4,857 research outputs found

    Non-Iterative Tone Mapping With High Efficiency and Robustness

    Get PDF
    This paper proposes an efficient approach for tone mapping, which provides a high perceptual image quality for diverse scenes. Most existing methods, optimizing images for the perceptual model, use an iterative process and this process is time consuming. To solve this problem, we proposed a new layer-based non-iterative approach to finding an optimal detail layer for generating a tone-mapped image. The proposed method consists of the following three steps. First, an image is decomposed into a base layer and a detail layer to separate the illumination and detail components. Next, the base layer is globally compressed by applying the statistical naturalness model based on the statistics of the luminance and contrast in the natural scenes. The detail layer is locally optimized based on the structure fidelity measure, representing the degree of local structural detail preservation. Finally, the proposed method constructs the final tone-mapped image by combining the resultant layers. The performance evaluation reveals that the proposed method outperforms the benchmarking methods for almost all the benchmarking test images. Specifically, the proposed method improves an average tone mapping quality index-II (TMQI-II), a feature similarity index for tone-mapped images (FSITM), and a high-dynamic range-visible difference predictor (HDR-VDP)-2.2 by up to 0.651 (223.4%), 0.088 (11.5%), and 10.371 (25.2%), respectively, compared with the benchmarking methods, whereas it improves the processing speed by over 2611 times. Furthermore, the proposed method decreases the standard deviations of TMQI-II, FSITM, and HDR-VDP-2.2, and processing time by up to 81.4%, 18.9%, 12.6%, and 99.9%, respectively, when compared with the benchmarking methods.11Ysciescopu

    Objective Quality Assessment and Optimization for High Dynamic Range Image Tone Mapping

    Get PDF
    Tone mapping operators aim to compress high dynamic range (HDR) images to low dynamic range ones so as to visualize HDR images on standard displays. Most existing works were demonstrated on specific examples without being thoroughly tested on well-established and subject-validated image quality assessment models. A recent tone mapped image quality index (TMQI) made the first attempt on objective quality assessment of tone mapped images. TMQI consists of two fundamental building blocks: structural fidelity and statistical naturalness. In this thesis, we propose an enhanced tone mapped image quality index (eTMQI) by 1) constructing an improved nonlinear mapping function to better account for the local contrast visibility of HDR images and 2) developing an image dependent statistical naturalness model to quantify the unnaturalness of tone mapped images based on a subjective study. Experiments show that the modified structural fidelity and statistical naturalness terms in eTMQI better correlate with subjective quality evaluations. Furthermore, we propose an iterative optimization algorithm for tone mapping. The advantages of this algorithm are twofold: 1) eTMQI and TMQI can be compared in a more straightforward way; 2) better quality tone mapped images can be automatically generated by using eTMQI as the optimization goal. Numerical and subjective experiments demonstrate that eTMQI is a superior objective quality assessment metric for tone mapped images and consistently outperforms TMQI

    Cross Dynamic Range And Cross Resolution Objective Image Quality Assessment With Applications

    Get PDF
    In recent years, image and video signals have become an indispensable part of human life. There has been an increasing demand for high quality image and video products and services. To monitor, maintain and enhance image and video quality objective image and video quality assessment tools play crucial roles in a wide range of applications throughout the field of image and video processing, including image and video acquisition, communication, interpolation, retrieval, and displaying. A number of objective image and video quality measures have been introduced in the last decades such as mean square error (MSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). However, they are not applicable when the dynamic range or spatial resolution of images being compared is different from that of the corresponding reference images. In this thesis, we aim to tackle these two main problems in the field of image quality assessment. Tone mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Most TMOs have been designed in the absence of a well-established and subject-validated image quality assessment (IQA) model, without which fair comparisons and further improvement are difficult. We propose an objective quality assessment algorithm for tone-mapped images using HDR images as references by combining 1) a multi-scale signal fidelity measure based on a modified structural similarity (SSIM) index; and 2) a naturalness measure based on intensity statistics of natural images. To evaluate the proposed Tone-Mapped image Quality Index (TMQI), its performance in several applications and optimization problems is provided. Specifically, the main component of TMQI known as structural fidelity is modified and adopted to enhance the visualization of HDR medical images on standard displays. Moreover, a substantially different approach to design TMOs is presented, where instead of using any pre-defined systematic computational structure (such as image transformation or contrast/edge enhancement) for tone-mapping, we navigate in the space of all LDR images, searching for the image that maximizes structural fidelity or TMQI. There has been an increasing number of image interpolation and image super-resolution (SR) algorithms proposed recently to create images with higher spatial resolution from low-resolution (LR) images. However, the evaluation of such SR and interpolation algorithms is cumbersome. Most existing image quality measures are not applicable because LR and resultant high resolution (HR) images have different spatial resolutions. We make one of the first attempts to develop objective quality assessment methods to compare LR and HR images. Our method adopts a framework based on natural scene statistics (NSS) where image quality degradation is gauged by the deviation of its statistical features from NSS models trained upon high quality natural images. In particular, we extract frequency energy falloff, dominant orientation and spatial continuity statistics from natural images and build statistical models to describe such statistics. These models are then used to measure statistical naturalness of interpolated images. We carried out subjective tests to validate our approach, which also demonstrates promising results. The performance of the proposed measure is further evaluated when applied to parameter tuning in image interpolation algorithms

    A Perceptually Optimized and Self-Calibrated Tone Mapping Operator

    Full text link
    With the increasing popularity and accessibility of high dynamic range (HDR) photography, tone mapping operators (TMOs) for dynamic range compression are practically demanding. In this paper, we develop a two-stage neural network-based TMO that is self-calibrated and perceptually optimized. In Stage one, motivated by the physiology of the early stages of the human visual system, we first decompose an HDR image into a normalized Laplacian pyramid. We then use two lightweight deep neural networks (DNNs), taking the normalized representation as input and estimating the Laplacian pyramid of the corresponding LDR image. We optimize the tone mapping network by minimizing the normalized Laplacian pyramid distance (NLPD), a perceptual metric aligning with human judgments of tone-mapped image quality. In Stage two, the input HDR image is self-calibrated to compute the final LDR image. We feed the same HDR image but rescaled with different maximum luminances to the learned tone mapping network, and generate a pseudo-multi-exposure image stack with different detail visibility and color saturation. We then train another lightweight DNN to fuse the LDR image stack into a desired LDR image by maximizing a variant of the structural similarity index for multi-exposure image fusion (MEF-SSIM), which has been proven perceptually relevant to fused image quality. The proposed self-calibration mechanism through MEF enables our TMO to accept uncalibrated HDR images, while being physiology-driven. Extensive experiments show that our method produces images with consistently better visual quality. Additionally, since our method builds upon three lightweight DNNs, it is among the fastest local TMOs.Comment: 20 pages,18 figure

    Subjective and objective evaluation of local dimming algorithms for HDR images

    Get PDF

    Mapping Synaptic Pathology within Cerebral Cortical Circuits in Subjects with Schizophrenia

    Get PDF
    Converging lines of evidence indicate that schizophrenia is characterized by impairments of synaptic machinery within cerebral cortical circuits. Efforts to localize these alterations in brain tissue from subjects with schizophrenia have frequently been limited to the quantification of structures that are non-selectively identified (e.g., dendritic spines labeled in Golgi preparations, axon boutons labeled with synaptophysin), or to quantification of proteins using methods unable to resolve relevant cellular compartments. Multiple label fluorescence confocal microscopy represents a means to circumvent many of these limitations, by concurrently extracting information regarding the number, morphology, and relative protein content of synaptic structures. An important adaptation required for studies of human disease is coupling this approach to stereologic methods for systematic random sampling of relevant brain regions. In this review article we consider the application of multiple label fluorescence confocal microscopy to the mapping of synaptic alterations in subjects with schizophrenia and describe the application of a novel, readily automated, iterative intensity/morphological segmentation algorithm for the extraction of information regarding synaptic structure number, size, and relative protein level from tissue sections obtained using unbiased stereological principles of sampling. In this context, we provide examples of the examination of pre- and post-synaptic structures within excitatory and inhibitory circuits of the cerebral cortex

    A discrete graph Laplacian for signal processing

    Get PDF
    In this thesis we exploit diffusion processes on graphs to effect two fundamental problems of image processing: denoising and segmentation. We treat these two low-level vision problems on the pixel-wise level under a unified framework: a graph embedding. Using this framework opens us up to the possibilities of exploiting recently introduced algorithms from the semi-supervised machine learning literature. We contribute two novel edge-preserving smoothing algorithms to the literature. Furthermore we apply these edge-preserving smoothing algorithms to some computational photography tasks. Many recent computational photography tasks require the decomposition of an image into a smooth base layer containing large scale intensity variations and a residual layer capturing fine details. Edge-preserving smoothing is the main computational mechanism in producing these multi-scale image representations. We, in effect, introduce a new approach to edge-preserving multi-scale image decompositions. Where as prior approaches such as the Bilateral filter and weighted-least squares methods require multiple parameters to tune the response of the filters our method only requires one. This parameter can be interpreted as a scale parameter. We demonstrate the utility of our approach by applying the method to computational photography tasks that utilise multi-scale image decompositions. With minimal modification to these edge-preserving smoothing algorithms we show that we can extend them to produce interactive image segmentation. As a result the operations of segmentation and denoising are conducted under a unified framework. Moreover we discuss how our method is related to region based active contours. We benchmark our proposed interactive segmentation algorithms against those based upon energy-minimisation, specifically graph-cut methods. We demonstrate that we achieve competitive performance

    High quality high dynamic range imaging

    Get PDF
    corecore