6 research outputs found

    Iterative Joint Channel Decoding of Correlated Sources Employing Serially Concatenated Convolutional Codes

    No full text
    This correspondence looks at the problem of joint decoding of serially concatenated convolutional codes (SCCCs) used for channel coding of multiple correlated sources.W e assume a simple model whereby two correlated sources transmit SCCC encoded data to a single destination receiver. W e do not assume the existence of, nor do we use channel side information at the receiver.In particular, we present a novel iterative joint channel decoding algorithm for correlated sources by using the empirical cross-correlation measurements at successive decoding iterations to provide extrinsic information to the outer codes of the SCCC configuration. Two levels of soft metric iterative decoding are used at the receiver: 1) iterative maximum a posteriori probability (MAP) decoding is used for efficient decoding of individual SCCC codes (local iterations) and 2) iterative extrinsic information feedback generated from the estimates of the empirical cross correlation in partial decoding steps is used to pass soft information to the outer decoders of the global joint SCCC decoder (global iterations).W e provide analytical results followed by simulation studies confirming the robustness of the cross-correlation estimates to channel-induced errors, justifying the use of such estimates in iterative decoding.Experimental results suggest that relatively few global iterations (two to five) during which multiple local iterations are conducted are sufficient to reap significant gains using this approach specially when the sources are highly correlated

    Iterative Joint Channel Decoding of Correlated Sources Employing Serially Concatenated Convolutional Codes

    No full text
    This correspondence looks at the problem of joint decoding of serially concatenated convolutional codes (SCCCs) used for channel coding of multiple correlated sources. We assume a simple model whereby two correlated sources transmit SCCC encoded data to a single destination receiver. We do not assume the existence of, nor do we use channel side information at the receiver. In particular, we present a novel iterative joint channel decoding algorithm for correlated sources by using the empirical cross-correlation measurements at successive decoding iterations to provide extrinsic information to the outer codes of the SCCC configuration. Two levels of soft metric iterative decoding are used at the receiver: 1) iterative maximum a posteriori probability (MAP) decoding is used for efficient decoding of individual SCCC codes (local iterations) and 2) iterative extrinsic information feedback generated from the estimates of the empirical cross correlation in partial decoding steps is used to pass soft information to the outer decoders of the global joint SCCC decoder (global iterations). We provide analytical results followed by simulation studies confirming the robustness of the cross-correlation estimates to channel-induced errors, justifying the use of such estimates in iterative decoding. Experimental results suggest that relatively few global iterations (two to five) during which multiple local iterations are conducted are sufficient to reap significant gains using this approach specially when the sources are highly correlated

    Feedback Power Control Strategies in Wireless Sensor Networks with Joint Channel Decoding

    Get PDF
    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm
    corecore