10,155 research outputs found

    Decentralized Cooperative Stochastic Bandits

    Full text link
    We study a decentralized cooperative stochastic multi-armed bandit problem with KK arms on a network of NN agents. In our model, the reward distribution of each arm is the same for each agent and rewards are drawn independently across agents and time steps. In each round, each agent chooses an arm to play and subsequently sends a message to her neighbors. The goal is to minimize the overall regret of the entire network. We design a fully decentralized algorithm that uses an accelerated consensus procedure to compute (delayed) estimates of the average of rewards obtained by all the agents for each arm, and then uses an upper confidence bound (UCB) algorithm that accounts for the delay and error of the estimates. We analyze the regret of our algorithm and also provide a lower bound. The regret is bounded by the optimal centralized regret plus a natural and simple term depending on the spectral gap of the communication matrix. Our algorithm is simpler to analyze than those proposed in prior work and it achieves better regret bounds, while requiring less information about the underlying network. It also performs better empirically

    Delay and Cooperation in Nonstochastic Bandits

    Get PDF
    We study networks of communicating learning agents that cooperate to solve a common nonstochastic bandit problem. Agents use an underlying communication network to get messages about actions selected by other agents, and drop messages that took more than dd hops to arrive, where dd is a delay parameter. We introduce \textsc{Exp3-Coop}, a cooperative version of the {\sc Exp3} algorithm and prove that with KK actions and NN agents the average per-agent regret after TT rounds is at most of order (d+1+KNαd)(TlnK)\sqrt{\bigl(d+1 + \tfrac{K}{N}\alpha_{\le d}\bigr)(T\ln K)}, where αd\alpha_{\le d} is the independence number of the dd-th power of the connected communication graph GG. We then show that for any connected graph, for d=Kd=\sqrt{K} the regret bound is K1/4TK^{1/4}\sqrt{T}, strictly better than the minimax regret KT\sqrt{KT} for noncooperating agents. More informed choices of dd lead to bounds which are arbitrarily close to the full information minimax regret TlnK\sqrt{T\ln K} when GG is dense. When GG has sparse components, we show that a variant of \textsc{Exp3-Coop}, allowing agents to choose their parameters according to their centrality in GG, strictly improves the regret. Finally, as a by-product of our analysis, we provide the first characterization of the minimax regret for bandit learning with delay.Comment: 30 page

    Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up

    Full text link
    We analyse the learning performance of Distributed Gradient Descent in the context of multi-agent decentralised non-parametric regression with the square loss function when i.i.d. samples are assigned to agents. We show that if agents hold sufficiently many samples with respect to the network size, then Distributed Gradient Descent achieves optimal statistical rates with a number of iterations that scales, up to a threshold, with the inverse of the spectral gap of the gossip matrix divided by the number of samples owned by each agent raised to a problem-dependent power. The presence of the threshold comes from statistics. It encodes the existence of a "big data" regime where the number of required iterations does not depend on the network topology. In this regime, Distributed Gradient Descent achieves optimal statistical rates with the same order of iterations as gradient descent run with all the samples in the network. Provided the communication delay is sufficiently small, the distributed protocol yields a linear speed-up in runtime compared to the single-machine protocol. This is in contrast to decentralised optimisation algorithms that do not exploit statistics and only yield a linear speed-up in graphs where the spectral gap is bounded away from zero. Our results exploit the statistical concentration of quantities held by agents and shed new light on the interplay between statistics and communication in decentralised methods. Bounds are given in the standard non-parametric setting with source/capacity assumptions

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Iterative learning control for multi-agent systems with impulsive consensus tracking

    Get PDF
    In this paper, we adopt D-type and PD-type learning laws with the initial state of iteration to achieve uniform tracking problem of multi-agent systems subjected to impulsive input. For the multi-agent system with impulse, we show that all agents are driven to achieve a given asymptotical consensus as the iteration number increases via the proposed learning laws if the virtual leader has a path to any follower agent. Finally, an example is illustrated to verify the effectiveness by tracking a continuous or piecewise continuous desired trajectory

    Asynchronous Distributed ADMM for Large-Scale Optimization- Part II: Linear Convergence Analysis and Numerical Performance

    Get PDF
    The alternating direction method of multipliers (ADMM) has been recognized as a versatile approach for solving modern large-scale machine learning and signal processing problems efficiently. When the data size and/or the problem dimension is large, a distributed version of ADMM can be used, which is capable of distributing the computation load and the data set to a network of computing nodes. Unfortunately, a direct synchronous implementation of such algorithm does not scale well with the problem size, as the algorithm speed is limited by the slowest computing nodes. To address this issue, in a companion paper, we have proposed an asynchronous distributed ADMM (AD-ADMM) and studied its worst-case convergence conditions. In this paper, we further the study by characterizing the conditions under which the AD-ADMM achieves linear convergence. Our conditions as well as the resulting linear rates reveal the impact that various algorithm parameters, network delay and network size have on the algorithm performance. To demonstrate the superior time efficiency of the proposed AD-ADMM, we test the AD-ADMM on a high-performance computer cluster by solving a large-scale logistic regression problem.Comment: submitted for publication, 28 page
    corecore