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Abstract

In recent years, image and video signals have become an indispensable part of human

life. There has been an increasing demand for high quality image and video products

and services. To monitor, maintain and enhance image and video quality objective im-

age and video quality assessment tools play crucial roles in a wide range of applications

throughout the field of image and video processing, including image and video acquisition,

communication, interpolation, retrieval, and displaying. A number of objective image and

video quality measures have been introduced in the last decades such as mean square error

(MSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). How-

ever, they are not applicable when the dynamic range or spatial resolution of images being

compared is different from that of the corresponding reference images. In this thesis, we

aim to tackle these two main problems in the field of image quality assessment.

Tone mapping operators (TMOs) that convert high dynamic range (HDR) to low dy-

namic range (LDR) images provide practically useful tools for the visualization of HDR

images on standard LDR displays. Most TMOs have been designed in the absence of

a well-established and subject-validated image quality assessment (IQA) model, without

which fair comparisons and further improvement are difficult. We propose an objective

quality assessment algorithm for tone-mapped images using HDR images as references by

combining 1) a multi-scale signal fidelity measure based on a modified structural similar-

ity (SSIM) index; and 2) a naturalness measure based on intensity statistics of natural

images. To evaluate the proposed Tone-Mapped image Quality Index (TMQI), its per-

formance in several applications and optimization problems is provided. Specifically, the

main component of TMQI known as structural fidelity is modified and adopted to enhance

the visualization of HDR medical images on standard displays. Moreover, a substantially

different approach to design TMOs is presented, where instead of using any pre-defined

systematic computational structure (such as image transformation or contrast/edge en-

hancement) for tone-mapping, we navigate in the space of all LDR images, searching for

the image that maximizes structural fidelity or TMQI.

There has been an increasing number of image interpolation and image super-resolution
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(SR) algorithms proposed recently to create images with higher spatial resolution from low-

resolution (LR) images. However, the evaluation of such SR and interpolation algorithms

is cumbersome. Most existing image quality measures are not applicable because LR and

resultant high resolution (HR) images have different spatial resolutions. We make one of

the first attempts to develop objective quality assessment methods to compare LR and

HR images. Our method adopts a framework based on natural scene statistics (NSS)

where image quality degradation is gauged by the deviation of its statistical features from

NSS models trained upon high quality natural images. In particular, we extract frequency

energy falloff, dominant orientation and spatial continuity statistics from natural images

and build statistical models to describe such statistics. These models are then used to

measure statistical naturalness of interpolated images. We carried out subjective tests

to validate our approach, which also demonstrates promising results. The performance

of the proposed measure is further evaluated when applied to parameter tuning in image

interpolation algorithms.
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Chapter 1

Introduction

1.1 Motivation

With the advances of image acquisition and display devices and communication networks,

digital image and video products and services have become ubiquitous, ranging from per-

sonal cameras and visual communications to remote sensing and medical imaging. Since

quality has always been among the most important performance measures, there has been a

drastically increasing interest in accurate, reliable and practical Image Quality Assessment

(IQA) and Video Quality Assessment (VQA) tools.

According to the availability of a reference image, objective IQA metrics can be divided

into three main categories: full-reference (FR), no-reference (NR), and reduced-reference

(RR) methods [18]. In order to evaluate the quality of a distorted image, FR IQA methods

always assume full access to the original image, and thus FR methods usually provide the

most reliable and accurate evaluation results. A number of successful algorithms have been

proposed to predict human visual perception presuming that the pristine reference signal

is available. Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Visual In-

formation Fidelity (VIF) [19], Structural SIMilarity index (SSIM) [20], and its derivative

Multi-Scale SSIM [21] are among the best known FR IQA methods, and they have at-

tracted significant attention in recent years. However, these methods cannot be applied in
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many present and emerging practical real-world applications where the reference signal is

unavailable or is in a different acquisition format or spatial resolution.

High Dynamic Range (HDR) images have a greater dynamic range of luminance levels

between its brightest and darkest regions than standard dynamic range (SDR) or low

dynamic range (LDR) images [5, 22]. Such a large dynamic range enables more accurate

representations of the intensity levels in the real scene. Nevertheless, HDR images cannot

be visualized on regular displays without the aid of Tone-Mapping Operators (TMO) that

convert high dynamic range (HDR) to low dynamic range (LDR) images. Tone-mapping

algorithms reduce the dynamic range of HDR images, and are able to preserve most of the

details captured in the original HDR images. Figure 1.1 demonstrates the advantage of

tone-mapping HDR images where the images of two scenes were taken multiple times with

slightly different exposure settings, which may be subsequently merged to an HDR image.

On the left, images taken with the best exposure are illustrated. Due to the existence of

both light and dark areas in the same scene, even the best exposure shots fail to capture the

detail and color appearance of the sky in the background and the bricks in the foreground.

Apparently the sky in both scenes is overexposed and at the same time the foreground

is dark. The same scenes shown on the right were captured using HDR format and were

mapped by TMOs. It can be observed that the structural details are much better preserved

in both the background and the foreground.

Since the original HDR images cannot be visualized on standard displays, subjective

evaluation may not provide a golden standard to validate the performance of TMOs in

terms of preserving structural details. Therefore, without a reliable objective quality mea-

sure for tone-mapped images, the design of traditional TMOs can only be based on intuitive

ideas, lacking clear goals for further improvement. Although a number of TMOs have been

proposed in recent years, little has been done in developing objective methods to assess and

compare the quality of TMOs. The challenging task is due to the fact that the dynamic

range of HDR and LDR images are different, and thus existing IQA methods cannot be

applied.

Modern communication devises enable users to adaptively modify visual signals for bet-

ter visualization purposes. We often need to view images or videos at a different resolution
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Figure 1.1: Optimally exposed images (left) versus HDR tone mapped images (right).(Image
courtesy of Reinhards book [3])

from the resolution of the original content. High resolution images should be decimated to

fit on small displays. For example, a video is downsampled if it is originally produced in

HDTV resolution, but watched on smart phones with lower resolutions. On the other hand,

interpolation and super-resolution algorithms are used to visualize low resolution content

3



on high resolution screens. Therefore, measuring the performance of resizing algorithms

plays an important role in the field of visual communication. Typical FR IQA methods

fail to estimate the quality of interpolated images because the reference and the distorted

images have different spatial resolution. Consequently how to evaluate the performance of

interpolation algorithms is a challenging but important problem.

1.2 Objectives

The main objective of this thesis is to develop automatic quality assessment algorithms for

images undergoing changes in dynamic range and spatial resolution. Furthermore, we aim

to explore the potentials of these quality assessment algorithms in real-world applications.

1.3 Contributions

The main contributions of this thesis are summarized as follows:

• An objective quality assessment algorithm for tone-mapped images is presented. The

method is built upon combining a multi-scale signal fidelity measure on the basis of

a modified structural similarity index (SSIM) and a naturalness measure on the basis

of intensity statistics of natural images. Validations using independent subject-rated

image databases show good correlations between subjective ranking score and the

proposed Tone-Mapped image Quality Index (TMQI). Furthermore, we demonstrate

the extended applications of TMQI using two examples: parameter tuning for TMOs

and adaptive fusion of multiple tone-mapped images

• Medical images are typically captured and stored using formats that allocate more

bits to each pixel than those assumed by standard displays. As such, they are high

dynamic range (HDR) images. To visualize HDR medical images, a so-called “win-

dowing” procedure is typically employed by which the structural details within the

intensity region of interest is mapped to the dynamic range of regular displays. A
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parameter selection scheme is proposed to adaptively find the optimal windowing

function for different medical images.

• We have developed a novel framework in designing new TMOs by making use of either

the structural fidelity component in TMQI or TMQI itself as the objective. Unlike

the design of traditional TMOs, we do not start from a predefined computational

structure. Instead, we explicitly treat tone-mapping as an optimization problem in

the space of images and propose an iterative search approach that starts from any

initial image and moves step-by-step in the image space towards the direction of

improving the proposed objective measure until a (local) maximal point is reached.

• We have proposed an NSS-based distortion measure to objectively assess the quality

of interpolation algorithms. Our NSS model uses statistics of three features trained

from high-quality natural HR images, and uses LR images as reference. The proposed

method can be used when the interpolation scaling factor is an integer number.

A subjective experiment was conducted to validate the performance of the quality

measure where subjects were asked to rate images created from different interpolation

algorithms. The results have demonstrated that the proposed objective measure well

predicts subjective ratings. Moreover, to demonstrate a potential application of such

IQA methods, the model is adopted for tuning the parameters of an existing image

interpolation algorithm.

1.4 Thesis Organization

The organization of the rest of the thesis is as follows. Chapter 2 discusses related existing

works on the topics addressed in the thesis. We briefly introduce HDR images and tone-

mapping operators. Moreover, the details of well-known relevant IQA models are provided.

The fundamentals of interpolation algorithms and related perceptual quality assessment

methods are discussed. An overview of previous relevant works to the thesis is presented

throughout the chapter. Chapter 3 introduces tone-mapped image quality index (TMQI)

5



as a novel objective quality measure for tone-mapped images, and shows its potential ap-

plications in parameter tuning and adaptive fusion of tone-mapping operators. A modified

version of the proposed measure is described in Chapter 4 to enhance the visualization

of HDR medical images. In Chapter 5, a perceptual optimization frameworks based on

the proposed TMQI and structural fidelity measures is presented to obtain better tone-

mapping operators for natural images. Chapter 6 focuses on developing IQA method for

interpolation algorithms. Finally, Chapter 7 provides concluding remarks and discusses

future research directions.
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Chapter 2

Background

2.1 High Dynamic Range Image

High dynamic range image (HDR) can store a much wider gamut than standard 24-bit

RGB where the range of intensity levels could be on the order of 10,000(cd/m2) to 1(cd/m2)

[5, 22]. The difference between HDR and low dynamic range (LDR) images is more than

the bit depth and the difference between minimum and maximum intensity values. In fact,

HDR format enable us to store a wide range of luminance with much higher precision than

LDR images do, and thus represent information more accurately than low dynamic range

images. Typically, low dynamic range image is categorized as an output-referred standard

since its luminance levels are associated with the dynamic range of the display device. On

the contrary, most HDR images are scene-referred as the high dynamic range allows us

for accurate representations of the luminance variations in real scenes, ranging from direct

sunlight to faint starlight [5].

2.1.1 Applications of HDR Images

With recent advances in imaging and computer graphic technologies, the HDR images are

becoming more widely available. Camera companies are already developing scene-referred
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data by providing tools to combine images captured in different exposures. Moreover, there

are some applications in which individuals need to record more than what is seen of a scene

with naked eyes, and the HDR format is able to accomplish this goal. Some application

areas of HDR images are outlined as follows:

• Digital Photography: Taking a single photo from a natural scene with high con-

trast in both very bright and very dark regions is still a challenging technical problem.

Instead, photographers can capture multiple images at different exposures using con-

ventional cameras and then merge the images into a single HDR image. While none

of the images being physically captured contains all structural details in all regions,

a transformation that mapps HDR to LDR images may be able to reproduce almost

all the details. This transformation is called a “tone-mapping operation” and is a

topic of major interest in this thesis.

• Remote Sensing: Satellite imagery typically contains pixel intensities much more

than what is visible to the naked eyes, where the images with different wavelengths

may be combined together into a single HDR image [23].

• Medical imaging: DICOM standard is widely used in medical communities where

the precision of intensity levels of certain image modality may occupy up to 16 bits

per pixel. Therefore, DICOM is essentially a HDR image format. How to visualize

DICOM images on standard displays is a practically important problem.

• Computer Game: Game engines are applying image-based rendering techniques

and tone mapping algorithm to generate natural scenes, where new standards are

emerging for HDR images as a critical element in this pipeline [24].

2.2 Tone Mapping Operators

Using different techniques mentioned above, we are able to obtain HDR images. How-

ever, most available display devices can only show images with moderate dynamic range
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Figure 2.1: Histograms of (a) “Office” HDR image and (b) its corresponding LDR image using
TMO in [4].

of less than 100(cd/m2) to 1(cd/m2). The discrepancy between the wide luminance range

of the HDR image and the small ranges reproduced by standard displays raises a common

practical problem : how to visualize HDR images on standard display devices. A straight-

forward solution is simply linearly mapping the intensity levels of HDR images to that

of the standard displays, but such a mapping often removes the structural information in

low intensity regions, resulting in almost entirely dark image [25]. Thus, the ultimate goal

of tone-mapping is to visually match between the observed scene and the tone-mapped

LDR images, whereas simple linear scaling inevitably causes information loss. Figure 2.1

illustrates the histogram of “Office” HDR image and the histogram of its tone-mapped

LDR image using the TMO given in [4]. It can be observed that tone mapping operation

modifies the relative intensity of pixels in bright and dark regions while linear mapping

results in the same histograms for HDR and LDR images. Many other tone-mapping algo-

rithms have been proposed to solve this problem. Basically there are two main categories

of tone-mapping algorithms: global and local tone mapping operators. Global TMOs map

all the image pixel values to a display value without taking into consideration the spatial

location of the pixel in question. The mapping function can be a gamma function, a power
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function, a logarithmic function or a function derived according to certain characteristics

of the Human Visual System (HVS). On the other hand, local mapping operator is spa-

tially dependent and varying transformations are applied to each pixel depending on its

surrounding image structures. This section describes typical methodologies to resolve the

tone reproduction issue. A comprehensive review on TMOs can be found in [5, 22].

2.2.1 Human Visual Adaptation

The HVS needs to deal with the same issue. Although the dynamic range of individual

channel in the visual pathway is limited, it gives us the ability to perceive the details during

the course of day and night. Therefore, imitating the adaptation characteristics of HVS

may help us solve the tone-mapping problem. There are different approaches to model

the human adaptation behaviour. The most relevant ones include the threshold versus

intensity function and the photoreceptor response model.

In psychophysical studies, human visual adaptation is evaluated by the minimum

amount of incremental light that allows observers to detect an object from the background

luminance. This minimum is called “Just Noticeable Difference” or JND. Figure 2.2 plots

the JND versus various background intensity. This curve is also called a Threshold Versus

Intensity (TVI) function. It can be seen that over a wide range of background intensity,

the ratio ∆I
I

is nearly constant. This relation is known for more than 140 years as the

Weber’s law. The Weber’s law shows that human visual adaptation system scales scene

intensities to preserve our ability to detect contrasts within a wide range of intensities.

Human eyes accomplish visual adaptation to the varying range of illumination with

the coordination of the pupil, the rod-cone cells and the photoreceptor mechanism. The

photoreceptor cells including rods and cones which convert the absorbed light energy into

neural responses which have been measured with photoreceptor mechanism. While the

visual system performs over a broad range of background light intensities, the photoreceptor

rod-cone cells respond logarithmically to a narrow range of luminance. This range is only

about three log units as shown in Figure 2.3. The shapes of the response curves of the cones
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Figure 2.2: Plot of visual threshold ∆Ib versus intensity Ib, TVI [5].

and rods are the same; however, since rod cells are more sensitive to light, the response

curve for cone is shifted to the right, as shown in Figure 2.3.

The response curve can be fitted with the following equation,

R

Rmax

=
In

In + σn
, (2.1)

where R is the photoreceptor response, Rmax is the maximum response, I is the light

intensity, and σ is a semisaturation constant, which corresponds to the intensity causing

half-maximum response. The role of σ in (2.1) is to control the position of the response

curve on the horizontal intensity axis, and thus it is possible to represent the response

curves of rods and cones by simply using two different values of σ. Finally, n is called

sensitivity-control exponent whose value is in the range of 0.7 and 1 [6]. The response

curve explains when a photoreceptor is exposed to relatively high intensity with respect

to the background luminance, the response reaches its maximum and the photoreceptor

is saturated. In other words, the photoreceptor loses sensitivity to any additional light

intensity. However, this saturation does not continue for long. When the HVS is exposed
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Figure 2.3: The response of dark-adapted rod and cone cells to various intensities [6].

to a new environment, the eye soon starts to adapt to the background luminnace. There

is a strong relationship between the threshold adaptation and photoreceptor adaptation

models. In Figure 2.4, the graph at the top illustrates photoreceptor response function at

three different background luminance Li, spaced approximately two log units apart. The

∆Lis are the luminance increments required to extract a fixed ∆R response increment.

The bottom graph shows the ∆Li values as a function of the background luminance Li

which is quite similar to the TVI curve in Figure 2.2.

Visual Adaptation Model for HDR Tone Mapping

Photoreceptor adaptation plays an important role in HVS adaptation. An appropriate

mathematical model of this adaptation can be useful in developing tone-mapping operators.

Schlick uses the following mapping function to determine display pixel values from pixel
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intensity, I [26].

F (I) =
I

I + Imax−I
p

, (2.2)

where Imax is the maximum intensity and p takes a value in the range of 1 to ∞. We can

easily relate this equation to (2.1) by setting the exponent n to 1, and substituting Imax−I
p

for σ. Tumblin et al. [27] proposed an S-shape curve (sigmoid) as their tone-mapping

function:

F (I) = [
In

In + kInb
+

Inb
k(In + kInb )

] ·D , (2.3)

which is inspired by Schlick’s work. The first term is identical to (2.1) and the second

term is to create an S-shaped function on a log-log plot. Pattanaik et al. [28,29], Reinhard

and Devlin [30] explicitly make use of (2.1) to map high dynamic range image onto display

dynamic range. Pattanaik et al. in [28] introduce two separate equations for rods and

cones. The σ values for rods and cones are computed from the background intensity as

σrod =
c1Irod

c2j2Irod + c3(1− j2)4I
1
6
rod

, (2.4)

σcone =
c4Icone

k4Icone + c5(1− k4)2I
1
3
cone

, (2.5)

where

j =
1

c6Irod + 1
, (2.6)

k =
1

c7Icone + 1
, (2.7)

and Irod and Icones are the background intensities for the rods and cones, respectively.

Reinhard and Devlin employed a simpler formula for defining σ at a given background

intensity that is given by [30]
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σ = (fIb)
m , (2.8)

where f and m are constants and are provided by users as desired parameters in their tone

mapping algorithms. Reinhard then extended the function and provided a function which

bears a strong resemblance to (2.1):

F (I) =
I

I + Ib
a

(2.9)

where a is a scaling constant chosen according to the luminance range of image scene [13].

Threshold Versus Intensity (JND) Model For Tone-mapping

As mentioned before, the JND curve can be derived from photoreceptor responses. There-

fore, the threshold versus intensity curve (TVI) can also be used in tone-mapping problems.

Ward [31] utilized the TVI model for tone reproduction. From scene pixel luminance Iscene

and the scene background luminance Ib,scene, the ratio

k =
Iscene − Ib,scene

∆Ib,scene
(2.10)

is computed. This ratio calculates the number of JNDs which the pixel differs from the

background. Therefore, substituting display background luminance Ib,display and display

adaptation threshold ∆Ib,display, (2.10) can be rewritten to compute display pixel lumi-

nance:

Idisplay = k∆Ib,display + Ib,display, (2.11)

Ferwerda et al. [32] later adapted this concept to compute JNDs specifically for rods and

cones and used them for tone mapping images with a wide range of intensities.

Although HVS models have inspired numerous algorithms for tone reproduction, it is

possible to devise algorithms without explicitly taking human vision into account. His-
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togram adjustment [33], bilaterial filtering [12], multiscale optimization framework [11]

and exposure fusion [34] belong to this class. Fattal et al. in [35] developed gradient do-

main dynamic range compression method based on compressive function to the gradient

field. Fattal et al. observed that any drastic change in luminance in the HDR images

generates large magnitude in luminance gradient, while fine details correspond to much

smaller gradients. Hence, they propose to identify gradients across the HDR image first

and then attenuate their magnitudes adaptively, i.e. larger gradients are attenuated more

than smaller gradients.

2.3 Image Quality Assessment Methods

Image quality evaluation plays a critical role in many image processing problems, from im-

age acquisition, synthesis and compression to restoration, enhancement and reproduction.

The quality measurement methods are divided into two major categories, subjective and

objective assessment. Although, human observers are very good at judging image qual-

ity, subjective assessment is expensive and time consuming. Objective quality metrics are

appealing because they are able to incorporate the quality assessment method in various

applications to measure and optimize the quality of images automatically. Moreover, they

can be implemented by either software or hardware and computed very quickly.

Objective assessment methods are often classified into three major classes: Full-Reference

(FR), Reduced-Reference (RR) and No-Reference (NR) methods. Typically, FR quality

metrics are used in image processing tasks where the reference image is available. RR

algorithms attempt to measure the quality of a test image using certain features from the

reference image, while in NR quality assessment, there is no information available from the

reference image.

The usage of image and video quality measures in the design and optimization of

image/video processing algorithms and systems is highly desirable. To incorporate in

image/video processing algorithms, image/video quality assessment methods are desired

to have the following properties,
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• High correlation with subjective scores

• Low computational complexity

• Accurate local quality prediction that can help evaluate varying quality based on

local content

• Good mathematical properties such as convexity that can reduce the difficulty in the

design of optimization algorithms

To the best of our knowledge, there are only two image and video quality assessment

methods that satisfy or nearly satisfy all of the above mentioned requirements: Mean

Square Error (MSE) and the Structural SIMilarity (SSIM) index [20]. The remainder of

this section introduces MSE and SSIM.

2.3.1 Mean Square Error (MSE)

The most widely used FR quality metrics are mean square error (MSE) and peak-signal to

noise ratio (PSNR). MSE and PSNR are easy to apply, simple in calculation, and also have

clear physical meanings. For a pair of images x and y, the MSE is computed by averaging

the squared intensity differences of the test and reference image pixels as

MSE(x, y) =
1

L1L2

L1∑
i=1

L2∑
j=1

[x(i, j)− y(i, j)]2 , (2.12)

where L1 and L2 are the length and width of the images, respectively. When MSE is

computed based on the error signal, between the reference image x and its distorted version

y, it can be employed as a measure for image quality. MSE is associated with attractive

features such as simplicity, low computational cost, and memorylessness [7]. Moreover,

MSE serves very well in solving optimization problems for the following reasons: it is

a valid distance metric in RN ; it preserves energy after any orthogonal transformation

(Parseval’s theorem); it is convex; and it is differentiable.
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MSE is often converted to PSNR using the following expression

PSNR = 10 log10

(
R2

MSE

)
= 20 log10

(
R√
MSE

)
[dB] (2.13)

where R is the maximum pixel value, which for example takes 255 for an 8-bit pixel. The

advantage of PSNR over MSE, as a perceptual quality measure, is its capability to handle

images with different dynamic ranges.

It has been shown that MSE does not account for a number of important psychological

features of the HVS [36]. Moreover, MSE is built based on several assumptions which

may not be applicable in providing accurate perceived image/video quality prediction. For

example, MSE is insensitive to the sign of the error signal. Furthermore, MSE treats all

the pixels of an image equally, and thus the distortion in each pixel is calculated indepen-

dently. It is claimed that these assumptions fail MSE as a perceptually meaningful quality

assessment tool [20].

2.3.2 Structural SIMilarity index (SSIM)

The Structural SIMilarity index (SSIM) started a new paradigm in image quality assess-

ment [7]. The basic assumption is that the HVS is highly adapted for extracting struc-

tural information, and thus the loss of structural information can cause perceptual distor-

tions [20] [7]. The SSIM is a combination of three comparisons - luminance, contrast and

structure (2.14):

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y), (2.14)

Let x and y be two images, the luminance component compares the luminance of the

images using (2.15),

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

, (2.15)
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where µx and µy denote the mean intensities of image x and y, respectively, defined by

(2.16).

µx =
1

N

N∑
i=1

xi, (2.16)

where N is the number of pixels. The constant C1 is included to avoid instability when

the denominator is very close to zero, and the value is determined with C1 = (K1 · L)2,

where L is the dynamic range of the pixel values and K1 � 1 [20]. The luminance term

is qualitatively consistent with Weber’s law for its sensitivity to the relative luminance

change. Contrast comparison is then performed which is specified as:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (2.17)

where σx and σy represent the standard deviations of images x and y, respectively. For

image x the standard deviation is defined by:

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − µx)2 (2.18)

The constant C2 has the same role as C1 in luminance comparison and is computed with

C2 = (K2 · L)2, where L is the dynamic range of pixel intensities and K2 � 1 [20]. Finally,

the structure-comparison function is given by:

s (x, y) =
σxy + C3

σxσy + C3

, (2.19)

where σxy denotes the cross correlation between x and y defined by:

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy), (2.20)

and C3 is a constant to avoid division by zero. Since the correlation computation is
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performed on normalized signals, the structure component is less sensitive to local image

luminance and contrast. To simplify the expression C3 is set to C2/2, resulting in

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (2.21)

To obtain a local measure of structural similarity, the parameters are calculated within

a local window that slides over the whole image, resulting in a quality map which indicates

the quality of the distorted image across spatial locations.

The luminance term of the SSIM index is related to Weber’s Law [20] [36], that indicates

the perception of any stimulus change is proportional to the intensity of the stimulus. As

explained in [20], Weber’s law not only applies to the luminance but is also applicable to

the image contrast i.e., the ratio of contrasts is constant for a constant SSIM value. The

SSIM index gained significant attention in recent years and outperforms MSE and PSNR

due to its good correlation with subjective quality assessment result [20] [7].

Figure 2.5 demonstrates a comparison between the performance of MSE and SSIM using

an illustrative example. Figure 2.5(a) is the reference image and the rest of the images

are contaminated with different types of artifacts. It can be observed that although the

perceptual quality of the distorted images differs quite significantly, MSE gives the same

score to all distorted images and predict a similar quality. By contrast, the SSIM values

are better correlated to human perception. Several important mathematical properties of

the SSIM index have been investigated in [37]. It has been proved that like the MSE, the

SSIM index is preserved under orthogonal or unitary transformations. In addition, it is

shown that the SSIM index can be partitioned into two components, each of which may

be transformed into a valid distance metric. Convexity, quasi-convexity, and generalized

convexity have also been shown to hold locally for the metrics derived from SSIM [37]. In

brief, SSIM achieves the best compromise between accurate prediction of image quality and

good mathematical properties, and thus is preferred in numerical optimization frameworks.

The SSIM index does not take into account the viewing distance of the human subject,

and thus the scale of the images have impact on SSIM performance. To consider this
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Figure 2.5: Comparison of SSIM and MSE performances for “Einstein image altered with
different types of distortions. (a) Reference image. (b) Mean contrast stretch. (c) Luminance
shift. (d) Gaussian noise. (e) Impulsive noise. (f) JPEG compression. (g) Blurring. (h) Spatial
scaling. (Image courtesy of Wang and Bovik’s paper [7])



issue, Multi-Scale Structural SIMilarity index (MS-SSIM) has been proposed in [21]. In

the general form, the MS-SSIM is given by

MS− SSIM(x, y) =
R∏
r=1

[l(xr, yr)]
αr [c(xr, yr)]

βr [s(xr, yr)]
γr , (2.22)

where xr and yr are the image x and y, respectively, at resolution r. The α, β and γ

are the relative importance/weight of each scale that were decided based on psychovisual

experiments. It is worth noting that the weights were determined based on the subjective

experiments and were found to be consistent with the general shape of Contrast Sensitivity

Function (CSF) [21].

Typically, a simple averaging over the local SSIM scores is employed for spatial pool-

ing [20]. A new pooling approach based on information content is proposed in [38]. It

was shown that Information Weighted SSIM (IW-SSIM) outperforms the original SSIM in-

dex [38]. Information content based weighting can yield more accurate quality prediction as

compared to minkowski, local quality/distortion-based, saliency-based, and object-based

pooling.

Popular quality metrics such as MSE, PSNR and SSIM assume the dynamic range of

the distorted image is the same as the dynamic range of the reference image, and thus

cannot be used in quality comparison of two images with different luminance dynamic

ranges. More specifically, in the case of SSIM, the luminance and contrast terms cannot be

used since there is a large difference in the luminance and contrast ranges of tone-mapped

images and their corresponding HDR references. Moreover, HDR-LDR quality assessment

does not directly fall into FR, RR and NR categories. The human eyes are unable to see

the actual HDR image on regular displays, and thus the quality of tone-mapped images

are judged without a reference with perfect visual quality. On the other hand, we cannot

simply classify a HDR-LDR quality measure as an NR quality metric since the pixel values

of the reference HDR image are fully provided and are available to check the signal fidelity

of the LDR image. Therefore, quality assessment of tone-mapped images introduces a new

challenge to the field of image quality assessment.
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2.3.3 Quality Assessment of Tone-Mapping Operators

Because of the reduction in dynamic range, tone mapping procedures inevitably cause

information loss. With multiple TMOs available, one would ask which TMO faithfully

preserves the structural information in the original HDR images, and which TMO produces

natural-looking realistic LDR images.

TMO assessment in the past mostly relied on human subjective evaluations. In [39],

perceptual evaluations of six TMOs were conducted with regard to similarity and prefer-

ences. An overview and a subjective comparison of eight TMOs were reported in [40]. HDR

capable monitor was employed in [41] to compare six TMOs in a subjective experiment

using a paired comparison method. In [42], fourteen subjects were asked to rate two archi-

tectural interior scenes produced by seven TMOs based on basic image attributes as well

as the naturalness of the LDR images. A more comprehensive subjective evaluation was

carried out in [2], where tone mapped images generated by fourteen TMOs were shown

to two groups of ten human observers to rate LDR images, concerning overall quality,

brightness, contrast, detail reproduction and color. In [43], subjects were asked to choose

the best LDRs derived from two TMOs with different parameter settings to optimally

tune the algorithms. The value of subjective testing cannot be overestimated. However,

they have fundamental limitations. First, subjective measurement is expensive and time

consuming. Second, it is difficult to be incorporated into an optimization framework to au-

tomatically improve TMOs and adjust their parameter settings. Furthermore, important

image structures contained in HDR images may be missing in tone mapped images, but

human observers may not be aware of the existence of such missing information. In this

sense, subjective evaluation should not be regarded as a golden standard for the quality of

tone mapped images.

Typical objective image quality assessment (IQA) approaches assume the reference

and test images to have the same dynamic range [36], and thus cannot be directly applied

to evaluate tone mapped images. Only a few objective assessment methods have been

proposed for HDR images. The HDR visible difference predictor (HDR-VDP) [44] is a HVS

based fidelity metric aiming to distinguish between visible (or suprathreshold) and invisible
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(or subthreshold) distortions. The HDR VDP takes two HDR images as the reference

and test images and generates a map of probability as the output. Figure 2.6 depicts

the block diagram of the visible difference predictor. First, a sophisticated processing

procedure is made on both the reference and test images to discriminate visual masking

effect by deriving threshold contrast in different spatial and orientation channels. Second,

to consider the relative insensitivity of the HVS to the small shift of the signal phase, a low-

pass filter with a small kernel is applied. The filtered masking maps are then normalized

to measure the distortion between the reference and distorted images for every pixel and

for every channel. Subsequently, the normalized distortion measure is subjected to the

psychometric function1 that estimates the probability of detecting the difference between

each channel [45]. For each pixel, the estimated probability values are summed across all

channels. Finally, the probability values are used to predict visible differences between

the reference and the distorted images. It is assumed that the difference can be perceived

for a given pixel when the probability value is greater than 0.75. The interpretation of

the distortion maps is important, as the HDR VDP is sometimes misused to measure

the magnitude of distortions, which is not its intended application. The HDR VDP is a

threshold fidelity measure whose task is to distinguish between visible (or suprathreshold)

and invisible (or subthreshold) degradations. The metric is complicated in implementation

and should be regarded as an indicator of perceptual distortions in terms of probability of

detection only.

2.3.4 Dynamic Range-Independent Image Quality Assessment

The HDR VDP assumes the dynamic ranges of the images being compared are similar.

A dynamic range independent approach was proposed in [8], which improves upon HDR-

VDP. The DRI measure follows the HVS model in HDR VDP, which provides detection of

visible contrast changes. However, in the last block, the visibility information is employed

to analyze only visible structural changes. Aydin et al. consider three classes of structural

changes [8]:

1We will explain the psychometric function in detail in the next chapter.
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Figure 2.6: Framework of HDR-VDP approach (Image courtesy of [5]).

• Loss of visible contrast: Image details which can be seen in the HDR reference image

disappear in the LDR image. This is a common problem in tone mapping processes.

• Amplification of invisible contrast: Image details which are not visible in the HDR

image, but tone mapping operators make them visible in the LDR image.

• Reversal of visible contrast: Image details which can be seen in both HDR and tone

mapped image but with different polarity.

Figure 2.7 illustrates each of the discussed distortion types for a simple signal. The

three structural distortion types are computed using their probabilities, and each type

produces a distortion map. Eventually, the output of this metric is three visibility maps

each corresponds to one distortion type. These quality maps show good correlations with

subjective classifications of image degradation types including blur, sharpening, contrast

reversal, and no distortion. However, this approach suffers from its high implementation

complexity. Moreover, it does not provide a single quality score for an entire image, making

it impossible to be validated with subjective evaluations of the overall image quality.
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Figure 2.7: Specific cases of contrast modification that the DRI measure classifies as a structural
change (left) or a lack of structural change (right). The solid and dashed lines depict the reference
and test signals, respectively, while the horizontal lines denote the visibility threshold level [8]
(Image courtesy of [5]).

2.4 Image Interpolation

Image interpolation techniques that can improve the spatial resolution of given low-resolution

(LR) images are used in many real-world devices and systems such as web browsers, media

players, photo editors, and high-definition television (HDTV) [46]. Over the past decades,

an increasing number of interpolation algorithms have been proposed. They can be classi-

fied into two major categories- spatially invariant and spatially adaptive methods [47].

Spatially invariant techniques enlarge LR images by directly computing new pixel values

without differentiating local image features. The typical method is to model local image

signal by a low-order polynomial function. They are applied uniformly to all pixels and are

computationally inexpensive. Classical interpolation algorithms such as nearest neighbour,

bilinear and bicubic methods belong to this category. This type of interpolation methods
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often produce artifacts such as blur, blockiness and halo specifically around the edges.

To resolve these problems, several spatially adaptive interpolation methods have been

proposed recently, which often adapt towards image edges or locally oriented structures

[9, 14–17].

Edges are visually attractive to the human perceptual system, and thus spatially adap-

tive interpolation algorithms often attempt to address edge reconstructions. As a result,

most spatially adaptive interpolation algorithms can be regarded as edge-directed meth-

ods. The key idea is to preserve the edge sharpness during the interpolation process. In

particular, most of these methods explicitly estimate edge orientation and then interpolate

along the edge orientation. To reduce the computational complexity, some methods fur-

ther quantize the edge orientation [48] [49]. The performance of interpolated images using

edge-directed methods is often determined by the estimation accuracy of the edge orienta-

tion. It has been shown that weighting the edge orientations, can improve the perceptual

quality of interpolated images [47]. A comprehensive review on interpolation techniques

can be found in [47] and [50].

2.5 Cross Spatial Resolution Image Quality Assess-

ment

Figure 2.8 depicts examples of reconstructed high resolution (HR) images created from the

LR “Lena” image for scaling factors of 2, 4 and 8, by means of bilinear, bicubic, nearest

neighbor (NN), and new edge-directed interpolation (NEDI) [9] methods, respectively. It

can be observed that as the scaling factor increases, the perceptual differences between

different interpolation methods become more pronounced. A natural question arises here

is: with a variety of interpolation methods available, which of them produces more natural-

looking realistic HR images? To answer this question, IQA methods are highly desirable,

without which, different interpolation methods cannot be compared and future improve-

ment is pointless.

Subjective evaluation provides a direct and reliable method in assessing the quality of
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(a) LR image

(b) Bilinear (c) Bicubic (d) NN (e) NEDI

(f) Bilinear (g) Bicubic (h) NN (i) NEDI

(j) Bilinear (k) Bicubic (l) NN (m) NEDI

Figure 2.8: (a): low-resolution (LR) image; (b-e): interpolated images by a scaling factor of
2; (f-i): interpolated images by a scaling factor of 4; (j-m): interpolated images by a scaling
factor of 8. Column 1: bilinear interpolation; Column 2: bicubic interpolation; Column 3:
nearest neighbor (NN) interpolation; Column 4: new edge-directed interpolation (NEDI) [9]. All
interpolated images are cropped for better visualization.
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interpolated images. In subjective IQA experiments, human subjects may be instructed to

assign a “quality score” based on a linear scale or quality category for each given interpo-

lated image, and then the mean opinion scores (MOSs) as well as the variations between

multiple subjects can be calculated [51, 52]. The subjects may also be asked to compare

pairs of images and pick the one with higher quality [53,54]. Such a two-alternative-forced-

choice (TAFC) approach has been shown to provide consistent test results in the literature

of visual psychophysics [55], though with low efficiency.

Subjective studies of the trade-off among spatial resolution, temporal resolution, and

quantization step size are carried out in [56–59]. Bae et al. in [56] conducted a subjective

test to investigate the preferred spatial resolution for a given quantization error. They

demonstrate that people prefer to observe larger images with less quantization error rather

than low resolution images with no visible quantization error. Moreover, Bae et al. con-

clude that beyond certain quantization error, subjects accept more distortion as the spatial

resolution decreases. Wang et al. [60] conducted a subjective study to examine the im-

pact of jointly adjusting spatial resolution, temporal resolution, and quantization step-size.

They demonstrate that people prefer a smaller image with smaller quantization errors com-

pared to a larger image with larger quantization errors, for the same bit-rate. The effect of

different spatial resolution, temporal resolution and quantization parameters on subjective

quality on mobile platforms are studied in [57] and [58], where the experiments indicate

that video content has impact on perceptual quality of subjects. Cermak et al. in [59] val-

idated the test results of two VQEG projects. They used the Mean Opinion Score (MOS)

obtained from human subjects for QCIF(176×144), CIF(352×288), VGA(640×480), and

HD(1920×1200) resolution at several bit-rates, and determined the required bit-rate to

achieve a given level of video quality for a given screen resolution. All these subjective

evaluation methods are useful in comparing the performance of interpolation algorithms.

However, they are often time-consuming and expensive, which largely constrains their ap-

plications when the volume of images becomes large or when one aims to incorporate them

into the optimal design and parameter tuning of interpolation algorithms.

Very limited progress has been made in automatic or objective quality assessment of

interpolated images. To employ existing IQAs to estimate the quality of two images with
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different spatial resolution, researchers follow two straightforward methods. They either

compare the low resolution image with the decimated high resolution reference image or

compare the interpolated low resolution image with the high resolution reference image.

Both approaches are inaccurate in predicting perceptual quality [61]. The difficulty lies

in the fact that a perfect-quality HR image is unavailable to compare with. As a result,

typical FR objective IQA approaches such as PSNR and SSIM are not directly applicable.

It is worth noting that the pixels in the LR image constitute a subset of the HR image

pixels and are available to the IQA system. This well fits into the scenario of RR IQA,

where only partial information about the perfect-quality original image is accessible [36].

Few studies have been performed to adopt existing objective quality measures to un-

derstand the effect of resolution on the quality. These studies focus on providing the best

quality video transmission under the constraints of available bandwidth, and the resolu-

tion of the viewer’s display. Reed and Lim proposed an algorithm in [62] to explore the

best trade-off between spatial resolution, temporal resolution, and encoding quantization

parameters by using Sum of Absolute Error (SAE) as the objective measure. Akyol et

al. presented a framework in [63] to choose the best settings for a scalable encoder using

an NR objective measure that quantifies different image artifacts such as blockiness and

blurriness.

In [61], Demirtas et al. proposed a FR objective quality assessment algorithms to esti-

mate the quality of a distorted image with a lower resolution using high resolution reference

image. They assume that the LR image is generated from the HR reference image by per-

forming Low Pass Filtering (LPF) followed by downsampling. Their objective measure is

based on wavelet representation and measuring the mutual information motivated by Vi-

sual Information Fidelity (VIF) measure [19]. More specifically, they decompose both HR

and LR images using bi-orthogonal wavelets, and then compute the mutual information

between the corresponding subbands using similar model described in the mutual infor-

mation calculation of VIF. Moreover, they compare HR reference image an LR image as

if they are being viewed at identical visual angle. Using Equation 2.23, and utilizing CSF
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function in [64], they model the effect of resolution change to the perceptual quality by

f(l) =
π × d× n

180× h× 2× 2l
, (2.23)

where d, h and n represent viewer distance, height of the screen, and the number of

pixels in the vertical direction, respectively. Moreover, l indicates the level of subband

decomposition. Finally, they conducted a subjective test and demonstrated that their

method well correlates with subjective data. Although the proposed method is technically

sound, it is limited by the use of dyadic wavelet transforms, implying that the ratio between

the size of the input image and that of the reference image can only be a power of 2. In

addition, their method is computationally expensive.
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Chapter 3

Objective Quality Assessment of

Tone-Mapped Images

Tone mapping operators (TMOs) that convert HDR to LDR images provide practically

useful tools for the visualization of HDR images on standard LDR displays. Different

TMOs create different tone-mapped images, and a natural question is which image has the

best quality. Without an appropriate quality measure, different TMOs cannot be compared

and further improvement is directionless. Subjective rating may be a reliable evaluation

method, but is expensive and time-consuming, and more importantly, is difficult to embed

into optimization frameworks.

This chapter develops an objective IQA model for tone mapped LDR images using their

corresponding HDR images as references. The work is inspired by the success of two design

principles in the IQA literature. The first is the Structural SIMilarity (SSIM) approach [20]

and its multi-scale derivations [21], [38], which asserts that the main purpose of vision is

to extract structural information from the visual scene and as a consequence structural

fidelity is a good predictor of perceptual quality. The second is the natural scene statistics

(NSS) approach, which maintains that the visual system is highly adapted to the natural

visual environment and uses the departure from natural image statistics as a measure of

perceptual quality [65]. Here we propose a method that combines a multi-scale structural
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fidelity measure and a statistical naturalness measure, leading to the Tone-Mapped image

Quality Index (TMQI). Moreover, we demonstrate that TMQI can be employed to optimize

parameters in TMOs and to adaptively fuse multiple tone-mapped images.

3.1 Tone-Mapped Image Quality Index

Due to the reduction in dynamic range, TMOs cannot preserve all information in HDR

images, and human observers of the LDR versions of these images may not be aware of the

loss. Therefore, structural fidelity plays an important role in assessing the quality of tone-

mapped images. On the other hand, structural fidelity alone does not suffice to provide

an overall quality evaluation. A good-quality tone- mapped image should achieve a good

compromise between structural fidelity preservation and statistical naturalness, which are

sometimes competing factors.

3.1.1 Structural Fidelity

The SSIM approach provides a useful design philosophy as well as a practical method for

measuring structural fidelities between images [7]. The original SSIM algorithm is applied

locally and contains three comparison components − luminance, contrast and structure.

Since TMOs are meant to change local intensity and contrast, direct comparisons of local

contrast are inappropriate. Let x and y be two local image patches extracted from the

HDR and the tone-mapped LDR images, respectively. The local structural fidelity measure

is defined as

Slocal(x, y) =
2σ′xσ

′
y + C1

σ′x
2 + σ′y

2 + C1

· σxy + C2

σxσy + C2

, (3.1)

where σx, σy and σxy are the local standard deviations and cross correlation between the

two corresponding patches in HDR and LDR images, respectively, and C1 and C2 are posi-

tive stabilizing constants. Parameters σ′ is to distinguish significant and insignificant local

contrast, and is explained in details below. Compared with the SSIM definition [20], the lu-

minance comparison component is missing, and the structure comparison component (the
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second term in (3.1)) is exactly the same. The first term in (3.1) compares signal strength

and is modified from that of the SSIM definition based on two intuitive considerations.

First, the difference of signal strength between HDR and LDR image patches should not

be penalized when their signal strengths are both significant (above the visibility thresh-

old) or both insignificant (below the visibility threshold). Second, the algorithm should

penalize the cases in which the signal strength is significant in one of the image patches but

insignificant in the other. This differs from the corresponding term in the original SSIM

definition where any change in signal strength is penalized.

To distinguish between significant and insignificant signal strength, the local standard

deviation σ is passed through a nonlinear mapping, which results in the σ′ value employed

in (3.1). The nonlinear mapping should be designed so that significant signal strength is

mapped to 1 and insignificant signal strength to 0, with a smooth transition in between.

Therefore, the nonlinear mapping is related to the visual sensitivity of contrast, which

has been extensively studied in the literature of visual psychophysics [45]. Practically, the

HVS does not have a fixed threshold of contrast detection, but typically follows a gradual

increasing probability in observing contrast variations. Psychometric functions describing

the detection probability of signal strength have been employed to model the data taken

from psychophysical experiments. Generally, the psychometric function resembles a sig-

moid shape [66, 67], and the sensory threshold is usually defined at the level of 50% of

detection probability. A commonly adopted psychometric function is known as Galton’s

ogive [45], which takes the form of a cumulative normal distribution function given by

p(s) =
1√

2πθs

∫ s

−∞
exp

[
−(x− τs)2

2θ2
s

]
dx , (3.2)

where p is the detection probability density, s is the amplitude of the sinusoidal stimulus,

τs is the modulation threshold, and θs is the standard deviation of the normal distribution

that controls the slope of detection probability variation. It was found that the ratio

k =
τs
θs
, (3.3)
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is roughly a constant, known as Crozier’s law [45, 68]. Typical values of k range between

2.3 and 4, and k = 3 makes the probability of false alarm relatively small [45].

The reciprocal of the modulation threshold τs is often used to quantify visual contrast

sensitivity, namely the contrast sensitivity function (CSF), which is a function of spatial

frequency [45]. A CSF formula that fits well with data collected in various psychological

experiments is given by [10]

A(f) ≈ 2.6[0.0192 + 0.114f ] exp[−(0.114f)1.1], (3.4)

where f denotes spatial frequency. This function is normalized to have peak value 1

as shown in Figure 3.1, and thus provides only relative sensitivity across the frequency

spectrum.
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Figure 3.1: Plot of Contrast Sensitivity Function given in [10]

In practice, it needs to be scaled by a constant λ to fit psychological data. The imple-

mentation proposed in this thesis follows Kelly’s CSF measurement [69]. Combining this
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with (3.4), we obtain

τs(f) =
1

λA(f)
. (3.5)

where the subscript s denotes the threshold defined using signal strength. This threshold

value is calculated based on contrast sensitivity measurement that assumes pure sinusoidal

stimulus. To convert it to a signal strength threshold measured using the standard devi-

ation of the signal, we need to take into account that signal amplitude scales with both

contrast and mean signal intensity, and there is a
√

2 factor between the amplitude and

standard deviation of a sinusoidal signal. As a result, a threshold value defined on signal

standard deviation, σ, can be computed as

τσ(f) =
µ√

2λA(f)
, (3.6)

where µ is the mean intensity value and the subscript σ indicates that the modulation

threshold is defined using the standard deviation of signals. Based on Crozier’s law [45,68],

we have

θσ(f) =
τσ(f)

k
. (3.7)

We can then define the mapping between σ and σ′ as

σ′ =
1√

2πθσ

∫ σ

−∞
exp

[
−(x− τσ)2

2θ2
σ

]
dx , (3.8)

In (3.1), σ′x and σ′y are the mapped versions of σx and σy, respectively. They are bounded

between 0 and 1, where 0 and 1 represent completely insignificant and completely significant

signal strengths, respectively.

The local structural fidelity measure Slocal is applied to an image using a sliding window

that runs across the image space. This results in a map that reflects the variation of

structural fidelity across space. The visibility of image details depends on the sampling

density of the image, the distance between the image and the observer, the resolution of

the display, and the perceptual capability of the observer’s visual system. A single-scale

method cannot capture such variations. Following the idea used in multi-scale [21] and
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information-weighted SSIM [38], we adopt a multi-scale approach, where the images are

iteratively low-pass filtered and downsampled to create an image pyramid structure [70],

as illustrated in Figure 3.2. The local structural fidelity map is generated at each scale.

Figure 3.3 shows two examples of such maps computed at multiple scales for the LDR

images created from two different TMOs. It is interesting to observe these fidelity maps

and examine how they correlate with perceived image fidelity. For example, the structural

details of the brightest window regions are missing in Image (b), but are more visible in

Image (a). For another example, there are detailed structures in the top-right dark regions

that are not easily discerned in Image (a), but are better visualized in Image (b). All of

these observations are clearly reflected in the structural fidelity maps.

L  2

S1

HDR
image L  2 L  2

L  2LDR
image L  2 L  2

S2 SL S

Figure 3.2: Framework of multi-scale structural fidelity assessment

At each scale, the map is pooled by averaging to provide a single score:

Sl =
1

Nl

Nl∑
i=1

Slocal(xi, yi) , (3.9)

where xi and yi are the i-th patches in the HDR and LDR images being compared, respec-

tively, and Nl is the number of patches in the l-th scale. In the literature, advanced pooling

strategies such as information content based pooling [38] have been shown to improve the

performance of IQA algorithms. However, in our current experiment, these advanced pool-

ing methods did not result in notable performance gain in the proposed structural fidelity

measure. The overall structural fidelity is calculated by combining scale level structural
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(a) S = 0.9152 (S1 = 0.8940; S2 = 0.9341; S3 = 0.9428; S4 = 0.9143; S5 = 0.8277)

  

 

 

 
 

 

(b) S = 0.8614 (S1 = 0.9161; S2 = 0.9181; S3 = 0.8958; S4 = 0.8405; S5 = 0.7041)

Figure 3.3: Tone mapped LDR images and their structural fidelity maps in five scales. The im-
ages were created using Adobe Photoshop “Highlight compression” and “Exposure and Gamma”
methods (not optimized for quality), respectively.

fidelity scores using the method in [21]

S =
L∏
l=1

Sβll , (3.10)
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where L is the total number of scales and βl is the weight assigned to the l-th scale.

There are several parameters in the implementation of our structural fidelity model.

First, when computing Slocal, we set C1 = 0.01 and C2 = 10, and find that the overall

performance of the structural fidelity model is insensitive to these parameters within an

order of magnitude. Second, to create the fidelity map at each scale, we adopt the same

setting as in the SSIM algorithm [20] by employing a Gaussian sliding window of size

11×11 with standard deviation 1.5. Third, as in [21], we assume a viewing distance of

32 cycles/degree, which can represent signals up to 16 cycles/degree of resolution without

aliasing, and thus we use 16 cycles/degree as the spatial frequency parameter when applying

the CSF in (3.4) to the finest scale measurement. The spatial frequency parameters applied

to the subsequent finer scales are then 8, 4, 2, 1 cycles/degree, respectively. Fourth, the

mean intensity value in (3.6) is set to be the mean of the dynamic range of LDR images,

i.e., µ = 128. Fifth, when combining the measures across scales, we set L = 5 and {βl}
= {0.0448, 0.2856, 0.3001, 0.2363, 0.1333}, which follows the psychophysical experiment

results reported in [21]. Finally, in order to assess the quality of color images, we first

convert them from RGB color space to Yxy space and then apply the proposed structural

fidelity measure on the Y component only.

3.1.2 Statistical Naturalness

A high quality tone-mapped LDR image should not only faithfully preserve the structural

fidelity of the HDR image, but also look natural. Naturalness, however, is a subjective

quantity that is difficult to define quantitatively. A large body of literature has been ded-

icated to the statistics of natural images. These statistics have important significance to

both image processing applications and the understanding of biological vision [71]. An

interesting study of naturalness in the context of subjective evaluation of tone-mapped

images was carried out in [72], and provided useful information regarding the correlations

between image naturalness and different image attributes such as brightness, contrast,

color reproduction, visibility and reproduction of details. The results showed that among

all attributes being tested, brightness and contrast have more correlation with perceived
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naturalness. This finding motivates us to build our statistical naturalness model based on

these two attributes. This choice may lead to oversimplification in defining the general

concept of statistical image naturalness (and may not generalize to other image process-

ing applications that use the concept of naturalness). It does however provide an ideal

compromise between the simplicity of our model and the capability of capturing the most

important ingredients of naturalness that are related to the tone- mapping evaluation

problem we are trying to solve, where brightness mapping is an inevitable issue in all tone-

mapping operations. The choice also best complements the structural fidelity measure

described in Section 3.1.1, where brightness modeling and evaluation are missing.
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Figure 3.4: Histograms of (a) means (fitted by Gaussian PDF) and (b) standard deviations
(fitted by Beta PDF) of natural images.

Our statistical naturalness model is built upon statistics conducted on about 3,000

8bit/pixel gray-scale images obtained from [73,74]. These images represent many different

types of natural scenes. Figure 3.4 shows the histograms of the means and standard

deviations of these images, which are useful measures that reflect the global intensity and

contrast of images. We found that these histograms can be well fitted using a Gaussian

and a Beta probability density functions, respectively, which are given by

Pm(m) =
1√

2πσm
exp

[
−(m− µm)2

2σ2
m

]
(3.11)
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and

Pd(d) =
(1− d)βd−1dαd−1

B(αd, βd)
, (3.12)

where B(·, ·) is the Beta function. The fitting curves are shown in Figure 3.4, where the

model parameters are estimated by least-square regression. The best values we found are

µm = 115.94 and σm = 27.99 in (3.11), and αd = 4.4 and βd = 10.1 in (3.12), respectively.

Recent studies suggest that brightness and contrast are largely independent quantities

in terms of both natural image statistics and biological computation [75]. As a result,

their joint probability density function can be well approximated by the product of the

two. Therefore, we define our statistical naturalness measure as

N =
1

K
Pm Pd , (3.13)

where K is a normalization factor given by K = max{Pm Pd}. This normalization con-

strains the statistical naturalness measure to be bounded between 0 and 1.

3.1.3 Quality Assessment Model

The structural fidelity measure S introduced in Section 3.1.1 and the statistical naturalness

measure N described in Section 3.1.2 characterize different aspects of the quality of tone

mapped images. They may be used individually or jointly as a vector valued measure. In

many practical applications, however, users prefer a single score that indicates the overall

quality of the image. Therefore, these parameters should be combined in some manner.

In the literature of IQA, earlier work combined image statistics and measures of structure

and contrast [76], although in a different context to ours. Here we define a three-parameter

function to scalarize the joint measure, resulting in a Tone-Mapped image Quality Index

(TMQI)

Q = aSα + (1− a)Nβ , (3.14)

where 0 ≤ a ≤ 1 adjusts the relative importance of the two components, and α and β

determine their sensitivities, respectively. Since both S and N are upper-bounded by 1,
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the overall quality measure is also upper-bounded by 1.

The parameters in (3.14) are left to be determined. In our implementation, they are

tuned to best fit the subjective evaluation data provided by [1], where the subjects were

instructed to look simultaneously at two LDR images created by two different TMOs

applied upon the same HDR image. Then they had to pick the one with better overall

quality. Two studies have been done, involving two groups of subjects. The first study was

carried out at Zheijang University, where 59 naive volunteers were invited to do the pair-

wise comparison task and fill in the preference matrix. The second study was conducted

using Amazon Mechanical Turk, an online service of subjective evaluation. Each paired

comparison was assigned to 150 anonymous subjects. The database includes six data sets,

each of which contains images generated by five well-known TMOs, introduced by Drago et

al. [4], Durand & Dorsey [12], Fattal et al. [35], Reinhard et al. [13] and Mertenset al. [34].

The subjective ranking scores in each folder were then computed using the preference

matrix.

Finding the best parameters in (3.14) using subjective data is essentially a regression

problem. The major difference from traditional regression problems is that here we are

provided with relative ranking data between images only, but not quality scores associated

with individual images. We have developed a learning method whereby the parameters are

learnt from an iterative method. At each iteration, one pair of images is randomly selected

from one randomly selected data set. If the model generates objective scores that place the

pair the same order as in the subjective rank order, then there is no change to the model

parameters; otherwise, each parameter is updated in the direction of correcting the model

error by a small step. In other words, if both the structural fidelity and the statistical

naturalness measures produce correct ranking scores, no parameter update is required.

Otherwise we give more weight to the component that results in correct rank order and

reduces the contribution of the other. The iteration continues until convergence. In our

experiment, we observe a good convergence property in this iterative learning process.

To ensure the robustness of our approach, we conducted a leave-one-out cross validation

procedure, whereby the database (of six data sets) was divided into five training sets and

one testing set, and the same process was repeated six times, each with a different division
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between the training and testing sets. Although each time ends up with a different set

of parameters, they are fairly close to one another and result in the same ranking orders

for all the training and testing sets. In the end, we selected a = 0.8012, α = 0.3046 and

β = 0.7088 as our final model parameters.

3.2 Validation

The validation process is conducted by comparing our objective quality assessment results

with subjective data. The following evaluation metrics are employed:

• Spearman’s rank-order correlation coefficient (SRCC) is defined as

SRCC = 1− 6
∑N

i=1 d
2
i

N(N2 − 1)
, (3.15)

where di is the difference between the i-th image’s ranks in subjective and objec-

tive evaluations. SRCC is a non-parametric rank-order based correlation metric,

independent of any monotonic nonlinear mapping between subjective and objective

scores.

• Kendall’s rank-order correlation coefficient (KRCC) is another non-parametric rank

correlation metric computed as:

KRCC =
Nc −Nd

1
2
N(N − 1)

, (3.16)

where Nc and Nd are the numbers of concordant (of consistent rank order) and

discordant (of inconsistent rank order) pairs in the data set, respectively.

The proposed TMQI is the only objective quality measure being tested. To the best of

our knowledge, almost no other method has been proposed to compare images with different

dynamic ranges. The only exception is the method proposed in [8], which creates prob-

ability maps to distinguish between visible (suprathreshold) and invisible (subthreshold)

43



degradations. The probability maps are shown to be useful in classifying image distortion

types but are not meant to be pooled to produce an overall quality score for a tone-mapped

image. As a result, direct comparison with the proposed method is not possible.

Three experiments have been carried out in our validation process, each using a different

subject-ranked database. The first database is from [1], and was also used in the param-

eter training step discussed in Section 3.1.3. Our leave-one-out cross validation method

described in Section 3.1.3 creates SRCC and KRCC values for each of the six testing data

sets, where for each data set, the parameters were trained using the other five data sets.

Table 3.1 shows the means and standard deviations of KRCC and SRCC values between

subjective rankings and our model predictions, respectively.

Table 3.1: Cross validation results using data from [1]

KRCC SRCC

Mean 0.7333 0.8333

Std 0.1632 0.1211

In the second experiment, we use the database introduced in [2,3], from which we employ

the overall quality ranking data by ten naive subjects, of 14 tone-mapped images created

from the same HDR image. The KRCC and SRCC values between subjective rankings of

the images and our structural fidelity, statistical naturalness and overall quality scores are

given in Table 3.2, where we observe that the structural fidelity measure alone can provide

reasonable predictions of subjective rankings. The statistical naturalness measure by itself

is not a good predictor of the overall quality ranking, but it complements the structural

fidelity measure. When the two measures are combined, better prediction of the overall

image quality is achieved. It is worth mentioning that the test data here is not used in

the training process, but the resulting KRCC and SRCC values are comparable with those

obtained in the test using the first database, which is used for training. This implies good

generalization capability of the training method described in Section 3.1.3.
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Table 3.2: Performance evaluation using data from [2,3]

KRCC SRCC

Structural Fidelity 0.6923 0.7912

Statistical Naturalness 0.3846 0.5385

Overall Quality 0.7179 0.8187

The third experiment was conducted using a database developed by ourselves. Twenty

subjects were provided with 15 sets of tone mapped images, each of which included eight

images generated by eight TMOs from the same HDR image. The results created by five

of the TMOs developed by Reinhard et al. [13], Drago et al. [4], Durand & Dorsey [12],

Mantiuk et al. [11] and Pattanaik et al. [28] were computed using the publicly available

software Luminance HDR [77]. In addition, three other images were created using the built-

in TMOs from Adobe Photoshop, namely “Exposure and Gamma”, “Equalize Histogram”,

and “Local Adaptation”, respectively. The parameters used in all eight TMOs were set as

their default values and are not optimized. The reference HDR images were selected to

represent different indoor and outdoor scenes and are all available online [2,78–80]. In the

subjective test, each of the 20 observers was asked to rank the eight images in each image

set from the best to the worst. The subjective rankings for each image were then averaged,

resulting in its mean ranking score within the set.

To evaluate the TMQI method, we calculate the KRCC and SRCC values between the

mean ranking scores and the objective quality measures for each image set. The results

are given in Table 3.3. To provide an anchor in evaluating the performance of TMQI,

we compare it with the behavior of an average subject. To do this, we first compute the

KRCC and SRCC values between the mean ranking scores and the ranking scores given

by each individual subject for each image set. We then compute the mean and standard

deviation of these KRCC and SRCC values over subjects(Table 3.3). The average KRCC

and SRCC values over all 15 image sets are given in the last row. It can be seen that

for all image sets, the KRCC and SRCC values of TMQI are well within the range of ±1
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Table 3.3: Performance evaluations using 15 image sets and 8 TMOs
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standard deviation from the KRCC and SRCC values of the mean over all subjects. This

finding indicates that TMQI behaves quite similarly to an average subject.

Since the TMQI algorithm does not involve any expensive searching or iterative proce-

dures, it is computationally efficient. Our unoptimized MATLAB implementation on an

Intel Quad-Core 2.67GHz computer takes on average around 0.75 and 2.7 seconds to evalu-

ate images of sizes 512×512 and 1024×1024, respectively. Figure 3.5 illustrates the scatter

plot of runtime versus the number of image pixels for 20 HDR-LDR comparisons. It shows

that the computational complexity of the TMQI algorithm is approximately linear with

respect to the number of pixels in the image. The scatter plot of runtime versus the square

root of window size is depicted in Figure 3.6. It can be seen that window size does not

affect the runtime too much, and even for relatively large window size (35×35) the TMQI

can be computed in almost a second. The relatively low computational cost makes TMQI

easily adapted to practical applications that involve iterative optimization processes.
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Figure 3.5: Run time versus the number of image of the proposed algorithm.
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Figure 3.6: Run time versus window size of the proposed algorithm.

3.3 Applications

The application scope of objective IQA measures goes beyond evaluating images and com-

paring algorithms. A wider range of applications extends to developing novel image pro-

cessing algorithms optimized for novel IQA measures. In this section, we use two examples

to demonstrate the potential of TMQI.

3.3.1 Parameter Tuning in TMO Algorithm

Many TMOs contain one or more parameters whose optimal values are often image-

dependent. Without human interference, it is often difficult to choose these parameters,

while varying the parameters could lead to drastically different results. An objective qual-

ity measure provides a useful tool for picking these parameters automatically. Here, we use

the TMO proposed in [4] as an example. It uses a logarithmic function with varying bases
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in different locations to change the dynamic range adaptively. The algorithm is given by

Ld =
Ldmax · 0.01

log10(Lwmax + 1)
· log(Lw + 1)

log

(
2 +

((
Lw

Lwmax

) log(b)
log(0.5)

)
· 8

) , (3.17)

where Lw and Lwmax are the world luminance and maximum luminance of the scene, Ld

and Ldmax are the display luminance and maximum luminance of the display, respectively,

and b is a tuning parameter. The perceptual quality of the tone-mapped image varies

significantly with b. However, in the literature, the b value is typically fixed at around 0.8

through empirical experimenting with multiple images [4, 77].
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Figure 3.7: Overall quality measure Q versus parameter b for “Desk” (a) and “Bristol Bridge”
(b) images. The tone mapped images corresponding to selected b values are shown in Figures 3.8
and 3.9, respectively.

In Figures 3.7(a) and 3.7(b), we plot how TMQI varies as a function of b for the images

“Desk” and “Bristol Bridge”, respectively (No computation beyond b = 1 is conducted

because it is beyond the value range suggested by the algorithm). It appears that the

quality score behaves quite differently as a function of b. Based on the plots, b = 0.8 and b

= 1 are picked as the optimal values for the two images, respectively. These results confirm
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(a) (b) (c)

Figure 3.8: LDR images generated with different parameter b in (3.17). (a) b = 0.1, S = 0.8344,
N = 0.4599 and Q = 0.8959; (b) b = 0.8, S = 0.8448, N = 0.4874 and Q = 0.8998 ; (c) b = 1.0,
S = 0.8337, N = 0.1423 and Q = 0.8485.

(a) (b) (c)

Figure 3.9: LDR images generated with different parameter b in (3.17). (a) b = 0.1, S = 0.5214,
N = 0.0249 and Q = 0.7535; (b) b = 0.7, S = 0.8137, N = 0.1136 and Q = 0.7690; (c) b = 1.0,
S = 0.8856, N = 0.2923 and Q = 0.7967.

that the optimal b value is close to the empirical value (around 0.8) selected in previous

studies, but varies for different images. The tone mapped LDR images corresponding to

the three selected b values are shown in Figure 3.8 and Figure 3.9, respectively. Careful

inspection of these images shows that the best b values lead to a good balance between

preserving structural details and producing natural-looking images.
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3.3.2 Adaptive Fusion of Tone-mapped Images

When experimenting with different TMOs on different HDR images, we often find it diffi-

cult to pick a single TMO that produces the best results for all HDR images. Furthermore,

within a single HDR image, the best TMO may also vary when different regions in the

image are under consideration. To take advantages of multiple TMOs, image fusion tech-

niques may be employed to combine multiple tone-mapped images, and an objective quality

measure can play an important role in this process.

Of the various fusion schemes, we employ the Laplacian pyramid method, which has

strong compatibility with the multi-scale fidelity measure. The concept of an image pyra-

mid was discussed in the early 1980s as a fast method of representing the multi-resolution

information contained within an image. It also facilitates multi-scale processing similar

to that in the HVS [81]. Before long, the relevance of this technique to image-fusion was

realized [82]. The Laplacian image fusion scheme starts by constructing Laplacian pyra-

mids for each of the source images. The Laplacian band-pass images from each level are

combined by a fusion algorithm. Eventually the final fused image is obtained through

inverse Laplacian pyramid decomposition [83].

Given multiple tone-mapped images created by different TMOs, we first apply a Lapla-

cian pyramid transform that decomposes these images into different scales. In the pyramid

domain, this step results in multiple coefficients at the same scale and the same spatial

location, each corresponding to a different TMO. Examples are given in the first two rows

in Figure 3.10, and demonstrate four-scale Laplacian pyramid decompositions, where the

fine scale coefficients (Scales 1-3) represent image details and the coarsest scale coefficients

(Scale 4) preserve local mean intensities across space. A fusion strategy can then be ap-

plied to combine multiple coefficients into one at each location in each scale before an

inverse Laplacian pyramid transform is employed to reconstruct a fused image. Typical

fusion schemes aim to locally select the most salient image features [84]. The most widely

adopted approaches include averaging the coefficients or picking one of the coefficients with

the largest absolute value. The former is more appropriate for locations where the source

images are similar, while the latter is often used in locations where the source images are
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distinctly different.

Here, we propose a different fusion scheme. The general idea is to use the TMQI as

the weighting factor in the fusion process. Let Sj and cj be the local structural fidelity

measure and the Laplacian pyramid transform coefficient computed from the j-th tone-

mapped image being fused, respectively. The fused coefficient is computed as

c(fused) =

∑
j Sjcj∑
j Sj

. (3.18)

This is applied to all scales except for the coarsest one, for which we use the statistical

naturalness measure as the weighting factor:

c(fused) =

∑
j Njcj∑
j Nj

, (3.19)

where Nj denotes the statistical naturalness score of the j-th tone-mapped image.

The proposed Laplacian pyramid domain fusion method is demonstrated in the bottom

row of Figure 3.10, where the fused image preserves the details in the brightest region

(the light area on the top) as in (f), while at the same time maintains higher contrast

in relatively darker regions, as in (a). Figure 3.11 provides an example with a natural

scene, where one tone-mapped image (a) better preserves structural details, and another

(b) gives a more natural overall appearance (but loses structural information, especially in

the brightest areas). Three fused images created by three different image fusion algorithms

are given in (c), (d) and (e), respectively. The image created by the proposed method

achieves the best balance between structure preserving and statistical naturalness, and

also results in the best quality score using TMQI.

To further validate the proposed fusion scheme, we have conducted an additional sub-

jective experiment, where ten subjects were asked to rank five sets of tone-mapped images,

each of which includes eight images. Seven of these images are generated using the TMOs

employed in the third experiment in Section 3.2. Two of these seven TMOs are chosen

to produce the eighth image using the proposed fusion method. Table 3.4 compares the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3.10: Image fusion in Laplacian pyramid domain. Top row: first tone mapped image (a)
created by TMO proposed in [11], and its Laplacian pyramid subbands (b)-(e), S = 0.5034, N =
0.1263, Q = 0.6937; Middle row: second tone mapped image (f) using “Exposure and Gamma”
method in Adobe Photoshop, and its Laplacian pyramid subbands (g)-(j), S = 0.6642, N =
0.0786, Q = 0.7386; Bottom row: fused image by the proposed method (k), and its its Laplacian
pyramid domain representation (l)-(o), S = 0.7419, N = 0.3080, Q = 0.8167.
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Table 3.4: Average ranking scores made by 10 subject for each set.

Image Set Source 1 Source 2 Fused Image

1 4.3 7 1.8

2 5.2 4 1.5

3 3.7 5.9 2.3

4 4.1 6.1 2.2

5 2.7 6.9 3

average subjective rankings of the source images and their corresponding fused images,

where lower ranking scores correspond to better quality. It can be seen that the fused

image is almost always ranked significantly higher than the two source images being fused.
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(a) (b)

(c) (d)

(e)

Figure 3.11: Fusion of tone mapped images. (a) First tone-mapped image using [12], S = 0.8168,
N = 0.1631, Q = 0.8075; (b) Second tone-mapped image using the “Exposure and Gamma”
method in Adobe Photoshop, S = 0.6315, N = 0.8657, Q = 0.8744; (c) Fused image by coefficient
averaging in Laplacian pyramid domain, S = 0.7561, N = 0.7409, Q = 0.8955; (d) Fused image
by selecting coefficient of maximal absolute value in Laplacian pyramid domain, S = 0.7685, N
= 0.9428, Q = 0.9290; (e) Fused image by the proposed method, S = 0.7836, N = 0.9970, Q =
0.9413.
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Chapter 4

Adaptive Windowing for Optimal

Visualization of Medical Images

Based on a Structural Fidelity

Measure

Medical imaging devices often capture raw data with high precision, producing HDR im-

ages. To visualize HDR images on regular displays, an increasing number of tone-mapping

algorithms have been developed in recent years. These algorithms convert HDR to LDR

images. To visualize HDR medical images, a so-called “windowing” procedure is typically

employed, by which the structural details within the intensity region of interest are mapped

to the dynamic range of regular displays. Such intervals of interest vary for different imag-

ing modality body parts. These intervals can be defined using two parameters: (i) window

width, the range of the interval, to be denoted here as W and (ii) the window center, the

center of this interval, to be denoted as C. It follows that the tone-mapping algorithm

maps the range of luminance values C− 1
2
W ≤ l ≤ C+ 1

2
W to the LDR range [0, 255] using

a linear function. The default values for window width and window center are embedded

in headers of HDR medical image files. These parameters, however, are not optimized for
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the visualization of different body parts. In practice, radiologists often adjust the window

width and window center manually so that the details for particular body regions become

more visible. Linear mapping is the most straightforward windowing operator, but it may

not be the optimal mapping function in terms of structure preservation and visualization.

In this chapter, our goal is to produce tone-mapping operators that are superior to the

linear mappings currently employed for the purpose of visualizing HDR medical images.

Our proposed approach employs two types of continuous, monotonically increasing tone-

mapping functions and tunes their parameters to map the structural information within

the window width onto a display’s dynamic range in an optimal way. The optimization

task is carried out by exploiting the structural fidelity measure introduced in Section 3.1.1.

The statistical naturalness measure in Section 3.1.2 is not used because naturalness is not

a directly relevant attribute of medical images. Moreover, we focus on X-ray computed

tomography (x-ray CT) images as they are one of the most common modalities of medical

images. Our experiments confirm that the linear mapping function is not optimal in terms

of the fidelity of structural information. In addition, they show that modifying the mapping

function to obtain maximal structural fidelity measurement produces CT medical images

with higher contrast and more visible details.

4.1 Structural Fidelity Measurement for Medical Im-

ages

Since the windowing function reduces the dynamic range of an image, not all the informa-

tion contained in an HDR medical image can be preserved. Human observers, particularly

doctors/radiologists, may not be aware of this loss of information. A tool to measure

structural fidelity may, therefore, play an important role in assessing the quality of LDR

medical images.

Let x and y be two local image patches extracted from an HDR and an LDR medical
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image, respectively. In 3.1.1, we defined a local structural fidelity measure as

Slocal(x, y) =
2σ′xσ

′
y + C1

σ′x
2 + σ′y

2 + C1

· σxy + C2

σxσy + C2

. (4.1)

where σx, σy and σxy denote the local standard deviations and cross correlation between

the two corresponding patches in the HDR and LDR medical images, respectively, and C1

and C2 are positive stability constants. The σ′ is then used to quantify the significance of

local contrast. To do so, we pass the local standard deviation through a nonlinear mapping

function, resulting in the σ′ value employed in (4.1).

In 3.1.1, Galton’s psychometric function was adopted as the nonlinear mapping function

and was rewritten in terms of the standard deviation of the signal. As a result, the mapping

between σ and σ′ is defined as:

σ′ =
1√

2πθσ

∫ σ

−∞
exp

[
−(t− τσ)2

2θ2
σ

]
dt , (4.2)

where τσ is the contrast threshold and θσ = τσ/3. In 3.1.1, the contrast threshold, τσ,

was calculated for natural images using a CSF model as well as a contrast sensitivity

measurement, assuming a pure sinusoidal stimulus. However, since a judgement about

significant and insignificant contrast details in medical images is crucial and the neglect

of any important structural information might lead to grave consequences, we prefer here

to set the contrast thresholds to be very small. As a result, the structural fidelity method

penalizes mappings from non-flat regions to flat regions and vice-versa. In our experiments,

we set τσ to 1 and 0.5 for HDR and LDR medical images, respectively. In (4.1), σ′x and σ′y

are the mapped versions of σx and σy, respectively. They are bounded between 0 and 1,

where 0 and 1 represent completely insignificant and completely significant signal strengths,

respectively.

The local structural fidelity measure Slocal is applied to an image using a sliding window

that runs across the image, resulting in a map that reflects the variation of structural

fidelity across space. Figure 4.1(a) shows a CT image of an abdomen region tone-mapped

by a linear function. The quality map produced by the proposed measure is shown in
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(a) (b)

Figure 4.1: Medical images compared with the DICOM reference file. (a) Tone mapped image
using the linear mapping function S = 0.40. (b) Associated quality map.

Figure 4.1(b). The window width and window center parameters are extracted from the

DICOM image header. It is interesting to observe these fidelity maps and examine how

they correlate with perceived image fidelity. For example, because of the window width and

window center parameters, the structural details in the lung are missing in Figure 4.1(a).

In Figure 4.1(b), the quality map in the lung region is black, indicating that some details

in the original DICOM image are not mapped into the LDR image. On the other hand,

a white region in the boundary illustrates that there is no structural information in the

original DICOM image in the corners – therefore, nothing is lost by the linear mapping

function. Finally, the components of the quality map are averaged to provide a single score

– the overall structural fidelity-based quality measure,

S =
1

N

N∑
i=1

Slocal(xi, yi) , (4.3)

where xi and yi are the i-th patches in the HDR and LDR medical images being compared,
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respectively, and N is the number of patches. To implement the proposed algorithm, we

set C1 = 0.01, C2 = 10, and employ a Gaussian sliding window of size 11×11 with standard

deviation 1.5 to create the quality map.

The main advantage of the structural fidelity measure described above is the ability to

compare LDR and HDR medical images without creating an LDR image as a reference.

This provides a useful tool for medical imaging since radiologists do not have to produce

an LDR reference image each time the window width and window center are adjusted. By

contrast, commonly employed quality metrics such as PSNR and SSIM have to compare the

test image with an LDR reference image generated by a windowing process. In addition,

the quality map indicates the performance of tone mapping or image processing algorithms

in the regions of interest. For example, in Figure 4.1, the quality maps reflect the quality

of heart and tissue regions regardless of the black background which is of no interest.

4.2 Finding the Optimal Windowing Function

Let x be the original HDR image; ll and lu be the lower and upper bounds of the window

range, respectively; f be the windowing (or intensity mapping) function lives in the space

defined by

F[ll,lu] = {f : [ll, lu]→ [0, 1] | f continuous & monotonically increasing} ; (4.4)

Tf (.) be the tone-mapping operator that applies the function f pointwise to an image and

quantizes the mapped value to the dynamic range of the LDR display; and S(·, ·) be the

structural fidelity measure defined in the previous section. Our goal is to search for the

optimal mapping function f in terms of S(x, Tf (x)):

fopt = arg max
f∈F[ll,lu]

S(x, Tf (x)) . (4.5)

Here we consider only two subsets of the function space F[ll,lu] (i) piecewise linear functions

and (ii) functions spanned by an appropriate family of sine functions.
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4.2.1 Windowing function using piecewise linear basis

For simplicity, we consider piecewise linear functions defined by an equipartition of the

HDR intensity range [ll, lu] into n subintervals Ik = [lk−1, lk] for 1 ≤ k ≤ n of length

∆l = (lu − ll)/n. The partition points are defined by lk = ll + k∆l, 0 ≤ k ≤ n, and so

ll = l0 and lu = ln. The window width and window center are, respectively,

W = ln − l0 = n∆l, C =
1

2
(l0 + ln) = l0 +

n∆l

2
. (4.6)

Every such equipartition piecewise linear function can be expressed as a linear combination

of n basis functions. The first basis function is a “ramp” function that corresponds to a

direct linear mapping in the full range:

φ0(l) =

{
(l − l0)/W, l0 ≤ l ≤ ln;

0, otherwise.
(4.7)

The other n − 1 basis functions are defined in terms of the standard triangle or “hat”

function given by

t(l) =

{
1− |l|, − 1 ≤ l ≤ 1;

0, otherwise.
(4.8)

Specifically, we have

φk(l) = t

(
l − lk

∆l

)
, for k = 1, · · · , n− 1 (4.9)

As such, any equipartition piecewise linear function can be expressed as

f(l) =
n−1∑
k=0

ckφk(l) = φ0(l) +
n−1∑
k=1

ckφk(l) , (4.10)

61



where the value of c0 is known to be 1. In order for the function to be monotonically

increasing, we need 0 ≤ · · · ≤ f(lk−1) ≤ f(lk) ≤ · · · ≤ 1, which yields

0 ≤ · · · ≤ ck−1 +
k − 1

n
≤ ck +

k

n
≤ · · · ≤ 1 . (4.11)

For example, in the case that n = 3, we can derive
c1 ≥ −1

3
;

c2 − c1 ≥ −1
3
;

c2 ≤ 1
3
.

(4.12)

4.2.2 Windowing function using family of sine basis

The windowing function may also be expressed using a linear combination of a family of

sine basis functions defined by

φk(l) = sin

(
kπ(l − ll)

W

)
for ll ≤ l ≤ lu and k = 1, 2, · · · (4.13)

We then obtain an n-th order approximation of any f in F[ll,lu] using the same expression

as in (4.10), with the only difference being that the triangle basis functions are replaced

by the sine basis functions.

As a special case, when n = 3, we have

f(l) =
l − ll
W

+ c1 sin

(
π(l − ll)
W

)
+ c2 sin

(
2π(l − ll)

W

)
, (4.14)

To ensure that f(l) is monotonically increasing, its derivative needs to be no less than 0:

f ′(l) =
1

W
+
πc1

W
cos

(
π(l − ll)
W

)
+

2πc2

W
cos

(
2π(l − ll)

W

)
≥ 0 . (4.15)
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To find the extrema l∗ of f ′(l), we set its derivative to 0, which yields

f ′′(l∗) = −π
2c1

W 2
sin

(
π(l∗ − ll)

W

)
− 4π2c2

W 2
sin

(
2π(l∗ − ll)

W

)
= 0 . (4.16)

Expanding the second term, we obtain

sin

(
π(l∗ − ll)

W

)[
c1 + 8c2 cos

(
π(l∗ − ll)

W

)]
= 0 , (4.17)

for which we have three possible solutions:

l∗ = ll , (4.18)

l∗ = lu , (4.19)

cos

(
π(l∗ − ll)

W

)
=
−c1

8c2

. (4.20)

From (4.20), we have

cos

(
2π(l∗ − ll)

W

)
= 2

(
−c1

8c2

)2

− 1 =
c2

1

32c2
2

− 1 . (4.21)

Substituting (4.18), (4.19) and the pair (4.20) and (4.21) into (4.15), we obtain the three

constraints on the solutions of c1 and c2:
c1 + 2c2 ≥ − 1

π

−c1 + 2c2 ≥ − 1
π

c21
16c2

+ 2c2 ≤ 1
π

.

(4.22)

4.2.3 Finding optimal windowing functions

With the two types of windowing functions defined in the previous subsections, the problem

of finding fopt in (4.5) is converted to finding the best set of coefficients ck’s for the basis

functions. This can be done by substituting (4.10) into (4.5) and solving it using numerical
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optimization tools (e.g., Matlab’s fmincon function) under appropriate constraints; for

example, in the case n = 3, the constraints are given by (4.11) and (4.22) for the piecewise

linear and sine basis functions, respectively.

To demonstrate the proposed optimization methods, Figure 4.2 (a) shows the result

of linear mapping (S = 0.8853), where the window width and window center parameters

are preset values embedded in the DICOM header. Our optimization algorithm does not

change these parameters, but attempts to find the optimal values for c1 and c2. Figure 4.2

(b) illustrates the result of optimal piecewise linear mapping, where the best coefficients are

given by c1 = −0.15, and c2 = −0.01 and S = 0.9294 is obtained. Enhanced contrast in the

image is observed, in which the details in the spine and the lung are more discernable. Using

the family of sine bases, Figure 4.2 (c) is obtained for optimal coefficients c1 = −0.0001

and c2 = −0.16 with an even higher structural fidelity measure S = 0.9446, producing an

image with higher contrast and more visible details.

As mentioned earlier, the window width and the window center parameters in the HDR

file header do not necessarily provide a desirable contrast for specific body parts such as the

lungs, bones, soft tissues and brain. In practice, radiologists often change them manually

for different body parts, in order to visualize the desired region with appropriate contrast.

Figure 4.3 (a) is a tone-mapped image using the DICOM standard windowing procedure

with predefined values for bone, where S = 0.7746. The result of our optimization method

using piecewise linear windowing is shown in Figure 4.3(b), where c1 = 0.56, c2 = 0.28 and

S = 0.99. Figure 4.3 (c) shows the image produced by optimal sine basis windowing with

coefficients c1 = 0.37 and c2 = 0.04 and quality measure S = 0.9852. It can be observed

that the performance of the optimization task using either approaches provides images

with strong contrast enhancement. The optimal windowing curve in Figure 4.3 (d) reveals

that the intensity of CT bone images is concentrated in the middle of the window width.

Since piecewise linear functions can model drastically increasing functions, these functions

work slightly better than the sine bases.
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(a) (b)
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Linear Mapping Function
Mapping Function Using "sine" Bases
Piecewise Linear Function

Wl Wu

255

0

(d)

Figure 4.2: Results of the optimization method, (a) where S = 0.8853 is the tone-mapped image
using linear mapping function, where the window width and window center are read from DICOM
file header. (b) with S = 0.9292 and (c) with S = 0.9446 are the enhanced images employing
functions in (4.10) and (4.14), respectively. Image courtesy of AGFA Healthcare Inc.
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Figure 4.3: Results of the optimization method for bone, (a) where S = 0.7746 is the linearly
mapped image using predefined windowing parameters for bone (window width = 2000, window
center = 500).(b) with S = 0.99 and (c) with S = 0.9852 are the enhanced images using functions
in (4.10) and (4.14), respectively. Image courtesy of AGFA Healthcare Inc.
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Chapter 5

Optimization-Based High Dynamic

Range Image Tone-Mapping

Many existing TMOs produce visually appealing images. However, most of them are not

able to completely map structural details in HDR images, and usually some structural

information is missing in the tone-mapped images. In this chapter, we propose a sub-

stantially different tone-mapping approach, whereby instead of explicitly designing a new

computational structure for TMO, we search in the space of images to find better-quality

images in terms of objective measures described in Chapter 3. Specifically, we explicitly

treat tone-mapping as an optimization problem in the image space and propose an iterative

search approach that starts from any initial image and moves step-by-step in the image

space, towards improving the proposed objective quality measures until a (local) maximal

point is reached.

A tone-mapped image quality index (TMQI) was proposed in Chapter 3 and has shown

to have good correlations with subjective evaluations of tone-mapped images. The TMQI

consists of two components, structural fidelity and statistical naturalness. In this chapter,

we first exploit the structural fidelity measure as the objective quality assessment tool.

When applied to initial images generated by existing and state-of-the-art TMOs, our al-

gorithm almost always enhances the visibility of image details and improves the structural
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fidelity measure. Indeed, it often restores image structures that are missing in the images

produced by state-of-the-art TMOs. Although the performance of the proposed approach

is quite promising, it sometimes restore only structural details in tone-mapped images.

However, the design philosophy behind TMQI asserts that the perceptual quality of tone-

mapped images is determined by both structural fidelity and statistical naturalness terms.

Therefore, restoring structural information from HDR images is not guaranteed to produce

the best tone-mapped images. Therefore, in the second part of this chapter, we extend the

proposed optimization framework to develop a novel TMO that utilizes the full TMQI as

the optimization goal. This new approach involves an iterative process that alternatively

improves the structural fidelity and statistical naturalness of the resulting image, which are

the two fundamental building blocks in TMQI. Experiments show that this approach leads

to consistent enhancement of the perceptual quality of tone-mapped images, and produces

better-quality images upon a wide variety of initial images, including those produced by

state-of-the-art TMOs.

5.1 Tone-Mapping by Structural Fidelity Maximiza-

tion

In Chapter 3, we introduced a structural fidelity measure that not only provides an overall

structural fidelity of a tone-mapped image, but also produces a structural fidelity map that

indicates how well the local structural details are preserved at each spatial location.

Let x and y be two image patches extracted from the HDR and the LDR images,

respectively. A local structural fidelity measure is defined as

Slocal(x,y) =
2σ̃xσ̃y + C1

σ̃2
x + σ̃2

y + C1

· σxy + C2

σxσy + C2

, (5.1)

where σx, σy and σxy denote the local standard deviations and cross correlation between

the two corresponding patches in the HDR and LDR images, respectively. C1 and C2 are

positive constants used to avoid instabilities at low-energy regions. As described in 3.1.1,
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to gauge the significance of local contrast, we pass the local standard deviation σ through

a nonlinear mapping function, resulting in the σ̃ value in (5.1). The nonlinear mapping

function is given by

σ̃ =
1√

2πθσ

∫ σ

−∞
exp

[
−(t− τσ)2

2θ2
σ

]
dt , (5.2)

where τσ is a contrast threshold and θσ = τσ/3.

The local structural fidelity measure Slocal is applied using a sliding window that runs

across the image, resulting in a map that reflects the variation of structural fidelity across

space. Figure 5.1(f) shows an example of such a structural fidelity map computed for a

tone mapped “memorial” image Figure 5.1(a). The structural fidelity map is reasonably

consistent with visual perception. For example, due to overexposure, the structural details

of the brightest window region are missing, as is well indicated in the map. Finally, the

quality map is averaged to provide a single overall structural fidelity measure of the image:

S(X,Y) =
1

M

M∑
i=1

Slocal(RiX,RiY) =
1

M

M∑
i=1

Slocal(xi,yi) , (5.3)

where X and Y are column vectors representing the HDR and the tone-mapped LDR

images, respectively. Ri denotes the matrix that extracts the i-th patch from the image;

xi = RiX and yi = RiY are column vectors of length N representing the i-th patches

extracted from the HDR and LDR images, respectively; and M is the total number of

patches. Following 3.1.1, we set C1 = 0.01, C2 = 10, and employ a Gaussian sliding window

of size 11×11 (and thus N = 121) with standard deviation 1.5 to create the fidelity map.

It was shown in 3.1.1 that the structural fidelity measure described above is well corre-

lated with subjective quality evaluations of LDR images, and its performance is statistically

similar to that of an average human subject.
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5.1.1 Tone-Mapping as an Optimization Problem in the Image

Space

If the purpose of tone-mapping is to achieve the best structural fidelity, then optimal TMO

can be formulated as a maximum structural fidelity (MSF) problem given by

YMSF = arg max
Y

S(X,Y) . (5.4)

This is an optimization problem in high dimension space (the same dimension as the num-

ber of pixels in the images), and finding the global optimal is generally difficult. Assuming

smooth and regular behavior of the structural fidelity function, here we propose to use

a gradient ascent algorithm to search for local optimal solutions. Similar gradient-based

approaches for SSIM optimization have been studied previously for the purpose of compar-

ing competing image quality measures but have not been explored in the context of image

quality enhancement or high dynamic range imaging [85,86].

Given an initial guess image Y0, we use an iterative algorithm to search along the

gradient ascent direction. At the k-th iteration, the solution is updated by

Yk = Yk−1 + λ∇YS(X,Y)|Y=Yk−1
, (5.5)

where ∇YS(X,Y)|Y=Yk−1
is the gradient of S(X,Y) with respect to Y in the previous

solution Yk−1, and λ is a constant that determines the speed of movement along the

gradient direction.

To compute the gradient ∇YS(X,Y), we start from the local structural fidelity and

rewrite (3.1) as

Slocal(x,y) =
A1A2

B1B2

, (5.6)
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where

A1 = 2σ̃xσ̃y + C1 (5.7)

B1 = σ̃2
x + σ̃2

y + C1 (5.8)

A2 = σxy + C2 (5.9)

B2 = σxσy + C2 . (5.10)

Since both image patches are represented as column vectors of length N , we have

µy =
1

N
1T y (5.11)

σ2
y =

1

N
(y − µy)T (y − µy) (5.12)

σxy =
1

N
(x− µx)T (y − µy) . (5.13)

The gradient of the local structural fidelity measure with respect to y can then be expressed

as

∇ySlocal(x,y) =
(A′1A2 + A1A

′
2)

B1B2

− (B′1B2 +B1B
′
2)A1A2

(B1B2)2
, (5.14)

where

A′1 = ∇yA1 , B
′
1 = ∇yB1 , A

′
2 = ∇yA2 , B

′
2 = ∇yB2 . (5.15)

Noting that

∇yσy =
1

Nσy
(y − µy) (5.16)

∇yσxy =
1

N
(x− µx) , (5.17)
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we have

A′1 = 2σ̃x∇yσ̃y

=
2σ̃x√
2πθσ

exp

[
−(σy − τσ)2

2θ2
σ

]
· ∇yσy

=

√
2

π

σ̃x
Nθσσy

exp

[
−(σy − τσ)2

2θ2
σ

]
(y − µy) , (5.18)

B′1 = 2σ̃y∇yσ̃y

=

√
2

π

σ̃y
Nθσσy

exp

[
−(σy − τσ)2

2θ2
σ

]
(y − µy) , (5.19)

A′2 =
1

N
(x− µx) , (5.20)

B′2 = σx∇yσy =
σx
Nσy

(y − µy) . (5.21)

Plugging (5.7), (5.8), (5.9), (5.10), (5.18), (5.19), (5.20) and (5.21) into (5.14), we obtain

the gradient of local structural fidelity. Finally, summing all the local gradients together,

we can compute the the gradient of the overall structural fidelity measure with respect to

the LDR image Y as

∇YS(X,Y) =
1

M

M∑
i=1

RT
i ∇ySlocal(x,y)|x=xi,y=yi

, (5.22)

which is subsequently plugged into (5.5) to update the solution that is fed into the next

iteration.

5.1.2 Experimental Results

There are only two new parameters that need to be determined in our iterative algo-

rithm: λ, which controls the speed of convergence, and the termination threshold T , which
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(a) initial image (b) after 1 iteration (c) after 10 iterations (d) after 25 iterations

(e) S = 0.9157 (f) S = 0.9620 (g) S = 0.9895 (h) S = 0.9914

Figure 5.1: Tone mapped “Memorial” images and their structural fidelity maps. The initial
image (a) was created by Adobe Photoshop’s “Exposure and Gamma” method, and (f) is its
structural fidelity map, where brighter indicates higher structural fidelity. The top row also
shows the images created after the first (b), the 10-th (c) and the 25-th (d) iterations using
the proposed algorithm, and the bottom row shows their corresponding structural fidelity maps
(e)-(h). All images are cropped for better visualization.
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stops the iteration when the structural fidelity value between two consecutive iterations is

smaller than the threshold. Throughout our experiment, we set λ = 150 and T = 0.0001

and empirically find that the behavior of the proposed algorithm is not sensitive to these

parameters.

To test the performance of the proposed method, we select a set of widely-used HDR

images (partially listed in Table 5.1) as test images. Similar results are obtained for other

test images. The initial images for the iterative algorithm are created using different

approaches, including blank images (all image pixels are set to 128), linearly mapped

images (direct linear scaling from the source HDR images to the dynamic range of [0,255]),

and images created by state-of-the-art TMOs [4,12,13,35]. It can be observed in Table 5.1

that starting from simple blank and linearly-scaled initial images, the proposed method

successfully produces images with high structural fidelity. In addition, it is also quite

effective at improving upon all state-of-the-art TMOs.

Figure 5.1 provides a visual demonstration of the iterative procedure, where the pro-

posed algorithm is applied to an initial tone mapped “Memorial” image created by the

“Exposure and Gamma” method in Adobe Photoshop. The structural fidelity map is very

effective at detecting the missing details in the tone mapped images. For example, the

structural details in the brightest window region in the initial image Figure 5.1(a) are

completely lost due to tone-mapping and are clearly indicated by the central dark region

in the structural fidelity map Figure 5.1(e). With the progress of iterations, such details

become more and more visible until nearly perfectly restored after 25 iterations, as shown

in Figure 5.1(d). The evolution of the structural details is very well tracked by the struc-

tural fidelity maps computed along with the iterations, which eventually converge to a

nearly uniform white picture.

To observe the behavior of the iterations numerically, we plot the structural fidelity

measure as a function of iteration for two source images in Figures 5.2 and 5.3, respec-

tively. It appears that the proposed iterative approach is well-behaved and always increases

monotonically until it converges to a fixed point in the image space, although the fixed

point may only be a local maximum. The structural fidelity values of the converged im-

ages suggest that the local maxima obtained from different initial images vary. This finding
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Figure 5.2: Structural fidelity versus iteration of tone mapped “Bristol” images with initial
images created by different TMOs.
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Figure 5.3: Structural fidelity versus iteration of tone mapped “Kitchen” images with initial
images created by different TMOs.
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indirectly reflects the complication of the search space.

To further demonstrate the performance of the proposed method, Figures 5.4, 5.5 and

5.6 show the results of optimization problems using three different tone-mapped images as

initial points. Figure 5.4(a) is the tone-mapped “memorial” image using linear mapping,

where the structural fidelity equals 0.88. The converged image is illustrated in Figure 5.4(b)

and shows that the structural fidelity has been increased to 0.99. The restored details in

the top window as well as on the floor prove the effectiveness of our approach. Figure 5.5

shows another example of our method, where the initial image is generated using one of

the state-of-the-art TMOs described in [13]. The initial tone-mapped image looks visually

plausible; however, the structural fidelity index is 0.80. Our optimization method results

in an LDR image (Figure 5.5(b)) wherein missing structural details such as shadows on the

wall and the structure in the ceiling become visible. The goal in our optimization problem

is to maximize the structural fidelity measure, an approach that does not take luminance

component into account. Therefore, starting from a completely blank image, the proposed

method is able to restore the structural details in HDR images. Figure 5.6(a) shows a blank

image where all pixel values are 125. The result of the proposed method is demonstrated

in Figure 5.6(b), wherein most of the structural details (S = 0.87) are restored.

The computational complexity in each iteration of the proposed algorithm is linear with

respect to the number of pixels in the image. Our unoptimized MATLAB implementation

on an Intel Quad-Core 2.67GHz computer takes, on average, around 6 seconds per iteration

for an image of size 512×512.

5.2 Tone-Mapping by Optimizing TMQI

Assuming TMQI to be the quality criterion of tone-mapped images, the problem of optimal

tone-mapping can be formulated as

Yopt = arg max
Y

TMQI(X,Y) . (5.23)
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(a) (b)

Figure 5.4: (a) Initial tone-mapped image using linear mapping (S = 0.88), (b) Converged
image (S = 0.97)
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(a) (b)

Figure 5.5: (a) Initial tone-mapped image using Reinhard’s method [13] (S = 0.80), (b) Con-
verged image (S = 0.98).
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(a) (b)

Figure 5.6: (a) Blank image as initial image (S = 0.00), (b) Converged image (S = 0.87).
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It was shown in Chapter 3 that TMQI consists of two fundamental components, struc-

tural fidelity and statistical naturalness. In this section, we propose an iterative algorithm

that starts from any initial image Y0 and searches for the best solution in the image space.

Specifically, in each iteration, we first adopt a gradient ascent algorithm to improve the

structural fidelity S, and then solve a constrained optimization problem to improve the sta-

tistical naturalness N . These two steps are applied alternately until convergence. Details

of the algorithm are elaborated as follows.

In the k-th iteration, given the result image Yk from the last iteration, a gradient ascent

algorithm is first applied to improve the structural fidelity:

Ŷk = Yk + λGY|Y=Yk
, (5.24)

where GY = ∇YS(X,Y) is the gradient of S(X,Y) with respect to Y computed in

section 5.1.1, and λ controls the updating speed.

After the structural fidelity update step of (5.24), we obtain an intermediate image Ŷk,

which will be further updated to Yk+1 such that the statistical naturalness is improved.

This is done by a point-wise intensity transformation through a 3-segment equipartition

monotonic piecewise linear function given by

yik+1 =


(3/L)aŷik 0 ≤ ŷik ≤ L/3

(3/L)(b− a)ŷik + (2a− b) L/3 < ŷik ≤ 2L/3

(3/L)(L− b)ŷik + (3b− 2L) 2L/3 < ŷik ≤ L

(5.25)

where L is the dynamic range of the tone-mapped images, and the parameters a and

b (where 0 ≤ a ≤ b ≤ L) need to be selected so that the mapped image Yk+1 =

{yik+1 for all i} has an increased likelihood of mean µk+1 and std σk+1 values based on

the statistical naturalness models Pm and Pd described in section 3.1.2. To solve for a and

b, we first decide on the desired mean and std values by

µdk+1 = µ̂k + λm(cPm − µ̂k)

σdk+1 = σ̂k + λd(cPd
− σ̂k) , (5.26)
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where µ̂k and σ̂k are the global mean and std of Ŷk, respectively; cm and cd are the values

corresponding to the peaks in the Pm and Pd models, respectively; and λm and λd are

step sizes that control the updating speed. Thus, finding the parameters a and b can be

formulated as an optimization problem:

{a, b}opt = arg min
{a,b}

||µk+1 − µdk+1||2 + η||σk+1 − σdk+1||2

subject to 0 ≤ a ≤ b ≤ L , (5.27)

where η controls the relative importance of the mean and std terms. In our implementa-

tion, the Matlab function fmincon, with its interior-point algorithm, is used to solve this

optimization problem. Once the optimal values of a and b are obtained, they are plugged

into (5.25) to create the output image Yk+1, which is subsequently employed as the input

image in the (k + 1)-th iteration.

The iteration continues until convergence, which is determined by checking the differ-

ence between the images of consecutive iterations. Specifically, when ||Yk+1 − Yk|| < ε,

the iteration stops. The proposed algorithm involves five parameters in total, which are

set empirically to ε = 0.01, λ = 0.3, λm = λd = 2 and η = 1 in all of our experiments.

5.2.1 Experimental Results

The proposed algorithm is tested on a database of 15 HDR images, which include various

contents such as humans, landscapes, architectures, as well as indoor and night scenes.

The effect of adopting structural fidelity measure as an optimization criterion was shown

in Figures 5.1, 5.4, 5.5 and 5.6. Figure 5.7 also illustrates how structural fidelity is being

improved in different iterations. It can be observed that the structural fidelity map is

very effective at detecting the missing structures (e.g., text in the book region, and fine

textures on the desk). By contrast, in Figure 5.8, the initial “building” image is created

by a gamma correction mapping (γ = 2.2), and we apply the proposed iterative algorithm

but using statistical naturalness updates only. With the iterations, the overall brightness

and contrast of the image are significantly improved, leading to a more visually appealing
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(a) initial image (b) after 10 iterations (c) after 50 iterations (d) after 100 iterations (e) after 200 iterations

(f) initial image, S = 0.689 (g) 10 iterations, S = 0.921 (h) 50 iterations, S = 0.954 (i) 100 iterations, S = 0.961 (j) 200 iterations, S = 0.966

Figure 5.7: Tone-mapped “desk” images and their structural fidelity maps. (a): initial image
created by Reinhard’s algorithm [13]; (b)-(e): images created using iterative structural fidelity
update only; (f)-(j) corresponding structural fidelity maps of (a)-(e), where brighter indicates
higher structural fidelity. All images are cropped for better visualization.

(a) initial image, N = 0.000 (b) 10 iterations, N = 0.001 (c) 50 iterations, N = 0.428 (d) 100 iterations, N = 0.868 (e) 200 iterations, N = 0.971

Figure 5.8: Tone-mapped “building” images. (a): initial image created by Gamma correction
(γ = 2.2); (b)-(e): images created using iterative statistical naturalness update only.
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(a) S=0.847, N = 0.746 (b) S=0.971, N = 1.000 (c) S=0.787, N = 0.966 (d) S=0.970, N = 0.999

Figure 5.9: Tone-mapped “bridge” and “lamp” images. (a) and (c): initial images created by
Reinhard’s algorithm [13]. (b) and (d): images after applying the proposed algorithm.

(a) S=0.148, N=0.000 (b) S=0.959, N=0.997 (c) S=0.521, N=0.038 (d) S=0.976, N=0.999

Figure 5.10: Tone-mapped “memorial” and “women” images. (a) and (c): initial images created
by Gamma correction. (b) and (d): images after applying the proposed algorithm.
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and natural-looking image.

The results shown in Figures. 5.9 and 5.10 are obtained by applying the proposed

algorithm. In Figure 5.9, the initial images are created by Reinhard’s TMO [13]. Although

the initial image of Figure 5.9(a) presents a seemingly reasonable appearance, the fine

details of the woods, the brick textures of the tower, and the details of the clouds are

fuzzy or invisible. The proposed algorithm recovers these fine details and makes them

much sharper, as can be seen in Figure 5.9(b). In addition, the overall appearance is

more pleasant due to the statistical naturalness update. Similar results are also observed

in Figure 5.9(d), where the details of the wall, scribbling papers and the drawer are well

recovered. In Figure 5.10, the initial images are obtained by applying Gamma correction

mapping (γ = 2.2), which creates dark images with missing details. Starting from these

images, the proposed iterative algorithm successfully recovers most details in the images

and presents a more realistic and pleasant appearance. It is worth mentioning that the

proposed method often recovers image details that are unseen in the initial images; for

example, the wall and door in the background are missing in Figure 5.10(c) but are clearly

visible in Figure 5.10(d).

To further verify the effectiveness and consistency of the proposed algorithm, we con-

ducted a subjective experiment. In particular, we select 15 HDR images that contain

various natural scenes and adopt Gamma mapping and log-normal mapping methods to

tone-map them to 15 × 2 = 30 LDR images. We then use them as initial images of the

iterative algorithm and obtain 30 TMQI optimized images. Eventually, we obtain 15 sets

of tone mapped images, each of which contains 4 images. 24 naive subjects (9 males and 15

females aged between 22 and 30) were asked to give an integer score between 0 and 10 for

the perceptual quality of each tone mapped image, where 0 denotes the worst quality and

10 the best. The final quality score for each individual image is computed as the average

of subjective scores, named mean opinion score (MOS), from all subjects. The results are

listed in Table 5.2, from which we have several interesting observations. First, using TMQI

as the optimization goal, the proposed algorithm leads to consistent perceptual gain for

both types of initial images. Note that because the image space is extremely complicated

and the proposed algorithm can only guarantee to find a local optimum, better initial
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images often lead to better local optima, which correspondingly have better perceptual

quality.

Table 5.2: Mean opinion scores of tone mapped images

Image set

Mean opinion scores (MOS)

Gamma mapping log-normal mapping

Initial TMQI optimized Initial TMQI optimized

1 1.00 4.71 5.58 4.13

2 1.54 4.92 2.13 4.33

3 0.25 4.50 1.88 3.79

4 3.33 4.63 3.33 4.96

5 0.54 3.88 4.58 4.25

6 0.58 3.29 5.21 3.17

7 1.29 5.67 2.38 5.33

8 1.54 3.79 3.29 3.83

9 0.96 4.38 2.67 3.79

10 6.50 5.21 2.54 5.13

11 0.46 4.83 4.00 2.79

12 3.63 5.21 3.46 3.00

13 5.33 3.04 2.67 3.29

14 2.17 2.75 3.58 2.83

15 4.67 5.13 1.92 3.88

Average 2.25 4.39 3.28 3.90

To have a close look at the iterative behavior of the proposed method, Figures 5.11

and 5.12 show the structural fidelity and statistical naturalness measures as functions of

iteration using different initial images as the starting point. There are several observations.

First, both measures increase monotonically with iterations. Second, the proposed algo-

rithm converges in all cases regardless of whether a simple or sophisticated TMO result is

used as the initial image. Third, different initial images may result in different converged
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images. From these observations, we conclude that the proposed iterative algorithm is well

behaved, but the search space is irregular in the high-dimensional space and contains many

local optima, and the proposed algorithm may be trapped in one of the local optimum.

This is the major limitation of the current approach that points to the direction for future

improvement.

The computational complexity of the proposed algorithm increases linearly with the

number of pixels in the image. Our unoptimized Matlab implementation takes around four

seconds per iteration for a 341× 512 image on an Intel Quad-Core 2.67 GHz computer.
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Figure 5.11: Structural fidelity as a function of iteration with initial images created by different
TMOs.
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Figure 5.12: Statistical naturalness as a function of iteration with initial images created by
different TMOs.
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Chapter 6

Cross Spatial Resolution Image

Quality Assessment

Image interpolation techniques that can create High-Resolution (HR) from Low-Resolution

(LR) images are extensively used in real world applications. An increasing number of in-

terpolation and image super-resolution (SR) algorithms have been proposed recently to

create images with higher spatial resolution from low-resolution (LR) images, but how

to evaluate the quality of interpolated images is not a well-resolved issue. Subjective as-

sessment methods are useful and reliable, but are also slow, expensive, and difficult to

incorporate into the design and optimization of algorithms and systems. In this work, we

make one of the first attempts to develop an objective quality assessment method of a

given resolution-enhanced image using the available LR image as a reference. We provide

a generalized distortion measure that can be applicable to the case that the interpolation

factor is an integer number. The proposed Interpolated Natural image Distortion (IND)

and Weighted IND (WIND) measures, which incorporate frequency energy fall-off, dom-

inant orientation statistics and spatial continuity statistics features, perform statistically

equivalently or sometimes better than an average human subject. Moreover, we demon-

strate the potential application of the proposed method in the parameter tuning of image

interpolation algorithms.
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The quality measures described in this chapter adopt a Natural Scene Statistics (NSS)

framework, where image quality degradation is gauged by the deviation of the image’s sta-

tistical features from NSS models trained upon high quality natural images. Recently, there

has been a growing interest in using natural scene statistics (NSS) based approaches for

RR and NR IQA [65]. The basic assumption behind NSS approaches is that high-quality

images captured from the natural visual environment have strong low-level statistical reg-

ularities [71], to which the biological visual apparatus has adapted and evolved over the

millennia [65]. Consequently, any departure from such regularities creates “perceptual un-

naturalness”, which is assumed to be directly related to perceived image quality. In the

past decade, NSS based approaches have been successfully used in a number of RR and

NR IQA algorithms [87,88], though they have not been exploited in quality assessment of

interpolated images.

6.1 Statistical Features

Given an LR image, an image interpolation algorithm increases the spatial resolution to

create an HR image by predicting and inserting new pixels between the existing LR image

pixels. In this work, we consider only the case of interpolations by integer-scaling factors,

and there is no fractional-pixel shift in the LR image. As a result, the LR image can

be viewed as a downsampled version of the HR image, where the pixel intensities remain

unchanged at the sampling points. Let α be the interpolation scaling factor. Starting

from the HR image, we can create α2 downsampled sub-images, where one of them is the

original LR image.

An illustration of this sub-image extraction process is shown in Figure 6.1, and a

corresponding example of an interpolated image is given in Figure 6.2, where α = 3 and

all the pixels marked with “0” in Figure 6.1 constitute a sub-image that is exactly the

same as the original LR image. All other sub-images are composed of pixels generated

during the interpolation process. By close observation of the sub-images in Figure 6.2, one

can discern the differences between the original LR and the other sub-images. The latter
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often exhibits “unnaturally” smoothed edges and structural content. This observation has

inspired us to design statistical features based on sub-image statistics and the ways such

features differ between high-quality natural HR images and interpolated HR images. Since

the LR image is available as one of the sub-images, the design of the statistical features can

make use of such information. The first two statistical features employed in the proposed

IQA algorithm are developed by following these ideas and are elaborated in the following

sections.

Figure 6.1: Illustration of sub-image extraction from an HR image.

6.1.1 Frequency Energy Fall-off Statistics

It has long been known that the amplitude spectrum of natural images falls with the spatial

frequency approximately proportional to 1/fp [89], where f is the spatial frequency and

p is an image-dependent constant. This knowledge has helped us helps build a statistical

model based on frequency energy fall-off. Specifically, we decompose the sub-images into

dyadic scales using a steerable pyramid transform [90] and then compute the energy (the

sum of squared transform coefficients) in each scale. For natural images, the energy in
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Figure 6.2: An example of sub-images extracted from an interpolated HR image.

each scale, computed as the sum of squared transform coefficients, falls from the coarse to

fine scales. Generally, the trends of scale or frequency energy fall-off of natural images are

fairly similar [89], while unnatural blurry images tend to have steeper slopes.

Figure 6.3 shows the frequency energy fall-off curves drawn for different sub-images in

Figure 6.2. Two useful observations can be made here: First, the fall-offs are approximately

straight lines in log scale, which is consistent with the 1/fp model; Second, the slope of

energy fall-off reflects the blurriness of the images. In particular, with the increase of

blurriness from Sub-image1 to Sub-image3, and to Sub-image9, the slopes of the fall-

offs become steeper. The substantial difference in the speed of fall-off between different

sub-images observed here is unlikely to happen in high-quality natural images, for which

statistics on sub-images are presumably similar. This observation suggests that measuring

the statistical differences between sub-image frequency energy fall-off could be a useful

way to distinguish interpolated images from high-quality natural images. Specifically, let

si denote the slope of frequency energy fall-off between the two finest scales in the i-th
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Figure 6.3: Frequency energy fall-offs of sub-images in Figure 6.2.

sub-image. We define a frequency energy fall-off feature as

ef =

[
1

α2−1

∑α2

k=2(sk − s1)2
]1/2

s1

, (6.1)

where s1 is computed from the first sub-image (which is the same as the reference LR

image) and used as a reference. The deviations of all other sub-images (for k = 2, ..., α2)

are averaged and normalized by s1. For a high-quality HR image, the deviation is expected

to be small, leading to a small ef feature (though unlikely to be zero, as will be shown

in Section 6.1.4). By contrast, for interpolated images that create blurry sub-images (as

exemplified by Figure 6.2), the ef statistic is expected to be much larger.

6.1.2 Dominant Orientation Statistics

The frequency energy fall-off feature described above is based on global energy measures,

while interpolation processes often result in distortions in local image structures. In the

literature, image gradient is widely used to study local structural details, particularly on
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edges and orientations [91–93]. Let I be an N ×N image patch, and the gradient at pixel

(x, y) in I be defined as ∇I(x, y) = [∇xI ∇yI](x,y), where ∇x and ∇y denote the derivatives

in horizontal and vertical directions, respectively. By pooling the gradients of all pixels in

the patch, we obtain a gradient matrix given by

∇I =


...

...

∇Ix(x, y) ∇Iy(x, y)
...

...


N2×2

. (6.2)

We follow the well-known compact singular value decomposition (SVD) approach [91] to es-

timate the dominant orientation in the patch, together with the energy along the dominant

and its orthogonal directions. The compact SVD of ∇I can be written as

∇I = UΛVT = U

[
λ1 0

0 λ2

]
[v1 v2]T , (6.3)

where U and V are orthonormal matrices, where the column vectors v1 and v2 indicate the

dominant gradient orientation and its orthogonal direction (dominant edge orientation),

respectively. The matrix Λ is a 2×2 diagonal matrix, where the singular values λ1 ≥
λ2 ≥ 0 provide energy measures along v1 and v2 directions, respectively. A simple energy-

independent orientedness measure is given by [91]

C =
λ1 − λ2

λ1 + λ2

. (6.4)

If the image patch is fully oriented along one dominant direction, λ1 � λ2 ≈ 0, and thus

C ≈ 1. With the decrease of the gap between λ1 and λ2, the C measure declines. At the

other extreme, when the energy along the two orthogonal orientations are equally strong

or when the image patch is very smooth with little energy, the value of C is close to 0.

This orientedness measure has found successful applications in identifying local dominant

orientations of textures [91] and has been extended to multi-scale settings [92].

We compute the orientedness measure C over an 11×11 sliding window that runs across
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each sub-image. Let li be the mean of the C measure of the i-th sub-image. We then define

our dominant orientation statistic features as

el =

[
1

α2−1

∑α2

k=2(lk − l1)2
]1/2

l1
. (6.5)

As in (6.1), here l1 is computed from Sub-image 1, which is the same as the reference

LR image. The value of l1 is used as a normalization factor to quantify the deviation of

orientation strength of all other sub-images (for k = 2, ..., α2). For high-quality HR images,

the deviations are expected to be small, resulting in small el measures, while interpolated

images may generate much larger el, which will be shown in Section 6.1.4.

6.1.3 Spatial Continuity Statistics

Many interpolation algorithms create unnatural looking discontinuities in the spatial do-

main. This fact inspires us to study spatial continuity based statistical models and relate

them to the naturalness of images. Let f(i) for i = 0, · · · , N − 1 be one row (or column)

of pixels extracted from the image, where N is the number of pixels in the row (or col-

umn). A straightforward method for examining signal continuity is to compute an absolute

differencing signal given by

g(i) = |f(i+ 1)− f(i)| for 0 ≤ i ≤ N − 2 . (6.6)

In the case of a high-quality HR natural image, the spatial continuity behavior is presum-

ably close to uniform in a statistical sense, while such behavior in an interpolated image

may vary in a certain pattern, depending on the interpolation grid. To capture such vari-

ations, for a given interpolation factor α, we first measure the average spatial continuity

at every α pixel by

kj =
1

M

M−1∑
i=0

g(αi+ j) for 0 ≤ j ≤ α− 1 . (6.7)
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where M = b(N − 1)/αc. Doing so results in a length-α vector k = {kj|j = 0, · · · , α− 1}.
We then use the ratio between the standard deviation and the mean of the k vector as a

measure of spatial continuity variation:

es =
std(k)

µ(k)
. (6.8)

This measure is averaged across all rows and columns in the image, resulting in an overall

spatial continuity variation feature.

6.1.4 Modeling Statistical Features

At the heart of our approach is the NSS framework, where NSS models obtained from col-

lections of natural images are essential in establishing the base reference used to assess the

naturalness and quality of the images being tested. Figures 6.4(a), 6.5(a), and 6.6(a) show

the histograms of ef , el and es features, respectively, obtained from 1000 high-quality origi-

nal HR natural images. In addition, in Figures 6.4(b)-(i), 6.5(b)-(i), and 6.6(b)-(i), we show

the corresponding histograms of interpolated HR images of scaling factor 2 generated using

eight interpolation approaches: bilinear, bicubic, nearest neighbor, NEDI [9], directional

filtering and data fusion (DFDF) [14], adaptive autoregression and soft-decision estimation

(ARSD) [15], nonlocal autoregressive modeling (NARM) [16], and iterative curvature-based

interpolation (ICBI) [17] algorithms. It can be observed that for high quality natural HR

images, the histograms of all three features are concentrated near zero but do not peak

exactly at zero. By contrast, different interpolation methods introduce different types and

levels of changes in ef , el and es features. As a result, the statistics of these features

deviate from those of natural images. For examples, interpolation algorithms that tend to

create overly smooth images (such as bilinear interpolation, bicubic interpolation, NEDI

and DFDF) significantly expand the dynamic ranges of the ef feature. On the other hand,

the nearest neighbor method repeats the originally LR pixel values to create HR images,

resulting in large peaks at zero in ef and es features. The edge directed NEDI method

significantly affects spatial continuity statistics, whereas the bicubic or bilinear interpola-
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Figure 6.4: Histograms of ef feature obtained from 1000 (a) HR natural images, and interpolated
images using (b) bilinear, (c) bicubic, (d) nearest neighbor, (e) NEDI [9], (f) (DFDF) [14], (g)
ARSD [15], (h) NARM [16] and (i) ICBI [17] algorithms.

tion methods may strengthen spatial continuity. It is also interesting to observe that the

feature histograms created by the most- advanced algorithms, such as ICBI, exhibit the

closest statistics to those of the natural images. All the above observations are intuitively

sensible and demonstrate the potential usefulness of the proposed features, but in order to

convert them to a quantitative image quality/distortion measure, we would first need to

build probability density models of these features.

All three features are non-negative by definition. In our study, we find it useful to
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Figure 6.5: Histograms of el feature obtained from 1000 (a) HR natural images, and interpolated
images using (b) bilinear, (c) bicubic, (d) nearest neighbor, (e) NEDI [9], (f) (DFDF) [14], (g)
ARSD [15], (h) NARM [16] and (i) ICBI [17] algorithms.

observe them in the logarithm domain. Figures 6.7(a), 6.7(b) and 6.7(c), respectively,

show the histograms of ln ef , ln el and ln es features for α = 2 drawn from high-quality

HR natural images. It is interesting to observe that all three histograms can be well

fitted using Gaussian functions, which are also shown in the corresponding figures. This

capability allows us to model the probability density of these features using simple models.
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Figure 6.6: Histograms of es feature obtained from 1000 (a) HR natural images, and interpolated
images using (b) bilinear, (c) bicubic, (d) nearest neighbor, (e) NEDI [9], (f) (DFDF) [14], (g)
ARSD [15], (h) NARM [16] and (i) ICBI [17] algorithms.

In particular, for the ef feature, we have

pef (ef ) =
1

Zf
exp

[
−
(

ln ef − µf√
2σf

)2
]
, (6.9)

where Zf is a constant normalization factor that ensures that the density model integrates

to 1. µf and σf are the logarithm domain mean and standard deviation parameters,

respectively, for which the optimal values are obtained by maximal likelihood estimation.
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Figure 6.7: Histograms of (a) ln ef , (b) ln el and (c) ln es features for α = 2 drawn from original
high-quality HR natural images, along with their corresponding Gaussian fitting functions.

We have found that the same probability density model provides good fittings to the

feature histograms drawn from high-quality HR natural images, regardless of the values of

α, although the optimal model parameters may change with α. By computing the optimal

model parameters for different α values between 2 and 8, we find the following equations

well summarize the optimal parameters as a function of α.

µf = −6.017α−0.40 , (6.10)

σf = 0.72 ,

Similarly, for the el feature, we obtain the following model for high-quality HR natural

images

pel(el) =
1

Zl
exp

[
−
(

ln el − µl√
2σl

)2
]
, (6.11)

where Zl is a normalization factor and the following equation provides good predictions of

the maximal likelihood estimation results of the model parameters µl and σl as functions

of α:

µl = −5.5α−0.58 , (6.12)

σl = 0.62 ,
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For the es feature, the model for high-quality HR natural images is given by

pes(es) =
1

Zs
exp

[
−
(

ln es − µs√
2σs

)2
]
, (6.13)

where Zs is a normalization factor, and the maximum likelihood estimation of the model

parameters µs, σs is summarized by

µs = −6.28α−0.31 , (6.14)

σs = 1.1α−2.2 + 0.53 ,

Note that all the parameters introduced so far are determined by purely statistics

of high-quality natural images, without involving distorted images or data from human

subjective study.

6.2 Quality Assessment Model

We use the pef , pel and pes models built upon statistics of natural images in Section 6.1.4 as

the basis to assess the naturalness of test images. A high-quality natural image is expected

to have larger values of pef , pel and pes than distorted unnatural images. Assuming sta-

tistical independence between ef , el and es features, one can define a naturalness measure

based on a joint probability model:

pn =
1

K
pef (ef )pel(el)pes(es) , (6.15)

where a normalization factor K = 1/(ZfZlZs) is added such that the value of pn is upper-

bounded by 1. In information theory, self-information or “surprisal” is often employed

as a measure of the information content associated with the outcome of a random vari-

able. We adopt this approach and convert the probability-based measure in (6.15) into an
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interpolated natural image distortion (IND) measure given by

IND = − ln pn . (6.16)

Plugging (6.9), (6.11), (6.13) and (6.15) into (6.16), we have

IND = − ln pef (ef )× Zf − ln pel(el)× Zl − ln pes(es)× Zs

=

(
ln ef − µf√

2σf

)2

+

(
ln el − µl√

2σl

)2

+

(
ln es − µs√

2σs

)2

≡ Df +Dl +Ds , (6.17)

where we define the first term, denoted by Df , as the distortion of frequency energy fall-off

feature, the second term, denoted byDl, as the distortion of dominant orientation statistical

feature, and the third term, denoted by Ds, as the distortion of spatial continuity feature.

Although IND provides a simple and parameter-free (no training using distorted im-

ages or subjective testing data is involved) measure for the statistical unnaturalness of the

test images, it lacks the flexibility to account for the variations in perceptual annoyance

to different types of distortions. A natural extension of this approach is to assign differ-

ent importance to different distortion features by linearly weighting the three distortion

components. This results in a weighted IND measure (WIND), given by

WIND = wfDf + wlDl + wsDs , (6.18)

Without loss of generality, we fix wl = 1, and the remaining weighting parameters wf and

ws are determined based on subjective evaluation. The details are given in Section 6.3.

6.3 Validation

To validate the proposed quality model, we built a database of interpolated images and

carried out subjective quality assessment experiments. The database contains thirteen

high-quality natural HR source images, representing different types of structural content,
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including indoor and outdoor scenes, humans, animals, natural scenes, and man-made

architectures. All source images are 512×512 in image size. By directly downsampling the

images by factors of 2, 4 and 8, we created 39 LR images with sizes of 256×256, 128×128

and 64×64, respectively. For each downsampled image, eight interpolation algorithms were

employed to create interpolated HR images by scaling factors of 2, 4 and 8, respectively.

The interpolation algorithms include classical and widely used bilinear, bicubic and nearest

neighboor interpolation methods, as well as state-of-the-art algorithms such as NEDI [9],

DFDF [14], ARSD [15], NARM [16], and ICBI [17]. Most of them interpolate an image by

a scaling factor of 2, and were iteratively applied 2 and 3 times to achieve scaling factors

of 4 and 8, respectively. Eventually, a total of 312 interpolated HR images were created.

These images were then divided into 3 scaling factor levels and totally 39 image sets, each

with 8 interpolated HR images.

Thirty subjects, 17 males and 13 females, aged between 20 and 30, participated in the

experiments. The subjects were either naive or had only general knowledge about image

processing, but no prior knowledge about the specific research work being carried out in

this study. An HP ZR30w 30-inch monitor was used for the subjective tests, with a display

spatial resolution of 2560×1600. This setting allows us to display a full set (out of the 39

sets) of 8 interpolated images, together with the original source HR image and the LR

image, on the same screen. The viewing distance was adjusted to be approximately 32

pixels per degree of visual angle. A brief introduction and training session was conducted

before the test. For each of the 39 image sets, the subjects were asked to use the source

HR image and the LR image as references, and to score each of the 8 interpolated images

shown on the screen with a quality scale between 1 and 10. After the subjective test, a

statistical analysis was performed, and one subject was identified to be an outlier and the

corresponding scores were removed. The remaining 29 subjective scores for each image were

averaged to a mean opinion score (MOS). It is worth noting that we used an absolute scale

rating approach in the experiment, as opposed to paired comparisons or a direct ranking

approach. We find that for this particular experiment, this approach gives the most reliable

results as compared to paired comparison method (which is slow and may cause transition

problems) or a direct ranking approach (which often leads to large variations between
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subjective evaluations when the quality of two or more images is close).

In the subsequent analysis, we treat the MOS value obtained for each image as the

“ground truth”, which is used to compare against any other quality prediction method.

Spearman’s rank-order correlation (SRCC) and Pearson’s linear correlation coefficient

(PLCC) after monotonic linear mapping are calculated to quantify the level of agreement

between MOS and the quality prediction method being tested. Both evaluation criteria

are upper-bounded by 1, which corresponds to perfect agreement. Higher values represent

higher levels of agreement.

Before applying the SRCC and PLCC tests to assess objective quality models, we first

evaluate how an average subject would perform in such tests. This is done by computing the

SRCC and PLCC values between MOSs and the scores given by any particular individual

subject. When this is done for all 29 subjects, we calculate the mean and standard deviation

of the SRCC and PLCC values across all subjects. These average subject performance

measures give useful baseline reference points on how an objective model behaves relative

to a typical human subject. The average subject performance is provided in Tables 6.1, 6.2

and 6.3 for scaling factors 2, 4 and 8, respectively. In general, an average subject’s SRCC

and PLCC values are only moderately correlated with MOSs and are typically between

the range of 0.5 and 0.8. This finding suggests that although subjects generally agree with

each other on the quality of interpolated images, there exist significant variations between

subject opinions. In the case of scaling factor 2, most interpolation algorithms perform

quite well, making it difficult for the subjects to assign quality scores and to assess the

relative quality of the interpolated images. This difficulty is reflected in the relatively low

mean and high std of SRCC and PLCC values (Tables 6.1). With the increase of the scaling

factor, the differences between the interpolation algorithms can be more easily discerned,

making it a relatively easy task for the subjects. This leads to improved agreement between

subjects, resulting in higher mean and std of SRCC and PLCC values (Tables 6.2 and 6.3).

Determining the optimal weighting parameters wf and ws in (6.18) based on subjective

data is a straightforward linear regression problem. In addition to finding the optimal

parameters, it is also important to test the robustness of this process. To do this, for each

scaling factor, we employ a leave-one-out procedure where the 13 image sets are divided
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Table 6.1: Performance evaluation on interpolated images with scaling factor 2
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Table 6.2: Performance evaluation on interpolated images with scaling factor 4
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Table 6.3: Performance evaluation on interpolated images with scaling factor 8

Im
ag

e
S
et

S
R

C
C

P
L

C
C

m
ea

n
/s

td
su

b
je

ct
IN

D
W

IN
D

N
IQ

E
S
S
IM

P
S
N

R
m

ea
n
/s

td
su

b
je

ct
IN

D
W

IN
D

N
IQ

E
S
S
IM

P
S
N

R

p
er

fo
rm

an
ce

(N
R

)
(F

R
)

(F
R

)
p

er
fo

rm
an

ce
(N

R
)

(F
R

)
(F

R
)

L
en

a
0.

77
/0

.1
9

0.
30

0.
71

0.
07

0.
61

0.
85

0.
82

/0
.1

6
0.

52
0.

75
0.

59
0.

78
0.

90

B
u
tt

er
fl
y

0.
74

/0
.2

2
0.

77
0.

73
0.

74
0.

62
0.

34
0.

79
/0

.1
8

0.
56

0.
86

0.
77

0.
78

0.
67

B
ar

b
ar

a
0.

63
/0

.2
5

0.
24

0.
33

-0
.2

3
0.

42
0.

92
0.

75
/0

.2
8

0.
80

0.
79

0.
75

0.
85

0.
87

B
oa

t
0.

71
/0

.2
4

0.
35

0.
38

0.
40

0.
59

0.
33

0.
74

/0
.2

4
0.

75
0.

70
0.

53
0.

52
0.

51

E
in

st
ei

n
1

0.
73

/0
.2

6
0.

0
0.

12
0.

40
0.

42
0.

47
0.

80
/0

.1
5

0.
56

0.
60

0.
66

0.
81

0.
81

S
ta

tu
e

0.
61

/0
.2

8
0.

40
0.

50
0.

19
0.

33
0.

35
0.

74
/0

.1
8

0.
72

0.
70

0.
40

0.
72

0.
72

L
ig

h
th

ou
se

0.
66

/0
.2

9
0.

38
0.

74
0.

64
-0

.2
6

-0
.1

6
0.

76
/0

.2
9

0.
43

0.
53

0.
46

0.
46

0.
46

M
u
se

u
m

0.
69

/0
.2

0
0.

19
0.

38
-0

.0
9

0.
83

0.
78

0.
78

/0
.2

0
0.

70
0.

73
0.

54
0.

72
0.

75

P
ep

p
er

s
0.

58
/0

.2
4

0.
65

0.
62

0.
68

0.
37

0.
26

0.
69

/0
.2

0
0.

68
0.

78
0.

64
0.

64
0.

64

G
ol

d
h
il
l

0.
73

/0
.2

4
0.

38
0.

55
-0

.0
1

0.
88

0.
70

0.
76

/0
.2

4
0.

66
0.

88
0.

46
0.

87
0.

82

F
ru

it
0.

72
/0

.1
9

0.
35

0.
31

0.
04

0.
38

0.
54

0.
79

/0
.1

8
0.

40
0.

63
0.

37
0.

81
0.

60

B
ab

o
on

0.
62

/0
.3

0
0.

50
0.

70
0.

49
0.

04
-0

.2
9

0.
69

/0
.2

8
0.

65
0.

82
0.

38
0.

38
0.

38

E
in

st
ei

n
2

0.
73

/0
.2

3
0.

35
0.

50
-0

.1
9

0.
54

0.
45

0.
82

/0
.2

2
0.

66
0.

78
0.

50
0.

55
0.

50

A
ve

ra
ge

0
.6

9
/
0
.2

4
0
.3

7
0
.5

0
0
.2

4
0
.4

4
0
.4

3
0
.7

6
/
0
.2

2
0
.6

2
0
.7

3
0
.5

4
0
.6

8
0
.6

6

107



into 12 training sets and 1 testing set. The weights are then obtained by linear regression

using the training sets and then tested on the testing set. The same process is repeated

13 times, each with a different division between training and testing sets. The mean and

std of the wf and ws values obtained for scaling factors 2, 4 and 8, each obtained from

13 trials, are given in Table 6.4, together with the corresponding mean SRCC and PLCC

performance test results over 13 trails. It appears that the weights obtained in all 13 trails

are fairly close to each other, with low std values. In addition, the mean SRCC and PLCC

results of the 13 leave-one-out trials are also close to those obtained using a fixed set of the

average weighting parameters applied to all 13 image sets (which are shown in the WIND

performance in the last rows in Tables 6.1-6.3). All these results suggest that the weights

obtained through this procedure are robust. The mean wf and ws values for each scaling

factor α given in Table 6.4 are the final values in all the subsequent tests.

In Table 6.4, we also observe that as the scaling factor increases, the impact of frequency

energy fall-off and dominant orientation statistics increases (as compared to spatial con-

tinuity statistics). This is not surprising, because with larger scaling factors, it becomes

more difficult for an interpolation algorithm to maintain the original energy distributions

at high frequencies as well as the orientations in local image structures. These are also the

major factors that affect the perceptual quality of the interpolated images.

Table 6.4: Weighting factors wf and ws, along with SRCC and PLCC performance, obtained
from leave-one-out test for different scaling factor α

α mean/std of wf mean/std of ws SRCC PLCC

2 1.17/0.07 0.09/0.02 0.612 0.802

4 1.26/0.04 0.16/0.01 0.700 0.800

8 3.20/0.10 0.40/0.05 0.511 0.732

Table 6.4 provides only the weighting parameters for scaling factors of 2, 4 and 8 only. A

natural way to extend the weight selection to other integer scaling factors is to interpolate
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along the scaling factor axis. We found the following functions are useful for this purpose:

wf = 0.0002α4.43 + 1.16, , (6.19)

ws = 0.008α1.7 + 0.06 , (6.20)

To the best of our knowledge, no other objective IQA method is directly applicable

to the scenario we are interested in (where an LR image is used as a reference to assess

the quality of an HR image). Therefore, in addition to comparing the proposed IND and

WIND measures with an average human subject (as described earlier), we compare them

with well-known FR-IQA measures, including PSNR and SSIM [20]. We have also included

a state-of-the-art NR-IQA method named natural image quality evaluator (NIQE) [94] in

the comparison. It has shown promising performance when tested using a number of

widely-used image databases [94], but it has never been tested on interpolated images.

The performance evaluation results are shown in Tables 6.1, 6.2 and 6.3 for the cases of

scaling factors 2, 4 and 8, respectively. It can be observed that for almost all image sets, the

SRCC and PLCC values of the proposed IND and WIND measures are well within the range

of ±1 standard deviation from the SRCC and PLCC values of average human subjects.

This indicates that the proposed methods behave quite similarly to an average subject.

Unsurprisingly, between IND and WIND, WIND performs consistently better and often

outperforms an average human subject. The FR SSIM and PSNR methods are general-

purpose approaches, without the need for any prior knowledge or specific considerations

of image interpolation application; thus, they achieve only moderate correlations with

subjective evaluations and are inferior to the proposed methods, which use novel features

particularly designed to capture distortions in interpolated images. Similarly, the general-

purpose NR NIQE method does not take specific consideration of image interpolation, and

does not deliver competitive performance.
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6.4 Application: Parameter Tuning in Interpolation

Algorithms

The application domain of objective IQA measures is beyond comparing interpolated im-

ages and selecting the best interpolation algorithms. Many interpolation algorithms contain

one or more parameters. Different selections of these parameters may result in interpolated

HR images of very different perceptual quality, and the optimal parameters are often image-

dependant. Without human interference, it is challenging to choose these parameters. An

objective quality measure provides a useful tool to pick these parameters automatically.

To demonstrate this fact, here we use the ICBI algorithm [17] as an example.

The ICBI method is a state-of-the-art “edge-directed” interpolation algorithm that

upscales the image by keeping the original pixels in an enlarged grid and then estimates

the missing pixels. The estimation is done using weighted averaging of neighboring pixels,

with the weights determined based on local edge analysis. The ICBI algorithm uses some

initial values for missing pixels, and then tries to define an energy term for each interpolated

pixel. The ultimate goal is to minimize the energy term by making small changes in the

second order derivatives. In [17], the energy term is a weighted sum of three components:

curvature continuity Uc, curvature enhancement Ue and isophote smoothing Ui. The energy

of each interpolated pixel at (i, j) is given by

U(i, j) = wcUc(i, j) + weUe(i, j) + wiUi(i, j) , (6.21)

According to [17], the Uc term is effective in removing artifacts but creates blurry images

while the Ue term helps produce sharper edges. As a result, the relative values between

wc and we determine a tradeoff between edge sharpness and artifact removal. It was found

that the Ui component adds only a slight improvement to perceived image quality, and

thus wi has relatively little influence on the performance of ICBI [17].

Since the perceptual quality of the interpolated image varies significantly with wc and

we, these parameters are typically chosen with trial and error [17]. To visualize this process,

in Figure 6.8, we plot the WIND measure as a 2D function of wc and we for a test image
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Figure 6.8: ICBI [17] interpolated images over a wide range of wc and we selections. Darker
shade indicates lower WIND value or higher image quality.
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interpolated by ICBI at scaling factor 4, where a darker shade in the plot indicates a

lower value of WIND or higher quality of the interpolated image. Sample interpolated

images corresponding to different options of (wc, we) values are also given. It is worth

noting that the visual quality as a function of (wc, we) is not smooth everywhere. Indeed,

it can be quite sensitive, such that in certain places, small parameter changes can lead to

dramatic variations in perceived quality of the interpolated images, making it difficult to

manually decide on the right parameters to use. Careful inspection and comparisons of the

interpolated images as well as their corresponding WIND values suggest that WIND is a

good perceptual quality indicator and provides a useful tool for automatically choose the

best values of (wc, we).
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Chapter 7

Conclusion and Future Work

This thesis tackles several emerging challenges in the field of visual signal quality assessment

and enhancement. The contributions are on two general topics. We have developed an

objective measure to assess the perceptual quality of two images with different dynamic

range, and have used the objective quality measures to enhance tone-mapping operators.

We have also presented a novel distortion measure to compare the visual quality of two

images with different spatial resolutions and demonstrated its potential applications. In

this chapter, we will summarize the major contributions of the thesis. Then, we will discuss

different areas for future research. Related publications are listed at the end of the chapter.

7.1 Conclusion

In Chapter 3, we have developed an objective model to assess the quality of tone-mapped

images by combining a multi-scale structural fidelity measure and a statistical naturalness

measure. The measure not only provides an overall quality score of an image, but also

creates multi-scale quality maps that reflect the structural fidelity variations across scale

and space. In addition, we conducted a subjective test and collected subjective data to

evaluate the proposed quality measure. Our experiments show that TMQI correlates rea-

sonably well with subjective evaluations of image quality. Moreover, we have demonstrated
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the usefulness of TMQI in automatic parameter tuning of tone-mapping algorithms and in

fusing multiple tone-mapped images.

Chapter 4 demonstrates the usefulness of objective quality measures in the field of

medical imaging. We have shown that commonly used linear functions for displaying HDR

medical images on standard LDR displays are unable to map structural information ac-

curately, and have proposed an optimization framework to construct adaptive windowing

functions that enhance contrast. The optimization task seeks to maximize the structural

fidelity measure in the tone-mapped LDR image using the HDR medical image as a refer-

ence. Our experiments have demonstrated very promising results.

A completely new paradigm in the field of tone-mapping operators was presented in

Chapter 5 where designing the tone-mapping operators was formulated as an optimization

problem in the space of images. The chapter described two main frameworks. First, a

gradient ascent algorithm was proposed to maximize the quality of tone-mapped images in

terms of structural fidelity measure. Second, we developed a novel approach for designing

TMOs by navigating in the space of images to find the optimal image in terms of TMQI.

The navigation is based on an iterative approach that alternates between improving the

structural fidelity preservation and enhancing the statistical naturalness of the image. Ex-

perimental results show that both frameworks improve the overall quality of tone-mapped

images significantly. Our experiments also showed that the proposed method is well be-

haved, and effectively enhances the image quality from a wide variety of initial images,

including those created from state-of-the-art TMOs.

In Chapter 6, we designed an NSS-based objective model to automatically assess the

quality of interpolated natural HR images using LR images as references. Three statistical

features were employed in the proposed approach, including sub-image frequency energy

fall-off statistics, sub-image local dominant orientation statistics and spatial continuity

statistics. Statistical models were established using statistics based on high-quality nat-

ural HR images, and departures from such statistics were used as the key indicators of

perceptual unnaturalness, which is assumed to be closely connected to perceived image

quality. We built an image database of interpolated natural images and carried out sub-

jective tests. Our experiments showed that the proposed quality measure agrees well with
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the mean subjective opinions of interpolated image quality and often outperforms an aver-

age human subject. Furthermore, we demonstrated the extended potential applications of

the proposed measure by applying it to automatic parameter tuning of the state-of-the-art

ICBI interpolation algorithm.

7.2 Future Work

The research work described in this thesis represents initial attempts in several promising

directions, and can be further improved in many aspects. Potential directions to continue

this research work are summarized as follows.

The proposed TMQI method has several limitations that may be resolved or improved

in the future. First, TMQI is designed to evaluate grayscale images only, but most HDR

images of natural scenes are captured in color. One simple method to evaluate tone mapped

color images is to apply the TMQI to each color channel independently and then combine

them. Color fidelity and color naturalness measures may be developed to improve the

quality measure. Second, simple averaging is used in the current pooling method of the

structural fidelity map. Advanced pooling method that incorporate visual attention models

may be employed to improve the quality prediction performance. Third, the current sta-

tistical naturalness measure is based on intensity statistics only. There is a rich literature

on natural image statistics and advanced statistical models (that reflects the structural

regularities in space, scale and orientation in natural images) may be included to improve

the statistical naturalness measure. Fourth, using TMQI as a new optimization goal, many

existing TMOs may be redesigned to achieve better image quality. Novel TMOs may also

be developed by taking advantage of the construction of the proposed quality assessment

approach. Finally, the current method is applied and tested using natural images only.

The application scope of HDR images and TMOs is beyond natural images. For example,

modern medical imaging devices often capture HDR medical images that need to be tone-

mapped before visualization. The TMQI and optimization methods may be adapted to

these extended applications.
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Exploiting structural fidelity measure for the purpose of adaptive windowing of medical

images provided promising results. However, there are some areas to be further explored in

the future. Specifically, other families of continuous and monotonically increasing functions

should be examined. Clinically reliable subjective tests by radiologists should be carried

out to evaluate and calibrate the structural fidelity measure.

The current work on exploring optimum TMOs opens the door to a new class of TMO

approaches. Many topics are worth further investigations. First, as is the case for any algo-

rithm operating in complex high-dimensional space, the current approach only finds local

optima. Careful studies on the search space are desirable. Second, the current implemen-

tation is computationally costly and requires a large number of iterations to converge. Fast

search algorithms are necessary to accelerate the iterations. Third, the current statistical

naturalness model is rather crude. Incorporating advanced models of image naturalness

into the proposed framework has great potentials in creating more natural-looking tone-

mapped images.

Our works on comparing two images with different spatial resolution can be further

improved in the future. First, the current method is applicable to the case of interpolations

by integer factors only. In practice, users may enlarge an image by a non-integer factor

or scale it down to a fractional size. Not all the statistical features used in the current

algorithm can be directly applied and more feature extraction and statistical modeling

work is necessary. Second, since the current model are built upon natural scene statistics,

it may not properly generalize to the case of artificial or graphical images. How to develop

new meaningful features for these images is a topic worth further investigating. Finally,

many recent image super-resolution algorithms take one or multiple LR images as the

input to create HR images, where the positions of the LR image pixels may be shifted by

fractional factors from the integer pixel grid. This poses new challenges to IQA research

and opens up new space for future exploration.
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