic under the lax semantics, we

reduce the model-checking problem to the satisfiability problem of so-called dual-Horn Boolean formulas. Via this reduction, we give

an alternative proof for the known result that the data complexity of inclusion logic is in PTIME.

ACM Reference Format:
Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen . 2021. Tractability Frontier of Data Complexity in

Team Semantics. ACM Trans. Comput. Logic 1, 1 (June 2021), 21 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In this article we study the data complexity of model-checking of dependence, independence, and inclusion logic

formulas. Independence and inclusion logic [3, 10] are variants of dependence logic [25] that extends first-order logic

by dependence atoms of the form =(𝑥1, . . . , 𝑥𝑛) expressing that the value of 𝑥𝑛 is functionally determined by the values

of the variables 𝑥1, . . . , 𝑥𝑛−1. In independence and inclusion logic dependence atoms are replaced by independence and

inclusion atoms 𝑦 ⊥𝑥 𝑧 and 𝑥 ⊆ 𝑦, respectively. The meaning of the independence atom is that, with respect to any

fixed value of 𝑥 , the variables 𝑦 are independent of the variables 𝑧, whereas the inclusion atom expresses that all the

values of 𝑥 appear also as values for 𝑦.

Team semantics is a framework for formalizing and studying various notions of dependence and independence

pervasive in many areas of science. Team semantics differs from Tarski’s semantics by interpreting formulas using

sets of assignments instead of single assignments as in first-order logic. Reflecting this, dependence logic has higher

expressive power than classical logics used for these purposes previously. Dependence, inclusion, and independence

atoms are intimately connected to the corresponding functional, inclusion, and multivalued dependencies studied in

database theory, see, e.g., [14]. Interestingly, independence atoms correspond naturally to a qualitative analogue of the

Authors’ addresses: Arnaud Durand IMJ-PRG, CNRS UMR 7586, Université de Paris, France, durand@math.univ-paris-diderot.fr; Juha Kontinen

Department of Mathematics and Statistics, University of Helsinki, Finland; Nicolas de Rugy-Altherre Université de Lorraine, France; Jouko Väänänen

Department of Mathematics and Statistics, University of Helsinki, FinlandInstitute for Logic, Language and Computation, University of Amsterdam, The

Netherlands.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

notion of conditional independence in statistics [7]. On the other hand, team semantics can be naturally generalized to

a probabilistic variant in which probabilistic independence can be taken as an atomic formula (see [1, 12] for further

details).

Dependence logic and its variants can be used to formalize and study dependence and independence notions in

various areas. For example, in the foundations of quantum mechanics, there are a range of notions of independence

playing a central role in celebrated No-Go results such as Bell’s theorem. Similarly, in the foundations of social choice

theory, there are results such as Arrow’s Theorem which can also be formalized in the team semantics setting [16, 22].

For the applications it is important to understand the complexity theoretic aspects of dependence logic and its

variants. During the past few years, these aspects have been addressed in several studies. We will next briefly discuss

some previous work. The data complexity of inclusion logic is sensitive to the choice between the two main variants

of team semantics: under the so-called lax semantics it is equivalent to positive greatest fixed point logic (GFP
+
) and

captures PTIME over finite (ordered) structures [5]. Recently a fragment of inclusion logic that captures NL has been

identified in [11]. The same article also exhibits surprisingly simple formulas of inclusion logic whose data complexity

is NL and P-complete (see equations (2) and (3)). On the other hand, under the strict semantics, inclusion logic is

equivalent to ESO (existential second order logic) and hence captures NP [4].

In [2] the fragment of dependence logic allowing only sentences in which dependence atoms of arity at most 𝑘 may

appear (atoms =(𝑥1, . . . , 𝑥𝑛) satisfying 𝑛 ≤ 𝑘 + 1) was shown to correspond to the 𝑘-ary fragment ESO𝑓 (𝑘-ary) of ESO
in which second-order quantification is restricted to at most 𝑘-ary functions and relations. Several similar results have

been obtained also for independence and inclusion logic, e.g., in [4, 13, 23, 24].

The combined complexity of the model-checking problem of dependence logic, and many of its variants, was shown

to be NEXPTIME-complete [9]. On the other hand, the satisfiability problem for the two variable fragment of dependence

logic (and many of its variants) was shown to be NEXPTIME-complete in [19, 20]. Furthermore, during the past few

years, the complexity aspects of propositional and modal logics in team semantics have been also systematically studied

(see [15, 21] and the references therein).

The starting point for the present work are the following results of [18] showing that the non-classical interpretation

of disjunction in team semantics makes the model-checking of certain quantifier-free formulas very complicated. Define

𝜙1 and 𝜙2 as follows:

(1) 𝜙1 is the formula =(𝑥,𝑦) ∨ =(𝑢, 𝑣), and
(2) 𝜙2 is the formula =(𝑥,𝑦) ∨ =(𝑢, 𝑣) ∨ =(𝑢, 𝑣).

Surprisingly, the data complexity of the model-checking problem of𝜙1 and𝜙2 are already NL-complete and NP-complete,

respectively. In [18] it was also shown that model-checking for 𝜙 ∨𝜓 where 𝜙 and 𝜓 are 2-coherent quantifier-free

formulas of dependence logic is always in NL. A formula 𝜙 is called 𝑘-coherent if, for all 𝔄 and 𝑋 , 𝔄 |=𝑋 𝜙 , if and only

if, 𝔄 |=𝑌 𝜙 for all 𝑌 ⊆ 𝑋 such that |𝑌 | = 𝑘 . Note that the left-to-right implication is always true due to the downwards

closure property of dependence logic formulas. The downwards closure property also implies that, for dependence

logic formulas, the strict and the lax semantics are equivalent. For independence and inclusion logic formulas this is not

the case.

In this article our goal is to shed light on the tractability frontier of data complexity of dependence, independence,

and inclusion logic formulas under both strict and lax team semantics. In order to state our results, we define a new

syntactic measure called the disjunction-width d∨ (𝜙) of a formula 𝜙 . Our results show that, for quantifier-free formulas

𝜙 of dependence logic, the data complexity of model-checking is in NL if d∨ (𝜙) ≤ 2. Surprisingly, for independence

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 3

logic the case of quantifier-free formulas turns out to be more fine-grained. In particular, we exhibit a quantifier-free

formula with d∨ (𝜙) ≤ 2 whose data-complexity is NP-complete and also identify a more restricted fragment with data

complexity in NL. For quantified formulas, the complexity is shown to be NP-complete already with simple formulas

constructed in terms of existential quantification and conjunction in the empty non-logical vocabulary.

For inclusion logic, we show that model-checking can be reduced to the satisfiability problem of dual-Horn propo-

sitional formulas. While interesting in its own right, this also provides an alternative proof for the fact (see [5]) that

the data complexity of inclusion logic is in PTIME, and is also analogous to the classical result of Grädel on the

Horn fragment of second-order logic [8]. We also show that, under the strict semantics, the tractability frontier of

model-checking of (both quantifier-free and quantified) inclusion logic formulas becomes similar to that of dependence

and independence logic.

2 PRELIMINARIES

In this section we briefly discuss the basic definitions and results needed in this article.

Definition 1. Let 𝔄 be a structure with domain 𝐴, and 𝑉 = {𝑥1, . . . , 𝑥𝑘 } be a finite (possibly empty) set of variables.

• A team 𝑋 of 𝔄 with domain Dom(𝑋) = 𝑉 is a finite set of assignments 𝑠 : 𝑉 → 𝐴.

• For a tuple 𝑥 = (𝑥1, . . . , 𝑥𝑛), where 𝑥𝑖 ∈ 𝑉 , 𝑋 (𝑥) := {𝑠 (𝑥) : 𝑠 ∈ 𝑋 } is the 𝑛-ary relation of 𝐴, where 𝑠 (𝑥) :=
(𝑠 (𝑥1), . . . , 𝑠 (𝑥𝑛)).

• For𝑊 ⊆ 𝑉 , 𝑋 ↾𝑊 denotes the team obtained by restricting all assignments of 𝑋 to𝑊 .

• The set of free variables of a formula 𝜙 is defined as in first-order logic, taking into account that free variables

may arise also from dependence, independence and inclusion atoms, and is denoted by Fr(𝜙).

Wewill consider two variants of the semantics called the strict and the original semantics given in [25] is a combination

of these variants (with the lax disjunction and the strict existential quantifier). For dependence logic formulas, the two

variants of the semantics are easily seen to be equivalent, but for independence and inclusion logic this is not the case.

We first define the lax team semantics for first-order formulas in negation normal form. Below 𝔄 |=𝑠 𝛼 refers to the

satisfaction in first-order logic, and 𝑠 (𝑚/𝑥) is the assignment such that 𝑠 (𝑚/𝑥) (𝑥) =𝑚, and 𝑠 (𝑚/𝑥) (𝑦) = 𝑠 (𝑦) for 𝑦 ≠ 𝑥 .

The power set of a set 𝐴 is denoted by P(𝐴).

Definition 2. Let 𝔄 be a structure, 𝑋 be a team of 𝐴, and 𝜙 be a first-order formula such that Fr(𝜙) ⊆ Dom(𝑋).

lit: For a first-order literal 𝛼 , 𝔄 |=𝑋 𝛼 if and only if, for all 𝑠 ∈ 𝑋 , 𝔄 |=𝑠 𝛼 .
∨: 𝔄 |=𝑋 𝜓 ∨ 𝜃 if and only if, there are 𝑌 and 𝑍 such that 𝑌 ∪ 𝑍 = 𝑋 , 𝔄 |=𝑌 𝜓 and 𝔄 |=𝑍 𝜃 .
∧: 𝔄 |=𝑋 𝜓 ∧ 𝜃 if and only if, 𝔄 |=𝑋 𝜓 and 𝔄 |=𝑋 𝜃 .

∃: 𝔄 |=𝑋 ∃𝑥𝜓 if and only if, there exists a function 𝐹 : 𝑋 → P(𝐴) \ {∅} such that 𝔄 |=𝑋 (𝐹/𝑥) 𝜓 , where

𝑋 (𝐹/𝑥) = {𝑠 (𝑚/𝑥) : 𝑠 ∈ 𝑋,𝑚 ∈ 𝐹 (𝑠)}.
∀: 𝔄 |=𝑋 ∀𝑥𝜓 if and only if, 𝔄 |=𝑋 (𝐴/𝑥) 𝜓 , where 𝑋 (𝐴/𝑥) = {𝑠 (𝑚/𝑥) : 𝑠 ∈ 𝑋,𝑚 ∈ 𝐴}.

A sentence 𝜙 is true in 𝔄 (abbreviated 𝔄 |= 𝜙) if 𝔄 |={∅} 𝜙 . Sentences 𝜙 and 𝜙 ′ are equivalent, 𝜙 ≡ 𝜙 ′, if for all models

𝔄, 𝔄 |= 𝜙 ⇔ 𝔄 |= 𝜙 ′.

In the Strict Semantics, the semantic rule for disjunction is modified by adding the requirement 𝑌 ∩ 𝑍 = ∅, and the

clause for the existential quantifier is replaced by

𝔄 |=𝑋 ∃𝑥𝜓 if and only if, there exists a function 𝐻 : 𝑋 → 𝐴 such that 𝔄 |=𝑋 (𝐻/𝑥) 𝜓 , where 𝑋 (𝐻/𝑥) =

{𝑠 (𝐻 (𝑠)/𝑥) : 𝑠 ∈ 𝑋 }.
Manuscript submitted to ACM

4 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

The meaning of first-order formulas is invariant under the choice between the strict and the lax semantics. First-order

formulas satisfy what is known as the flatness property: 𝔄 |=𝑋 𝜙 , if and only if, 𝔄 |=𝑠 𝜙 for all 𝑠 ∈ 𝑋 . Next we will give
the semantic clauses for the new dependency atoms:

Definition 3. • Let 𝑥 be a tuple of variables and let 𝑦 be another variable. Then =(𝑥,𝑦) is a dependence atom, with

the semantic rule

𝔄 |=𝑋 =(𝑥,𝑦) if and only if for all 𝑠, 𝑠 ′ ∈ 𝑋 , if 𝑠 (𝑥) = 𝑠 ′(𝑥), then 𝑠 (𝑦) = 𝑠 ′(𝑦);
• Let 𝑥 ,𝑦, and 𝑧 be tuples of variables (not necessarily of the same length). Then 𝑥 ⊥𝑦 𝑧 is a conditional independence

atom, with the semantic rule

𝔄 |=𝑋 𝑥 ⊥𝑦 𝑧 if and only if for all 𝑠, 𝑠 ′ ∈ 𝑋 such that 𝑠 (𝑦) = 𝑠 ′(𝑦), there exists an assignment 𝑠 ′′ ∈ 𝑋 such that

𝑠 ′′(𝑥𝑦𝑧) = 𝑠 (𝑥𝑦)𝑠 ′(𝑧).
Furthermore, when 𝑧 is empty, we write 𝑥⊥𝑦 as a shorthand for 𝑥 ⊥𝑧 𝑦, and call it a pure independence atom;

• Let 𝑥 and 𝑦 be two tuples of variables of the same length. Then 𝑥 ⊆ 𝑦 is an inclusion atom, with the semantic rule

𝔄 |=𝑋 𝑥 ⊆ 𝑦 if and only if for all 𝑠 ∈ 𝑋 there exists a 𝑠 ′ ∈ 𝑋 such that 𝑠 ′(𝑦) = 𝑠 (𝑥).

The formulas of dependence logic, D, are obtained by extending the syntax of FO by dependence atoms. The

semantics of D-formulas is obtained by extending Definition 2 by the semantic rule defined above for dependence atoms.

Independence logic, FO(⊥c), and inclusion logic, FO(⊆), are defined analogously using independence and inclusion

atoms, respectively.

It is easy to see that the flatness property is lost immediately when FO is extended by any of the atoms defined above.

On the other hand, it is straightforward to check that all D-formulas satisfy the following strong downwards closure

property: if 𝔄 |=𝑋 𝜙 and 𝑌 ⊆ 𝑋 , then 𝔄 |=𝑌 𝜙 . Another basic property of logics in team semantics is called locality:

Proposition 4 (Locality). Let 𝜙 be a formula of any of the logics D, FO(⊥c) or FO(⊆). Then, under the lax semantics, for

all structures 𝔄 and teams 𝑋 :

𝔄 |=𝑋 𝜙 iff 𝔄 |=𝑋↾Fr(𝜙) 𝜙.

Under the strict semantics locality holds only for dependence logic formulas (see [3] for details).

In this article we study the data complexity of model-checking of dependence, independence, and inclusion logic

formulas. In other words, for a fixed formula 𝜙 of one of the aforementioned logics, we study the complexity of the

following model-checking problem: given a finite structure 𝔄 and a team 𝑋 , decide whether 𝔄 |=𝑋 𝜙 . Note that when

we are working with the lax semantics, we may assume without loss of generality that the domain of 𝑋 is exactly Fr(𝜙).
If not explicitly mentioned otherwise, all results are valid under both strict and lax semantics. We assume that the reader

is familiar with the basics of computational complexity theory such as NP-completeness and the log-space bounded

classes L and NL.

2.1 Complexity classes and satisfiability problems

In the paper, we will make use of some well-known computational problems whose complexity is recalled here

(unless specified all proofs can be found in [6]). We suppose the reader familiar with basic complexity classes such

as L (logarithmic space), NL (non deterministic logarithmic space), PTIME (polynomial time), NP (non deterministic

polynomial time).

Let 𝑘 ∈ N, a propositional formula is in 𝑘-cnf if it is in conjunctive normal form with clauses of length at most 𝑘 . It

is positive, if it equivalent to a formula without negation.

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 5

It is well known that, 𝑘-sat the satisfiability problem for 𝑘-cnf formulas is NP-complete for 𝑘 ≥ 3 and NL-complete

for 𝑘 = 2. horn-sat (resp. dual-horn-sat) is the satisfiability problem of cnf formulas with at most one positive (resp.

negative) literal per clause. This problem is known to be PTIME-problem.

Given a positive 3-cnf formula, deciding whether 𝜙 is satisfiable such that exactly one variable is set to true in each

clause is also known to be NP-complete. This problem is called 1-in-3-sat.

3 DEPENDENCE AND INDEPENDENCE LOGICS

In this section we consider the complexity of model-checking for quantifier-free and quantified formulas of dependence

and independence logic.

3.1 The case of quantifier-free formulas

In this section we consider the complexity of model-checking for quantifier-free formulas of dependence and indepen-

dence logic. For dependence logic the problem has already been essentially settled in [18]. The following theorems

delineate a clear barrier between tractability and intractability for quantifier-free dependence logic formulas.

Theorem 5 ([18]). The model checking problem for the formula

=(𝑥,𝑦) ∨ =(𝑧, 𝑣)

is NL-complete. More generally, the model-checking for 𝜙 ∨𝜓 where 𝜙 and𝜓 are 2-coherent quantifier-free formulas of D is

always in NL.

When two disjunctions can be used, the model checking problem becomes intractable as shown by the following

results.

Theorem 6 ([18]). The model checking problem for the formula

=(𝑥,𝑦) ∨ =(𝑧, 𝑣) ∨ =(𝑧, 𝑣)

is NP-complete.

In order to give a syntactic generalization of Theorem 5, we define next the disjunction-width of a formula.

Definition 7. Let 𝜎 be a relational signature. The disjunction-width of a 𝜎-formula 𝜙 , denoted d∨ (𝜙), is defined as

follows:

d∨ (𝜙) =



1 if 𝜙 is 𝑦 ⊥𝑥 𝑧 or =(𝑥,𝑦) or 𝑥 ⊆ 𝑦
0 if 𝜙 is 𝑅(𝑥) or ¬𝑅(𝑥), for 𝑅 ∈ 𝜎 ∪ {=}
max(d∨ (𝜙1), d∨ (𝜙2)) if 𝜙 is 𝜙1 ∧ 𝜙2
d∨ (𝜙1) + d∨ (𝜙2) if 𝜙 is 𝜙1 ∨ 𝜙2
d∨ (𝜙1) if 𝜙 is ∃𝑥𝜙1 or ∀𝑥𝜙1 .

The next theorem is a syntactically defined analogue of Theorem 5.

Proposition 8. The data complexity of model-checking of quantifier-free D-formulas 𝜙 with d∨ (𝜙) ≤ 2 is in NL.

Proof. We will first show that a formula 𝜙 with d∨ (𝜙) = 1 is 2-coherent. This follows by induction using the

following facts [18]:

• dependence atoms are 2-coherent, and first-order formulas are 1-coherent,

Manuscript submitted to ACM

6 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

• if𝜓 is 𝑘-coherent, then𝜓 ∨ 𝜙 is also 𝑘-coherent assuming 𝜙 is first-order,

• if𝜓 is 𝑘-coherent and 𝜙 is 𝑘 ≤ 𝑗-coherent, then𝜓 ∧ 𝜙 is 𝑗-coherent.

It is also straightforward to check that the data complexity of a formula 𝜙 with d∨ (𝜙) = 1 is in L (the formula 𝜙 can

be expressed in FO assuming the team 𝑋 with domain 𝑥 = Fr(𝜙) is represented by the 𝑛-ary relation 𝑋 (𝑥)). We will

complete the proof using induction on 𝜙 with d∨ (𝜙) = 2. Suppose that 𝜙 = 𝜓 ∨ 𝜂, where d∨ (𝜓) = d∨ (𝜂) = 1. Then the

claim follows by Theorem 5. The case 𝜙 = 𝜓 ∧ 𝜂 is also clear. Suppose finally that 𝜙 = 𝜓 ∨ 𝜂, where 𝜂 is first-order. Note

that by downward closure and flatness

𝔄 |=𝑋 𝜙 ⇔ 𝔄 |=𝑋 ′ 𝜓,

where 𝑋 ′ = {𝑠 ∈ 𝑋 | 𝔄 ̸ |=𝑠 𝜂}. Now since 𝑋 ′
can be computed in L, the model-checking problem of 𝜙 can be decided in

NL by the induction assumption for𝜓 . □

In the rest of this section we examine potential analogues of Theorems 5 and 6 for independence logic. It is well-known

that the dependence atom =(𝑥,𝑦) is logically equivalent to the independence atom 𝑦 ⊥𝑥 𝑦. Hence, the following is

immediate from Theorem 6.

Corollary 9. The model checking problem for the formula

𝑦 ⊥𝑥 𝑦 ∨ 𝑣 ⊥𝑧 𝑣 ∨ 𝑣 ⊥𝑧 𝑣

is NP-complete.

For independence logic, the situation is not as clear as for dependence logic concerning tractability. In the following

we will exhibit a fragment of independence logic whose data complexity is in NL and which is in some sense the

maximal such fragment.

Definition 10. The Boolean closure of an independence atom by first-order formulas, denoted BC(⊥, FO), is defined
as follows:

• Any independence atom 𝑥 ⊥𝑦 𝑧 is in BC(⊥, FO).
• If 𝜙 ∈ BC(⊥, FO), then for any formula 𝜙 ∈ FO, 𝜙 ∧ 𝜙 and 𝜙 ∨ 𝜙 are in BC(⊥, FO).

Let 𝜙 ∈ BC(⊥, FO). Up to permutation of disjunction and conjunction, 𝜙 can be put into the following normalized

form:

𝜙 ≡ ((. . . ((𝑥 ⊥𝑧 𝑦 ∧ 𝜙1) ∨𝜓1) ∧ . . .) ∧ 𝜙𝑘) ∨𝜓𝑘) . (1)

For a structure 𝔄, ℭ+
:=

⋂𝑘
𝑖=1 𝜙𝑖 (𝔄) and ℭ−

:=
⋃𝑘

𝑖=1𝜓𝑖 (𝔄), where 𝜙𝑖 (𝔄) := {𝑠 | 𝔄 |=𝑠 𝜙𝑖 }.
The next lemma gives a combinatorial criterion for the satisfaction of BC(⊥, FO) formulas.

Lemma 11. For all 𝜙 ∈ BC(⊥, FO) of the form (1), structures 𝔄, and teams 𝑋 the following are equivalent:

(A) 𝔄 |=𝑋 𝜙 .

(B) (1) and (2) below hold:

(1) For all 𝑠 ∈ 𝑋 either 𝑠 ∈ [((..(𝜓1 ∧ 𝜙2) ∨ . . .) ∧ 𝜙𝑘) ∨𝜓𝑘] (𝔄) or 𝑠 ∈ ℭ+ \ ℭ−
.

(2) For all 𝑠1, 𝑠2 ∈ 𝑋 such that 𝑠1, 𝑠2 ∈ ℭ+ \ ℭ−
, and 𝑠1 (𝑧) = 𝑠2 (𝑧), there exists 𝑠3 ∈ 𝑋 ∩ ℭ+

, such that: 𝑠3 (𝑧) =
𝑠1 (𝑧), 𝑠3 (𝑥) = 𝑠1 (𝑥) and 𝑠3 (𝑦) = 𝑠2 (𝑦).

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 7

Assignments 𝑠1, 𝑠2 as in (2) will be called compatible for formula 𝜙 and team 𝑋 . Furthermore, 𝑠3 as in (2) will be called a

witness of 𝑠1, 𝑠2 for formula 𝜙 .

Proof. Note that (A) is equivalent to the existence of subteams 𝑋 ′
and 𝑌𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , of 𝑋 such that

(i)𝑘 𝑋 = 𝑋 ′ ∪ 𝑌1 ∪ . . . ∪ 𝑌𝑘 ,
(ii)𝑘 𝔄 |=𝑌𝑖 𝜓𝑖 , for 1 ≤ 𝑖 ≤ 𝑘 ,
(iii)𝑘 𝔄 |=𝑋 ′∪⋃

1≤ 𝑗<𝑖 𝑌𝑗
𝜙𝑖 , for 1 ≤ 𝑖 ≤ 𝑘

(iv)𝑘 𝔄 |=𝑋 ′ 𝑥 ⊥𝑧 𝑦.

This can be proved by induction on 𝑘 as follows: The claim is clearly true for 𝑘 = 1. Suppose it holds for 𝑘 − 1, where

𝑘 > 1. We know 𝜙 is equivalent to

(((. . . ((𝑥 ⊥𝑧 𝑦 ∧ 𝜙1) ∨𝜓1) ∧ . . .) ∧ 𝜙𝑘) ∨𝜓𝑘 .

Hence 𝔄 |=𝑋 𝜙 if and only if 𝑋 = 𝑍 ∪ 𝑌𝑘 such that

𝔄 |=𝑍 (((. . . ((𝑥 ⊥𝑧 𝑦 ∧ 𝜙1) ∨𝜓1) ∧ . . .) ∧ 𝜙𝑘−1) ∨𝜓𝑘−1) ∧ 𝜙𝑘

and 𝔄 |=𝑌𝑘 𝜓𝑘 . In particular, 𝔄 |=𝑍 𝜙𝑘 and

𝔄 |=𝑍 ((. . . ((𝑥 ⊥𝑧 𝑦 ∧ 𝜙1) ∨𝜓1) ∧ . . .) ∧ 𝜙𝑘−1) ∨𝜓𝑘−1 .

By Induction Hypothesis there are subteams 𝑋 ′
and 𝑌𝑖 , 1 ≤ 𝑖 < 𝑘 , of 𝑍 such that (i)𝑘−1-(iv)𝑘−1 hold with 𝑋 replaced by

𝑍 . Now the sequence 𝑋 ′, 𝑌1, . . . , 𝑌𝑘 satisfies (i)𝑘 -(iv)𝑘 and is therefore as required for the induction claim. The converse

is similar.

(A) implies (B): To prove (1), suppose 𝑠 ∈ 𝑋 . Thus 𝑠 ∈ 𝑋 ′ ∪ 𝑌1 ∪ . . . ∪ 𝑌𝑘 , where 𝑋 ′, 𝑌1, . . . , 𝑌𝑘 are as defined earlier.

Suppose

𝑠 ∉ [((..(𝜓1 ∧ 𝜙2) ∨ . . .) ∧ 𝜙𝑘) ∨𝜓𝑘] (𝔄) .

Then 𝔄 ̸ |=𝑠 𝜓𝑘 , whence 𝑠 ∉ 𝑌𝑘 . Hence 𝑠 ∈ 𝑋 ′ ∪ 𝑌1 ∪ . . . ∪ 𝑌𝑘−1, whence 𝔄 |=𝑠 𝜙𝑘 , and therefore

𝑠 ∉ [((..(𝜓1 ∧ 𝜙2) ∨ . . .) ∧ 𝜙𝑘−1) ∨𝜓𝑘−1] (𝔄) .

Eventually, step by step, we verify 𝑠 ∈ ℭ+ \ ℭ−
and hence (1) is proved.

To prove (2), suppose 𝑠1, 𝑠2 ∈ 𝑋 ∩ (ℭ+ \ ℭ−) such that 𝑠1 (𝑧) = 𝑠2 (𝑧). By (i)𝑘 -(iii)𝑘 , 𝑠1, 𝑠2 ∈ 𝑋 ′
. By (iv)𝑘 there is a

witness as required.

(B) implies (A): Let us denote by 𝑋 ′ ⊆ (𝑋 ∩ ℭ+) a minimal superset of 𝑋 ∩ (ℭ+ \ ℭ−) satisfying 𝑥 ⊥𝑧 𝑦. Such a set

𝑋 ′
exists by the assumption (2). Then, for 1 ≤ 𝑖 ≤ 𝑘 , define

𝑌𝑖 = (𝑋 \ 𝑋 ′) ∩ [𝜓𝑖 ∧
∧

𝑖< 𝑗≤𝑘
𝜙 𝑗] (𝔄).

Suppose 𝑠 ∈ 𝑋 but 𝑠 ∉ (ℭ+ \ ℭ−) ⊆ 𝑋 ′
. By (1),

𝑠 ∈ [((..(𝜓1 ∧ 𝜙2) ∨ . . .) ∧ 𝜙𝑘) ∨𝜓𝑘] (𝔄) .

If 𝑠 ∉ 𝑌𝑘 , then

𝑠 ∈ [((..(𝜓1 ∧ 𝜙2) ∨ · · · ∨𝜓𝑘−1) ∧ 𝜙𝑘)] (𝔄).
Manuscript submitted to ACM

8 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

Hence 𝔄 |=𝑠 𝜙𝑘 . If 𝑠 ∉ 𝑌𝑘−1, then

𝑠 ∈ [((..(𝜓1 ∧ 𝜙2) ∨ · · · ∨𝜓𝑘−2) ∧ 𝜙𝑘−1)] (𝔄).

Hence 𝔄 |=𝑠 𝜙𝑘−1. Continuing this way we see that if 𝑠 ∉ 𝑌1 ∪ . . . 𝑌𝑘 , then 𝑠 ∈ ℭ+ \ ℭ−
, contrary to the assumption

𝑠 ∉ ℭ+ \ ℭ−
. We have proved (i)𝑘 . Clearly (ii)𝑘 and (iii)𝑘 hold. Finally, (iv)𝑘 holds by the definition of 𝑋 ′

. □

Theorem 12. The data complexity of any 𝜙 ∈ BC(⊥, FO) is in L. This is true both in lax and in strict semantics.

Proof. It is well known that checking whether a tuple 𝑠 belongs to the query result 𝜙 (𝔄) of a first-order formula can

be done in logarithmic space [17]. Therefore, by the characterization of Lemma 11, deciding whether 𝔄 |=𝑋 𝜙 is also in

L. For the strict semantics, it suffices to note that the proof of Lemma 11 goes through also under the strict semantics.

We can use the fact that the formulas 𝜙𝑖 have the downwards closure property to force the subteams 𝑋 ′, 𝑌1, .., 𝑌𝑘 in the

decomposition of 𝑋 to be pairwise disjoint. □

Interestingly the analogue of Lemma 11 does not hold for inclusion atoms; It was recently shown in [11] that the

data complexity of the formula

𝑥 ⊆ 𝑦 ∨ 𝑢 = 𝑣 (2)

is already NL-complete and for

(𝑥 ⊆ 𝑧 ∧ 𝑦 ⊆ 𝑧) ∨ 𝑢 = 𝑣 (3)

the problem becomes P-complete. These results hold under both strict and lax semantics as the other disjunct in both

formulas is first-order and satisfies the downwards closure property. Furthermore, in the last section of this article we

construct a quantifier free inclusion logic formula with NP-complete data complexity under the strict semantics.

Theorem 13. The data complexity of formulae of the form 𝜙1 ∨ 𝜙2 with 𝜙1, 𝜙2 ∈ BC(⊥, FO) is in NL under the lax

semantics.

Proof. The proof is given by a log-space reduction to the NL-complete problem 2-sat. Given a structure 𝔄 and a

team 𝑋 we construct a 2-cnf propositional formula Φ such that:

𝔄 |=𝑋 𝜙1 ∨ 𝜙2 ⇐⇒ Φ is satisfiable. (4)

Recall that if a team 𝑋 is such that 𝔄 |=𝑋 𝜙1 ∨ 𝜙2 then, there exists 𝑌, 𝑍 ⊆ 𝑋 such that 𝑌 ∪ 𝑍 = 𝑋 and 𝔄 |=𝑌
𝜙1 and 𝔄 |=𝑍 𝜙2. For each assignment 𝑠 ∈ 𝑋 , we introduce two Boolean variables 𝑌 [𝑠] and 𝑍 [𝑠]. Our Boolean formula

Φ will be defined below with these 2|𝑋 | variables the set of which is denoted by Var(Φ). It will express that the set of
assignments must split into 𝑌 and 𝑍 but also make sure that incompatible (see Lemma 11) assignments do not appear in

the same subteam.

For each pair 𝑠𝑖 , 𝑠 𝑗 that are incompatible for 𝜙1 on team 𝑋 , one adds the 2-clause: ¬𝑌 [𝑠𝑖] ∨ ¬𝑌 [𝑠 𝑗]. The conjunction
of these clauses is denoted by 𝐶𝑌 . Similarly, for each pair 𝑠𝑖 , 𝑠 𝑗 that are incompatible for 𝜙2 on team 𝑋 , one adds the

clause: ¬𝑍 [𝑠𝑖] ∨ ¬𝑍 [𝑠 𝑗] and call 𝐶𝑍 the conjunction of these clauses.

Finally, the construction of 𝜙 is completed by adding the following conjunctions:

𝐶0
:=

∧
{𝑌 [𝑠] ∨ 𝑍 [𝑠] : 𝑠 ∈ 𝑋 }

𝐶1
:=

∧
{¬𝑌 [𝑠] : 𝑠 fails (B,1) of Lemma 11 for 𝜙1}

𝐶2
:=

∧
{¬𝑍 [𝑠] : 𝑠 fails (B,1) of Lemma 11 for 𝜙2}

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 9

It is not hard to see that the formula

Φ ≡
∧

0≤𝑖≤2
𝐶𝑖 ∧𝐶𝑌 ∧𝐶𝑍

can be constructed deterministically in log-space. It remains to show that the equivalence (4) holds.

Assume that the left-hand side of the equivalence holds. Then, there exists 𝑌, 𝑍 ⊆ 𝑋 such that 𝑌 ∪ 𝑍 = 𝑋 , 𝔄 |=𝑌 𝜙1
and 𝔄 |=𝑍 𝜙2. We construct a propositional assignment 𝐼 : Var(Φ) → {0, 1} as follows. For all 𝑠 ∈ 𝑌 , we set 𝐼 (𝑌 [𝑠]) = 1

and for all 𝑠 ∈ 𝑍 , we set similarly 𝐼 (𝑍 [𝑠]) = 1. It is now immediate that the all of the clauses in

∧
0≤𝑖≤2𝐶

𝑖
are satisfied

by 𝐼 .

Let us consider a clause ¬𝑌 [𝑠𝑖] ∨¬𝑌 [𝑠 𝑗] for an incompatible pair 𝑠𝑖 , 𝑠 𝑗 . Then, 𝐼 (𝑌 [𝑠𝑖]) = 0 or 𝐼 (𝑌 [𝑠 𝑗]) = 0 must hold.

For a contradiction, suppose that 𝐼 (𝑌 [𝑠𝑖]) = 𝐼 (𝑌 [𝑠 𝑗]) = 1. Then since 𝔄 |=𝑌 𝜙1 holds, by construction 𝑠𝑖 and 𝑠 𝑗 must be

compatible for 𝜙1. Hence we get a contradiction and may conclude that 𝐼 satisfies ¬𝑌 [𝑠𝑖] ∨ ¬𝑌 [𝑠 𝑗]. The situation is

similar for each clause ¬𝑍 [𝑠𝑖] ∨ ¬𝑍 [𝑠 𝑗].
Let us then assume that Φ is satisfiable, and let 𝐼 : Var(Φ) → {0, 1} be a satisfying assignment for Φ. Since 𝐼 |= 𝐶0

,

we get that 𝐼 (𝑌 [𝑠]) = 1 or 𝐼 (𝑍 [𝑠]) = 1 for all 𝑠 ∈ 𝑋 . Let

𝑋𝑌 = {𝑠 : 𝐼 (𝑌 [𝑠]) = 1} and 𝑋𝑍 = {𝑠 : 𝐼 (𝑍 [𝑠]) = 1}.

Now 𝑋𝑌 ∪ 𝑋𝑍 = 𝑋 and clauses 𝐶1
(𝐶2

) ensure that each 𝑠 ∈ 𝑋𝑌 (𝑠 ∈ 𝑋𝑍) satisfies condition (B,1) of Lemma 11.

We will next show how the sets 𝑋𝑌 and 𝑋𝑍 can be extended to sets 𝑌 and 𝑍 satisfying also condition (B,2) of Lemma

11 and consequently 𝔄 |=𝑌 𝜙1 and 𝔄 |=𝑍 𝜙2. Note first that, since 𝐼 satisfies Φ, for all 𝑠1, 𝑠2 ∈ 𝑋𝑌 , Φ cannot have a

clause of the form ¬𝑌 [𝑠1] ∨ ¬𝑌 [𝑠2], and hence 𝑠1, 𝑠2 are compatible for 𝜙1. Analogously we see that all 𝑠1, 𝑠2 ∈ 𝑋𝑍 are

compatible for 𝜙2. We will define the sets 𝑌 and 𝑍 incrementally by first initializing them to 𝑋𝑌 and 𝑋𝑍 , respectively.

Note that even if 𝑋𝑌 ∪ 𝑋𝑍 = 𝑋 , no decision has been made regarding the membership of assignments 𝑠 in 𝑌 (resp.

𝑍) such that 𝐼 (𝑌 [𝑠]) = 0 (resp. 𝐼 (𝑍 [𝑠]) = 0). Let us first consider 𝑌 . Until no changes occur, we consider all pairs

𝑠1, 𝑠2 ∈ 𝑌 ∩ (ℭ+ \ ℭ−) (where the sets ℭ+
and ℭ−

are taken with respect to 𝜙1) such that 𝑠1 (𝑧) = 𝑠2 (𝑧) and add into

𝑌 (if they are not already in) all tuples 𝑠3 such that 𝑠3 is a witness for the pair (𝑠1, 𝑠2) regarding formula 𝜙1. Since by

construction 𝑠1, 𝑠2 are compatible then at least one such 𝑠3 exists (but may be initially outside of 𝑌). We prove below

that this strategy is safe. First of all, it is easily seen that any pair among {𝑠1, 𝑠2, 𝑠3} is compatible for 𝜙1. Therefore, it

remains to show that the new assignments 𝑠3 are compatible with every other element 𝑠 added to 𝑌 so far. Suppose this

is not the case and that there exists 𝑠 ∈ (𝑌 ∩ (ℭ+ \ ℭ−)) \ {𝑠1, 𝑠2} such that 𝑠3 and 𝑠 are incompatible for 𝜙1. Note that

for incompatibility we must have 𝑠3 (𝑧) = 𝑠 (𝑧). Since 𝑠1, 𝑠2, and 𝑠 are in 𝑌 they are all pairwise compatible. Hence, there

exists 𝑡1 such that 𝑡1 is a witness for the pair (𝑠1, 𝑠). Then, 𝑡1 (𝑥) = 𝑠1 (𝑥) = 𝑠3 (𝑥), and 𝑡1 (𝑦) = 𝑠 (𝑦). Consequently, 𝑡1
is also a witness for 𝑠3, 𝑠 hence, 𝑠3 and 𝑠 are compatible which is a contradiction. Therefore, the assignment 𝑠3 can be

safely added to 𝑌 . The set 𝑍 is defined analogously. By the construction, the sets 𝑌 and 𝑍 satisfy conditions (B,1) and

(B,2) of Lemma 11 for 𝜙1 and 𝜙2, respectively, and hence it holds that 𝔄 |=𝑌 𝜙1 and 𝔄 |=𝑍 𝜙2.

□

It is worth noting that the last step of the proof of the above theorem does not seem to work under strict semantics.

It is an open question whether Theorem 13 holds under the strict semantics.

We will next show that a slight relaxation on the form of the formula immediately yields intractability of model-

checking.

Theorem 14. There exists a formula 𝜙1 ∨ 𝜙2 the model-checking problem of which is NP-complete and such that:

Manuscript submitted to ACM

10 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

• 𝜙1 ∈ BC(⊥, FO) and
• 𝜙2 is the conjunction of two independence atoms.

Proof. Define 𝜙1 := 𝑤 ≠ 1 ∧ 𝑥 ⊥𝑡 𝑦, 𝜙2 := 𝑐1 ⊥𝑐 𝑐2 ∧ 𝑥 ⊥𝑧 𝑦. We will reduce 3-SAT to the model-checking

problem of 𝜙1 ∨ 𝜙2. Let Φ =
∧𝑛

𝑖=1𝐶𝑖 be a 3-SAT instance. Each 𝐶𝑖 = 𝑝𝑖1 is of the form 𝑝𝑖2 ∨ 𝑝𝑖3 with 𝑝𝑖1 , 𝑝𝑖2 , 𝑝𝑖3 ∈
{ 𝑣1, . . . , 𝑣𝑚,¬𝑣1, . . . ,¬𝑣𝑚 }. To this instance we associate a structure 𝔄 of the empty vocabulary and a team 𝑋 on the

variables𝑤, 𝑐, 𝑐1, 𝑐2, 𝑧, 𝑥,𝑦, 𝑡 . The the universe of the structure 𝔄 is composed of {1, . . . ,𝑚},𝑚 new elements 𝑎1, . . . , 𝑎𝑚

and of { 𝑣1, . . . , 𝑣𝑚,¬𝑣1, . . . ,¬𝑣𝑚 } ∪ { 0, 1 }. For each clause 𝐶𝑖 we add in 𝑋 the 6 assignments displayed on the left

below, and for each variable 𝑣𝑖 , we add to 𝑋 the 2 assignments on the right:

𝑤 𝑐 𝑐1 𝑐2 𝑧 𝑥 𝑦 𝑡

0 𝑖 1 1 𝑖1 𝑝𝑖1 𝑝𝑖1 𝑎6𝑖+1
0 𝑖 1 1 𝑖2 𝑝𝑖2 𝑝𝑖2 𝑎6𝑖+2
0 𝑖 1 1 𝑖3 𝑝𝑖3 𝑝𝑖3 𝑎6𝑖+3
1 𝑖 0 0 0 0 0 𝑎6𝑖+4
1 𝑖 1 0 0 0 0 𝑎6𝑖+4
1 𝑖 0 1 0 0 0 𝑎6𝑖+4

𝑤 𝑐 𝑐1 𝑐2 𝑧 𝑥 𝑦 𝑡

0 0 0 0 𝑖 𝑣𝑖 𝑣𝑖 𝑎
6(𝑛+1)+𝑖

0 0 0 0 𝑖 ¬𝑣𝑖 ¬𝑣𝑖 𝑎
6(𝑛+1)+𝑖

We will next show that Φ is satisfiable if and only if 𝔄 |=𝑋 𝜙 .

Suppose there is an assignment 𝐼 : { 𝑣1, . . . , 𝑣𝑚 } → {0, 1} that evaluates Φ to true, i.e., at least one literal in each

clause is evaluated to 1. We have to split 𝑋 into two sub-teams 𝑋 = 𝑌 ∪ 𝑍 such that 𝔄 |=𝑌 (𝑤 ≠ 1 ∧ 𝑥 ⊥𝑡 𝑦) and
𝔄 |=𝑍 (𝑐1 ⊥𝑐 𝑐2 ∧ 𝑥 ⊥𝑧 𝑦). We must put every assignment 𝑠 ∈ 𝑋 such that 𝑠 (𝑤) = 1 in 𝑍 . There are exactly three such

assignments per clause. We put in 𝑍 every assignment 𝑠 such that 𝑠 (𝑥) = 𝑣𝑖 if 𝐼 (𝑣𝑖) = 1, and 𝑠 (𝑥) = ¬𝑣𝑖 if 𝐼 (𝑣𝑖) = 0. The

other assignments are put into 𝑌 .

For each clause𝐶𝑖 , one literal 𝑝𝑖1 , 𝑝𝑖2 , 𝑝𝑖3 is assigned to 1 by 𝐼 . Then there is at least one assignment 𝑠 (𝑐, 𝑐1, 𝑐2) = (𝑖, 1, 1)
in 𝑍 . In 𝑍 , the assignments mapping 𝑐 to 𝑖 map (𝑐, 𝑐1, 𝑐2) to (𝑖, 1, 1), (𝑖, 1, 0), (𝑖, 0, 1) or (𝑖, 0, 0). Thus 𝔄 |=𝑍 𝑐1 ⊥𝑐 𝑐2.

If 𝑠1, 𝑠2 ∈ 𝑍 are such that 𝑠1 (𝑧) = 𝑠2 (𝑧) = 𝑖 , then 𝑠1 (𝑥) (analogously 𝑠2 (𝑥)) is 𝑣𝑖 if 𝐼 (𝑣𝑖) = 1, ¬𝑣𝑖 otherwise. Therefore,
𝑠1 (𝑥) = 𝑠2 (𝑥) = 𝑠1 (𝑦) = 𝑠2 (𝑦), and hence 𝔄 |=𝑍 𝑥 ⊥𝑧 𝑦 holds.

As for 𝑌 , it is immediate that 𝔄 |=𝑌 𝑤 ≠ 1. The only pair of assignments 𝑠1, 𝑠2 in 𝑋 such that 𝑠1 (𝑡) = 𝑠2 (𝑡) are
(0, 0, 0, 0, 𝑖, 𝑣𝑖 , 𝑣𝑖 , 𝑎𝑘) and (0, 0, 0, 0, 𝑖,¬𝑣𝑖 ,¬𝑣𝑖 , 𝑎𝑘), for some 𝑘 . Only one of them is in 𝑌 (𝑠1 if 𝐼 (𝑣𝑖) = 1, 𝑠2 otherwise).

Thus 𝔄 |=𝑌 𝑥 ⊥𝑡 𝑦.

Suppose then that𝑋 = 𝑌 ∪𝑍 such that𝔄 |=𝑌 (𝑤 ≠ 1 ∧ 𝑥 ⊥𝑡 𝑦) and𝔄 |=𝑍 (𝑐1 ⊥𝑐 𝑐2 ∧ 𝑥 ⊥𝑧 𝑦). Define an assignment

𝐼 of the variables of Φ by: 𝐼 (𝑣𝑖) = 1 if 𝑠𝑡
𝑖
:= (0, 0, 0, 0, 𝑖, 𝑣𝑖 , 𝑣𝑖 , 𝑎𝑘) is in 𝑍 , 𝐼 (𝑣𝑖) = 0 if 𝑠

𝑓

𝑖
:= (0, 0, 0, 0, 𝑖,¬𝑣𝑖 ,¬𝑣𝑖 , 𝑎𝑘) is

in 𝑍 . Since 𝔄 |=𝑍 𝑥 ⊥𝑧 𝑦, 𝑠
𝑓

𝑖
(𝑧) = 𝑠𝑡

𝑖
(𝑧) and because there is no 𝑠 ′ ∈ 𝑋 such that 𝑠 ′(𝑥) = 𝑠

𝑓

𝑖
(𝑥), 𝑠 ′(𝑦) = 𝑠𝑡

𝑖
(𝑦) and

𝑠 ′(𝑧) = 𝑠 𝑓
𝑖
(𝑧), for each 𝑖 at most one of 𝑠

𝑓

𝑖
, 𝑠𝑡
𝑖
can be in 𝑍 . Similarly, because 𝔄 |=𝑌 𝑥 ⊥𝑡 𝑦, only one of them can be in

𝑌 . Thus 𝐼 is indeed a function.

Since 𝔄 |=𝑍 𝑥 ⊥𝑧 𝑦 and there is no assignment in 𝑋 such that (𝑥,𝑦) ↦→ (𝑣𝑖 ,¬𝑣𝑖), every pair 𝑠1, 𝑠2 ∈ 𝑍 such that

𝑠1 (𝑧) = 𝑠2 (𝑧) = 𝑖 must have the same value of 𝑥 and 𝑦. Every assignment representing a clause in 𝑍 respects the choice

of 𝐼 . Furthermore, since 𝔄 |=𝑍 𝑐1 ⊥𝑐 𝑐2 and (𝑤, 𝑐, 𝑐1, 𝑐2) ↦→ (1, 𝑖, 0, 0), (1, 𝑖, 1, 0), (1, 𝑖, 0, 1) are in 𝑍 , (1, 𝑖, 1, 1) must be in

𝑍 , i.e., at least one assignment per clause is in 𝑍 . By the above we may conclude that 𝐼 satisfies Φ: at least one literal per

clause is evaluate to 1 by 𝐼 .

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 11

Finally it is not difficult to check that the splitting of 𝑋 into 𝑌 and 𝑍 , if possible, can be realized with disjoint 𝑌 and

𝑍 . Hence the hardness holds under both strict and lax semantics

□

It is worth noting that the formula in the previous result has disjunction-width two whereas the formula in Corollary 9

simulating dependence atoms by conditional independence atoms has width three. We will next show an analog of

these results for pure (i.e., non-conditional) independence atoms.

Theorem 15. The model checking problem is NP-complete for

𝜙 := (𝑥 ⊥ 𝑦) ∨ (𝑥 ⊥ 𝑦) ∨ (𝑥 ⊥ 𝑦) ∨ 𝑥 ≠ 𝑦.

Proof. Membership in NP is obvious. Hardness is proved by reduction from the following NP-complete problem

3-clique cover (see [6]): Given𝐺 = (𝑉𝐺 , 𝐸𝐺) a finite graph, decide if there exists a collection of disjoint triangle subgraphs
of 𝐺 , that cover the vertex set 𝑉𝐺 of 𝐺 .

So, let 𝐺 = (𝑉𝐺 , 𝐸𝐺) be a finite graph, 𝔄 = 𝑉𝐺 be a first-order structure of the empty signature, and 𝑋 the team

𝑋 = { (𝑣, 𝑣) : 𝑣 ∈ 𝑉𝐺 } ∪ { (𝑣1, 𝑣2), (𝑣2, 𝑣1) : (𝑣1, 𝑣2) ∈ 𝐸𝐺 },

where (𝑣1, 𝑣2) denotes the assignment 𝑠 with 𝑠 (𝑥) = 𝑣1 and 𝑠 (𝑦) = 𝑣2. We are going to show that 𝐺 has a 3-clique cover

if and only if 𝔄 |=𝑋 𝜙 .

x y

𝑣1 𝑣1

𝑣2 𝑣2
.
.
.

.

.

.

𝑣 |𝑉𝐺 | 𝑣 |𝑉𝐺 |
𝑣1 𝑣2

𝑣2 𝑣1

𝑣2 𝑣4

𝑣4 𝑣2
.
.
.

.

.

.

Suppose that𝐺 has a 3-clique cover, i.e., there exists𝐶1,𝐶2,𝐶3 three cliques such that𝑉𝐺 = 𝑉𝐶1
∪𝑉𝐶2

∪𝑉𝐶3
. We have

to prove 𝔄 |=𝑋 𝜙 . For 𝑖 ∈ { 1, 2, 3 }, let

𝑋𝑖 = { (𝑣, 𝑣) : 𝑣 ∈ 𝐶𝑖 } ∪ { (𝑣1, 𝑣2), (𝑣2, 𝑣1) | 𝑣1, 𝑣2 ∈ 𝐶𝑖 }

and 𝑋4 = 𝑋 \ (𝑋1 ∪ 𝑋2 ∪ 𝑋3).
Because it is a vertex cover, every assignment of the form (𝑣, 𝑣) is contained in 𝑋1 ∪ 𝑋2 ∪ 𝑋3 and not in 𝑋4, i.e.

𝔄 |=𝑋4
𝑥 ≠ 𝑦.

Let 𝑖 ∈ { 1, 2, 3 } and 𝑠, 𝑠 ′ ∈ 𝑋𝑖 be two assignments. If 𝑠 (𝑥,𝑦) = (𝑣, 𝑣) and 𝑠 ′(𝑥,𝑦) = (𝑣 ′, 𝑣 ′), then 𝑣, 𝑣 ′ ∈ 𝐶𝑖 and
there exists two assignments 𝑠1, 𝑠2 in 𝑋𝑖 such that 𝑠1 (𝑥,𝑦) = (𝑣, 𝑣 ′) and 𝑠2 (𝑥,𝑦) = (𝑣 ′, 𝑣) by construction. Similarly if

𝑠 (𝑥,𝑦) = (𝑣, 𝑣) and 𝑠 ′(𝑥,𝑦) = (𝑣1, 𝑣2), there exists in 𝑋𝑖 the assignments (𝑣, 𝑣2) and (𝑣1, 𝑣) (even if 𝑣1 = 𝑣 or 𝑣2 = 𝑣).

Finally, if 𝑠 (𝑥,𝑦) = (𝑣1, 𝑣2) and 𝑠 ′(𝑥,𝑦) = (𝑣 ′
1
, 𝑣 ′

2
), the assignments (𝑣1, 𝑣1), (𝑣2, 𝑣2), (𝑣 ′

1
, 𝑣 ′

1
), (𝑣 ′

2
, 𝑣 ′

2
) are in 𝑋𝑖 and so are

(𝑣1, 𝑣 ′
2
), (𝑣 ′

1
, 𝑣2). The above implies that 𝔄 |=𝑋𝑖

𝑥 ⊥ 𝑦.

Manuscript submitted to ACM

12 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

For the converse implication, suppose that 𝔄 |=𝑋 (𝑥 ⊥ 𝑦) ∨ (𝑥 ⊥ 𝑦) ∨ (𝑥 ⊥ 𝑦) ∨ 𝑥 ≠ 𝑦, then 𝑋 = 𝑋1 ∪𝑋2 ∪𝑋3 ∪𝑋4
such that 𝔄 |=𝑋𝑖

𝑥 ⊥ 𝑦 for 𝑖 ∈ { 1, 2, 3 } and 𝔄 |=𝑋4
𝑥 ≠ 𝑦. Let 𝐶𝑖 , for 𝑖 ∈ { 1, 2, 3 }, be the graph whose vertices are

{ 𝑣 : (𝑣, 𝑣) ∈ 𝑋𝑖 } and edges are

{ (𝑣1, 𝑣2) : (𝑣1, 𝑣2) ∈ 𝑋𝑖 and (𝑣2, 𝑣1) ∈ 𝑋𝑖 }.

Note that some 𝐶𝑖 can be empty but they form a vertex cover of 𝐺 as no assignment (𝑣, 𝑣) is in 𝑋4. If 𝑣, 𝑣 ′ ∈ 𝐶𝑖 then
(𝑣, 𝑣) and (𝑣 ′, 𝑣 ′) are in 𝑋𝑖 . By independence, (𝑣, 𝑣 ′) and (𝑣 ′, 𝑣) are also in 𝑋𝑖 . Therefore the edge (𝑣, 𝑣 ′) is in 𝐶𝑖 : 𝐶𝑖 is a
clique. Therefore, 𝐺 is covered by the three disjoint cliques 𝐶 ′

1
= 𝐶1, 𝐶

′
2
= 𝐶2 \𝐶1 and 𝐶 ′

3
= 𝐶3 \ (𝐶1 ∪𝐶2).

If we are in the strict semantics, the sets 𝑋𝑖 are disjoint and so are the cliques. If we are in lax semantic, 𝐺 is covered

by the disjoint cliques 𝐶 ′
1
= 𝐶1, 𝐶

′
2
= 𝐶2 \𝐶1 and 𝐶 ′

3
= 𝐶3 \ (𝐶1 ∪𝐶2). In both cases, 𝐺 has a 3-clique cover.

□

3.2 The case of quantified formulas

In this section we show that existential quantification even without disjunction and even in the empty vocabulary

makes the model checking problem hard for both dependence and independence logic.

Theorem 16. There exists a formula 𝜙 with NP-complete model-checking problem where 𝜙 ≡ ∃𝑥𝜓 and𝜓 is a conjunction

of two dependence atoms.

Proof. Before giving the proof, let us consider the following problem: Given a graph 𝐺 with 𝑛2 vertices, are the

vertices of 𝐺 colourable with 𝑛 colors (such that no adjacent vertices carries the same color). This problem is easily

seen to be a generalization of the well-known NP-complete 3-coloring problem (see [6]). Indeed, let 𝐺 = (𝑉0, 𝐸0) be an
undirected graph with |𝑉0 | = 𝑛 vertices, let 𝐾𝑛−3 = (𝑉1, 𝐸1) be the complete graph with |𝑉1 | = 𝑛 − 3 vertices (hence

|𝐸1 | = (𝑛 − 3) (𝑛 − 4)/2 edges) and let 𝐺 ′
be the graph with vertex set 𝑉 ′ = 𝑉0 ∪𝑉1 ∪𝑉2 with 𝑉2 of size 𝑛2 − 𝑛 − 𝑛 + 3

(hence |𝑉 ′ | = 𝑛2) and edge set 𝐸0 ∪ 𝐸1 ∪ {{𝑥,𝑦} : 𝑥 ∈ 𝑉0, 𝑦 ∈ 𝑉1}. Then, it is easy to see that 𝐺 is 3-colorable iff 𝐺 ′
is

𝑛-colorable.

Let us now define the formula 𝜙 as follows:

𝜙 ≡ ∃𝑥 (= (𝑥, 𝑟1, 𝑟2, 𝑒,𝑚) ∧ = (𝑣1, 𝑣2, 𝑥)) .

We will reduce the problem of determining whether a graph 𝐺 with 𝑛2 vertices is 𝑛-colorable to the model-checking

problem of 𝜙 .

Let 𝐺 be a graph with 𝑛2 vertices 𝑉𝐺 = {𝛼0, . . . , 𝛼𝑛2−1}, 𝔄 = {0, . . . , 𝑛 − 1} a first order structure of the empty

signature and 𝑋 = {𝑠 𝑗
𝑖
| 𝑖 ∈ {0, . . . , 𝑛2 − 1}, 0 ≤ 𝑗 ≤ 𝑖} be a team such that :

• 𝑠 𝑗
𝑖
(𝑣1) = ⌊𝑖/𝑛⌋ and 𝑠 𝑗

𝑖
(𝑣2) = 𝑖 mod 𝑛. In other words, 𝑠

𝑗
𝑖
(𝑣1, 𝑣2) is the decomposition of 𝑖 in base 𝑛.

• 𝑠 𝑗
𝑖
(𝑟1) = ⌊ 𝑗/𝑛⌋ and 𝑠 𝑗

𝑖
(𝑟2) = 𝑗 mod 𝑛. In other words, 𝑠

𝑗
𝑖
(𝑟1, 𝑟2) is the decomposition of 𝑗 in base 𝑛.

• 𝑠 𝑗
𝑖
(𝑚) = 0 if 𝑖 ≠ 𝑗 and 𝑠𝑖

𝑖
(𝑚) = 1.

• 𝑠𝑖
𝑗
(𝑒) = 1, if 𝑗 = 𝑖 , or if there is an edge between 𝛼𝑖 and 𝛼 𝑗 with 𝑗 > 𝑖 . Otherwise 𝑠

𝑖
𝑗
(𝑒) = 0.

For example, for 𝑛 = 2 and 𝐸𝐺 = {{0, 1}, {1, 2}, {0, 2}, {2, 3}}, we obtain the following team on the universe𝐴 = {0, 1}:

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 13

𝑥 𝑣1 𝑣2 𝑟1 𝑟2 𝑚 𝑒

0 0 0 0 1 1

0 1 0 0 0 1

0 1 0 1 1 1

1 0 0 0 0 1

1 0 0 1 0 1

1 0 1 0 1 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 1

1 1 1 1 1 1

𝐺 is 𝑛-colourable iff 𝔄 |=𝑋 𝜙

We are going to demonstrate that 𝔄 |=𝑋 𝜙 if and only if 𝐺 is 𝑛-colourable.

First the left to right implication. Since 𝔄 |=𝑋 𝜙 there exists a mapping 𝐹 : 𝑋 → P(𝐴) \ {∅} such that 𝔄 |=𝑋 (𝐹/𝑥)
= (𝑥, 𝑟1, 𝑟2, 𝑒,𝑚) ∧= (𝑣1, 𝑣2, 𝑥). By downwards closure, we may assume without loss of generality that 𝐹 (𝑠) is a singleton
for all 𝑠 ∈ 𝑋 . Since =(𝑣1, 𝑣2, 𝑥) holds, 𝐹 induces a mapping 𝐹 ′ : 𝑉𝐺 → 𝐴, by 𝐹 ′(𝛼𝑖) := 𝑎, for the unique 𝑎 such that

𝐹 (𝑠0
𝑖
) = {𝑎}. If there is an edge between 𝛼𝑖 and 𝛼𝑖′ , 𝑖

′ > 𝑖 , then 𝑠𝑖
𝑖′ (𝑒) = 1 = 𝑠𝑖

𝑖
(𝑒). Furthermore, 𝑠𝑖

𝑖′ (𝑟1, 𝑟2) = 𝑠
𝑖
𝑖
(𝑟1, 𝑟2)

but 𝑠𝑖
𝑖′ (𝑚) = 0 and 𝑠𝑖

𝑖
(𝑚) = 1. Therefore, because the atom =(𝑥, 𝑟1, 𝑟2, 𝑒,𝑚) holds, we must have 𝐹 (𝑠𝑖

𝑖
) ≠ 𝐹 (𝑠𝑖

𝑖′). Thus
𝐹 ′(𝛼𝑖) ≠ 𝐹 ′(𝛼𝑖′) if there is an edge between 𝛼𝑖 and 𝛼𝑖′ . This shows that 𝐹

′
is a colouring of 𝐺 with |𝐴| = 𝑛 colours.

Let us then consider the right to left implication. Let 𝑐 : 𝑉𝐺 → {0, . . . , 𝑛 − 1} be an 𝑛 colouring. We extend 𝑋 to

variable 𝑥 with a new team 𝑋 ′
such that 𝑠

𝑗
𝑖
(𝑥) = 𝑐 (𝛼𝑖). The value of 𝑥 depends only on 𝑖 , which is encoded in (𝑣1, 𝑣2),

i.e., 𝔄 |=𝑋 ′ =(𝑣1, 𝑣2, 𝑥).
Let 𝑠

𝑗
𝑖
, 𝑠

𝑗 ′

𝑖′ be two assignments of 𝑋 ′
. Suppose that 𝑠

𝑗
𝑖
(𝑟1, 𝑟2, 𝑒) = 𝑠

𝑗 ′

𝑖′ (𝑟1, 𝑟2, 𝑒) but 𝑠
𝑗
𝑖
(𝑚) ≠ 𝑠

𝑗 ′

𝑖′ (𝑚). In this case we

must check that 𝑠
𝑗
𝑖
(𝑥) is different from 𝑠

𝑗 ′

𝑖′ (𝑥) (because 𝔄 |=𝑋 ′ =(𝑥, 𝑟1, 𝑟2, 𝑒,𝑚)). Now it holds that 𝑗 = 𝑗 ′ because

𝑠
𝑗
𝑖
(𝑟1, 𝑟2) = 𝑠

𝑗 ′

𝑖′ (𝑟1, 𝑟2). Furthermore, since 𝑠
𝑗
𝑖
(𝑚) ≠ 𝑠

𝑗 ′

𝑖′ (𝑚), either 𝑖 = 𝑗 or 𝑖 ′ = 𝑗 ′. Let us suppose 𝑖 = 𝑗 . Because

1 = 𝑠𝑖
𝑖
(𝑒) = 𝑠 𝑗

𝑖
(𝑒) = 𝑠 𝑗

′

𝑖′ (𝑒) = 𝑠
𝑖
𝑖′ (𝑒), there is an edge between𝛼𝑖 and𝛼𝑖′ in𝐺 . Therefore 𝑐 (𝑖) ≠ 𝑐 (𝑖

′) and 𝑠 𝑗
𝑖
(𝑥) ≠ 𝑠 𝑗

′

𝑖′ (𝑥). □

By encoding dependence atoms in terms of conditional independence atoms we get the analogous results for free for

independence logic.

Corollary 17. There is a formula 𝜙 of independence logic of empty non-logical vocabulary built with ∃ and ∧ whose

model-checking problem is NP-complete.

Wewill next show that this corollary can be strengthened in the case of independence logic under the strict semantics.

In other words, we will now show a version of Theorem 16 for pure independence atoms under the strict semantics. Let

𝜓 (𝑡, 𝑐, 𝑣) be the following formula over signature 𝜎 = {𝑅}, where 𝑅 is a ternary relation symbol and 𝑡, 𝑐 and 𝑣 are free

variables:

𝜓 (𝑡, 𝑐, 𝑣) := ∃𝑥 (𝑡 ⊥ 𝑥 ∧ 𝑅(𝑐, 𝑣, 𝑥)) .

Proposition 18. For all propositional formulas 𝜙 in 3-cnf, one can compute in polynomial time a team𝑋 , withDom(𝑋) =
{𝑡, 𝑐, 𝑣} and a structure 𝔄 such that:

Manuscript submitted to ACM

14 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

𝜙 is satisfiable ⇐⇒ 𝔄 |=𝑋 𝜓 (𝑡, 𝑐, 𝑣),

under the strict semantics.

Proof. Without loss of generality, let 𝜙 =
∧𝑚

𝑖=1𝐶𝑖 be a 3-cnf formula over a set 𝑉 = {𝑣1, . . . , 𝑣𝑛} of variables of
size 𝑛. Let 𝐶𝑖 = 𝑙𝑖1 ∨ 𝑙𝑖2 ∨ 𝑙𝑖3 , with 𝑙𝑖 𝑗 ∈ {𝑣1, ..., 𝑣𝑛,¬𝑣1, ...,¬𝑣𝑛}. We first describe the relation 𝑅 built on the domain

𝐷 = {0, . . . ,𝑚 + 𝑛, 𝑣1, ..., 𝑣𝑛,¬𝑣1, ...,¬𝑣𝑛}:

𝑅 = {(0, 𝑖, 𝑣𝑖), (0, 𝑖,¬𝑣𝑖) : 1 ≤ 𝑖 ≤ 𝑛}∪
{(𝑖, 0, 𝑙𝑖1), (𝑖, 0, 𝑙𝑖2), (𝑖, 0, 𝑙𝑖3) : 1 ≤ 𝑖 ≤ 𝑚, 𝐶𝑖 = 𝑙𝑖1 ∨ 𝑙𝑖2 ∨ 𝑙𝑖3 }∪
{(𝑚 + 𝑖, 0, 𝑣𝑖), (𝑚 + 𝑖, 0,¬𝑣𝑖) : 1 ≤ 𝑖 ≤ 𝑛}.

Let 𝔄 = (𝐷, 𝑅). Finally, team 𝑋 is the union of the two assignment sets 𝑌 and 𝑍 below:

𝑌 :

𝑐 𝑣 𝑡

0 1 0

0 2 0

.

.

.
.
.
.

.

.

.

0 𝑛 0

𝑍 :

𝑐 𝑣 𝑡

1 0 1

2 0 1

.

.

.
.
.
.

.

.

.

𝑚 0 1

𝑚 + 1 0 1

.

.

.
.
.
.

.

.

.

𝑚 + 𝑛 0 1

Variable 𝑡 encodes the type of the object in consideration: 0 for a clause, 1 for a Boolean variable. The first 𝑛

assignments deal with variables (hence the value of 𝑐 is set to 0, by convention), the last𝑚 assignments deal with

clauses (hence, 𝑣 is set to 0). It now remains to show that

𝜙 is satisfiable ⇐⇒ 𝔄 |=𝑋 𝜓 (𝑡, 𝑐, 𝑣),

where𝜓 (𝑡, 𝑐, 𝑣) is the formula ∃𝑥 (𝑡 ⊥ 𝑥 ∧ 𝑅(𝑐, 𝑣, 𝑥)). Suppose first that 𝜙 is satisfiable and let 𝐼 : 𝑉 → {0, 1} be such
that 𝐼 (𝜙) = 1. Let 𝐹 : 𝑋 → 𝐷 be such that:

(1) if 𝑠 (𝑐) = 0 and 𝑠 (𝑣) = 𝑖 , then 𝐹 (𝑠) = 𝑣𝑖 if 𝐼 (𝑣𝑖) = 1 and 𝐹 (𝑠) = ¬𝑣𝑖 if 𝐼 (𝑣𝑖) = 0. Similarly, if 𝑠 (𝑐) = 𝑚 + 𝑖 , 𝑖 ≥ 1,

then 𝐹 (𝑠) = 𝑣𝑖 if 𝐼 (𝑣𝑖) = 1 and 𝐹 (𝑠) = ¬𝑣𝑖 if 𝐼 (𝑣𝑖) = 0.

(2) if 𝑠 (𝑐) = 𝑖 , 1 ≤ 𝑖 ≤ 𝑚, then 𝐹 (𝑠) = 𝑙𝑖 𝑗 , for 𝑗 ≤ 3, such that 𝐼 (𝑙𝑖 𝑗) = 1. Such a 𝑗 always exists since 𝐼 |= 𝜙 .

Let 𝑋 ′ = 𝑋 (𝐹/𝑥). It is clear that for all 𝑠 ∈ 𝑋 ′
, 𝔄 |=𝑠 𝑅(𝑐, 𝑣, 𝑥) holds by the construction. In 𝑋 ′

, variable 𝑡 takes only

two values 0 and 1. Let now

𝑉0 = {𝑠 (𝑥) : 𝑠 ∈ 𝑋 ′
and 𝑠 (𝑡) = 0},

𝑉1 = {𝑠 (𝑥) : 𝑠 ∈ 𝑋 ′
and 𝑠 (𝑡) = 1}.

Now to show the claim 𝔄 |=𝑋 𝜓 (𝑡, 𝑐, 𝑣), it remains to show 𝔄 |=𝑋 ′ 𝑡 ⊥ 𝑥 . For this it suffices to show that 𝑉0 = 𝑉1.

Note that, for all 𝑖 ≤ 𝑛, either 𝑣𝑖 or ¬𝑣𝑖 belongs to 𝑉0. Also, by the construction, 𝑉0 ⊆ 𝑉1. Indeed, by item (1), for any

𝑠 with 𝑠 (𝑡) = 𝑠 (𝑐) = 0 and 𝑠 (𝑣) = 𝑖 it holds that 𝑠 (𝑥) = 𝑠 ′(𝑥), where 𝑠 ′(𝑐) = 𝑚 + 𝑖 and 𝑠 ′(𝑡) = 1. Suppose now that

there exists 𝑠 ∈ 𝑋 ′
such that 𝑠 (𝑥) ∈ 𝑉1 and 𝑠 (𝑥) ∉ 𝑉0. Clearly, for such an 𝑠 , 𝑠 (𝑐) = 𝑖 , for some 1 ≤ 𝑖 ≤ 𝑚. Then, by the

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 15

construction of the function 𝐹 , 𝑠 (𝑥) = 𝑙𝑖 𝑗 , for 𝑗 ≤ 3, such that 𝐼 (𝑙𝑖 𝑗) = 1. But then again by the definition of 𝐹 , 𝑠 (𝑥) ∈ 𝑉0
which is a contradiction. Therefore, 𝑉0 = 𝑉1, 𝔄 |=𝑋 ′ 𝑡 ⊥ 𝑥 , and hence 𝔄 |=𝑋 𝜓 (𝑡, 𝑐, 𝑣).

We now prove the other implication. Suppose 𝔄 |=𝑋 𝜓 (𝑡, 𝑐, 𝑣) and let 𝑋 ′ = 𝑋 (𝐹/𝑥) be such that

𝔄 |=𝑋 ′ 𝑡 ⊥ 𝑥 ∧ 𝑅(𝑐, 𝑣, 𝑥) .

Because 𝔄 |=𝑋 ′ 𝑡 ⊥ 𝑥 and 𝑠 (𝑡) ∈ {0, 1} for all 𝑠 ∈ 𝑋 ′
, it holds that 𝑉0 = 𝑉1, where 𝑉0 and 𝑉1 are as defined in the

first part of the proof above. Together with the definition of the relation 𝑅, this implies that if 𝑠, 𝑠 ′ ∈ 𝑋 such that

𝑠 (𝑐) = 0, 𝑠 (𝑣) = 𝑖 and 𝑠 ′(𝑐) = 𝑚 + 𝑖, 𝑠 ′(𝑣) = 0, then 𝑠 (𝑥) = 𝑠 ′(𝑥) ∈ {𝑣𝑖 ,¬𝑣𝑖 }. Define now the Boolean assignment

𝐼 : 𝑉 → {0, 1} by

𝐼 (𝑣𝑖) = 1 ⇐⇒ 𝑠 (𝑥) = 𝑣𝑖 for 𝑠 s.t. 𝑠 (𝑐) = 0, 𝑠 (𝑣) = 𝑖 .

Now consider 𝑠 ∈ 𝑋 ′
with 𝑠 (𝑐) = 𝑖 ∈ {1, ...,𝑚}. By definition of 𝑅, 𝑠 (𝑥) = 𝑙𝑖 𝑗 (for some 𝑗 ≤ 3). Since 𝑉1 ⊆ 𝑉0 there

must exists 𝑠 ′ ∈ 𝑋 ′
s.t. 𝑠 ′(𝑡) = 0, 𝑠 ′(𝑥) = 𝑙𝑖 𝑗 and, also immediately by the construction of 𝑋 , 𝑠 ′(𝑐) = 0 and 𝑠 ′(𝑣) = 𝑖 . The

definition of 𝐼 implies that 𝐼 (𝑙𝑖 𝑗) = 1 and that clause 𝐶𝑖 is satisfied. □

We end this section by noting that existential quantifiers cannot be replaced by universal quantifiers in the above

theorems.

Proposition 19. The model-checking problem for formulas of dependence or independence logic using only universal

quantification and conjunction is in L.

Proof. Given 𝜙 , we first transform it into prenex normal-form exactly as in first-order logic [25]. We may hence

assume that 𝜙 has the form

∀𝑥1 . . .∀𝑥𝑛
∧

𝜃𝑖 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚),

where 𝜃𝑖 is either a first-order, dependence, or independence atom. Let 𝔄 be a model, and 𝑋 be a team of 𝐴 with domain

{𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚}. As in [25], the formula

∧
𝜃𝑖 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) can be expressed by a first-order sentence

𝜓 when the team 𝑋 is represented by the 𝑛 +𝑚-ary relation 𝑋 (𝑥,𝑦), that is,

𝔄 |=𝑋
∧

𝜃𝑖 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) ⇔ (𝔄, 𝑋 (𝑥,𝑦)) |= 𝜓 .

Since 𝑋 (𝑥,𝑦) is a first-order definable extension of 𝑋 (𝑦) it is clear that we can construct a FO-sentence𝜓 ′
such that

𝔄 |=𝑋 ∀𝑥
∧

𝜃𝑖 (𝑥,𝑦) ⇔ (𝔄, 𝑋 (𝑦)) |= 𝜓 ′,

holds for all structures𝔄 and teams𝑋 with domain {𝑦1, . . . , 𝑦𝑚}. The claim follows from the fact that the data complexity

of FO is in L. □

4 INCLUSION LOGIC UNDER THE LAX SEMANTICS

Recall that a cnf formulaΦ is called dual-Horn if each of its clauses contains at most one negative literal. The satisfiability

problem of dual-Horn cnf formulas, dual-horn-sat, is known to be PTIME-complete (see [6]).

In this section we show that the model-checking problem of inclusion logic formulas under the lax semantics can be

reduced to dual-horn-sat.

For a team𝑋 , 𝑥 = ⟨𝑥𝑖1 , ..., 𝑥𝑖𝑛 ⟩ ∈ dom(𝑋)𝑛 , and 𝑠 ∈ 𝑋 , we denote by 𝑠 (𝑥) the restriction of 𝑠 to the variables 𝑥𝑖1 , ..., 𝑥𝑖𝑛 .

In this section, 𝜎 denotes a relational signature.

Manuscript submitted to ACM

16 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

Proposition 20. There exists an algorithm which, given 𝜙 ∈ FO(⊆), a structure 𝔄 over 𝜎 , and a team 𝑋 such that

Var(𝜙) ⊆ dom(𝑋), outputs a propositional formula Ψ in dual-Horn form such that: 𝔄 |=𝑋 𝜙 ⇐⇒ Ψ is satisfiable.

Furthermore, when 𝜙 is fixed, the algorithm runs in logarithmic space in the size of 𝔄 and 𝑋 .

Proof. Let 𝜙,𝔄, 𝑋 be as above. For any team 𝑋 , we will consider the set 𝔛 of propositional variables 𝑋 [𝑠] for
𝑠 ∈ 𝐴dom(𝑋)

. Starting from 𝜙 , 𝔄, and 𝑋 we decompose step by step the formula 𝜙 into subformulas (until reaching

its atomic subformulas) and different teams 𝑌 , 𝑍 , ... and control the relationships between the different teams by

propositional dual-Horn formulas built over the propositional variables issued from 𝑋,𝑌, 𝑍, Let S = {(𝜙,𝑋,𝑉)},
where 𝑉 = dom(𝑋), and C = {𝑋 [𝑠] : 𝑠 ∈ 𝑋 } ∪ {¬𝑋 [𝑠] : 𝑠 ∉ 𝑋 }. The propositional formula Ψ is now constructed

inductively as follows.

As long as S ≠ ∅, we apply the following rule: Pick (𝜙,𝑋,𝑉) in S and apply the following rules.

• If 𝜙 is 𝑅(𝑥) with 𝑅 a literal of 𝜎 then: S := S\{(𝜙,𝑋,𝑉)} and C := C ∪ {𝑋 [𝑠] → ⊤ : 𝑠 ∈ 𝐴𝑉 and 𝔄 |=𝑋
𝑅(𝑥)} ∪ {𝑋 [𝑠] → ⊥ : 𝑠 ∈ 𝐴𝑉 and 𝔄 ̸ |=𝑋 𝑅(𝑥)}. Clearly, it holds that 𝔄 |=𝑋 𝑅(𝑥) iff ∧C is satisfiable.

• If 𝜙 is 𝑥 ⊆ 𝑦 then: S := S\{(𝜙,𝑋,𝑉)} and

C := C ∪ {𝑋 [𝑠] → ∨
𝑠′∈𝐴𝑉 ,𝑠′ (𝑦)=𝑠 (𝑥) 𝑋 [𝑠 ′] : 𝑠 ∈ 𝐴𝑉 }.

It holds that 𝔄 |=𝑋 𝑥 ⊆ 𝑦 iff

∧
𝑠∈𝐴𝑉 (𝑋 [𝑠] → ∨

𝑠′∈𝐴𝑉 ,𝑠′ (𝑦)=𝑠 (𝑥) 𝑋 [𝑠 ′]) is satisfiable.
• If 𝜙 is ∃𝑥𝜓 , then: S := (S\{(𝜙,𝑋,𝑉)}) ∪ {(𝜓,𝑌,𝑉 ∪ {𝑥})} and

C := C ∪ {𝑋 [𝑠] → ∨
𝑎∈𝐴 𝑌 [𝑠 (𝑎/𝑥)] : 𝑠 ∈ 𝐴𝑉 },

where the 𝑌 [𝑠], 𝑠 ∈ 𝐴𝑉∪{𝑥 }
are new propositional variables (not used in C). If 𝔄 |=𝑋 ∃𝑥𝜓 then, there exists a

function 𝐹 : 𝑋 → P(𝐴) \ {∅}, such that 𝔄 |=𝑋 (𝐹/𝑥) 𝜓 . In other words, 𝔄 |=𝑌 𝜓 for some team 𝑌 defined by the

solutions of the constraint

∧
𝑠∈𝐴𝑉 𝑋 [𝑠] → ∨

𝑎∈𝐴 𝑌 [𝑠 (𝑎/𝑥)] (which define a suitable function 𝐹). Conversely, if

𝔄 |=𝑌 𝜓 for a team 𝑌 as above defined from 𝑋 , then clearly 𝔄 |=𝑋 ∃𝑥𝜓 .
• If 𝜙 is ∀𝑥𝜓 , then: S := (S\{(𝜙,𝑋,𝑉)}) ∪ {(𝜓,𝑌,𝑉 ∪ {𝑥})} and

C := C ∪ {𝑋 [𝑠] → 𝑌 [𝑠 ′] : 𝑠 ∈ 𝐴𝑉 , 𝑠 ′ ∈ 𝐴𝑉∪{𝑥 }
s.t. 𝑠 ′(𝑥) = 𝑠 (𝑥)},

where the 𝑌 [𝑠], 𝑠 ∈ 𝐴𝑉∪{𝑥 }
are new propositional variables (not used in C). The conclusion is similar as for the

preceding case.

• If 𝜙 is𝜓1 ∧𝜓2 then: S := (S\{(𝜙,𝑋,𝑉)}) ∪ {(𝜓1, 𝑋,𝑉), (𝜓2, 𝑋,𝑉)} and C is unchanged. By definition, 𝔄 |=𝑋 𝜙

iff 𝔄 |=𝑋 𝜓1 ∧𝜓2.
• If 𝜙 is𝜓1 ∨𝜓2 then: S := (S\{(𝜙,𝑋,𝑉)}) ∪ {(𝜓1, 𝑌 ,𝑉), (𝜓2, 𝑍,𝑉)} and

C := C ∪ {𝑋 [𝑠] → 𝑌 [𝑠] ∨ 𝑍 [𝑠] : 𝑠 ∈ 𝐴𝑉 } ∪ {𝑌 [𝑠] → 𝑋 [𝑠], 𝑍 [𝑠] → 𝑋 [𝑠] : 𝑠 ∈ 𝐴𝑉 }

where again the 𝑌 [𝑠] and 𝑍 [𝑠], 𝑠 ∈ 𝐴𝑉 are new propositional variables (not used in C). Here again, 𝔄 |=𝑋 𝜙

if and only if 𝔄 |=𝑌 𝜓1 and 𝔄 |=𝑍 𝜓2 for some suitable 𝑌 and 𝑍 such that 𝑌 ∪ 𝑍 = 𝑋 which is exactly what is

stated by the Boolean constraints.

Observe that each new clause added to C during the process is of dual-Horn form, i.e., contains at most one negative

literal. Observe also, that applied to some (𝜙,𝑋, 𝑟), the algorithm above only adds triples S whose first component is

a proper subformula of 𝜙 and eliminates (𝜙,𝑋, 𝑟). When the formula 𝜙 is atomic, no new triple is added afterwards.

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 17

Hence the algorithm will eventually terminate with S = ∅. Setting Ψ :=
∧
𝐶∈C 𝐶 , it can easily be proved by induction

that: 𝔄 |=𝑋 𝜙 iff Ψ is satisfiable.

Observe also that each clause in C can be constructed from 𝑋 and 𝔄 by simply running through their elements

(using their index) hence in logarithmic space. □

Remark 1. The construction of Proposition 20 can be done in principle for any kind of atom: dependence, independence,

exclusion, constancy etc. To illustrate this remark, one could translate in the above proof a dependence atom of the

form =(𝑥,𝑦) by (using the notations of the proof):∧
𝑠,𝑠′∈𝐴𝑟

𝑠 (𝑥)=𝑠′ (𝑥)∧𝑠 (𝑦)≠𝑠′ (𝑦)

(¬𝑋 [𝑠] ∨ ¬𝑋 [𝑠 ′]) .

The additional clauses are of length two. A similar treatment can be done for independence atoms 𝑥 ⊥𝑦 𝑧. In the

two cases however, the resulting formula is not in Dual-Horn form anymore and there is no way to do so (unless

PTIME = NP).

Since deciding the satisfiability of a propositional formula in dual-Horn form can be done in polynomial time we

obtain the following already known ([5]) corollary.

Corollary 21. The data complexity of FO(⊆) under the lax semantics is in PTIME.

5 INCLUSION LOGIC UNDER THE STRICT SEMANTICS

In this section we consider model-checking of inclusion logic formulas under the strict semantics. By the result of [4],

inclusion logic with the strict semantics is equi-expressive with dependence logic. The following theorem shows that

NP-completeness can be attained with quite simple formulas as in Theorem 16 combining strict existential quantification

and inclusions atoms.

Proposition 22. Let𝜓 (𝑐, 𝑣) be the following formula over signature 𝜎 = {𝑅}:

𝜓 (𝑐, 𝑣) = ∃𝑥∃𝑦 (𝑦 ⊆ 𝑥 ∧ 𝑅(𝑐, 𝑣, 𝑥,𝑦)) .

For all propositional formulas 𝜙 in 3-cnf, one can compute in polynomial time a team 𝑋 with domain {𝑐, 𝑣} and a structure
𝔄 such that: 𝜙 is satisfiable⇔ 𝔄 |=𝑋 𝜓 (𝑐, 𝑣) under the strict semantics.

Proof. Let 𝜙 =
∧𝑚

𝑖=1𝐶𝑖 be a 3-cnf formula over a set 𝑉 = {𝑣1, . . . , 𝑣𝑛} of variables. Let 𝐶𝑖 = ℓ𝑖1 ∨ ℓ𝑖2 ∨ ℓ𝑖3 , with
ℓ𝑖 𝑗 ∈ {𝑣1, . . . , 𝑣𝑛,¬𝑣1, . . . ,¬𝑣𝑛}.

The domain of the structure 𝔄 is 𝐴 = {0, . . . , 𝑛, 𝑣1, . . . , 𝑣𝑛,¬𝑣1, . . . ,¬𝑣𝑛}. The relation 𝑅 in this structure is:

𝑅 ={(0, 𝑖, 𝑣𝑖 , 0), (0, 𝑖,¬𝑣𝑖 , 0) |1 ≤ 1 ≤ 𝑛}∪

{(𝑖, 0, 0, ℓ𝑖1), (𝑖, 0, 0, ℓ𝑖2), (𝑖, 0, 0, ℓ𝑖3) |1 ≤ 𝑖 ≤ 𝑚}

Manuscript submitted to ACM

18 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

Finally, the team 𝑋 isgiven by the following table:

𝑋 =

𝑐 𝑣

0 1

.

.

.
.
.
.

0 𝑛

1 0

.

.

.
.
.
.

𝑚 0

Now we claim that 𝜙 is satisfiable, if and only if 𝔄 |=𝑋 ∃𝑥∃𝑦 (𝑦 ⊆ 𝑥 ∧ 𝑅(𝑐, 𝑣, 𝑥,𝑦)).
Let us suppose that 𝔄 |=𝑋 ∃𝑥∃𝑦 (𝑦 ⊆ 𝑥 ∧ 𝑅(𝑐, 𝑣, 𝑥,𝑦)). Then there is an extension 𝑋 ′

of 𝑋 to the variables 𝑥 and 𝑦

such that 𝔄 |=𝑋 ′ 𝑥 ⊆ 𝑦 ∧ 𝑅(𝑐, 𝑣, 𝑥,𝑦). Note that 𝑋 ′
has, e.g., the following shape:

𝑋 ′
:

𝑐 𝑣 𝑥 𝑦

0 1 ¬𝑣1 0

.

.

.
.
.
.

.

.

.
.
.
.

0 𝑖 ¬𝑣𝑖 0

.

.

.
.
.
.

.

.

.
.
.
.

0 𝑛 𝑣𝑛 0

1 0 0 ℓ12
.
.
.

.

.

.
.
.
.

.

.

.

𝑖 0 0 ℓ𝑖1
.
.
.

.

.

.
.
.
.

.

.

.

𝑚 0 0 ℓ𝑚2

Note that for each row of 𝑋 the variables 𝑥 and 𝑦 get exactly one value in 𝑋 ′
.

Let 𝐼 : 𝑉 → {0, 1} be the following assignment of the variables of 𝜙 : let 𝑠 ∈ 𝑋 such that 𝑠 (𝑣) = 𝑖; we set 𝐼 (𝑣𝑖) = 1

if 𝑠 (𝑥) = 𝑣𝑖 , 𝐼 (𝑣𝑖) = 0 otherwise (i.e., if 𝑠 (𝑥) = ¬𝑣𝑖). Because 𝔄 |=𝑋 ′ 𝑅(𝑐, 𝑣, 𝑥,𝑦) such 𝑠 exists and 𝑠 (𝑥) ∈ {𝑣𝑖 ,¬𝑣𝑖 }.
Furthermore, 𝑠 is the only assignment in 𝑋 ′

such that 𝑠 (𝑣) = 𝑖 so there is no ambiguity in the definition of 𝐼 .

Now we have to check that for every clause of 𝜙 there is a literal which is evaluated to 1 by 𝐼 . Let 𝐶𝑖 be a clause of 𝜙

and 𝑠 the element of 𝑋 ′
such that 𝑠 (𝑐) = 𝑖 . Since 𝑠 (𝑦) is a literal of 𝐶𝑖 and 𝔄 |=𝑋 ′ 𝑦 ⊆ 𝑥 , there exists 𝑠 ′ ∈ 𝑋 ′

such that

𝑠 ′(𝑥) = 𝑠 (𝑦). But 𝐼 (𝑠 (𝑥)) = 1 by definition, thus a literal of 𝐶𝑖 is evaluated to 1 by 𝐼 and hence 𝐼 satisfies 𝜙 .

Suppose then that 𝜙 is satisfiable and let 𝐼 : 𝑉 → {0, 1} an assignment of the variables of 𝜙 which satisfies 𝜙 . We

extend 𝑋 to a team 𝑋 ′
over variables {𝑐, 𝑣, 𝑥,𝑦} as follows: for 1 ≤ 𝑖 ≤ 𝑛, if 𝑠 ∈ 𝑋 is such that 𝑠 (𝑣) = 𝑖 we set 𝑠 (𝑥) = 𝑣𝑖 if

𝐼 (𝑣𝑖) = 1, and 𝑠 (𝑥) = ¬𝑣𝑖 otherwise. Furthermore, 𝑠 (𝑦) = 0.

For 1 ≤ 𝑖 ≤ 𝑚, if 𝑠 ∈ 𝑋 is such that 𝑠 (𝑐) = 𝑖 , we set 𝑠 (𝑥) = 0 and 𝑠 (𝑦) = ℓ𝑖 𝑗 where ℓ𝑖 𝑗 is a literal of𝐶𝑖 which is evaluated
to 1 by 𝐼 . It is now easy to check that 𝔄 |=𝑋 ′ 𝑦 ⊆ 𝑥 ∧ 𝑅(𝑐, 𝑣, 𝑥,𝑦), and hence 𝔄 |=𝑋 ∃𝑥∃𝑦 (𝑦 ⊆ 𝑥) ∧ 𝑅(𝑐, 𝑣, 𝑥,𝑦). □

The next proposition shows that NP-completeness can be also attained by combining strict disjunction with inclusions

atoms.

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 19

Proposition 23. There exists formulas 𝜙1, 𝜙2, 𝜙3 built with ⊆,∧ such that the model checking problem for 𝜙1 ∨ 𝜙2 ∨ 𝜙3
under the strict semantics is NP-complete.

Proof. Membership in NP is obvious. For hardness, we exhibit a polynomial time reduction to 1-in-3-sat.

Let𝜓 be the following formula over variables {𝑙, 𝑣, 𝑐, 𝑎, 𝑏,𝑤1,𝑤2,𝑤3}:

𝜓 ≡ (ℓ ⊆ 𝑣 ∧ 𝑏 ⊆ 𝑐 ∧ 𝑎 ⊆ 𝑤1)∨
(𝑏 ⊆ 𝑐 ∧ 𝑎 ⊆ 𝑤2)∨
(𝑏 ⊆ 𝑐 ∧ 𝑎 ⊆ 𝑤3))

We will show that for all positive 3-cnf formulas 𝜙 , one can compute in polynomial time a team 𝑋 and a structure 𝔄

such that:

𝜙 is an instance of 1-in-3-sat ⇔ 𝔄 |=𝑋 𝜓 (𝑙, 𝑣, 𝑐, 𝑎, 𝑏,𝑤1,𝑤2,𝑤3)

Let 𝜙 =
∧𝑚

𝑖=1𝐶𝑖 be a positive 3-cnf formula over a set 𝑉 = {𝑣1, . . . , 𝑣𝑛} of variables. Let 𝐶𝑖 = 𝑙𝑖1 ∨ 𝑙𝑖2 ∨ 𝑙𝑖3 . Recall that 𝜙
is an instance of the problem 1-in-3-SAT if and only if there is a truth assignment such that each clause of 𝜙 has exactly

one true variable.

The domain of the structure 𝔄 is 𝐷 = {𝑣1, . . . , 𝑣𝑛, 0, . . . ,𝑚}. The team 𝑋 is 𝑌 ∪ 𝑍 , see Table 1.
Now we claim that 𝜙 is an instance of 1-in-3-sat, if and only if 𝔄 |=𝑋 𝜓 .

Let us suppose that 𝔄 |=𝑋 𝜓 , i.e., there exists a partition of 𝑋 into three subsets 𝑋1, 𝑋2 and 𝑋3 such that

𝔄 |=𝑋1
𝑏 ⊆ 𝑐 ∧ 𝑎 ⊆ 𝑤1,

𝔄 |=𝑋2
𝑏 ⊆ 𝑐 ∧ 𝑎 ⊆ 𝑤2,

𝔄 |=𝑋3
𝑏 ⊆ 𝑐 ∧ 𝑎 ⊆ 𝑤3,

𝔄 |=𝑋1
ℓ ⊆ 𝑣 .

We will define an assignment 𝐼 over 𝑉 witnessing that 𝜙 is an instance of 1-in-3-sat: for 1 ≤ 𝑖 ≤ 𝑛 there exists a

unique 𝑠 ∈ 𝑋 such that 𝑠 (𝑣) = 𝑣𝑖 . If 𝑠 ∈ 𝑋1, we set 𝐼 (𝑣𝑖) = 1 and 𝐼 (𝑣𝑖) = 0 otherwise. As 𝑠 is unique and the sets 𝑋𝑖 are

disjoint (because we are in the strict semantics), 𝐼 is well defined.

We have to check that for any 1 ≤ 𝑖 ≤ 𝑚, exactly one of the variables of clause𝐶𝑖 is evaluated to 1 by the assignment

𝐼 .

Now 𝔄 |=𝑋1
𝑎 ⊆ 𝑤1, 𝔄 |=𝑋2

𝑎 ⊆ 𝑤2 and 𝔄 |=𝑋3
𝑎 ⊆ 𝑤3 imply that every assignment 𝑠 ∈ 𝑋 such that 𝑠 (𝑎) = 1 must

be in 𝑋1. Therefore 𝑋1 (𝑏) = {0, 1, . . . ,𝑚}. Similarly 𝑋2 (𝑏) = 𝑋3 (𝑏) = {0, 1, . . . ,𝑚}.
The variable 𝑐 stores the index of a clause. Because 𝔄 |=𝑋1

𝑏 ⊆ 𝑐 , every clause𝐶𝑖 has an assignment 𝑠 ∈ 𝑋1 such that

𝑠 (𝑐) = 𝑖 , and the same holds for the sets 𝑋2 and in 𝑋3. Thus the claim follows.

Let 𝐼 : {𝑣1, . . . , 𝑣𝑛} → {0, 1} be an assignment witnessing that 𝜙 is an instance of 1-in-3-sat. Define a partition of 𝑋

into 𝑋1, 𝑋2, 𝑋3 as follows. Let 𝑠 ∈ 𝑋 .

(1) If 𝑠 (𝑣) = 𝑣𝑖 and 𝐼 (𝑣𝑖) = 1, we assign 𝑠 ∈ 𝑋1. If 𝑠 (𝑣) = 𝑣𝑖 and 𝐼 (𝑣𝑖) = 0 we assign 𝑠 ∈ 𝑋2,
(2) For every 1 ≤ 𝑖 ≤ 𝑚, 𝐶𝑖 = 𝑙𝑖1 ∨ 𝑙𝑖2 ∨ 𝑙𝑖3 . Let 𝑠 ∈ 𝑋 be such that 𝑠 (𝑐) = 𝑖 . We send the unique 𝑠 such that 𝑠 (ℓ) = 𝑙𝑖 𝑗

and 𝐼 (𝑙 𝑗) = 1 to 𝑋1 and assign exactly one of the remaining two such assignments 𝑠 to 𝑋2 and 𝑋3,

(3) If 𝑠 (𝑎) = 𝑘 , we send 𝑠 to 𝑋𝑘 .

By (1) and (2) it now clearly holds that 𝔄 |=𝑋1
ℓ ⊆ 𝑣 . Furthermore, by (2) and (3) it holds that 𝔄 |=𝑋𝑘

𝑏 ⊆ 𝑐 and

𝔄 |=𝑋𝑘
𝑎 ⊆ 𝑤𝑘 , for 𝑘 = 1, 2, 3, respectively.

Manuscript submitted to ACM

20 Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen

𝑌 :

ℓ 𝑣 𝑐 𝑎 𝑏 𝑤1 𝑤2 𝑤3

0 𝑣1 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 𝑣𝑛 0 0 0 0 0 0

ℓ11 0 1 0 0 0 0 0

ℓ12 0 1 0 0 0 0 0

ℓ13 0 1 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ℓ𝑖1 0 𝑖 0 0 0 0 0

ℓ𝑖2 0 𝑖 0 0 0 0 0

ℓ𝑖3 0 𝑖 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ℓ𝑚1
0 𝑚 0 0 0 0 0

ℓ𝑚2
0 𝑚 0 0 0 0 0

ℓ𝑚3
0 𝑚 0 0 0 0 0

𝑍 :

ℓ 𝑣 𝑐 𝑎 𝑏 𝑤1 𝑤2 𝑤3

0 0 0 1 1 1 2 3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 1 𝑚 1 2 3

0 0 0 2 1 1 2 3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 2 𝑚 1 2 3

0 0 0 3 1 1 2 3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 3 𝑚 1 2 3

Table 1

□

6 CONCLUSION

On this paper we have studied the tractability/intractability frontier of data complexity of both quantifier-free and

quantified dependence, independence, and inclusion logic formulas. Furthermore, we defined a novel translation

of inclusion logic formulas into dual-Horn propositional formulas, and used it to show that the data-complexity of

inclusion logic is in PTIME. In a paper under preparation we shall consider similar questions for quantifier-free formulas

containing, in addition to dependence and independence atoms, also so-called anonymity atoms. Although our results

shed light on the tractability/intractability frontiers studied in this article, many open questions related to the data-

complexity of quantifier-free independence logic formulas remain. The general goal is to find fragments where we

can prove PTIME/NP-complete dichotomy results. Our results on disjunctions of independence atoms show that the

Manuscript submitted to ACM

Tractability Frontier of Data Complexity in Team Semantics 21

data-complexity question is more complex than merely the length of the disjunction, as is the case with dependence

atoms. In a different direction, it is an open question whether Theorem 13 holds under the strict semantics.

ACKNOWLEDGEMENTS

The second author was supported by the Academy of Finland grant 308712. The fourth author was supported by the

Faculty of Science of the University of Helsinki and the Academy of Finland grant 322795. This project has received

funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation

programme (grant agreement No 101020762).

REFERENCES
[1] A. Durand, M. Hannula, J. Kontinen, A. Meier, and J. Virtema. Probabilistic team semantics. In F. Ferrarotti and S. Woltran, editors, Foundations of

Information and Knowledge Systems - 10th International Symposium, FoIKS 2018, Budapest, Hungary, May 14-18, 2018, Proceedings, volume 10833 of

Lecture Notes in Computer Science, pages 186–206. Springer, 2018.

[2] A. Durand and J. Kontinen. Hierarchies in dependence logic. ACM Transactions on Computational Logic (TOCL), 13(4):31, 2012.

[3] P. Galliani. Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information. Annals of Pure and Applied Logic,

163(1):68 – 84, 2012.

[4] P. Galliani, M. Hannula, and J. Kontinen. Hierarchies in independence logic. In S. R. D. Rocca, editor, Computer Science Logic 2013 (CSL 2013),

volume 23 of Leibniz International Proceedings in Informatics (LIPIcs), pages 263–280, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[5] P. Galliani and L. Hella. Inclusion Logic and Fixed Point Logic. In S. R. D. Rocca, editor, Computer Science Logic 2013 (CSL 2013), volume 23 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 281–295, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences).

W. H. Freeman, 1979.

[7] D. Geiger, T. Verma, and J. Pearl. Identifying independence in bayesian networks. Networks, 20(5):507–534, 1990.

[8] E. Grädel. Capturing complexity classes by fragments of second-order logic. Theor. Comput. Sci., 101(1):35–57, 1992.

[9] E. Grädel. Model-checking games for logics of imperfect information. Theor. Comput. Sci., 493:2–14, 2013.

[10] E. Grädel and J. Väänänen. Dependence and independence. Studia Logica, 101(2):399–410, 2013.

[11] M. Hannula and L. Hella. Complexity thresholds in inclusion logic. In R. Iemhoff, M. Moortgat, and R. J. G. B. de Queiroz, editors, Logic, Language,

Information, and Computation - 26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands, July 2-5, 2019, Proceedings, volume 11541 of

Lecture Notes in Computer Science, pages 301–322. Springer, 2019.

[12] M. Hannula, Å. Hirvonen, J. Kontinen, V. Kulikov, and J. Virtema. Facets of distribution identities in probabilistic team semantics. In F. Calimeri,

N. Leone, and M. Manna, editors, Logics in Artificial Intelligence - 16th European Conference, JELIA 2019, Rende, Italy, May 7-11, 2019, Proceedings,

volume 11468 of Lecture Notes in Computer Science, pages 304–320. Springer, 2019.

[13] M. Hannula and J. Kontinen. Hierarchies in independence and inclusion logic with strict semantics. J. Log. Comput., 25(3):879–897, 2015.

[14] M. Hannula and J. Kontinen. A finite axiomatization of conditional independence and inclusion dependencies. Inf. Comput., 249:121–137, 2016.

[15] M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer. Complexity of propositional logics in team semantic. ACM Trans. Comput. Log., 19(1):2:1–2:14,

2018.

[16] T. Hyttinen, G. Paolini, and J. Väänänen. Quantum team logic and Bell’s inequalities. Rev. Symb. Log., 8(4):722–742, 2015.

[17] N. Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.

[18] J. Kontinen. Coherence and computational complexity of quantifier-free dependence logic formulas. Studia Logica, 101(2):267–291, 2013.

[19] J. Kontinen, A. Kuusisto, P. Lohmann, and J. Virtema. Complexity of two-variable dependence logic and if-logic. Inf. Comput., 239:237–253, 2014.

[20] J. Kontinen, A. Kuusisto, and J. Virtema. Decidability of predicate logics with team semantics. In P. Faliszewski, A. Muscholl, and R. Niedermeier,

editors, 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, volume 58

of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[21] M. Lück. Canonical models and the complexity of modal team logic. Logical Methods in Computer Science, 15(2), 2019.

[22] E. Pacuit and F. Yang. Dependence and independence in social choice: Arrow’s theorem. In S. Abramsky, J. Kontinen, J. Väänänen, and H. Vollmer,

editors, Dependence Logic, Theory and Applications, pages 235–260. Springer, 2016.

[23] R. Rönnholm. Capturing k-ary existential second order logic with k-ary inclusion-exclusion logic. Ann. Pure Appl. Log., 169(3):177–215, 2018.

[24] R. Rönnholm. The expressive power of k-ary exclusion logic. Ann. Pure Appl. Log., 170(9):1070–1099, 2019.

[25] J. Väänänen. Dependence Logic. Cambridge University Press, 2007.

Manuscript submitted to ACM

