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Abstract

We study networks of communicating learning agents that cooperate to solve a common non-
stochastic bandit problem. Agents use an underlying communication network to get messages
about actions selected by other agents, and drop messages that took more than d hops to arrive,
where d is a delay parameter. We introduce EXP3-COOP, a cooperative version of the EXP3 algo-
rithm and prove that with K actions and N agents the average per-agent regret after T rounds is

at most of order
√(

d+ 1 + K
N α≤d

)
(T lnK), where α≤d is the independence number of the d-th

power of the communication graphG. We then show that for any connected graph, for d =
√
K the

regret bound is K1/4
√
T , strictly better than the minimax regret

√
KT for noncooperating agents.

More informed choices of d lead to bounds which are arbitrarily close to the full information mini-
max regret

√
T lnK when G is dense. When G has sparse components, we show that a variant of

EXP3-COOP, allowing agents to choose their parameters according to their centrality in G, strictly
improves the regret. Finally, as a by-product of our analysis, we provide the first characterization
of the minimax regret for bandit learning with delay.

1. Introduction

Delayed feedback naturally arises in many sequential decision problems. For instance, a recom-
mender system typically learns the utility of a recommendation by detecting the occurrence of cer-
tain events (e.g., a user conversion), which may happen with a variable delay after the recommenda-
tion was issued. Other examples are the communication delays experienced by interacting learning
agents. Concretely, consider a network of geographically distributed ad servers using real-time
bidding to sell their inventory. Each server sequentially learns how to set the auction parameters
(e.g., reserve price) in order to maximize the network’s overall revenue, and shares feedback infor-
mation with other servers in order to speed up learning. However, the rate at which information
is exchanged through the communication network is slower than the typical rate at which ads are
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served. This causes each learner to acquire feedback information from other servers with a delay
that depends on the network’s structure.

Motivated by the ad network example, we consider networks of learning agents that cooperate to
solve the same nonstochastic bandit problem, and study the impact of delay on the global perfor-
mance of these agents. We introduce the EXP3-COOP algorithm, a distributed and cooperative
version of the EXP3 algorithm of Auer et al. (2002). EXP3-COOP works within a distributed and
synced model where each agent runs an instance of the same bandit algorithm (EXP3). All bandit
instances are initialized in the same way irrespective to the agent’s location in the network (that is,
agents have no preliminary knowledge of the network), and we assume the information about an
agent’s actions is propagated through the network with a unit delay for each crossed edge. In each
round t, each agent selects an action and incurs the corresponding loss (which is the same for all
agents that pick that action in round t). Besides observing the loss of the selected action, each agent
obtains the information previously broadcast by other agents with a delay equal to the shortest-path
distance between the agents. Namely, at time t an agent learns what the agents at shortest-path
distance s did at time t− s for each s = 1, . . . , d, where d is a delay parameter. In this scenario, we
aim at controlling the growth of the regret averaged over all agents (the so-called average welfare
regret).

In the noncooperative case, when agents ignore the information received from other agents, the av-
erage welfare regret grows like

√
KT (the minimax rate for standard bandit setting), whereK is the

number of actions and T is the time horizon. We show that, using cooperation, N agents with com-

munication graph G can achieve an average welfare regret of order
√(

d+ 1 + K
N α≤d

)
(T lnK).

Here α≤d denotes the independence number of the d-th power of G (i.e., the graph G augmented
with all edges between any two pair of nodes at shortest-path distance less than or equal to d). When
d =
√
K this bound is at mostK1/4

√
T lnK+

√
K(lnT ) for any connected graph —see Remark 7

in Section 4.1— which is asymptotically better than
√
KT .

Networks of nonstochastic bandits were also investigated by Awerbuch and Kleinberg (2008) in a
setting where the distribution over actions is shared among the agents without delay. Awerbuch

and Kleinberg (2008) prove a bound on the average welfare regret of order
√(

1 + K
N

)
T ignoring

polylog factors.1 We recover the same bound as a special case of our bound when G is a clique and

d = 1. In the clique case our bound is also similar to the bound
√

K
N (T lnK) achieved by Seldin

et al. (2014) in a single-agent bandit setting where, at each time step, the agent can choose a subset
ofN ≤ K actions and observe their loss. In the case whenN = 1 (single agent), our analysis can be
applied to the nonstochastic bandit problem where the player observes the loss of each played action
with a delay of d steps. In this case we improve on the previous result of

√
(d+ 1)KT by Neu et al.

(2010, 2014), and give the first characterization (up to logarithmic factors) of the minimax regret,
which is of order

√
(d+K)T .

In principle, the problem of delays in online learning could be tackled by simple reductions. Yet,
these reductions give rise to suboptimal results. In the single agent setting, where the delay is con-
stant and equal to d, one can use the technique of Weinberger and Ordentlich (2002) and run d+1 in-

1. The rate proven in (Awerbuch and Kleinberg, 2008, Theorem 2.1) has a worse dependence on T , but we believe this
is due to the fact that their setting allows for dishonest agents and agent-specific loss vectors.
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stances of an online algorithm for the nondelayed case, where each instance is used every d+1 steps.
This delivers a suboptimal regret bound of

√
(d+ 1)KT . In the case of multiple delays, like in our

multi-agent setting, one can repeat the same action for d+ 1 steps while accumulating information
from the other agents, and then perform an update on scaled-up losses. The resulting (suboptimal)

bound on the average welfare regret would be of the form
√

(d+ 1)
(
1 + K

N α≤d
)
(T lnK).

Rather than using reductions, the analysis of EXP3-COOP rests on quantifying the performance of
suitable importance weighted estimates. In fact, in the single-agent setting with delay parameter d,
using EXP3-COOP reduces to running the standard EXP3 algorithm performing an update as soon
a new loss becomes available. This implies that at any round t > d, EXP3 selects an action without
knowing the losses incurred during the last d rounds. The resulting regret is bounded by relating
the standard analysis of EXP3 to a detailed quantification of the extent to which the distribution
maintained by EXP3 can drift in d steps.

In the multi-agent case, the importance weighted estimate of EXP3-COOP is designed in such a way
that at each time t > d the instance of the algorithm run by an agent v updates all actions that were
played at time t − d by agent v or by other agents not further away than d from v. Compared to
the single agent case, here each agent can exploit the information circulated by the other agents.
However, in order to compute the importance weighted estimates used locally by each agent, the
probabilities maintained by the agents must be propagated together with the observed losses. Here,
further concerns may show up, like the amount of communication, and the location of each agent
within the network. In particular, when G has sparse components, we show that a variant of EXP3-
COOP, allowing agents to choose their parameters according to their centrality within G, strictly
improves on the regret of EXP3-COOP.

2. Additional Related Work

Many important ideas in delayed online learning, including the observation that the effect of de-
lays can be limited by controlling the amount of change in the agent strategy, were introduced
by Mesterharm (2005) —see also (Mesterharm, 2007, Chapter 8). A more recent investigation on
delayed online learning is due to Neu et al. (2010, 2014), who analyzed exponential weights with
delayed feedbacks. Furher progress is made by Joulani et al. (2013), who also study delays in the
general partial monitoring setting. Additional works (Joulani et al., 2016; Quanrud and Khashabi,
2015) prove regret bounds for the full-information case of the form

√
(D + T ) lnK, where D is

the total delay experienced over the T rounds. In the stochastic case, bandit learning with delayed
feedback was considered by Dudı́k et al. (2011); Joulani et al. (2013).

To the best of our knowledge, the first paper about nonstochastic cooperative bandit networks is
(Awerbuch and Kleinberg, 2008). More papers analyze the stochastic setting, and the closest one
to our work is perhaps (Szorenyi et al., 2013). In that paper, delayed loss estimates in a network of
cooperating stochastic bandits are analyzed using a dynamic P2P random networks as communica-
tion model. A more recent paper is (Landgren et al., 2015), where the communication network is a
fixed graph and a cooperative version of the UCB algorithm is introduced which uses a distributed
consensus algorithm to estimate the mean rewards of the arms. The main result is an individual
(per-agent) regret bound that depends on the network structure without taking delays into account.
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Another interesting paper about cooperating bandits in a stochastic setting is (Kar et al., 2011).
Similar to our model, agents sit on the nodes of a communication network. However, only one
designated agent observes the rewards of actions he selects, whereas the others remain in the dark.
This designated agent broadcasts his sampled actions through the networks to the other agents, who
must learn their policies relying only on this indirect feedback. The paper shows that in any con-
nected network this information is sufficient to achieve asymptotically optimal regret. Cooperative
bandits with asymmetric feedback are also studied by Barrett and Stone (2011). In their model,
an agent must teach the reward distribution to another agent while keeping the discounted regret
under control. Tekin and van der Schaar (2015) investigate a stochastic contextual bandit model
where each agent can either privately select an action or have another agent select an action on his
behalf. In a related paper, Tekin et al. (2014) look at a stochastic bandit model with combinatorial
actions in a distributed recommender system setting, and study incentives among agents who can
now recommend items taken from other agents’ inventories. Another line of relevant work involves
problems of decentralized bandit coordination. For example, Stranders et al. (2012) consider a ban-
dit coordination problem where the the reward function is global and can be represented as a factor
graph in which each agent controls a subset of the variables. A parallel thread of research con-
cerns networks of bandits that compete for shared resources. A paradigmatic application domain
is that of cognitive radio networks, in which a number of channels are shared among many users
and any two or more users interfere whenever they simultaneously try to use the same channel. The
resulting bandit problem is one of coordination in a competitive environment, because every time
two or more agents select the same action at the same time step they both get a zero reward due
to the interference —see (Rosenski et al., 2015) for recent work on stochastic competitive bandits
and (Kleinberg et al., 2009) for a study of more general congestion games in a game-theoretic set-
ting. Finally, there exists an extensive literature on the adaptation of gradient descent and related
algorithms to distributed computing settings, where asynchronous processors naturally introduce
delays —see, e.g., (Zinkevich et al., 2009; Agarwal and Duchi, 2011; Li et al., 2013; McMahan and
Streeter, 2014; Quanrud and Khashabi, 2015; Liu et al., 2015; Duchi et al., 2015). However, none
of these works considers bandit settings, which are an essential ingredient for our analysis.

3. Preliminaries

We now establish our notation, along with basic assumptions and preliminary facts related to our
algorithms. Notation and setting here both refer to the single agent case. The cooperative setting
with multiple agents (and notation thereof) will be introduced in Section 4. Proofs of all the results
stated here can be found in (Cesa-Bianchi et al., 2016).

Let A = {1, . . . ,K} be the action set. A learning agent runs an exponentially-weighted algorithm
with weights wt(i), and learning rate η > 0. Initially, w1(i) = 1 for all i ∈ A. At each time step
t = 1, 2, . . . , the agent draws action It with probability P(It = i) = pt(i) = wt(i)/Wt, where
Wt =

∑
j∈Awt(j). After observing the loss `t(It) ∈ [0, 1] associated with the chosen action It,

and possibly some additional information, the agent computes, for each i ∈ A, nonnegative loss
estimates ̂̀t(i), and performs the exponential update

wt+1(i) = pt(i) exp
(
−η ̂̀t(i)) (1)
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to these weights. The following two lemmas are general results that control the evolution of the
probability distributions in the exponentially-weighted algorithm. As we said in the introduction,
bounding the extent to which the distribution used by our algorithms can drift in d steps is key to
controlling regret in a delayed setting. The first result bounds the additive change in the probability
of any action, and it holds no matter how ̂̀t(i) is defined.

Lemma 1 Under the update rule (1), for all t ≥ 1 and for all i ∈ A,

−η pt(i)̂̀t(i) ≤ pt+1(i)− pt(i) ≤ η pt+1(i)
∑
j∈A

pt(j)̂̀t(j)
holds deterministically with respect to the agent’s randomization.

The second result delivers a multiplicative bound on the change in the probability of any action
when the loss estimates ̂̀t(i) are of the following form:

̂̀
t(i) =


`t−d(i)

qt−d(i)
Bt−d(i) if t > d,

0 otherwise ,
(2)

where d ≥ 0 is a delay parameter, Bt−d(i) ∈ {0, 1}, for i ∈ A, are indicator functions, and
qt−d(i) ≥ pt−d(i) for all i and t > d. In all later sections, Bt−d(i) will be instantiated to the
indicator function of the event that action i has been played at time t−d by some agent, and qt−d(i)
will be the (conditional) probability of this event.

Lemma 2 Let ̂̀t(i) be of the form (2) for each t ≥ 1 and i ∈ A. If η ≤ 1
Ke(d+1) in the update

rule (1), then

pt+1(i) ≤
(

1 +
1

d

)
pt(i)

holds for all t ≥ 1 and i ∈ A, deterministically with respect to the agent’s randomization.

As we said in Section 1, the idea of controlling the drift of the probabilities in order to bound the
effects of delayed feedback is not new. In particular, variants of Lemma 1 were already derived in
the work of Neu et al. (2010, 2014). However, Lemma 2 appears to be new, and this is the key result
to achieving our improvements.

4. The Cooperative Setting on a Communication Network

In our multi-agent bandit setting, there are N agents sitting on the vertices of a connected and
undirected communication graph G = (V,E), with V = {1, . . . , N}. The agents cooperate to
solve the same instance of a nonstochastic bandit problem while limiting the communication among
them. Let Ns(v) be the set of nodes v′ ∈ V whose shortest-path distance distG(v, v′) from v in
G is exactly s. At each time step t = 1, 2, . . . , each agent v ∈ V draws an action It(v) from the
common action set A. Note that each action i ∈ A delivers the same loss `t(i) ∈ [0, 1] to all agents
v such that It(v) = i. At the end of round t, each agent v observes his own loss `t

(
It(v)

)
, and sends

to his neighbors in G the message

mt(v) =
〈
t, v, It(v), `t

(
It(v)

)
,pt(v)

〉
5
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The cooperative bandit protocol
Parameters: Undirected communication graph G = (V,E), hidden loss vectors `t =(
`t(1), . . . , `t(K)

)
∈ [0, 1]K for t ≥ 1, delay d.

For t = 1, 2, . . .
1. Each agent v ∈ V plays action It(v) ∈ A drawn according to distribution pt(v);
2. Each agent v ∈ V observes loss `t

(
It(v)

)
, sends to his neighbors the message mt(v),

and receives from his neighbors messages mt−s(v
′);

3. Each agent v ∈ V drops any message mt−s(v
′) received from some neighbor such that

s ≥ d, and forwards to the other neighbors the remaining messages.

Figure 1: The cooperative bandit protocol where all agents share the same delay parameter d.

where pt(v) =
(
pt(1, v), . . . , pt(K, v)

)
is the distribution of It(v). Moreover, v also receives from

his neighbors a variable number of messages mt−s(v
′). Each message mt−s(v

′) that v receives
from a neighbor is used to update pt(v) and then forwarded to the other neighbors only if s < d,
otherwise it is dropped.2 Here d is the maximum delay, a parameter of the communication protocol.
Therefore, at the end of round t, each agent v receives one message mt−s(v

′) for each agent v′ such
that distG(v, v′) = s, where s ∈ {1, . . . , d}. Graph G can thus be seen as a synchronous multi-hop
communication network where messages are broadcast, each hop causing a delay of one time step.
Our learning protocol is summarized in Figure 1, while Figure 2 contains a pictorial example.

Our model is similar to the LOCAL communication model in distributed computing (Linial, 1992;
Suomela, 2013), where the output of a node depends only on the inputs of other nodes in a constant-
size neighborhood of it, and the goal is to derive algorithms whose running time is independent of
the network size. (The main difference is that the task here has no completion time, however, also
in our model influence on a node is only through a constant-size neighborhood of it.)

One aspect deserving attention is that, apart from the common delay parameter d, the agents need
not share further information. In particular, the agents need not know neither the topology of the
graph G nor the total number of agents N . In Section 5, we show that our distributed algorithm can
also be analyzed when each agent v uses a personalized delay d(v), thus doing away with the need
of a common delay parameter, and guaranteeing a generally better performance.

Further graph notation is needed at this point. Given G as above, let us denote by G≤d the graph
(V,E≤d) where (u, v) ∈ E≤d if and only if the shortest-path distance between agents u and v in
G is at most d (hence G≤1 = G). Graph G≤d is sometimes called the d-th power of G. We also
use G0 to denote the graph (V, ∅). Recall that an independent set of G is any subset T ⊆ V such
that no two i, j ∈ T are connected by an edge in E. The largest size of an independent set is the
independence number of G, denoted by α(G). Let dG be the diameter of G (maximal length over
all possible shortest paths between all pairs of nodes); then G≤dG is a clique, and one can easily
see that N = α(G0) > α(G) ≥ α(G≤2) ≥ · · · ≥ α(G≤dG) = 1. We show in Section 4.1 that the

2. Dropping messages older than d rounds is clearly immaterial with respect to proving bandit regret bounds. We added
this feature just to prove a point about the message complexity of the protocol. See Remark 8 in Section 5 for further
discussion.
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31 5 642

Figure 2: In this example, G is a line graph with N = 6 agents, and delay d = 2. At the end of
time step t, agent 4 sends to his neighbors 3 and 5 message mt(4), receives from agent
3 messages mt−1(3), and mt−2(2), and from agent 5 messages mt−1(5) and mt−2(6).
Finally, 4 forwards to 5 message mt−1(3) and forwards to 3 message mt−1(5). Any
message older than t− 1 received by 4 at the end of round t will not be forwarded to his
neighbors.

collective performance of our algorithms depends on α(G≤d). If the graph G under consideration
is directed (see Section 5), then α(G) is the independence number of the undirected graph obtained
from G by disregarding edge orientation.

The adversary generating losses is oblivious: loss vectors `t =
(
`t(1), . . . , `t(K)

)
∈ [0, 1]K do not

depend on the agents’ internal randomization. The agents’ goal is to control the average welfare
regret Rcoop

T , defined as

Rcoop
T =

(
1

N

∑
v∈V

E

[
T∑
t=1

`t
(
It(v)

)]
−min

i∈A

T∑
t=1

`t(i)

)
,

the expectation being with respect to the internal randomization of each agent’s algorithm. In the
sequel, we write Et[·] to denote the expectation w.r.t. the product distribution

∏
v∈V pt(v), condi-

tioned on I1(v), . . . , It−1(v), v ∈ V .

4.1. The Exp3-Coop algorithm

Our first algorithm, called EXP3-COOP (Cooperative Exp3) is described in Figure 3. The algorithm
works in the learning protocol of Figure 1. Each agent v ∈ V runs the exponentially-weighted algo-
rithm (1), combined with a “delayed” importance-weighted loss estimate ̂̀t(i, v) that incorporates
the delayed information sent by the other agents. Specifically, denote by N≤d(v) =

⋃
s≤dNs(v)

the set of nodes in G whose shortest-path distance from v is at most d, and note that, for all v,
{v} = N≤0(v) ⊆ N≤1(v) ⊆ N≤2(v) ⊆ · · · . If any of the agents in N≤d(v) has played at time
t − d action i (that is, Bd,t−d(i, v) = 1 in Eq. in (3)), then the corresponding loss `t−d(i) is incor-
porated by v into ̂̀t(i, v). The denominator qd,t−d(i, v) is simply, conditioned on the history, the
probability of Bd,t−d(i, v) = 1, i.e., qd,t−d(i, v) = Et[Bd,t−d(i, v)]. Observe that {v} ⊆ N≤d(v)
for all d ≥ 0 implies qd,t−d(i, v) ≥ pt−d(i, v), as required by (2). It is also worth mentioning that,
despite this is not strictly needed by our learning protocol, each agent v actually exploits the loss in-
formation gathered from playing action It(v) only d time steps later. A relevant special case of this
learning mode is when we only have a single bandit agent receiving delayed feedback (Section 6).

By their very definition, the loss estimates ̂̀t(·, ·) at time t are determined by the realizations of Is(·),
for s = 1, . . . , t − d. This implies that the numbers pt(·, ·) defining qd,t−d(·, ·), are determined by
the realizations of Is(·) for s = 1, . . . , t − d − 1 (because the probabilities pt(v) at time t are

7
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The Exp3-Coop Algorithm
Parameters: Undirected communication graph G = (V,E); delay d; learning rate η.
Init: Each agent v ∈ V sets weights w1(i, v) = 1 for all i ∈ A.
For t = 1, 2, . . .

1. Each agent v ∈ V plays action It(v) ∈ A drawn according to distribution pt(v) =
(pt(1, v), . . . , pt(K, v)) , where

pt(i, v) =
wt(i, v)

Wt(v)
, i = 1, . . . ,K, and Wt(v) =

∑
j∈A

wt(j, v) ;

2. Each agent v ∈ V observes loss `t
(
It(v)

)
and exchanges messages with his neighbors

(Steps 2 and 3 of the protocol in Figure 1);
3. Each agent v ∈ V performs the update wt+1(i, v) = pt(i, v) exp

(
−η ̂̀t(i, v)

)
for all

i ∈ A, where

̂̀
t(i, v) =


`t−d(i)

qd,t−d(i, v)
Bd,t−d(i, v) if t > d,

0 otherwise,
(3)

and Bd,t−d(i, v) = I{∃v′ ∈ N≤d(v) : It−d(v
′) = i} with

qd,t−d(i, v) = 1−
∏

v′∈N≤d(v)

(
1− pt−d(i, v′)

)
.

Figure 3: The Exp3-Coop algorithm where all agents share the same delay parameter d.

determined by the loss estimates up to time t − 1, see (1)). We have, for all t > d, i ∈ A, and
v ∈ V ,

Et−d
[̂̀
t(i, v)

]
= `t−d(i) . (4)

Further, because of what we just said about pt(·, ·) and qd,t−d(·, ·) being determined by
I1(·), . . . , It−d−1(·), we also have

Et−d
[
pt(i, v)̂̀t(i, v)

]
= pt(i, v)`t−d(i) , Et−d

[
pt(i, v)̂̀t(i, v)2

]
= pt(i, v)

`t−d(i)
2

qd,t−d(i, v)
. (5)

The following theorem quantifies the behavior of EXP3-COOP in terms of a free parameter γ in the
learning rate, the tuning of which will be addressed in the subsequent Theorem 4.

Theorem 3 The regret of EXP3-COOP run over a network G = (V,E) of N agents, each using
delay d and learning rate η = γ

/(
Ke(d+ 1)

)
, for γ ∈ (0, 1], satisfies

Rcoop
T ≤ 2d+

Ke(d+ 1) lnK

γ
+ γ

(
α(G≤d)

2(1− e−1)(d+ 1)N
+

3

Ke

)
T .

With this bound handy, we might be tempted to optimize for γ. However, this is not a legal learning
rate setting in a distributed scenario, for the optimized value of γ would depend on the global

8
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quantities N and α(G≤d). Thus, instead of this global tuning, we let each agent set its own learning
rate γ through a “doubling trick” played locally. The doubling trick3 works as follows. For each
v ∈ V , we let γr(v) = Ke(d+1)

√
(lnK)/2r for each r = r0, r0+1, . . . , where r0 =

⌈
log2 lnK+

2 log2(Ke(d+ 1))
⌉

is chosen in such a way that γr(v) ≤ 1 for all r ≥ r0. Let Tr be the random set
of consecutive time steps where the same γr(v) was used. Whenever the local algorithm is running
with γr(v) and detects

∑
s∈Tr Qs(v) > 2r, then we restart the algorithm with γ(v) = γr+1(v). We

have the following result.

Theorem 4 The regret of EXP3-COOP run over a networkG = (V,E) ofN agents, each using de-
lay d, and an individual learning rate η(v) = γ(v)/

(
Ke(d+ 1)

)
, where γ(v) ∈ (0, 1] is adaptively

selected by each agent through the above doubling trick, satisfies, when T grows large,4

Rcoop
T = O

(√
(lnK)

(
d+ 1 +

K

N
α(G≤d)

)
T + d log T

)
.

Remark 5 Theorem 4 shows a natural trade-off between delay and information. To make it clear,

suppose N ≈ K. In this case, the regret bound becomes of order
√(

d+ α(G≤d)
)
T lnK + d lnT .

Now, if d is as big as the diameter dG of G, then α(G≤d) = 1. This means that at every time
step all N ≈ K agents observe (with some delay) the losses of each other’s actions. This is
very much reminiscent of a full information scenario, and in fact our bound becomes of order√

(dG + 1)T lnK + dG lnT , which is close to the full information minimax rate
√

(d+ 1)T lnK
when feedback has a constant delay d (Weinberger and Ordentlich, 2002). When G is sparse (i.e.,
dG is likely to be large, say dG ≈ N ), then agents have no advantage in taking d = dG since
dG ≈ N ≈ K. In this case, agents may even give up cooperation (choosing d = 0 in Figure 3),
and fall back on the standard bandit bound

√
TK lnK, which corresponds to running EXP3-COOP

on the edgeless graph G0. (No doubling trick is needed in this case, hence no extra log T term
appears.)

Remark 6 When d = dG, each neighborhood N≤d(v) used in the loss estimate (3) is equal to V ,
hence all agents receive the same feedback. Because they all start off from the same initial weights,
the agents end up computing the same updates. This in turn implies that: (1) the individual regret
incurred by each agent is the same as the average welfare regretRcoop

T ; (2) the messages exchanged
by the agents (see Figure 1) may be shortened by dropping the distribution part pt−s(v

′).

Remark 7 An interesting question is whether the agents can come up with a reasonable choice for
the value of d even when they lack any information whatsoever about the global structure of G. A
partial answer to this question follows. It is easy to show that the choice d =

√
K in Theorem 4

yields a bound on the average welfare regret of the form K1/4
√
T lnK +

√
K(lnT ) for all G

(and irrespective to the value of N = |V |), provided G is connected. This holds because, for any
connected graph G, the independence number α(G≤d) is always bounded by5

⌈
2N
/

(d + 2)
⌉
. To

3. There has been some recent work on adaptive learning rate tuning applied to nonstochastic bandit algorithms (Kocák
et al., 2014; Neu, 2015). One might wonder whether the same techniques may apply here as well. Unfortunately,
the specific form of our update (1) makes this adaptation nontrivial, and this is why we resorted to a more traditional
“doubling trick”.

4. The big-oh notation here hides additive terms that are independent of T and do depend polynomially on the other
parameters.

5. Because it holds for a worst-case (connected) G, this upper bound on α(G≤d) can be made tighter when specific
graph topologies are considered.
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see why this latter statement is true, observe that the neighborhood N≤d/2(v) of any node v in
G≤d/2 contains at least d/2 + 1 nodes (including v), and any pair of nodes v′, v′′ ∈ N≤d/2(v) are
adjacent in G≤d. Therefore, no independent set of G≤d can have size bigger than d2N

/
(d+ 2)

⌉
. A

more detailed bound is contained, e.g., in (Firby and Haviland, 1997).

5. Extensions: Cooperation with Individual Parameters

In this section, we analyze a modification of EXP3-COOP that allows each agent v in the network
to use a delay parameter d(v) different from that of the other agents. We then show how such
individual delays may improve the average welfare regret of the agents. In the previous setting,
where all agents use the same delay parameter d, messages have an implicit time-to-live equal to
d. In this setting, however, agents may not have a detailed knowledge of the delay parameters used
by the other agents. For this reason we allow an agent v to generate messages with a time-to-live
ttl(v) possibly different from the delay parameter d(v). Note that the role of the two parameters
d(v) and ttl(v) is inherently different. Whereas d(v) rules the extent to which v uses the messages
received from the other agents, ttl(v) limits the number of times a message from v is forwarded to
the other agents, thereby limiting the message complexity of the algorithm. In order to accomodate
this additional parameter, we are required to modify the cooperative bandit protocol of Figure 1. As
in Section 4, we have an undirected communication network G = (V,E) over the agents. However,
in this new protocol the message that at the end of round t each agent v sends to his neighbors in G
has the format

mt(v) =
〈
t, v, ttl(v), It(v), `t

(
It(v)

)
,pt(v)

〉
where ttl(v) is the time-to-live parameter of agent v. Each message mt−s(v

′), which v receives
from a neighbor, first has its time-to-leave decremented by one. If the resulting value is positive,
the message is forwarded to the other neighbors, otherwise it is dropped. Moreover, v uses this
message to update pt(v) only if s ≤ d(v). Hence, at time t an agent v uses the message sent at time
t − s by v′ if and only if distG(v′, v) = s with s ≤ min{d(v), ttl(v′)}, where distG(v, v′) is the
shortest-path distance from v′ to v in G.

Based on the collection P = {d(v), ttl(v)}v∈V of individual parameters, we define the directed
graph GP = (V,EP) as follows: arc (v′, v) ∈ EP if and only if distG(v, v′) ≤ min{d(v), ttl(v′)}.
The in-neighborhood N−P (v) of v thus contains the set of all v′ ∈ V whose distance from v is
not larger than min{d(v), ttl(v′)}. Notice that, with this definition, v ∈ N−P (v), so that (V,EP) in-
cludes all self-loops (v, v). Figure 4(a) illustrates these concepts through a simple pictorial example.

Remark 8 It is important to remark that the communication structure encoded by P is an exoge-
nous parameter of the regret minimization problem, and so our algorithms cannot trade it off against
regret. In addition to that, the parameterization P = {d(v), ttl(v)}v∈V defines a simple and static
communication graph which makes it relatively easy to express the tradeoff between regret and com-
munication. This would not be possible if we had each individual node v decide whether to forward
a message based, say, on its own local delay parameter d(v). To see why, consider the situation
where nodes v and v′ are along the route of a message that is reaching v before v′. The decision
of v to drop the message may clash with the willingness of v′ to receive it, and this may clearly
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Figure 4: (a) In this example, the communication network G is an undirected line graph with N =
6 agents, whose edges are depicted in black. Close to each node v = 1, . . . , 6 is the
individual delay d(v) (in blue), and the individual time-to-leave ttl(v) (in red). The arcs
(a.k.a., directed edges) of the induced directed graph GP are also depicted in blue. Self-
loops are not depicted. For instance, we have N−P (5) = {4, 5, 6} and N−P (3) = {3}. (b)
A communication network having a dense (red nodes) and a sparse (black nodes) region.
The black region has N1/2 agents, the red one has N − N1/2 agents. (c) A star graph
with long rays. The center v (in red) sets a small d(v) and a large ttl(v). The peripheral
nodes v′ (in green) set a large d(v′) and a small ttl(v′).

happen when d(v) < d(v′). The structure of the communication graph resulting from this indi-
vidual behavior of the nodes would be rather complicated. On the contrary, the time-to-live-based
parametrization, which is commonly used in communication networks to control communication
complexity, does not have this issue.

Figure 5 contains our algorithm (called EXP3-COOP2) for this setting. EXP3-COOP2 is a strict
generalization of EXP3-COOP, and so is its analysis. The main difference between the two algo-
rithms is that EXP3-COOP2 deals with directed graphs. This fact prevents us from using the same
techniques of Section 4.1 in order to control the regret. Intuitively, adding orientations to the edges
reduces the information available to the agents and thus increases the variance of their loss esti-
mates. Thus, in order to control this variance, we need a lower bound6 on the probabilities pt(i, v).
From Figure 5, one can easily see that

1 =
∑
i∈A

wt(i, v)

Wt(v)
≤ P̃t(v) ≤

∑
i∈A

(
wt(i, v)

Wt(v)
+

δ

K

)
= 1 + δ (6)

implying the lower bound pt(i, v) ≥ δ
K(1+δ) , holding for all i, t, and v.

The following theorem is the main result of this section.

Theorem 9 The regret of EXP3-COOP2 run over a network G = (V,E) of N agents, each agent
v using individual delay d(v), individual time-to-leave ttl(v), exploration parameter δ = 1/T , and

6. We find it convenient to derive this lower bound without mixing with the uniform distribution over A —see, e.g.,
(Auer et al., 2002)— but in a slightly different manner. This facilitates our delayed feedback analysis.

11
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The Exp3-Coop2 Algorithm
Parameters: Undirected graph G = (V,E); learning rate η; exploration parameter δ > 0.
Init: Each v ∈ V sets weights w1(i, v) = 1, for all i ∈ A, delay d(v), and time-to-live ttl(v).
For t = 1, 2, . . .

1. Each agent v ∈ V plays action It(v) ∈ A drawn according to distribution pt(v) =
(pt(1, v), . . . , pt(K, v)) , where

pt(i, v) =
p̃t(i, v)

P̃t(v)
, P̃t(v) =

∑
j∈A

p̃t(j, v),

and

p̃t(i, v) = max

{
wt(i, v)

Wt(v)
,
δ

K

}
, Wt(v) =

∑
j∈A

wt(j, v) ;

2. Each agent v ∈ V observes loss `t
(
It(v)

)
and exchanges messages with his neighbors

(see main text for an explanation);
3. Each agent v ∈ V performs the update wt+1(i, v) = pt(i, v) exp

(
−η ̂̀t(i, v)

)
for all

i ∈ A, where

̂̀
t(i, v) =


`t−d(v)(i)

qP,t−d(v)(i, v)
BP,t−d(v)(i, v) if t > d(v),

0 otherwise,

and BP,t−d(v)(i, v) = I{∃v′ ∈ N−P (v) : It−d(v)(v
′) = i}, with

qP,t−d(v)(i, v) = 1−
∏

v′∈N−P (v)

(
1− pt−d(v)(i, v′)

)
.

Figure 5: The Exp3-Coop2 algorithm with individual delay and time-to-live parameters.

learning rate η such that η → 0 as T →∞ satisfies, when T grows large,

Rcoop
T = O

(
lnK

η
+ η
(
d̄V +

K

N
α (GP) ln(TNK)

)
T

)
, where d̄V =

1

N

∑
v∈V

d(v) .

Using a doubling trick in much the same way we used it to prove Theorem 4, we can prove the
following result.

Corollary 10 The regret of EXP3-COOP2 run over a networkG = (V,E) ofN agents, each agent
v using individual delay d(v), individual time-to-leave ttl(v), exploration parameter δ = 1/T , and
individual learning rate η(v) adaptively selected by each agent through a doubling trick, satisfies,
when T grows large

Rcoop
T = O

(√
(lnK)

(
d̄V + 1 +

K

N
α(GP) ln(TNK)

)
T + d̄V

(
lnT + ln ln(TNK)

))
.
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To illustrate the advantage of having individual delays as opposed to sharing the same delay value,
it suffices to consider a communication network including regions of different density. Concretely,
consider the graph in Figure 4(b) with a large densely connected region (red agents) and a small
sparsely connected region black agents). In this example, the black agents prefer a large value of
their individual delay so as to receive more information from nearby agents, but this comes at the
price of a larger bias for their estimators ̂̀t(i, v). On the contrary, information from nearby agents
is readily available to the red agents, so that they do not gain any regret improvement from a large
delay parameter. A similar argument applies here to the individual time-to-live values: red agents v
will set a small ttl(v) to reduce communication. Black agents v′ may decide to set ttl(v′) depending
on their intention to reach the red nodes. But because the red agents have set a small d(v), any effort
made by v′ trying to reach them would be a communication waste. Hence, it is reasonable for a black
agent v′ to set a moderately large value for ttl(v′), but perhaps not so large as to reach the red agents.
One can read this off the bounds in both Theorem 9 and Corollary 10, as explained next. Suppose
for simplicity that K ≈ N so that, disregarding log factors, these bounds depend on parameters P
only through the quantity H = d̄V + α (GP). Now, in the case of a common delay parameter d
(Section 4.1), it is not hard to see that the best setting for d in order to minimize H is of the form
d = N1/4, resulting in H = Θ(N1/4). On the other hand, the best setting for the individual delays
is d(v) = 1 when v is red, and d(v) =

√
N when v is black, resulting in H = Θ(1).

The time-to-live parameters ttl(v) affect the regret bound only through α (GP), but they clearly
play the additional role of bounding the message complexity of the algorithm. In our example of
Figure 4(b), we essentially have d(v) ≈ ttl(v) for all v. A typical scenario where agents may have
d(v) 6= ttl(v) is illustrated in Figure 4(c). In this case, we have star-like graph where a central
agent is connected through long rays to all others agents. The center v prefers to set a small d(v),
since it has a large degree, but also a large ttl(v) in order to reach the green peripheral nodes. The
green nodes v′ are reasonably doing the opposite: a large d(v′) in order to gather information from
other nodes, but also a smaller time-to-live than the center, for the information transmitted by v′ is
comparatively less valuable to the whole network than the one transmitted by the center.

Agents can set their individual parameters in a topology-dependent manner using any algorithm for
assessing the centrality of nodes in a distributed fashion —e.g., (Wehmuth and Ziviani, 2013), and
references therein. This can be done at the beginning in a number of rounds which only depends on
the network topology (but not on T ). Hence, this initial phase would affect the regret bound only
by an additive constant.

6. Delayed Losses (for a Single Agent)

EXP3-COOP can be specialized to the setting where a single agent is facing a bandit problem in
which the loss of the chosen action is observed with a fixed delay d. In this setting, at the end of
each round t the agent incurs loss `t(It) and observes `t−d(It−d), if t > d, and nothing otherwise.
The regret is defined in the usual way,

RT = E

[
T∑
t=1

`t(It)

]
− min
i=1,...,K

T∑
t=1

`t(i) .

13
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This problem was studied by Weinberger and Ordentlich (2002) in the full information case, for
which they proved that

√
(d+ 1)T lnK is the optimal order for the minimax regret. The result

was extended to the bandit case by Neu et al. (2010, 2014) —see also Joulani et al. (2013)— whose
techniques can be used to obtain a regret bound of order

√
(d+ 1)KT . Yet, no matching lower

bound was available for the bandit case.

As a matter of fact, the upper bound
√

(d+ 1)KT for the bandit case is easily obtained: just run
in parallel d + 1 instances of the minimax optimal bandit algorithm for the standard (no delay)
setting, achieving RT ≤

√
KT (ignoring constant factors). At each time step t = (d + 1)r + s

(for r = 0, 1, . . . and s = 0, . . . , d), use instance s + 1 for the current play. Hence, the no-delay
bound applies to every instance and, assuming d + 1 divides T , we immediately obtain RT ≤∑d+1

s=1

√
K T

d+1 ≤
√

(d+ 1)KT , again, ignoring constant factors.

Next, we show that the machinery we developed in Section 4.1 delivers an improved upper bound
on the regret for the bandit problem with delayed losses, and then we complement this result by
providing a lower bound matching the upper bound up to log factors, thereby characterizing (up to
log factors) the minimax regret for this problem.

Corollary 11 In the nonstochastic bandit setting with K ≥ 2 actions and delay d ≥ 0, where
at the end of each round t the predictor has access to the losses `1(I1), . . . , `s(Is) ∈ [0, 1]K for
s = max{1, t− d}, the minimax regret is of order

√
(K + d)T , ignoring logarithmic factors.

7. Conclusions and Ongoing Research

We have investigated a cooperative and nonstochastic bandit scenario where cooperation comes at
the price of delayed information. We have proven average welfare regret bounds that exhibit a
natural tradeoff between amount cooperation and delay, the tradeoff being ruled by the underlying
communication network topology. As a by-product of our analysis, we have also provided the first
characterization to date of the regret of learning with (constant) delayed feedback in an adversarial
bandit setting. There are a number of possible extensions which we are currently considering:

1. So far our analysis only delivers average welfare regret bounds. It would be interesting to
show simultaneous regret bounds that hold for each agent individually. We conjecture that

the individual regret bound of an agent v is of the form
√

(lnK)
(
d+ K

|N≤d(v)|

)
T , where

|N≤d(v)| is the degree of v in G≤d (plus one). Such bound would in fact imply, e.g., the
one in Theorem 4. A possible line of attack to solve this problem could be the use of graph
sparsity along the lines of (Pan et al., 2015; Duchi et al., 2013; Mania et al., 2015; McMahan
and Streeter, 2014).

2. It would be nice to characherize the average welfare regret by complementing our upper
bounds with suitable lower bounds: Is the upper bound of Theorem 4 optimal in the commu-
nication model considered here?

3. The two algorithms we designed do not use the loss information in the most effective way, for
they both postpone the update step by d (Figure 3) or d(v) ((Figure 5) time steps. In fact, we
do have generalized versions of both algorithms where all losses `t−s(i) coming from agents

14
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at distance s from any given agent v are indeed used at time t by agent v i.e., as soon as
these losses become available to v. The resulting regret bounds mix delays and independence
numbers of graphs at different levels of delay. (Details will be given in the full version of this
paper.) More ambitiously, it is natural to think of ways to adaptively tune our algorithms so
as to automatically determine the best delay parameter d. For instance, disregarding message
complexity, is there a way for each agent to adaptively tune d locally so to minimize the bound
in Theorem 4?

4. Our messages mt(v) contain both action/loss information and distribution information. Is it
possible to drop the distribution information and still achieve average welfare regret bounds
similar to those in Theorems 3 and 4?

5. Even for the single-agent setting, we do not know whether regret bounds of the form√
(D + T ) lnK, where D is the total delay experienced over the T rounds, could be proven

—see (Joulani et al., 2016; Quanrud and Khashabi, 2015) for similar results in the full-
information setting. In general, the study of learning on a communication network with
time-varying delays, and its impact on the regret rates, is a topic which is certainly worth
of attention.
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