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ABSTRACT In order to enhance viewing experiences, a number of backlight local dimming (BLD)
algorithms have been developed to improve the image contrast ratio and provide power efficiency for modern
displays. In order to evaluate which BLD algorithm performs best for HDR images rendering on dual-panel
displays, this paper presents a comprehensive subjective and objective evaluation conducted with five BLD
algorithms across a number of scenes. The subjective evaluation (N = 24) required participants to rank each
BLD generated image based on which they thought was the most natural looking. The objective evaluation
was undertaken via the use of a novel methodology to generate the images per BLD for comparison against
the ground truth High Dynamic Range (HDR) image. Resulting images were compared with the ground
truth using qualitative methods namely: HDR-VDP, puPSNR, puSSIM and puVIFP. The power-saving rate
of each method was also calculated. The results demonstrate a strong correlation between objective and
subjective evaluation. Furthermore, results show that BLD algorithms that consider the luminance balance
between backlight and LCD images perform better than straightforward BLD methods.

INDEX TERMS Local dimming algorithms, HDR displays, quality assessment, HDR image processing.

I. INTRODUCTION
Liquid Crystal Displays (LCDs) play a major role in provid-
ing improved image or video definition and colour reproduc-
tion in the flat panel display marketplace and increasingly
for mobile devices. In general, LCDs require backlighting
to provide the illumination source. This is located behind
the LCD panel, as shown in Figure 1 [1]. However, these
devices traditionally utilise a uniform backlight for the LCD
panel, which leads to low local contrast ratio and high power
consumption [2], [3]. To solve these problems, a number of
backlight local dimming (BLD) algorithms have been pro-
posed. These control the intensity of the backlight according
to input images. BLD algorithms are particularly fundamental
for HDR displays as these tend to be significantly brighter
than traditional displays.

BLD algorithms are designed around the fact that not all
the images displayed on the LCDs require the same amount
of backlighting due to the variance in the luminance of differ-
ent images. In BLD algorithms, the backlights are dimmed
locally to create deeper black areas, while keeping better
details in these areas. This permits high dynamic contrast
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FIGURE 1. The structure of dual-panel HDR display.

ratios and higher power-saving rates in comparison with a
uniform backlight setting.

HDR images are able to deliver an enhanced viewing
experience to users by providing the full dynamic range that
Human Visual System (HVS) can perceive at any level of
adaptation. HDR images have previously been used suc-
cessfully to investigate the viewing experience of displayed
images [4], [5]. In this paper, five BLD algorithms are sub-
jectively compared on an HDR display and objectively com-
pared against a ground truth HDR image.
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The primary contributions of this work are: a) The first sub-
jective evaluation of BLD algorithms using HDR images on
an HDR display. b) The first subjective evaluation (N = 24)
whereby participants were asked to rank images in order of
themost natural looking of five BLD algorithms; c) An objec-
tive evaluation of five BLD algorithms using HDR images,
via a novel methodology, to compare BLD generated images
with the ground truth using HDR-VDP, puPSNR, puSSIM
and puVIFP followed by a calculation of the power-saving
rate of each method; and d) An assessment of the correlation
between the objective and subjective evaluation which shows,
for the scenes tested, the proposed objective evaluation cor-
responds to the subjective results.

II. RELATED WORK
A number of BLD algorithms have been proposed which
each take into consideration several factors, for example,
enhancing the contrast, improving image quality and reduc-
ing display power consumption, Few of the BLD algorithms
proposed so far have been specifically developed for HDR
images. In this section, local dimming algorithms and evalu-
ation methods are summarised.

A. BLD ALGORITHMS
The most straightforward BLD algorithms use local
image characteristics to determine the backlight value.
Funamoto et al. [6] proposed the use of maximum and aver-
age intensity of a given segment. The maximum algorithm
sets the intensity of each LED to the maximum pixel value of
the corresponding segment image. This method can lead to
high power consumption and may be sensitive to noise. The
mean method tends to produce excessively dim backlight-
ing and can lead to significant clipping artefacts. To over-
come such limitations more complex methods have been
proposed. Cho and Kwon [7] used a correction term to
adjust the average pixel intensity and considered the local
difference between the maximum and average luminance.
In addition, they also used a new method to reduce the
clipping artefacts of LCD images displayed on the LCD
panel by increasing the backlight luminance from the average
luminance. A similar method developed by Zhang et al. [8]
also computed a correction term as the ratio of the dif-
ference of maximum and average luminance. Other meth-
ods, such as that introduced by Nam [9]; use both local
and global brightness in order to find a better trade-off
between enhancing local contrast and preserving the overall
appearance of the LCD images, and a roll-off method was
used to keep better image details in the high-level grey
areas. The BLD algorithm developed by Kim et al. [2] is
based on a decision rule. This is used to search the optimal
dimming value by comparing the light-leakage measure and
the clipping measure to keep the light-leakage and clipping
lower. Other BLDs were developed to preserve the image
quality. For example, Cho et al. [10] used an image metric to
obtain the intensity of the backlight and refined these values
by considering both local block lighting and the lighting

from neighbouring blocks. Kang and Kim [11] considered
the pixel distribution of an image using multiple histograms
to improve the image quality. Similar methods include
Nadernejad et al. [12] and Chen et al. [13]. Lin et al. [14]
also used a histogram-based method to compute the cumula-
tive distribution function (from a global histogram) and used
its inverse curve tomap aweightedmean of themaximum and
average pixel values of each backlight segment to the result-
ing backlight values. Shu et al. [15] took the local dimming
of LED backlight LC displays as an optimisation problem
and obtained a higher visual quality with less power con-
sumed. Zhang et al. [16] also proposed one optimal method
to maintain a balance between compensated image quality
and power saving. Cha et al. [17] presented an efficient opti-
mised BLDmethod for edge-lit lighting-emitting diode back-
light to reduce image quality fluctuation. Another category
of backlight modulation methods, such as those proposed
by Albrecht et al. [18] and Hong et al. [19], are based on
a point spread function (PSF) to exploit the knowledge
of light diffusion and model how light diffuses from a
source. There have also been other approaches, such as those
introduced by Burini et al. [20] and Mantel et al. [21], which
focus primarily on achieving a trade-off between clipping and
leakage. Forchhammer and Mantel [22] extended the method
proposed by Mantel et al. [21] further to multiple viewers
talking into clipping and leakage as well as reflections of the
ambient light.

Although there have been many BLD algorithms devel-
oped for enhancing image quality and saving power, these
methods mostly target LDR images. In order to render HDR
images on dual-panel displays, Seetzen et al. [23] developed
a method to solve this problem by splitting HDR images into
two layers using square root of the image luminance channel.
To assess the impact of HDR image rendering on both sub-
jective and objective scores, Zerman et al. [24] developed
a method for HDR image rendering for the SIM2 HDR47
display [25].

B. BLD ALGORITHMS EVALUATION
While a number of BLD algorithms have been proposed over
two decades, few evaluations have compared the characteris-
tics of the different BLD algorithms.

Error metric methods are objective and used to evaluate
image quality based on theoretical models. For example,
Kang and Kim [11] used Peak Signal to Noise Ratio (PSNR)
to evaluate the quality of LCD images. Besides PSNR,
Burini et al. [26] also used Mean Square Error (MSE) and
labPSNR which comes from PSNR to assess the impact of
colour distortion of LCD images. To determine which charac-
teristics of local backlight displays influence quality assess-
ment, Mantel et al. [27] conducted subjective and objective
evaluations to investigate which aspects, such as clipping and
leakage, are relevant for perceptual quality. Mantel et al. [28]
extended their work to investigate the impact of ambient light
and peak white levels on the perceived quality of videos
displayed using BLD methods. However, these approaches
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FIGURE 2. Local dimming algorithm baseline method for HDR images.

were used on LDR images; the evaluation of different BLD
algorithms using HDR images has remained an open issue.

In order to evaluate HDR images, several image qual-
ity metrics have been developed and adapted to the HDR
domain. These include puPSNR [29], puSSIM [30] and
HDR-VDP-2 [31], which have been adopted for comparing
HDR images for a number of applications [32], [33] [35].
These metrics are capable of addressing a wide range lumi-
nance and are used widely.

Power consumption is one significant aspect for which
BLD algorithms were designed. To measure to what extent
different BLD algorithms contribute to power consump-
tion and contrast ratio, the statistical measure method
of power consumption and contrast ratio were introdu-
ced [7], [14], [34]. However, the problem is that it is difficult
to compare these BLD algorithms using their claimed results
because of the difference of the hardware design, image
content, and even measuring methods.

In this paper, the same settings as mentioned above were
conducted using a SIM2 HDR47 display.

III. BACKGROUND
This section introduces the local dimming algorithms and
reference images used in this paper for the subjective and
objective evaluation.

A. BASELINE METHOD OF BLD ALGORITHMS
FOR HDR IMAGES
Local dimming algorithms are mostly used on a dual–panel
display which has a high-resolution panel to maintain the
image details and a low-resolution backlight panel to control
the contrast ratio.

Figure 2 shows the baseline method for dual-panel
HDR display systems. This method, proposed by
Seetzen et al. [23], splits HDR images into two layers accord-
ing to the structure of the dual-panel HDR display. One
layer is for backlight values and the other one is for LCD
images. In this method, the first step is to compute the square
root of the HDR image luminance. Secondly, the backlight
values are computed by down-sampling the square root lumi-
nance according to the resolution of the LED array. Thirdly,
the Point Spread Function (PSF) of the LED is approxi-
mated with a Gaussian filter. Then, the backlight values are

convolved with PSF and the resulting signal is upscaled to
the full resolution backlight diffusion image. Subsequently,
the original HDR image is divided by the backlight diffusion
image in the previous step to compute the LCD image.
Finally, the backlight values is transmitted to the backlight
panel to drive the LEDs, and the LCD images are displayed
on the LCD panel.

BLD algorithms seek to calculate the backlight values and
obtain the LCD image. In this paper, several backlight value
extractionmethods will be used instead of the down-sampling
method shown in Figure 2.

B. METHODS
In general, BLD methods for LDR images include two steps,
one is backlight values extraction, the other step is LCD
image compensation. The compensated image LC computed
by Eq.(1).

LC =
(
BLfull
BLHDR

) 1
γ

× LT (1)

where LT is the luminance of the original LDR image. BLfull
and BLHDR denote the intensities of conventional (full-on)
backlight and the updated backlight, respectively. γ is the
gamma correction coefficient [14]. The compensated image
is the LCD image to be displayed on LCD panel. However,
considering the data format of HDR images and the baseline
method of rendering HDR images mentioned in this paper,
the compensation step used for LDR images is not suitable
for HDR images anymore. The LCD image is determined
by the quotient of the original HDR image and the back-
light diffusion image, as shown in Figure 2. For the selected
BLD methods the backlight values extraction is not affected
by the compensated image. Furthermore, when considering
that most BLD algorithms were designed according to the
statistical characteristics of displayed images and power con-
sumption, and fewmethods were developed for HDR images,
five BLDmethods were selected. These include four methods
which are commonly used and discussed in related work, and
one which has been developed for HDR images and has been
shown to perform better than the built-in method (based on
Seetzen et al.’s method [36]) of the SIM2 HDR display [25].

A brief description chronologically of each is provided
below:

51694 VOLUME 8, 2020



L. Duan et al.: Subjective and Objective Evaluation of Local Dimming Algorithms for HDR Images

1) AVERAGE METHOD (AVG METHOD)
The Avg method was proposed by Funamoto et al. [6]. In this
method, the original images are divided into several image
segments according to the number of backlight units. The
backlight values are calculated using Eq.(2).

BL = Avgi (2)

where Avgi is the average value of each image segment i.

2) MAXIMUM METHOD (MAX METHOD)
Same as the Avg method, the Max method was also proposed
by Funamoto et al. [6]. Its backlight values are obtained by
Eq.(3).

BL = Maxi (3)

whereMaxi is the maximum value of each image segment i.

3) CHO METHOD
Cho and Kwon [7] used a correction term, as shown in Eq.(4),
to adjust the backlight values to take into account the local
difference between the maximum and average luminance.
Eq.(5) shows how to calculate backlight values.

correction =
1
2

(
Diff +

Diff 2

2n

)
(4)

BL = Avgi + correction (5)

where Diff is the difference between average and maximum
luminance and n is n bit greyscale.

4) INVERSE OF A MAPPING FUNCTION (IMF METHOD)
Lin et al. [14] introduced an IMF method by inverting the
cumulative distribution function (CDF) of the traditional his-
togram equalization with the oblique line y = x. The CDF is
accumulated by the probability density function (PDF) from
the lowest grey-level to the highest of the global histogram.
Then, the zone weighting value of each image segment is
defined by Eq.(6) to obtain the backlight values.

ZoneWeightingValue = 0.9×Maxi + 0.1× Avgi (6)

where Max and Avg are the maximum and average values of
each image segment.

5) ZERMAN METHOD
Zerman et al. [24] proposed an iterative HDR rendering
algorithm. This HDR display rendering algorithm calculates
the target display-referred luminance I from the input HDR
image by saturating luminance values in excess of the max-
imum display brightness. Next, the optimal backlight target
luminance map Lopt is determined by minimising the power
consumption and maximising the fidelity to the target pixel
values. Then, backlight values are obtained by the iterative
procedure according to Lopt , and the rendered backlight on
the display is obtained by convolving the values of the LED
with the PSF. The LCD values of the panel are found by
dividing each channel of the original image by the optimal
backlight map.

FIGURE 3. Screenshot of the evaluation software.

IV. SUBJECTIVE EVALUATION
While evaluation of BLD algorithms could, ideally, be per-
formed via the use of objective metrics, it is yet unclear if
such metrics could provide the same results as would be
perceived by human participants. In order to evaluate the
BLD algorithms themselves and also the performance of
objective metrics on such algorithms, a subjective experiment
is conducted. The experiment serves to demonstrate which
methods are perceived best, and paves the way for evaluating
the proposed objective evaluation via the use of traditional
HDR metrics.

A. DESIGN
A ranking design was chosen for the evaluation phase as it
provides a significant advantage over methods such as pair-
wise comparisons as a large number of samples can be viewed
in relatively short times. Furthermore, such an approach has
been used successfully on a number of occasions to evaluate
other algorithms in imaging, for example, when comparing
the quality of different HDR compression methods [35]. The
motivation for ranking is to be able to distinguish between the
quality of the different images that are relatively close without
requiring an exhaustive full-pairwise comparison. The pri-
mary goal of the experiment was to rank and identify the
order of each BLD algorithm, over 15 scenes. In particular,
participants were asked to rank the presented BLD generated
HDR images in order of which image they perceived to be the
most natural looking on an HDR display.

15 scenes were chosen from the Fairchild database [37].
Each of the 15 scenes was represented by five images gen-
erated from the BLD algorithms introduced in Section III-B.
The order of the scene presentation was randomised as was
the order of the BLD methods presented. Participants were
allowed to view the images as many times as they wanted but
had to view them all at least once, before they ranked them.

B. MATERIALS
A graphical user interface (GUI) for the ranking-based exper-
iment was used for displaying the 15 scenes. Figure 3 shows
the custom GUI application which was specifically built
for the ranking-based subjective evaluation. It presents five
thumbnails (labelled A-E) from the five BLD algorithms on
the left side of the screen. Each thumbnail is displayed in
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TABLE 1. Overview of the scenes used for the ranking based subjective experiment.

full-screen on the HDR screen when participants double −
clicked on it. Participants are tasked to view each image
displayed in full screen mode then rank the images on the left
side in the order of which image is most natural looking by
dragging their preferred choice to its corresponding position
(labelled 1-5) with 1 being the best one and 5 being the worst.
The software permitted users to view all the BLD versions of
a single scene and rank them using a drag and drop method
for each image. Hardware resources included a SIM2 HDR
display with a peak luminance 4,000 cd/m2, an HP 22’’ LED
display with peak luminance 300 cd/m2 and a computer with
a solid state drive for quick loading of the images.

The subjective and objective evaluation in this work
used a set of 15 HDR images selected from the Fairchild
database [37]. Table 1 provides the details of the selected
HDR images. The dynamic range of all the images spans
between 12 - 48 stops, and the average dynamic range and
the dynamic range distribution for the 15 HDR images were
also considered to ensure that the selection is representative
of the Fairchild database [37]. To adapt to the resolution and
range of the SIM2 HDR display, these images were resized
to 1920× 1080 by padding zero pixels and their pixel values
were scaled to [0, 4000] in this experiment.

These HDR images were processed by the methods
described in Section III. 15 (HDR scenes) × 5 (BLD algo-
rithms) images were generated in total.

FIGURE 4. Subjective experiment setup.

C. ENVIRONMENT
The experiments were conducted in a typical dark room with
minimal ambient lighting (below 25lux) which is within the
recommended luminance levels according to ITU-R recom-
mendations [38]. The distance between the HDR display and
the participant was set to approximately 3.2 times the height
of the HDR display; at a distance of 189cm with an LCD
monitor placed at the angle of 45 degrees (see Figure 4).

D. PARTICIPANTS
A total of 24 participants (M = 14; F = 10) were involved
in this experiment, with an age range of 18 to 50 years.
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Participants were asked whether they have a normal version
(or corrected to normal vision) during the recruiting pro-
cess. Participants with self-reported normal vision (or cor-
rected normal vision) were used to conduct the subjective
experiment. These participants were recruited from university
students and staff.

E. PROCEDURE
The participants were introduced to the goal of the experiment
before the start followed by a brief training session using
a scene which was subsequently discarded from the results.
After completing the training session, the participants were
asked to rank the images of the 15 scenes.

In order to view each image in full screen, each partici-
pant was asked to double − click the small images before
they began to evaluate each set of images. Subsequently,
the participants would view each of the five images for each
scene and give their assessment as to which image is most
natural looking. Based on their judgement, the participants
positioned the corresponding thumbnails to one of the blank
positions on the right labelled [1-5], as shown in Figure 3.

F. SUBJECTIVE RESULTS AND ANALYSIS
This section provides an overview and analysis of the results
obtained from the subjective experiment.

Suppose that H0 and H1 indicate there are no significant
differences and there are significant differences between the
BLD algorithms, respectively. Assume that the statistical sig-
nificance p is 0.05. The sample size is 24. If H1 is true, it is
important to determine the coefficient of concordance which
measures the degree by which the participant mutually agree
on choices.

In this work, a 3-dimensional data array A(N ,M , S) is
assumed to represent the ranks given by each participant
to each algorithm for each HDR scenes. In this data array,
N (N = 24) denotes all participants, M denotes five BLD
algorithms and S denotes all 15 HDR scenes, respectively.
Then, the mean ranks that averaged across all participants and
HDR scenes can be denoted by Eq.(7).

1
K

K∑
S=1

A(•,M , S) = A(•,M , •) (7)

where A(•,M , S) represents the ranks for each M and S,
averaged across all participants and A(•,M , •) represents the
mean ranks averaged across all the participants and scenes.K
is the total number of HDR scenes.

To compare the significant differences between five BLD
algorithms, the Kendall’s W (Kendall’s co-efficient of Con-
cordance W ) is employed. It can be computed by Eq.(8),
Eq.(9), Eq.(10) and Eq.(11).

W =
12R

N 2(M3 −M )
(8)

R =
M∑
i=1

(Ri − R)2 (9)

FIGURE 5. Subjective ranks with Kendall’s W, averaged across
participants.

FIGURE 6. Subjective mean ranks with Kendall’s W across all images and
participants.

Ri =
N∑
j=1

ri,j, i ∈ M , j ∈ N (10)

R =
Ri
N

(11)

where ri,j is the rank for each algorithm by each participant. R
is themean ranks andR is the standard squared deviation [35].
Kendall’s W is a non-parametric model which used for

assessing agreement amongst the participans’ choices. It pro-
vides a value from 0 to 1, where 0 means complete dis-
agreement and 1 means completely in agreement. Figure.5
provides A(•,M , S) along with W scores sorted in order
of the most preferred method on the leftmost side. The
groupings in the results show that groups formed by two or
more algorithms were not considered significantly different.
However, algorithms outside of groups are statistically signif-
icantly different from other groups and non-grouped meth-
ods. The results show that there are statistically significant
differences between the five BLD algorithms for most HDR
images with high Kendall’s W scores and at a significance
p < 0.05. It can be seen that Zerman’s method is frequently
first and first overall, followed generally by IMF and Max,
and finally Cho and Avg.

Figure 6 shows A(•,M , •) along with W score. For
these five BLD algorithms, there is a significant difference
in-between separate groups with a relatively high Kendall’s
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FIGURE 7. Schematic diagram of the evaluation methodology for displaying HDR images.

W at 0.72 and is significant at p < 0.05. The grouping
surrounded by the red line shows that IMF and Max methods
are similar. Avg, Cho and Zerman form a group of their own
demonstrating that they have a significant difference.

V. OBJECTIVE EVALUATION
Objective evaluation of BLD algorithms is not straightfor-
ward as the output of the BLD are separated LCD and back-
light images which cannot be evaluated separately. In this
section a new evaluationmethodology that combines the LCD
and backlight images is proposed for HDR images. This
enables the BLD methods to be compared using traditional
metrics which are discussed and results presented. In the
following section the objective results from this section are
compared and evaluated against the subjective results from
the previous section.

A. OBJECTIVE EVALUATION METHODOLOGY
To evaluate these five BLD algorithms using QA metrics,
a new evaluation methodology combining the backlighting
and LCD images is introduced, see Figure 7. To keep the
consistency with subjective experiment, the same scenes as
used in that experiment were initially adopted and evaluated,
and the full Fairchild set is subsequently evaluated.

The images were scaled to [0, 4000] to adapt to the max-
imum luminance of the HDR display and as the reference
HDR images. The backlight values and the corresponding
LCD images can be obtained by different BLD algorithms as
introduced in Section III-B. Figure 8 provides an example for
these five BLD algorithms. To simulate the backlight source,
a measured PSF was used to convolve with backlight values.
The simulated backlight diffusion images were quantised to
[0, 4000], and the LCD images were quantised to 8 bits
after clipping pixels exceeding 1. Finally, new HDR images
were constructed by combining backlight diffusion images
and LCD images by Eq.(12). Most of the displays can be
modelled by the following formula:

LHDR = T × B (12)

where LHDR is the luminance that people can perceive, and T
and B represent the Liquid Crystal (LC) transmittance (pixel
grey level of LCD images) and backlight luminance [2].
The reconstructed HDR images were evaluated against the
reference, original, HDR images via a series of QA metrics
(see below).

FIGURE 8. Backlight values and LCD images of five BLD algorithms.

B. QUALITY ASSESSMENT METRICS
The metrics used were:
• HDR-VDP: This metric was proposed byMantiuk et al.
[31] and based on a well calibrated visual model which
can reliably predict visibility and quality differences
between image pairs in a wide range of view conditions.
It considers the visual system, including a board range
of viewing conditions, intra-ocular light scatter, and con-
trast sensitivity across the full range of visible luminance
and uses the Q score of version 2.2.1 to represent the
image quality [39].

• puPSNR: Aydin et al. [29] proposed a QA extension to
popular metrics, such as PSNR and SSIM and allowed
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them to have the capability of handling a wide range
of luminance levels via the introduction of a perceptual
uniform (PU) curve to account for the human visual
system’s response to luminance. puPSNR is the version
applied to the traditional PSNR metric.

• puSSIM: Similar to puPSNR, this metric is a dynamic
range independent extension to the Structure Similarity
Index Metric [30] using the PU curve. SSIM is used to
measure the structural similarity between the reference
and the reconstructed HDR images.

• puVIFP: Visual Information Fidelity (VIF) is a full ref-
erence image quality assessment metric which was pro-
posed by Sheikh and Bovik [40]. It was developed based
on natural scene statistics and the notion of image infor-
mation extracted by the human visual system. To adapt
to the high dynamic range of luminance of HDR images,
puVIFP is used by adopting the PU curve to compress
the luminance channel to account for the Human Visual
System’s response to luminance.

• Power-Saving Rate (PR): Since one of the major
goals of the BLD algorithms is to consume less power,
the power-saving rate is estimated via the average of the

LED values such that p =
(
1−

∑N
1 LEDN
N

)
× 100%.

This method is adopted as the LEDs are controlled with
pulse width modulation (PWM) for which the duty cycle
is proportional to the emitted luminance [26].

C. OBJECTIVE RESULTS FOR THE SELECTED
15 HDR SCENES
This section provides the objective results for the selected
15 HDR scenes. Figure 9(a), Figure 9(b), Figure 9(c)
and Figure 9(d) show the HDR-VDP, puPSNR, puSSIM
and puVIFP results respectively. Figure 9(e) shows the
power-saving ratio of the five methods. In these figures,
violin plots [41] are used to indicate the probability density
distribution of all the scenes for the different metrics. The
black lines and the dotted red lines within the violin plots
indicate the mean and median values respectively. Figure 10
provides objective rank results for five BLD algorithms and
their statistically differences across the selected 15 HDR
scenes.

From the overall results we can see that Zerman performs
best followed by IMF, Max, Cho and Avg. These are similar
to the results from the subjective experiments.

For objective ranks of the five BLD algorithms, as shown
in Figure 10, there are significant differences with relatively
high Kendall’s W scores and at a significance p < 0.05 in
the perceptual QA metrics puPSNR, puSSIM and puVIFP.
Zerman and IMF, IMF and Max form a group respectively
in QA metric HDR-VDP, which means that they are similar
in their own group. A fuller analysis of these correlations is
presented in the next section. The power-saving ratio reveals
an inverse trendwithAvg being themost efficient and Zerman
the least efficient, and Zerman and IMF perform similar.

FIGURE 9. Objective evaluation results for the selected 15 scenes.

FIGURE 10. Objective ranks with Kendall’s W across the selected 15 HDR
scenes.

D. OBJECTIVE RESULTS FOR 105 HDR IMAGES
To provide a more comprehensive result for the objec-
tive experiment, this section extends results of the percep-
tual QA metrics to all 105 HDR scenes in the Fairchild
database [37]. Figure 11(a), Figure 11(b), Figure 11(c),
Figure 11(d) and Figure 11(e) show the HDR-VDP, puPSNR,
puSSIM, puVIFP and power-saving rate respectively. Com-
pared with these results for the 15 HDR scenes, the results
for the 105 HDR scenes broadly exhibit similar performance
but, as expected, with smaller standard deviation.

Figure 12 shows objective rank results of the five
BLD algorithms and their statistical differences across the
105 HDR scenes. The results show that the Zerman method
performs best followed by IMF, Max, Cho and Avg in terms
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FIGURE 11. Objective evaluation results for the 105 HDR scenes.

FIGURE 12. Objective ranks for five evaluation methods across the
105 HDR scenes.

of puPSNR with a high Kendall’s W at 0.950 in Figure 10.
A similar trend appears in Figure 12 in terms of puPSNR
with a Kendall’s W at 0.914. The puSSIM, puVIFP and
power-saving rate show similar results. HDR-VDP presents
a smaller difference between the selected 15 HDR scenes
and 105 HDR images. The results being similar across both
the scenarios corresponding to 15 and 105 indicate that the
15 scenes selected from the Fairchild database [37] used for
the subjective experiment where representative of the whole.

VI. OVERALL ANALYSIS AND DISCUSSION
This section discusses the overall results combining the sub-
jective and objective experiments in order to establish a cor-
relation between them and analyse the overall performance
of the five BLD algorithms.

The reconstructed HDR images from each algorithm were
evaluated against the reference HDR images using the pre-
viously mentioned QA metrics. Correlations are computed

TABLE 2. Pearson’s rank correlation between objective and subjective
evaluation across the selected 15 HDR scenes.

TABLE 3. Pearson’s rank correlation between objective and subjective
evaluation across the 105 HDR scenes.

TABLE 4. Spearman’s Rho rank correlation between objective and
subjective evaluation across the selected 15 HDR scenes.

TABLE 5. Spearman’s Rho rank correlation between objective and
subjective evaluation across the 105 HDR scenes.

by combining the objective and subjective results using Pear-
son’s correlation test and Spearman’s rank correlation test.
Table 2 and Table 3 show the Pearson’s rank correlation
results across the selected 15 HDR scenes and the 105 HDR
scenes respectively. In addition, Table 4 and Table 5 show
the Spearman’s rank correlation results across the selected
15HDR scenes and the full 105HDR set respectively. SR rep-
resents subjective evaluation method.

The results given in Table 2, Table 3, Table 4 and Table 5
indicate a strong correlation between the perceptual QA
metrics and the subjective results. Moreover, the correlation
results within the objective metrics are also very strong. For
Pearson’s rank correlation across both the selected 15 HDR
scenes and the 105 HDR scenes, the values (0.980 vs 0.972)
between subjective rankings and puSSIM are high with statis-
tical significance at p < 0.01, which performs better than that
with HDR-VDP (0.849 vs 0.914), puPSNR (0.902 vs 0.905)
and puVIFP (0.845 vs 0.839) with statistical significance at
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the p < 0.05 level. For Spearman’s rank correlation across
the selected 15 HDR scenes, the values (1.000) show a strong
correlation amongst the objective metrics and the subjective
evaluation method. Spearman’s rank correlation coefficient
also produced high values (1.000) when testing across all
105 HDR images, except for the correlation value (0.900)
between puVIFP and the other evaluation methods owing to
IMF performing better than Zerman’s method when using
puVIFP to evaluate them.

In both the subjective and objective experiments, across
all QA metrics, a similar result can be seen. Zerman and
IMF methods perform better than the other methods. The
power-saving rate demonstrates an opposite trend to the
results compared to the perceptual QA metrics. Comparing
with Avg, Cho and Max methods, Zerman and IMF methods
show lower values and a higher fluctuation range in power
consumption.

As discussed in III-B, the LCD image was obtained by
the division of the original HDR image and the backlight
image. Considering the display model provided by Eq.(12),
one ‘‘trade-off’’ relationship is formed between backlight
values and pixel values of the LCD image. In one specific
HDR image area, small backlight values are more likely to
result in higher pixel values which will be clipped when they
are larger than 1. Clipping artefacts inevitably affect image
quality. Conversely, the higher the backlight values the less
likely pixel values will exceed 1. As a result, the image quality
of Avg, Cho and Max methods is worse compared with
IMF and Zerman methods although these methods show a
better power-saving rate. In addition, due to the better content
adaption of IMF and Zerman methods compared with other
methods, they produce a wider range or quality results in
terms of perceptual QA metrics and power-saving rate.

The objective and subjective evaluation results suggest that
the Zerman method performs best although its power-saving
rate is worse when compared with other methods. While it
performs best in terms of quality it suffers relative to the
other from higher power consumption. However, this still
limits maximum power consumption as well as taking clip-
ping artefacts into consideration. IMF also exhibits a good
performance amongst these five algorithms. Due to the high
dynamic range of the tested images (from around 12 stops
to 48 stops) and the better content adaptation, IMF experi-
ences wide fluctuation on the perceptual QA metrics, such
as HDR-VDP (Q) and puPSNR, and power-saving rate. The
other BLD methods, such as Avg, Cho and Max, show worse
results for the perceptual QA metrics although they perform
a better compared with IMF and Zerman in power-saving.

VII. CONCLUSION AND FUTURE WORK
This work provides a detailed subjective and objective com-
parison of five BLD algorithms and explores the relationship
between LCD images and backlight values further when
using an HDR display. The results show that the Zerman
method, which was developed particularly for HDR images,
performs better than the other four methods.

This work has provided insights for developing new BLD
algorithms. In practice, there are few BLD algorithms devel-
oped for HDR images. For BLD algorithms, clipping artefacts
appear mostly in the bright areas, which is one of the main
reasons for reduced image quality. In addition, a ‘‘trade-
off’’ relationship, a clear inverse correlation, appears between
backlight values and the LCD image. To get a higher image
quality, power appears to be sacrificed. Therefore, a method
that adapts the values of the backlight to the content of HDR
images better, especially for brighter areas, while keep the
balance between quality and power-saving rate could poten-
tially prove very successful. How to identify and optimise
for the above is the subject of future work. In addition, other
methods such as [3] will be also considered in future work.
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