8,508 research outputs found

    Development of a modular control algorithm for high precision positioning systems

    Get PDF
    Ankara : The Department of Mechanical Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical references.In the last decade, micro/nano-technology has been improved significantly. Micro/nano-technology related products started to be used in consumer market in addition to their applications in the science and technology world. These developments resulted in a growing interest for high precision positioning systems since precision positioning is crucial for micro/nano-technology related applications. With the rise of more complex and advanced applications requiring smaller parts and higher precision performance, demand for new control techniques that can meet these expectations is increased. The goal of this work is developing a new control technique that can meet increased expectations of precision positioning systems. For this purpose, control of a modular multi-axis positioning system is studied in this thesis. The multiaxis precision positioning system is constructed by assembling modular single-axis stages. Therefore, a single-axis stage can be used in several configurations. Model parameters of a single-axis stage change depending on which axis it is used for. For this purpose, an iterative learning controller is designed to improve tracking performance of a modular single-axis stage to help modular sliders adapting to repeated disturbances and nonlinearities of the axis they are used for. When modular single-axis stages are assembled to form multi-axis systems, the interaction between the axes should be considered to operate stages simultaneously. In order to compensate for these interactions, a multi input multi output (MIMO) controller can be used such as cross-coupled controller (CCC). Cross-coupled controller examines the effects between axes by controlling the contour error resulting in an improved contour tracking. In this thesis, a controller featuring cross-coupled control and iterative learning control schemes is presented to improve contour and tracking accuracy at the same time. Instead of using the standard contour estimation technique proposed with the variable gain cross-coupled control, presented control design incorporates a computationally efficient contour estimation technique. In addition to that, implemented contour estimation technique makes the presented control scheme more suitable for arbitrary nonlinear contours and multi-axis systems. Also, using the zero-phase filtering based iterative learning control results in a practical design and an increased applicability to modular systems. Stability and convergence of the proposed controller has been shown with the necessary theoretical analysis. Effectiveness of the control design is verified with simulations and experiments on two-axis and three-axis positioning systems. The resulting controller is shown to achieve nanometer level contouring and tracking performance.Ulu, Nurcan GeçerM.S

    Index to nasa tech briefs, issue number 2

    Get PDF
    Annotated bibliography on technological innovations in NASA space program

    Learning based cross-coupled control for multi-axis high precision positioning systems

    Get PDF
    In this paper, a controller featuring cross-coupled control and iterative learning control schemes is designed and implemented on a modular two-axis positioning system in order to improve both contour and tracking accuracy. Instead of using the standard contour estimation technique proposed with the variable gain cross-coupled control, a computationally efficient contour estimation technique is incorporated with the presented control design. Moreover, implemented contour estimation technique makes the presented control scheme more suitable for arbitrary nonlinear contours. Effectiveness of the control design is verified with simulations and experiments on a two-axis positioning system. Also, simulations demonstrating the performance of the control method on a three-axis positioning system are provided. The resulting controller is shown to achieve nanometer level contouring and tracking performance. Simulation results also show its applicability to three-axis nano-positioning systems. Copyright © 2012 by ASME

    Tactile Mapping and Localization from High-Resolution Tactile Imprints

    Full text link
    This work studies the problem of shape reconstruction and object localization using a vision-based tactile sensor, GelSlim. The main contributions are the recovery of local shapes from contact, an approach to reconstruct the tactile shape of objects from tactile imprints, and an accurate method for object localization of previously reconstructed objects. The algorithms can be applied to a large variety of 3D objects and provide accurate tactile feedback for in-hand manipulation. Results show that by exploiting the dense tactile information we can reconstruct the shape of objects with high accuracy and do on-line object identification and localization, opening the door to reactive manipulation guided by tactile sensing. We provide videos and supplemental information in the project's website http://web.mit.edu/mcube/research/tactile_localization.html.Comment: ICRA 2019, 7 pages, 7 figures. Website: http://web.mit.edu/mcube/research/tactile_localization.html Video: https://youtu.be/uMkspjmDbq

    Visual Exploration and Object Recognition by Lattice Deformation

    Get PDF
    Mechanisms of explicit object recognition are often difficult to investigate and require stimuli with controlled features whose expression can be manipulated in a precise quantitative fashion. Here, we developed a novel method (called “Dots”), for generating visual stimuli, which is based on the progressive deformation of a regular lattice of dots, driven by local contour information from images of objects. By applying progressively larger deformation to the lattice, the latter conveys progressively more information about the target object. Stimuli generated with the presented method enable a precise control of object-related information content while preserving low-level image statistics, globally, and affecting them only little, locally. We show that such stimuli are useful for investigating object recognition under a naturalistic setting – free visual exploration – enabling a clear dissociation between object detection and explicit recognition. Using the introduced stimuli, we show that top-down modulation induced by previous exposure to target objects can greatly influence perceptual decisions, lowering perceptual thresholds not only for object recognition but also for object detection (visual hysteresis). Visual hysteresis is target-specific, its expression and magnitude depending on the identity of individual objects. Relying on the particular features of dot stimuli and on eye-tracking measurements, we further demonstrate that top-down processes guide visual exploration, controlling how visual information is integrated by successive fixations. Prior knowledge about objects can guide saccades/fixations to sample locations that are supposed to be highly informative, even when the actual information is missing from those locations in the stimulus. The duration of individual fixations is modulated by the novelty and difficulty of the stimulus, likely reflecting cognitive demand

    Robotic-assisted approaches for image-controlled ultrasound procedures

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2019A aquisição de imagens de ultrassons (US) é atualmente uma das modalidades de aquisição de imagem mais implementadas no meio médico por diversas razões. Quando comparada a outras modalidades como a tomografia computorizada (CT) e ressonância magnética (MRI), a combinação da sua portabilidade e baixo custo com a possibilidade de adquirir imagens em tempo real resulta numa enorme flexibilidade no que diz respeito às suas aplicações em medicina. Estas aplicações estendem-se desde o simples diagnóstico em ginecologia e obstetrícia, até tarefas que requerem alta precisão como cirurgia guiada por imagem ou mesmo em oncologia na área da braquiterapia. No entanto ao contrário das suas contrapartes devido à natureza do princípio físico da qual decorrem as imagens, a sua qualidade de imagem é altamente dependente da destreza do utilizador para colocar e orientar a sonda de US na região de interesse (ROI) correta, bem como, na sua capacidade de interpretar as imagens obtidas e localizar espacialmente as estruturas no corpo do paciente. De modo para tornar os procedimentos de diagnóstico menos propensos a erros, bem como os procedimentos guiados por imagem mais precisos, o acoplamento desta modalidade de imagem com uma abordagem robótica com controlo baseado na imagem adquirida é cada vez mais comum. Isto permite criar sistemas de diagnóstico e terapia semiautónomos, completamente autónomos ou cooperativos com o seu utilizador. Esta é uma tarefa que requer conhecimento e recursos de múltiplas áreas de conhecimento, incluindo de visão por computador, processamento de imagem e teoria de controlo. Em abordagens deste tipo a sonda de US vai agir como câmara para o interior do corpo do paciente e o processo de controlo vai basear-se em parâmetros tais como, as informações espaciais de uma certa estrutura-alvo presente na imagem adquirida. Estas informações que são extraídos através de vários estágios de processamento de imagem são utilizadas como realimentação no ciclo de controlo do sistema robótico em questão. A extração de informação espacial e controlo devem ser o mais autónomos e céleres possível, de modo a conseguir produzir-se um sistema com a capacidade de atuar em situações que requerem resposta em tempo real. Assim, o objetivo deste projeto foi desenvolver, implementar e validar, em MATLAB, as bases de uma abordagem para o controlo semiautónomo baseado em imagens de um sistema robótico de US e que possibilite o rastreio de estruturas-alvo e a automação de procedimentos de diagnóstico gerais com esta modalidade de imagem. De modo a atingir este objetivo foi assim implementada nesta plataforma, um programa semiautónomo com a capacidade de rastrear contornos em imagens US e capaz de produzir informação relativamente à sua posição e orientação na imagem. Este programa foi desenhado para ser compatível com uma abordagem em tempo real utilizando um sistema de aquisição SONOSITE TITAN, cuja velocidade de aquisição de imagem é de 25 fps. Este programa depende de fortemente de conceitos integrados na área de visão por computador, como computação de momentos e contornos ativos, sendo este último o motor principal da ferramenta de rastreamento. De um modo geral este programa pode ser descrito como uma implementação para rastreamento de contornos baseada em contornos ativos. Este tipo de contornos beneficia de um modelo físico subjacente que o permite ser atraído e convergir para determinadas características da imagem, como linhas, fronteiras, cantos ou regiões específicas, decorrente da minimização de um funcional de energia definido para a sua fronteira. De modo a simplificar e tornar mais célere a sua implementação este modelo dinâmico recorreu à parametrização dos contornos com funções harmónicas, pelo que as suas variáveis de sistema são descritoras de Fourier. Ao basear-se no princípio de menor energia o sistema pode ser encaixado na formulação da mecânica de Euler-Lagrange para sistemas físicos e a partir desta podem extrair-se sistemas de equações diferenciais que descrevem a evolução de um contorno ao longo do tempo. Esta evolução dependente não só da energia interna do contorno em sim, devido às forças de tensão e coesão entre pontos, mas também de forças externas que o vão guiar na imagem. Estas forças externas são determinadas de acordo com a finalidade do contorno e são geralmente derivadas de informação presente na imagem, como intensidades, gradientes e derivadas de ordem superior. Por fim, este sistema é implementado utilizando um método explícito de Euler que nos permite obter uma discretização do sistema em questão e nos proporciona uma expressão iterativa para a evolução do sistema de um estado prévio para um estado futuro que tem em conta os efeitos externos da imagem. Depois de ser implementado o desempenho do programa semiautomático de rastreamento foi validado. Esta validação concentrou-se em duas vertentes: na vertente da robustez do rastreio de contornos quando acoplado a uma sonda de US e na vertente da eficiência temporal do programa e da sua compatibilidade com sistemas de aquisição de imagem em tempo real. Antes de se proceder com a validação este sistema de aquisição foi primeiro calibrado espacialmente de forma simples, utilizando um fantoma de cabos em N contruído em acrílico capaz de produzir padrões reconhecíveis na imagem de ultrassons. Foram utilizados padrões verticais, horizontais e diagonais para calibrar a imagem, para os quais se consegue concluir que os dois primeiros produzem melhores valores para os espaçamentos reais entre pixéis da imagem de US. Finalmente a robustez do programa foi testada utilizando fantomas de 5%(m/m) de agar-agar incrustados com estruturas hipoecogénicas, simuladas por balões de água, construídos especialmente para este propósito. Para este tipo de montagem o programa consegue demonstrar uma estabilidade e robustez satisfatórias para diversos movimentos de translação e rotação da sonda US dentro do plano da imagem e mostrando também resultados promissores de resposta ao alongamento de estruturas, decorrentes de movimentos da sonda de US fora do plano da imagem. A validação da performance temporal do programa foi feita com este a funcionar a solo utilizando vídeos adquiridos na fase anterior para modelos de contornos ativos com diferentes níveis de detalhe. O tempo de computação do algoritmo em cada imagem do vídeo foi medido e a sua média foi calculada. Este valor encontra-se dentro dos níveis previstos, sendo facilmente compatível com a montagem da atual da sonda, cuja taxa de aquisição é 25 fps, atingindo a solo valores na gama entre 40 e 50 fps. Apesar demonstrar uma performance temporal e robustez promissoras esta abordagem possui ainda alguns limites para os quais a ainda não possui solução. Estes limites incluem: o suporte para um sistema rastreamento de contornos múltiplos e em simultâneo para estruturas-alvo mais complexas; a deteção e resolução de eventos topológicos dos contornos, como a fusão, separação e auto-interseção de contornos; a adaptabilidade automática dos parâmetros do sistema de equações para diferentes níveis de ruido da imagem e finalmente a especificidade dos potenciais da imagem para a convergência da abordagem em regiões da imagem que codifiquem tipo de tecidos específicos. Mesmo podendo beneficiar de algumas melhorias este projeto conseguiu atingir o objetivo a que se propôs, proporcionando uma implementação eficiente e robusta para um programa de rastreamento de contornos, permitindo lançar as bases nas quais vai ser futuramente possível trabalhar para finalmente atingir um sistema autónomo de diagnóstico em US. Além disso também demonstrou a utilidade de uma abordagem de contornos ativos para a construção de algoritmos de rastreamento robustos aos movimentos de estruturas-alvo no a imagem e com compatibilidade para abordagens em tempo-real.Ultrasound (US) systems are very popular in the medical field for several reasons. Compared to other imaging techniques such as CT or MRI, the combination of low-priced and portable hardware with realtime image acquisition enables great flexibility regarding medical applications, from simple diagnostics tasks to high precision ones, including those with robotic assistance. Unlike other techniques, the image quality and procedure accuracy are highly dependent on user skills for spatial ultrasound probe positioning and orientation around a region of interest (ROI) for inspection. To make diagnostics less prone to error and guided procedures more precise, and consequently safer, the US approach can be coupled to a robotic system. The probe acts as a camera to the patient body and relevant imaging information can be used to control a robotic arm, enabling the creation of semi-autonomous, cooperative and possibly fully autonomous diagnostics and therapeutics. In this project our aim is to develop a semi-autonomous tool for tracking defined structures of interest within US images, that outputs meaningful spatial information of a target structure (location of the centre of mass [CM], main orientation and elongation). Such tool must accomplish real-time requirements for future use in autonomous image-guided robotic systems. To this end, the concepts of moment-based visual servoing and active contours are fundamental. Active contours possess an underlying physical model allowing deformation according to image information, such as edges, image regions and specific image features. Additionally, the mathematical framework of vision-based control enables us to establish the types of necessary information for controlling a future autonomous system and how such information can be transformed to specify a desired task. Once implemented in MATLAB the tracking and temporal performance of this approach is tested in built agar-agar phantoms embedded with water-filled balloons, for stability demonstration, probe motion robustness in translational and rotational movements, as well as promising capability in responding to target structure deformations. The developed framework is also inside the expected levels, being compatible with a 25 frames per second image acquisition setup. The framework also has a standalone tool capable of dealing with 50 fps. Thus, this work lays the foundation for US guided procedures compatible with real-time approaches in moving and deforming targets

    Flexible adaptation of iterative learning control with applications to synthetic bone graft manufacturing

    Get PDF
    Additive manufacturing processes are powerful tools; they are capable of fabricating structures without expensive structure specific tooling -- therefore structure designs can efficiently change from run-to-run -- and they can integrate multiple distinct materials into a single structure. This work investigates one such additive manufacturing process, micro-Robotic Deposition (μ\muRD), and its utility in fabricating advanced architecture synthetic bone grafts. These bone grafts, also known as synthetic bone scaffolds, are highly porous three-dimensional structures that provide a matrix to support the natural process of bone remodeling. Ideally, the synthetic scaffold will stimulate complete bone healing in a skeletal defect site and also resorb with time so that only natural tissue remains. The objective of this research is to develop methods to integrate different regions with different porous microstructures into a single scaffold; there is evidence that scaffolds with designed regions of specific microstructures can be used to elicit a strong and directed bone ingrowth response that improves bone ingrowth rate and quality. The key contribution of this work is the development of a control algorithm that precisely places different build materials in specified locations, thereby the fabrication of advanced architecture scaffolds is feasible. Under previous control methods, designs were relegated to be composed of a single material. The control algorithm developed in this work is an adaptation of Iterative Learning Control (ILC), a control method that is typically best suited for mass manufacturing applications. This adaptation reorients the ILC framework such that it is more amenable to additive manufacturing systems, such as μ\muRD. Control efficacy is demonstrated by the fabrication of advanced architecture scaffolds. Scaffolds with contoured forms, multiple domains with distinct porous microstructures, and hollow cavities are feasible when the developed controller is used in conjunction with a novel manufacturing workflow in which scaffolds are filled within patterned molds that support overhanging features. An additional application demonstrates controller performance on the robot positioning problem; this work has implications for additive manufacturing in general

    A surgical system for automatic registration, stiffness mapping and dynamic image overlay

    Full text link
    In this paper we develop a surgical system using the da Vinci research kit (dVRK) that is capable of autonomously searching for tumors and dynamically displaying the tumor location using augmented reality. Such a system has the potential to quickly reveal the location and shape of tumors and visually overlay that information to reduce the cognitive overload of the surgeon. We believe that our approach is one of the first to incorporate state-of-the-art methods in registration, force sensing and tumor localization into a unified surgical system. First, the preoperative model is registered to the intra-operative scene using a Bingham distribution-based filtering approach. An active level set estimation is then used to find the location and the shape of the tumors. We use a recently developed miniature force sensor to perform the palpation. The estimated stiffness map is then dynamically overlaid onto the registered preoperative model of the organ. We demonstrate the efficacy of our system by performing experiments on phantom prostate models with embedded stiff inclusions.Comment: International Symposium on Medical Robotics (ISMR 2018
    corecore