686 research outputs found

    Empirically-Grounded Construction of Bug Prediction and Detection Tools

    Get PDF
    There is an increasing demand on high-quality software as software bugs have an economic impact not only on software projects, but also on national economies in general. Software quality is achieved via the main quality assurance activities of testing and code reviewing. However, these activities are expensive, thus they need to be carried out efficiently. Auxiliary software quality tools such as bug detection and bug prediction tools help developers focus their testing and reviewing activities on the parts of software that more likely contain bugs. However, these tools are far from adoption as mainstream development tools. Previous research points to their inability to adapt to the peculiarities of projects and their high rate of false positives as the main obstacles of their adoption. We propose empirically-grounded analysis to improve the adaptability and efficiency of bug detection and prediction tools. For a bug detector to be efficient, it needs to detect bugs that are conspicuous, frequent, and specific to a software project. We empirically show that the null-related bugs fulfill these criteria and are worth building detectors for. We analyze the null dereferencing problem and find that its root cause lies in methods that return null. We propose an empirical solution to this problem that depends on the wisdom of the crowd. For each API method, we extract the nullability measure that expresses how often the return value of this method is checked against null in the ecosystem of the API. We use nullability to annotate API methods with nullness annotation and warn developers about missing and excessive null checks. For a bug predictor to be efficient, it needs to be optimized as both a machine learning model and a software quality tool. We empirically show how feature selection and hyperparameter optimizations improve prediction accuracy. Then we optimize bug prediction to locate the maximum number of bugs in the minimum amount of code by finding the most cost-effective combination of bug prediction configurations, i.e., dependent variables, machine learning model, and response variable. We show that using both source code and change metrics as dependent variables, applying feature selection on them, then using an optimized Random Forest to predict the number of bugs results in the most cost-effective bug predictor. Throughout this thesis, we show how empirically-grounded analysis helps us achieve efficient bug prediction and detection tools and adapt them to the characteristics of each software project

    Toward Data-Driven Discovery of Software Vulnerabilities

    Get PDF
    Over the years, Software Engineering, as a discipline, has recognized the potential for engineers to make mistakes and has incorporated processes to prevent such mistakes from becoming exploitable vulnerabilities. These processes span the spectrum from using unit/integration/fuzz testing, static/dynamic/hybrid analysis, and (automatic) patching to discover instances of vulnerabilities to leveraging data mining and machine learning to collect metrics that characterize attributes indicative of vulnerabilities. Among these processes, metrics have the potential to uncover systemic problems in the product, process, or people that could lead to vulnerabilities being introduced, rather than identifying specific instances of vulnerabilities. The insights from metrics can be used to support developers and managers in making decisions to improve the product, process, and/or people with the goal of engineering secure software. Despite empirical evidence of metrics\u27 association with historical software vulnerabilities, their adoption in the software development industry has been limited. The level of granularity at which the metrics are defined, the high false positive rate from models that use the metrics as explanatory variables, and, more importantly, the difficulty in deriving actionable intelligence from the metrics are often cited as factors that inhibit metrics\u27 adoption in practice. Our research vision is to assist software engineers in building secure software by providing a technique that generates scientific, interpretable, and actionable feedback on security as the software evolves. In this dissertation, we present our approach toward achieving this vision through (1) systematization of vulnerability discovery metrics literature, (2) unsupervised generation of metrics-informed security feedback, and (3) continuous developer-in-the-loop improvement of the feedback. We systematically reviewed the literature to enumerate metrics that have been proposed and/or evaluated to be indicative of vulnerabilities in software and to identify the validation criteria used to assess the decision-informing ability of these metrics. In addition to enumerating the metrics, we implemented a subset of these metrics as containerized microservices. We collected the metric values from six large open-source projects and assessed metrics\u27 generalizability across projects, application domains, and programming languages. We then used an unsupervised approach from literature to compute threshold values for each metric and assessed the thresholds\u27 ability to classify risk from historical vulnerabilities. We used the metrics\u27 values, thresholds, and interpretation to provide developers natural language feedback on security as they contributed changes and used a survey to assess their perception of the feedback. We initiated an open dialogue to gain an insight into their expectations from such feedback. In response to developer comments, we assessed the effectiveness of an existing vulnerability discovery approach—static analysis—and that of vulnerability discovery metrics in identifying risk from vulnerability contributing commits

    Resiliency in numerical algorithm design for extreme scale simulations

    Get PDF
    This work is based on the seminar titled ‘Resiliency in Numerical Algorithm Design for Extreme Scale Simulations’ held March 1–6, 2020, at Schloss Dagstuhl, that was attended by all the authors. Advanced supercomputing is characterized by very high computation speeds at the cost of involving an enormous amount of resources and costs. A typical large-scale computation running for 48 h on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh, corresponding to about 100k Euro in energy cost for executing 1023 floating-point operations. It is clearly unacceptable to lose the whole computation if any of the several million parallel processes fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the whole computation be declared invalid? What about the notion of reproducibility itself: should this core paradigm of science be revised and refined for results that are obtained by large-scale simulation? Naive versions of conventional resilience techniques will not scale to the exascale regime: with a main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to background storage at frequent intervals will create intolerable overheads in runtime and energy consumption. Forecasts show that the mean time between failures could be lower than the time to recover from such a checkpoint, so that large calculations at scale might not make any progress if robust alternatives are not investigated. More advanced resilience techniques must be devised. The key may lie in exploiting both advanced system features as well as specific application knowledge. Research will face two essential questions: (1) what are the reliability requirements for a particular computation and (2) how do we best design the algorithms and software to meet these requirements? While the analysis of use cases can help understand the particular reliability requirements, the construction of remedies is currently wide open. One avenue would be to refine and improve on system- or application-level checkpointing and rollback strategies in the case an error is detected. Developers might use fault notification interfaces and flexible runtime systems to respond to node failures in an application-dependent fashion. Novel numerical algorithms or more stochastic computational approaches may be required to meet accuracy requirements in the face of undetectable soft errors. These ideas constituted an essential topic of the seminar. The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with expertise in exascale computing to discuss novel ways to make applications resilient against detected and undetected faults. In particular, participants explored the role that algorithms and applications play in the holistic approach needed to tackle this challenge. This article gathers a broad range of perspectives on the role of algorithms, applications and systems in achieving resilience for extreme scale simulations. The ultimate goal is to spark novel ideas and encourage the development of concrete solutions for achieving such resilience holistically.Peer Reviewed"Article signat per 36 autors/es: Emmanuel Agullo, Mirco Altenbernd, Hartwig Anzt, Leonardo Bautista-Gomez, Tommaso Benacchio, Luca Bonaventura, Hans-Joachim Bungartz, Sanjay Chatterjee, Florina M. Ciorba, Nathan DeBardeleben, Daniel Drzisga, Sebastian Eibl, Christian Engelmann, Wilfried N. Gansterer, Luc Giraud, Dominik G ̈oddeke, Marco Heisig, Fabienne Jezequel, Nils Kohl, Xiaoye Sherry Li, Romain Lion, Miriam Mehl, Paul Mycek, Michael Obersteiner, Enrique S. Quintana-Ortiz, Francesco Rizzi, Ulrich Rude, Martin Schulz, Fred Fung, Robert Speck, Linda Stals, Keita Teranishi, Samuel Thibault, Dominik Thonnes, Andreas Wagner and Barbara Wohlmuth"Postprint (author's final draft

    Feature Set Selection for Improved Classification of Static Analysis Alerts

    Get PDF
    With the extreme growth in third party cloud applications, increased exposure of applications to the internet, and the impact of successful breaches, improving the security of software being produced is imperative. Static analysis tools can alert to quality and security vulnerabilities of an application; however, they present developers and analysts with a high rate of false positives and unactionable alerts. This problem may lead to the loss of confidence in the scanning tools, possibly resulting in the tools not being used. The discontinued use of these tools may increase the likelihood of insecure software being released into production. Insecure software can be successfully attacked resulting in the compromise of one or several information security principles such as confidentiality, availability, and integrity. Feature selection methods have the potential to improve the classification of static analysis alerts and thereby reduce the false positive rates. Thus, the goal of this research effort was to improve the classification of static analysis alerts by proposing and testing a novel method leveraging feature selection. The proposed model was developed and subsequently tested on three open source PHP applications spanning several years. The results were compared to a classification model utilizing all features to gauge the classification improvement of the feature selection model. The model presented did result in the improved classification accuracy and reduction of the false positive rate on a reduced feature set. This work contributes a real-world static analysis dataset based upon three open source PHP applications. It also enhanced an existing data set generation framework to include additional predictive software features. However, the main contribution is a feature selection methodology that may be used to discover optimal feature sets that increase the classification accuracy of static analysis alerts

    Fine-grained code changes and bugs: Improving bug prediction

    Full text link
    Software development and, in particular, software maintenance are time consuming and require detailed knowledge of the structure and the past development activities of a software system. Limited resources and time constraints make the situation even more difficult. Therefore, a significant amount of research effort has been dedicated to learning software prediction models that allow project members to allocate and spend the limited resources efficiently on the (most) critical parts of their software system. Prominent examples are bug prediction models and change prediction models: Bug prediction models identify the bug-prone modules of a software system that should be tested with care; change prediction models identify modules that change frequently and in combination with other modules, i.e., they are change coupled. By combining statistical methods, data mining approaches, and machine learning techniques software prediction models provide a structured and analytical basis to make decisions.Researchers proposed a wide range of approaches to build effective prediction models that take into account multiple aspects of the software development process. They achieved especially good prediction performance, guiding developers towards those parts of their system where a large share of bugs can be expected. For that, they rely on change data provided by version control systems (VCS). However, due to the fact that current VCS track code changes only on file-level and textual basis most of those approaches suffer from coarse-grained and rather generic change information. More fine-grained change information, for instance, at the level of source code statements, and the type of changes, e.g., whether a method was renamed or a condition expression was changed, are often not taken into account. Therefore, investigating the development process and the evolution of software at a fine-grained change level has recently experienced an increasing attention in research.The key contribution of this thesis is to improve software prediction models by using fine-grained source code changes. Those changes are based on the abstract syntax tree structure of source code and allow us to track code changes at the fine-grained level of individual statements. We show with a series of empirical studies using the change history of open-source projects how prediction models can benefit in terms of prediction performance and prediction granularity from the more detailed change information.First, we compare fine-grained source code changes and code churn, i.e., lines modified, for bug prediction. The results with data from the Eclipse platform show that fine grained-source code changes significantly outperform code churn when classifying source files into bug- and not bug-prone, as well as when predicting the number of bugs in source files. Moreover, these results give more insights about the relation of individual types of code changes, e.g., method declaration changes and bugs. For instance, in our dataset method declaration changes exhibit a stronger correlation with the number of bugs than class declaration changes.Second, we leverage fine-grained source code changes to predict bugs at method-level. This is beneficial as files can grow arbitrarily large. Hence, if bugs are predicted at the level of files a developer needs to manually inspect all methods of a file one by one until a particular bug is located.Third, we build models using source code properties, e.g., complexity, to predict whether a source file will be affected by a certain type of code change. Predicting the type of changes is of practical interest, for instance, in the context of software testing as different change types require different levels of testing: While for small statement changes local unit-tests are mostly sufficient, API changes, e.g., method declaration changes, might require system-wide integration-tests which are more expensive. Hence, knowing (in advance) which types of changes will most likely occur in a source file can help to better plan and develop tests, and, in case of limited resources, prioritize among different types of testing.Finally, to assist developers in bug triaging we compute prediction models based on the attributes of a bug report that can be used to estimate whether a bug will be fixed fast or whether it will take more time for resolution.The results and findings of this thesis give evidence that fine-grained source code changes can improve software prediction models to provide more accurate results

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Automated Decomposition of Build Targets

    Full text link
    A (build) target specifies the information that is needed to automatically build a software artifact. Managing the de-pendencies between the targets of a large code base is chal-lenging. This paper focuses on underutilized targets—an im-portant dependency problem that we identified at Google. An underutilized target is one with files not needed by some of its dependents. Underutilized targets result in less mod-ular code, overly large artifacts, slow builds, and unneces-sary build and test triggers. To mitigate these problems, programmers decompose underutilized targets into smaller targets. However, manually decomposing a target is tedious and error-prone. Although we prove that finding the best target decomposition is NP-hard, we introduce a greedy algo-rithm that proposes a decomposition through iterative uni-fication of the strongly connected components of the target. Our tool found 19,994 decomposable targets in a set of 40,000 Java library targets at Google. A decomposable target is one that can be decomposed to at least two targets. Our tool found that decomposing any of the 5,129 decomposable tar-gets would save at least one build or test trigger. The eval-uation results show that our tool is (1) efficient because on average, it analyzes a target in two minutes and (2) effective because for each of 1,010 targets, it would save more than 50 % of the total execution time of the tests triggered by the target. 1

    eXplainable and Reliable Against Adversarial Machine Learning in Data Analytics

    Get PDF
    Machine learning (ML) algorithms are nowadays widely adopted in different contexts to perform autonomous decisions and predictions. Due to the high volume of data shared in the recent years, ML algorithms are more accurate and reliable since training and testing phases are more precise. An important concept to analyze when defining ML algorithms concerns adversarial machine learning attacks. These attacks aim to create manipulated datasets to mislead ML algorithm decisions. In this work, we propose new approaches able to detect and mitigate malicious adversarial machine learning attacks against a ML system. In particular, we investigate the Carlini-Wagner (CW), the fast gradient sign method (FGSM) and the Jacobian based saliency map (JSMA) attacks. The aim of this work is to exploit detection algorithms as countermeasures to these attacks. Initially, we performed some tests by using canonical ML algorithms with a hyperparameters optimization to improve metrics. Then, we adopt original reliable AI algorithms, either based on eXplainable AI (Logic Learning Machine) or Support Vector Data Description (SVDD). The obtained results show how the classical algorithms may fail to identify an adversarial attack, while the reliable AI methodologies are more prone to correctly detect a possible adversarial machine learning attack. The evaluation of the proposed methodology was carried out in terms of good balance between FPR and FNR on real world application datasets: Domain Name System (DNS) tunneling, Vehicle Platooning and Remaining Useful Life (RUL). In addition, a statistical analysis was performed to improve the robustness of the trained models, including evaluating their performance in terms of runtime and memory consumption
    • …
    corecore