
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2019

Feature Set Selection for Improved Classification of Static Feature Set Selection for Improved Classification of Static

Analysis Alerts Analysis Alerts

Kathleen Goeschel

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Share Feedback About This Item
This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

	

	

	

Feature Set Selection for
Improved Classification of

Static Analysis Alerts

by

Kathleen Goeschel

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Information Assurance

College of Computing and Engineering

Nova Southeastern University

2019

	

	

	

	

	

	

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Feature Set Selection for Improved Classification of Static Analysis Alerts

by

Kathleen Goeschel

2019

With the extreme growth in third party cloud applications, increased exposure of applications to
the internet, and the impact of successful breaches, improving the security of software being
produced is imperative. Static analysis tools can alert to quality and security vulnerabilities of an
application; however, they present developers and analysts with a high rate of false positives and
unactionable alerts. This problem may lead to the loss of confidence in the scanning tools,
possibly resulting in the tools not being used. The discontinued use of these tools may increase
the likelihood of insecure software being released into production. Insecure software can be
successfully attacked resulting in the compromise of one or several information security
principles such as confidentiality, availability, and integrity.

Feature selection methods have the potential to improve the classification of static analysis alerts
and thereby reduce the false positive rates. Thus, the goal of this research effort was to improve
the classification of static analysis alerts by proposing and testing a novel method leveraging
feature selection. The proposed model was developed and subsequently tested on three open
source PHP applications spanning several years. The results were compared to a classification
model utilizing all features to gauge the classification improvement of the feature selection
model. The model presented did result in the improved classification accuracy and reduction of
the false positive rate on a reduced feature set.

This work contributes a real-world static analysis dataset based upon three open source PHP
applications. It also enhanced an existing data set generation framework to include additional
predictive software features. However, the main contribution is a feature selection methodology
that may be used to discover optimal feature sets that increase the classification accuracy of
static analysis alerts.

	

	

	

Acknowledgments

First and foremost, I would like to give my heartfelt thanks and boundless appreciation to my
husband, Alan Goeschel. Your love, support, and insurmountable patience throughout this
process has been a blessing. The ability for you to keep me calm in the storm exemplifies how
you truly are my rock. I fully acknowledge that this process has not been easy on you – thank
you. I know you are looking forward to finally getting your wife back.

I would also like to thank my advisor and committee chair Dr. Sumitra Mukherjee. Your
knowledge, expertise, guidance, organization, clear direction, and responsiveness helped make
this a pleasurable and enriching experience. You were always eager to guide and assist in both
coursework and the dissertation process. I have learned greatly under your guidance.

A special thanks to my committee members, Dr. Laszlo and Dr. Mitropoulos, for your assistance,
support, and input on this research.

I would like to thank my amazing family. Mom and Dad thank you for always supporting me,
cheering me on, and guiding me throughout life’s struggles. Thanks for being there to talk, hang
out, and just being the amazing parents I know everyone wishes they had. I am extremely
fortunate to be blessed with such amazing parents.

To my daughter Christina, thank you for being such an amazing person. I love you more than
you can imagine. I am so proud of the woman, and friend, you have become. I love our talks,
lunches, texts, shopping adventures, and all the fun stuff we do together. I can’t wait to witness
all the things you do in your life – it’s just the beginning of an amazing journey.

Finally, I would like to thank my late Grammy for encouraging me to always learn, question, and
solve difficult problems.

	

	

	

v	

Table of Contents

							Abstract				iii	
							List	of	Tables				vii	
							List	of	Figures				viii	
	
	
 Chapters

1. Introduction 1	
Background 1	
Problem Statement 2	
Dissertation Goal 5	
Research Questions 6	
Relevance and Significance 6	
Barriers and Issues 7	
Assumptions, Limitations and Delimitations 8	
Definition of Terms 9	
List of Acronyms 12	
Summary 14	

2. Review of the Literature 15	

3. Methodology 31	
Introduction 31	
The Model 31	
Measures 40	
Data Sets 41	
Experiments 56	
Resources 61	
Summary 62	

4. Results 63	
Experiment 1 63	
Experiment 2 64	
Experiment 3 65	
Experiment 4 65	
Experiment 5 66	
Experiment 6 67	
Research Questions Answered 68	

5. Conclusions and Summary 70	
Conclusions 70	
Implications and Recommendations 73	
Summary 74	

	

	

	

vi	

		
Appendices
A. List and Descriptions of Features 78
B. Experiment Result Metrics 83
C. GA Performance Metrics 84
D. Dropped Features by Experiment 88
E. Top Performing Feature Subsets by Experiment 89
F. Sonar Scan Script 93
G. Data Pre-Processing 95
H. Control Classifier – Model A 100
I. Genetic Feature Selection – Model B 103

References 108

	

	

	

vii	

List of Tables

Tables

1. Confusion Matrix 40	

2. Definitions and Metrics 40	

3. Data Set / Test Suite Requirements Matrix 45	

4. Raw Data Set Alert Statistics 56	

5. Pre-Processed Data Set Alert Statistics 58	

6. Final Data Set Alert Statistics 58	

7. Experiment, Project, and Data Set Used 60	

8. Experiment 1 Results 64	

9. Experiment 2 Results 64	

10. Experiment 3 Results 65	

11. Experiement 4 Results 66	

12. Experiment 5 Results 67	

13. Experiment 6A Results 68	

14. Experiment 6B Results 68	

	

	

	

viii	

List of Figures

Figures

1. GA Crossover 33	

2. Possible Hyperplanes 37	

3. Linear SVM Hyperplane 37	

4. Framework for Static Analysis Alert Generation and Labeling 55	

5. Model Training, Testing, and Analysis 61	

	

	

1	 	

Chapter 1

Introduction

Background

Static analysis (SA) tools analyze source code to find flaws and defects without the

need to execute the binaries. Static application security testing (SAST) is an extension of

traditional static analysis that focuses on discovering security vulnerabilities either by

analyzing source code or the binaries. Historical research in the literature began with

static code analysis (SCA) to locate bugs (Graves, Karr, Marron, & Siy, 2000; Johnson,

1978; Munson & Khoshgoftaar, 1992; Ostrand, Weyuker, & Bell, 2004). The domain has

evolved to include security vulnerability testing (Chen & Wagner, 2002; Chess &

McGraw, 2004; Evans & Larochelle, 2002); however, some SA tools find only traditional

bugs or flaws, some find only security vulnerabilities, and some include both. Since some

traditional bugs and flaws could be classified as security vulnerabilities there can be some

overlap in what these tools report. Therefore, for the duration of this paper, reference to

both SCA and SAST will be collectively referred to as static analysis (SA); the static

scanning of code or binaries in order to locate bugs, defects, flaws or security

vulnerabilities.

For both types, there exist commercial and open-source tools. There are reasons why

multiple tools would be used in conjunction. Different tools may have increased accuracy

at detecting a specific type of defect (Nunes et al., 2017). Some tools are language

specific while others may be capable of processing several languages. Employing

	

	

2	 	

multiple static analysis tools can increase defect detection (Wang, Meng, Zhou, Li, &

Mei, 2008; Wedyan, Alrmuny, & Bieman, 2009). Additionally, confidence in the alert

may be increased if multiple tools alert on the same item (Muske & Serebrenik, 2016).

SA tools may functionally operate in different manners. Typically, SA tools make an

abstraction of the program by mapping variables, functions, methods, states, files, inputs,

outputs, etc. How they accomplish this feat of abstraction can include one or several

methodologies such as lexical analysis, model checking, control flow analysis, data flow

analysis, symbolic analysis, information flow analysis, or taint analysis (Zhioua, Short, &

Roudier, 2014a, 2014b). Most tools create an abstract syntax tree (AST) to represent the

program and to map program flow.

Who uses SA tools and at what point in the software development process they are

leveraged varies between projects, organizations, and roles. SA tools are utilized by

developers, security analysts, or other persons involved in the software development or

operations process. The scans may be initiated via the tool running on a server, local

machine, command line, automated script, an integrated development environment (IDE),

or a continuous integration (CI) pipeline. Additionally, a user’s interaction with SA tools

often depends on a person’s role in the development process.

Problem Statement

Software applications are used in innocuous applications such as games and

entertainment as well as in critical or sensitive applications such as banking, electrical

grids, and medical devices. Notwithstanding the criticality of an applications use, the

successful attack of even an innocuous application, such as a game, could grant attackers

access to sensitive data and networks.

	

	

3	 	

In 2017, 48% of data security breaches involved hacking and 76% were financially

motivated (Verizon, 2018). Over 60 million dollars of loss was reported due to corporate

data breaches (FBI, 2017). In addition, 81% of breaches resulted in a loss of

confidentiality (Verizon, 2018). The loss of confidentiality to personal identifiable

information has also been evidenced by the Equifax data breach which exposed 145

million Americans personally sensitive information (US Senator Elizabeth Warren, 2018)

and in the Facebook data breach exposing 87 million Americans personal information

(Badshah, 2018). With the extreme growth in third party cloud applications (Cisco,

2017), increased exposure of applications to the internet, and the impact of successful

breaches, improving the security of software being produced is imperative.

The detection and remediation of security vulnerabilities early in the development

lifecycle is less costly to correct than post development phases (Ayewah & Pugh, 2010;

Bishop, Gashi, Littlewood, & Wright, 2007; Chess & McGraw, 2004; Ogasawara,

Aizawa, & Yamada, 1998). SA tools can alert to quality and security vulnerabilities of an

application; however, they present developers and analysts with a high rate of false

positives and unactionable alerts (Goseva-Popstojanova & Perhinschi, 2015; Johnson,

Song, Murphy-Hill, & Bowdidge, 2013). Additionally, ambiguity in prioritization

schemas make the task of determining which alerts to address first confusing for

developers and analysts (Kim & Ernst, 2007b). Valuable time and effort is wasted when

analyzing irrelevant alerts (Beller, Bholanath, McIntosh, & Zaidman, 2016). This

problem may lead to the loss of confidence in the scanning tools, possibly resulting in the

tools not being used (Johnson et al., 2013; Reynolds et al., 2017). The discontinued use of

these tools may increase the likelihood of insecure software being released into

	

	

4	 	

production. Insecure software can be successfully attacked resulting in the compromise of

one or several information security principles such as confidentiality, availability, and

integrity.

Software defects and faults are commonly referred to as bugs. The introduction of

bugs into an application can result in the failure for the code to compile, unintended

behavior, or the instability or un-usability of the application. Thus, early efforts in the SA

domain were focused on analyzing source code to find bugs (Hovemeyer & Pugh, 2004;

Ostrand et al., 2004). Application attacks attempt to cause an application to behave in an

unintended manner by specifically targeting the application layer. SA tools were

expanded to detect security vulnerabilities in source code (Chess & McGraw, 2004),

referred to as static application security testing. However, SAST presents challenges

including high false positive rates (Goseva-Popstojanova & Perhinschi, 2015; Johnson et

al., 2013), poor prioritization schemas (Carrozza, Cinque, Giordano, Pietrantuono, &

Russo, 2015; Heckman & Williams, 2013), unactionable alerts (Hanam, Tan, Holmes, &

Lam, 2014; Heckman, 2007), and incomplete or missing data sets for testing (Delaitre,

Stivalet, Fong, & Okun, 2015).

Citing these problems, several research efforts have been made to prune, parse, mine,

and prioritize the results from these tools. Pruning efforts result in the overall reduction

of alerts (Chimdyalwar & Kumar, 2011; Hanam et al., 2014; Yüksel & Sözer, 2013).

Parsing of the alerts and associated features have been used for clustering (Fry &

Weimer, 2013; Podelski, Schäf, & Wies, 2016). Data mining of the results have been

used to find statistically significant features for predicting false positives, actionable, and

unactionable alerts (Medeiros, Neves, & Correia, 2016; Ruthruff, Penix, Morgenthaler,

	

	

5	 	

Elbaum, & Rothermel, 2008). Ranking schemes for the prioritization of alerts have

shown success (Carrozza et al., 2015; Heckman, 2007; Kremenek & Engler, 2003;

Zhang, Jin, Xing, Zhang, & Gong, 2013).

Despite these efforts, the problem of high false positive rates and irrelevant alerts

persists and additional research is needed. Machine learning has been explored in the

literature for this domain (Bleier, 2017; Koc, Saadatpanah, Foster, & Porter, 2017; Pang,

Xue, & Wang, 2017); however, the work is limited. In-depth investigation into feature

selection for improved alert classification will greatly add to the literature in the static

analysis domain.

Dissertation Goal

Machine learning has successfully been used to classify items from other domains

such as in intrusion detection systems (Buczak & Guven, 2015), financial systems

(Heaton, Polson, & Witte, 2017; Sun & Vasarhelyi, 2018), medical diagnosis (Hussain,

Aziz, Saeed, Rathore, & Rafique, 2018; Kourou, Exarchos, Exarchos, Karamouzis, &

Fotiadis, 2015), as well as in the static analysis domain (Bleier, 2017; Koc et al., 2017;

Pang et al., 2017).

Feature selection is the process of determining which features are relevant or will

improve classification accuracy (Xue, Zhang, Browne, & Yao, 2016). Feature selection

prior to classification has shown to improve classification (Ambusaidi, He, Nanda, &

Tan, 2016; Xue et al., 2016).

In the SA domain, there lacks consensus as to what features are relevant (Bell,

Ostrand, & Weyuker, 2006; Heckman, 2007; Ruthruff et al., 2008; Shivaji, Whitehead,

Akella, & Kim, 2013). Additionally, relevant features may differ between projects

	

	

6	 	

(Heckman & Williams, 2009). Knowledge of which features to focus on could allow

more effort to be placed on gathering those relevant features.

Although feature selection methods have previously been applied to the SA domain

with success (Bell et al., 2006; Heckman & Williams, 2009; Ruthruff et al., 2008; Shivaji

et al., 2013), the work is limited, sometimes conflicting, and recent advances in feature

selection methodologies could improve results.

Therefore, feature selection methods have the potential to improve the classification of

static analysis alerts and thereby reduce the false positive rates. Thus, the goal of this

research effort was to improve the classification of static analysis alerts by proposing and

testing a novel method leveraging feature selection.

The proposed feature selection model’s performance was tested against a similar

model that utilized all features. Accuracy, precision, recall, and the false positive rate

were used to compare the two models’ performance.

Research Questions

The research questions that guided this effort and were answered as a result include:

1. Does the proposed model improve the classification of alerts?

2. Do selected feature subsets from the proposed model vary between projects?

3. Are some features never selected?

4. Similarly, are some features always selected?

Relevance and Significance

In recent years the importance of application security has increased due to high profile

data breaches (Badshah, 2018; Verizon, 2018; US Senator Elizabeth Warren, 2018), and

	

	

7	 	

increased cloud computing (Cisco, 2017). Successful attacks can impact a company’s

reputation and can result in financial loss (FBI, 2017). SA tools can alert to quality and

security vulnerabilities of an application; however, they present developers and analysts

with a high rate of false positives and unactionable alerts (Goseva-Popstojanova &

Perhinschi, 2015; Johnson et al., 2013). There has been much research effort dedicated to

the improvement of both the SA tools performance and accuracy as well as researching

methods to process the data output of these tools. This research effort focused on

processing the output of these tools and is relevant to today’s application security

challenges.

As a result of this research effort feature sets that are relevant for accurate

classification of static analysis alerts were discovered.

Barriers and Issues

There were some challenges to this endeavor. Complete data sets are lacking in the

domain (Heckman & Williams, 2008; Herter, Daniel, Mallon, Wilhelm, & Gmbh, 2017;

Shiraishi, Mohan, & Marimuthu, 2015). However, a framework cited in the domain

literature was followed to generate data sets (Heckman & Williams, 2008, 2009). This

process was followed; however, it added additional complexity and time to the overall

research task. Auxiliary information from systems were downloaded and queried such as

vulnerability disclosures and release notes. Custom scripts were written, tested, and

utilized to perform code scanning, gather and process the static analysis alerts, track

alerts through versions, match alerts with features, and automatically label alerts.

Static analysis tools lack consistency in their abilities and outputs. There exist a

multitude of programming languages varying in syntax and semantics. Consequently, SA

	

	

8	 	

tools must be designed to parse and process a particular language in order to perform a

scan. Thus, some tools have the capability to scan multiple languages while other tools

are limited to a few, if not one. None of the tools scan all languages. Additionally, SA

tools output may widely vary from simple file, line of code, and alert type to robust

information such as confidence, shared sinks, history, and data flow path. Consequently,

the feature sets utilized in static analysis are often heterogenous. All of the scanners

selected for this research were capable of scanning the selected languages and offered

similar outputs; nevertheless, the resulting output from each tool was reviewed and

features that were not provided in every tool were removed from the data set.

Assumptions, Limitations and Delimitations

The quantity of alerts to manually label was not feasible; therefore, a framework for

automatic labeling of alerts was used (Heckman & Williams, 2008, 2009). A few

assumptions were made during this process. Alerts that disappeared from one version to

another, not due to file deletion or an easily detected file rename, was assumed to be

fixed (a true positive). It was possible that the alerts disappeared for different reasons

between versions; however, those reasons and their possible detections were beyond the

scope of this work. Alerts that disappeared due to a deleted file were disregarded as there

was no way to determine if the deletion was intended to correct the error (i.e., a complete

re-write of a component) or for other reasons. These assumptions are consistent with

previous works (Bleier, 2017; Heckman & Williams, 2008, 2009; Yan et al., 2017).

Additionally, a limitation of this study is that only one main programming language

was used in the test applications. It is possible that the feature selection model proposed

may select different feature subsets for different programming languages. However, what

	

	

9	 	

is presented within is a model that may be used to select relevant feature sets per project,

programming language, or time frame.

Definition of Terms

Accuracy: the proportion of correctly classified instances.

Actionable Alert: an alert in which action has been taken to resolve the alert.

Abstract Syntax Tree: a representation of source code as a tree structure.

Alert Characteristics: the features of an alert.

Alert Lifetime: the time from which an alert appears to when it disappears.

Artificial Data Set: a data set created with artificial data.

Benchmark: a test suite developed by OWASP to evaluate static analysis tools.

Chromosome: in genetic algorithms, a possible solution set.

Churn: a source code metric for number of lines added, modified, and deleted.

Classification: a machine learning process in which inputs are predicted to belong to a

particular class.

Comma-Separated Values: a type of file that organizes data in rows with columns

separated by delimiters.

Common Weakness Enumerations: a list of common security weaknesses.

Concurrent Versioning System: a program that creates a common repository for source

code that tracks versioning and changes. Allows multiple developers to share and modify

the source code without overwriting each other’s changes.

Confusion Matrix: a table used to present the performance of a classification model.

	

	

10	 	

Continuous Integration: a software development practice by which upon software code

being committed, a build is performed to assure the newly added code does not break in

the desired environment or fail to build completely.

Cross-Site Scripting: an application security vulnerability that allows attackers to inject

client-side scripts.

Crossover: in genetic algorithms, the process by which two parents generate offspring.

Cyclomatic Complexity: a source code metric for the number of paths through a

function.

Data Set: a set of data that includes inputs (features) and expected outputs (labels).

Deep Neural Network: a neural network comprised of three or more layers.

Drupal: an open source web-based content management system.

Dynamic Analysis: the process of testing applications for defects by executing the

program in real-time.

Engineered Feature: a new feature derived or calculated from an existing feature or set

of features.

F-Measure: the harmonic mean of precision and recall.

Fan-In: a source code metric for number of functions calling a function.

Fan-Out: a source code metric for number of functions called by a function.

Feature Selection: the process by which a subset of relevant predictive features is

selected from a full feature set.

Feature: an attribute shared by all the independent instances upon which learning may be

performed.

FindBugs: an open source static analysis program that finds bugs in Java code.

	

	

11	 	

FindSecBugs: an open source static analysis program that finds security vulnerabilities in

Java code.

Fitness Function: in genetic algorithms, a function used to evaluate the performance of a

solution on the input.

Genetic Algorithm: an algorithm that uses natural selection and evolutionary methods to

find an optimal solution for inputs by optimizing for an objective function.

Integrated Development Environment: a software tool used for software development.

JAVA: a compiled programming language that is operating system agnostic.

JULIET: a test suite of test cases developed by NIST to evaluate static analysis tools.

Long Short-Term Memory: a machine learning network comprised of recurrent neural

networks.

Machine Learning: the computational process of building models based upon learning

patterns in input data.

MITRE: a non-for-profit research company.

Moodle: an open source web-based learning management system.

Mutation: in genetic algorithms, a random change in a chromosome to promote

diversity, similar to biological mutation.

National Vulnerability Database: The United States Government’s repository of

standards-based vulnerability management data represented using the Security Content

Automation Protocol (NIST, 2017b).

Neural Network: a machine learning method based on the concepts of the human brain.

PHP: a programming language for web-based applications.

PhpMyAdmin: an open source web-based database administration tool for MySQL.

	

	

12	 	

Precision: the proportion of true positives classified correctly.

Preprocessing: the preparation and transformation of data for machine learning.

Recall: the proportion of true positives correctly classified as positives.

SonarQube: an open source static analysis program that finds security vulnerabilities and

code quality issues for several languages.

Static Analysis: the process for testing applications source code or binaries for bugs or

flaws without executing the application.

Static Application Security Testing: the process for testing applications source code or

binaries for security vulnerabilities without executing the application.

Structured Query Language Injection: a security vulnerability that allows attackers to

inject queries on a data source.

Support Vector Machine: an algorithm for machine learning classification.

Test Suite: a collection of source code with labeled good and bad test cases that could be

used to create labeled data sets.

Testing Data Set: a subset of a data set used to evaluate a machine learning model.

Training Data Set: a subset of a data set used to train a machine learning model.

Unactionable Alert: an alert that persists between versions.

List of Acronyms

AC: Alert Characteristics

ARM: Adaptive Ranking Model

AST: Abstract Syntax Tree

BLOC: Blank Lines of Code

CAS: Center for Assured Software

	

	

13	 	

CI: Continuous Integration

CIT: Chrome Issues Tracker

CLOC: Commented Lines of Code

CSV: Comma-Separated Values

CVS: Concurrent Versioning System

CWE: Common Weakness Enumerations

DNN: Deep Neural Network

FN: False Negative

FP: False Positive

GA: Genetic Algorithm

HTML: Hypertext Markup Language

IDE: Integrated Development Environment

JSON: JavaScript Object Notation

LOC: Line of Code

LSTM: Long Short-Term Memory

MFSA: Mozilla Foundation Security Advisor

NL: Number Lines

NN: Neural Network

NSA: National Security Agency

NVD: National Vulnerability Database

OWASP: Open Web Application Security Project

OX1: Order Base Crossover

PHP: Hypertext Preprocessor

	

	

14	 	

PMD: Programming Mistake Detector

PMX: Partially Mapped Crossover

POS: Position Based (crossover)

SA: Static Analysis

SARD: Software Assurance Reference Dataset

SAST: Static Application Security Testing

SCAP: Security Content Automation Protocol

SCX: Sequential Constructive Crossover

SQLi: Structured Query Language Injection

SVM: Support Vector Machine

TN: True Negative

TP: True Positive

WAP: Web Application Protection

XML: Extensible Markup Language

XSS: Cross-Site Scripting

Summary

This Chapter has outlined a brief history of the static analysis domain and its current

problems, discussed motivating factors for continued research, and posited the goal of

this proposed research effort. Research questions that guided this research were

presented. Barriers, limitations, and assumptions were identified. The rest of this paper is

organized as follows: Chapter 2 presents a review of literature; Chapter 3 outlines the

research methodology that was followed.

	

	

15	 	

Chapter 2

Review of the Literature

Research efforts into the processing of alerts generated from static analysis tools

began to flourish in the early 2000’s. This included ranking methodologies using

statistical techniques, historical information, clustering, and feature selection for

prediction models.

An alert ranking program, Z-Ranking, was proposed in (Kremenek & Engler, 2003).

This program ranked error messages in order of probability based upon frequency counts

of successful and failed checks. After counting the number of successful verses

unsuccessful checks, the program used statistical techniques to compute and sort error

messages based upon those values. They tested their solution on two systems, Linux 2.5.8

and a commercial code base. They ranked the reports for comparisons of: Z-Ranking, the

tools default, random ranking, and optimal ranking. Their method outperformed the

default and random for both programs in all three scenarios. It also performed better than

randomized ranking 98.5% of the time. However, it never outperformed optimal thus

leaving room for improvement.

Improving the ranking of alerts by using correlation between reports was pursued in

(Kremenek, Ashcraft, Yang, & Engler, 2004). Report errors were grouped into sets of

correlated populations based on code locality using function, file, and directory. Initial

ordering for reporting the errors was performed by assigning a probability that the item

was a bug. After the inspection of an item was completed and ranked, the information

	

	

16	 	

gained from feedback was used to update the probabilities using a Bayesian Network.

The error report was then re-prioritized to display the next error. They tested their method

using error reports from Linux 2.4.1 and a large commercial system. They manually

classified the error reports and were able to cluster the errors into 4 regions. The authors

saw a factor of 2-8 improvement over randomized ranking showing that re-prioritization

of error reports using information gain is beneficial.

A foundational work in the domain that attempted to accurately predict files that

contain the largest amount of faults was presented in (Ostrand et al., 2004). The authors

goal was to provide testers with a practical and reasonably accurate assessment of which

files contained the largest faults. In other words, where to find the bugs. They created a

negative binomial regression model using information from previous releases as

predicting factors of fault probabilities. Files were ordered by descending number of

predicted faults. Factors they used included log(LOC), file age, new file, changed file,

number and magnitude of changes made to the file, square root of the number of detected

faults in prior releases, number of faults in early development stages, programming

language, and release number.

They tested their model on a large telecommunications inventory system that had 17

releases and another system that had 9 releases. Their results found that the top 20% of

files from the model contained 83% of the faults. Statistically significant factors may

have skewed this model to its simplest form such as lines of code (LOC); however, this

work was extremely beneficial to the domain, well thought out, and executed well.

FindBugs, a widely used SA tool, was presented in (Hovemeyer & Pugh, 2004). The

authors described in detail how their program used 50 bug patterns in several rough

	

	

17	 	

categories and tried to locate them in source code. They tested their program on six

highly used programs, including open-source and very large programs. They found

several bugs and reported the bugs to the vendors. The vendors fixed the bugs in future

releases; thus, clearly illustrating that their program did in fact find legitimate bugs. They

compared their program with PMD, another SA tool, and found that the two were

complementary and not intended to replace each other. This tool is widely used today,

even as a component in commercial SA tools.

(Bell et al., 2006) extended their previous work by testing their model on a younger

system using four different feature-based models. They used a variable selection process

by computing statistical significance of different variables to include in their models.

They created four models of different variable sets to test on the new system.

1. Basic Model: included features log(LOC); log of proportion of the month the

file was in the system; the age of the file in months; indicators if the file was

new, one, two, three or four months old; the square root of the number of

changes made in the prior month; the square root of the total number of

changes made during the last five months; indicators for js or sh; indicators of

language for which the average file size was very small or small; and dummy

variables for all but one month.

2. Enhanced Model: included all the features of the basic model plus dummy

variables for conf, html, java, jsp, xml, and xsl; interactions of log(LOC) with

each of conf, html, sh, xsl; and the very small grouping.

3. Simplified Model: used log(LOC); new to the month or not; changed or not;

months in the system as files age; and log of exposure variable which was a

variable for duration of the month it was in the system.

4. LOC Model: used a simple count of the number of lines of code in a file.

	

	

18	 	

Their test results show that the LOC Model covered 55% of the faults, Simplified

Model around 65-67%, the Basic Model 71-75%, and the Enhanced Model of 71-75%. It

showed that the Basic or Enhanced models were in line with their previous research

results.

Another alert ranking system was outlined in (Williams & Hollingsworth, 2005) that

leveraged source code change history. They mined a concurrent versioning system (CVS)

repository for source code changes. They used two factors in ranking the alerts: whether

the function was previously part of a bug fix and the percentage of times a function return

value was checked prior to its use. They tested their ranking system on Apache Web

Server and Wine and compared their results with a naive technique: solely consisting of

an indication if the return value was checked more than half the time. They were able to

demonstrate that ranking criteria can be improved by mining software repository

historical information.

(Kim & Ernst, 2007a) prioritized warning categories by analyzing software change

history. Using the lifetime of a bug, they prioritized shorter lifetimes as higher priority

and longer lifetimes as a lower priority. They analyzed two programs: Columba and

jEdit. The authors ran scans on each compilable version of the code using three SA tools.

The authors calculated the time between when a bug appeared to when the bug

disappeared. The authors found that prioritized ranking varied between both tools and

projects, and that the lifetime for each category of bug differed. The authors assumed

more serious bugs were fixed first which may not always hold true. For unfixed bugs they

set a default number of resolution days which could skew results since they also issued

	

	

19	 	

the same priority level for all bugs of the same category. Another assumption was that all

bugs reported were true positives.

A work to prioritize alerts by utilizing source code change logs from versioning

history was presented in (Kim & Ernst, 2007b), an extension of their previous work. In

this work, they evaluated their weighted prioritization method on three programs,

Columba, Lucene, and Scarab, using three code scanner tools. They identified potentially

buggy lines of code by mining change log messages for bug related keywords. They

marked the changed lines from the previous versions as buggy or non-buggy. They then

ran code scanners and compared the alert reports to the list generated using the change

logs. Grouping was performed by category. For each warning in a category, they

increased the weights by different factors if the warning was removed in a fix change

verses a non-fix change. The final weight was the weight divided by the number of

warnings in a category. The list was re-prioritized using the new weights. Their

prioritization method improved the warning precision overall by 17%, 25%, and 67%

respectively.

There are limitations to this work. For instance, all warnings in the same category

were given the same weight. Additionally, they removed a warning if the file was

deleted. Perhaps they could have searched for a hash of the file to verify if the file moved

or changed names. Quite noteworthy, the Weighted majority voting and Winnow online

machine learning algorithms cited as justification for their algorithm uses not only

promotion but demotion; however, their algorithm lacks a demotion aspect. They

encountered similar challenges to other works citing that bug fix data was incomplete in

	

	

20	 	

the logs and matching warnings between versions was difficult due to line of code

changes and the deletion of files.

Adaptively ranking static analysis alerts by using historical data from developer

feedback was proposed in (Heckman, 2007). The adaptive ranking model (ARM)

gathered data from three sources: the alerts generated from static analysis, developer

feedback, and historical ranking factors. The author gathered the alerts generated from

static analysis and then ranked the listings using their algorithm.

The author presented four equations which were utilized in the alert ranking process.

The proportion of closed and suppressed alerts from the developer to all suppressed and

closed alerts was used to arrive at an adjustment factor which modified ranking factors.

Alert type accuracy was computed using the weighted average of historical data from

observed true positive rates and the actions of suppression and closing of alerts by the

developer. Code locality used the historical data based on alerts that the developer

suppressed and closed in the same area of code by method, function, and folder. Finally,

alert type accuracy and code locality were used for ranking the alerts.

The author tested their ranking system on iTrust, a health care Java application written

as a school project at North Carolina State University, and compared their ranking system

with an optimal ranking, random ranking, and a tool default ranking. The ARM

performed very close to the optimal ordering of alerts and discovered 81% of the true

positive alerts in the first 20% of inspections. The random ranking found only 22% in the

first 20% of results. The ARM’s performance then did degrade; however, it still

outperformed random and eclipse.

	

	

21	 	

Although this work was promising it presented with limitations. First, it was used on

an unused software product. iTrust is not a real-world application so is not indicative of

the types of issues found. Additionally, this was not previously used for testing in the

domain. For some types of alerts, the initial weights used were taken from other

published works. This model ranks alerts based upon what the developers are closing or

ranking. This can create lists specific to what an organization is deeming to be most

valuable to them. However, if developers choose to tackle one type of alert at a time,

those alerts may get erroneously ranked higher.

From the work performed by researching the historical data it was soon discovered

that some bugs persisted over time. These were soon classified as unactionable: true

alerts yet not acted on by developers. Reasons for not correcting the bugs are not proven

and lacks exploration in the literature.

Machine learning was used to build false positive mitigation models to classify static

analysis alerts as actionable or unactionable in (Heckman & Williams, 2009). They

wanted to find from the static analysis alerts a set of alert characteristics (AC) that are

predictive of actionable alerts and which models are best at classifying them.

For possible ACs, the author used features from: the static analysis alert (project,

package, file, method, type, category, priority, extension, and number of alert

modifications); software metrics (size, number of methods, number of classes, cyclomatic

complexity); source code history (open in revision, developer, file creation version, file

deletion revision); source code churn (number of added, modified, and deleted lines,

growth, and percentage of modified lines); and aggregate features (total alerts for

	

	

22	 	

revision, total open alerts for revision, alert lifetime, file age, alerts for artifact, and

staleness).

They performed tests on two programs: jdom and org.eclipse.core.runtime. They

collected source code history and code churn. They checked out every 25th revision and

built the project. If the project failed to build it was skipped. They gathered the size and

complexity metrics. By comparing one version to the next they were able to gather all the

required ACs. For alert characteristic feature selection they used Best First, Greedy

Stepwise, and RankSearch. Using Weka, they ran several classifiers using ten-fold cross

validations and default settings for each method used. They evaluated each set using

several default machine learning algorithms and presented their results.

The authors found that a subset of ACs should be project specific. They also found

consistencies in which ACs were selected or excluded. Their results included averages

for precision (89%, 98%), recall (83%,99%), and accuracy (87.8%, 96.8%) for jdom and

runtime respectively.

An attempt to identify actionable static analysis alerts was presented in (Ruthruff et

al., 2008). The authors created a statistical model leveraging logistic regression to

classify results as true, false positives, or actionable. They tested their model on Google®

source code over a three-month period in 2007.

The code factors evaluated by the model included 33 factors: the FindBug warning

descriptors; their in-house tool at Google® titled BugRank in which developers rank the

bugs in priority from 0-100; file characters of age and extension; history of warnings in

code from file and project warnings, and file, package and product staleness; source code

factors of depth, file length, and indentation; churn factors such as added, changed,

	

	

23	 	

deleted, growth, and both total and percentage of lines changed. They used a screening

methodology for selecting a subset of at least six predictive factors to use as independent

variables for their logistic regression models. This consisted of four stages. In each stage

the percentage of alerts they evaluated was increased. For each factor in each stage, they

performed an analysis of deviance from the logistic regression model using a Chi-squared

test and eliminated factors with small effect sizes using a gradual reduction of p-values.

The logistic regression model was then fit using the remaining factors as independent

variables.

They found that code churn factors were almost immediately eliminated and

speculated that this was most likely due to the amount of code change that occurred daily.

Factors such as their in-house ranking system and bug pattern were consistently selected.

Further, the models built on screened data was, in general, at least as good as that of the

models leveraging the entire warning data sets. The models were 85% accurate in

predicting false positives and 70% accurate on actionable alerts.

An interesting piece of work using a more mature feature selection methodology than

previously used in the literature; however, it cannot be reproduced as this was tested on

proprietary source code. Bias may have been introduced in the priority ranking performed

by developers and this factor was always selected in their models.

It was evidenced that the domain continued to be plagued with inaccuracies and high

false positive rates when the capabilities of static analysis to detect security

vulnerabilities was explored in (Goseva-Popstojanova & Perhinschi, 2015). The authors

tested three well known commercial static analysis tools on the Juliet test set as well as

three open-source programs: Gzip, Dovecot, and Tomcat. They measured accuracy,

	

	

24	 	

recall, probability of false alarm, and G-score. None of the tools were able to detect all

vulnerabilities. For the C/C++ test cases, 27% of the common weakness enumerations

(CWE) were not detected by any tool, 32% were detected by a one or two tools, and 41%

were detected by all three tools. Likewise, for the Java test cases 11% were not detected

by any tool, 68% detected by a single or two tools, and only 25% were detected by all

three tools. For both the C/C++ and Java vulnerabilities, none of the tools showed

statistically significant differences in their detection rates. The mean, median, and recall

for all tools was around or lower than 50%. The authors stated that this is comparable or

worse than random guessing.

A survey paper (Muske & Serebrenik, 2016) presented a thorough review of the extant

literature of research efforts on the processing of static analysis alerts. After performing a

systematic search for peer reviewed works using a combination of keyword searches and

snowballing, the authors reviewed and categorized the resulting papers into seven

categories: Clustering; Ranking; Pruning; False Positive Elimination; Static and Dynamic

Analysis Combination; Simplifying Inspections; and Design of Light-Weight Static

Analysis Tools. For each category the authors provided a short review of a few works.

This paper provides evidence of both the breadth and varied approaches regarding the

processing of alert output from static analysis in peer reviewed literature.

Recent research efforts that utilized methods similar to the research effort performed

herein include SA works in machine learning, feature selection, and classification of

alerts.

An effort to classify alerts using machine learning algorithms was presented in

(Yüksel & Sözer, 2013). They created their own dataset using thousands of alerts from a

	

	

25	 	

digital TV software application. After classification, they trained and tested several

machine learning algorithms using Weka. In addition to the alert characteristics generated

from the SA tool, they gathered alert characteristics such as severity, alert code, lifetime,

developer classification, file name, folder name, number of open alerts, total alerts, and

alerts in module. They performed three studies: first, they used ten different attribute

evaluator tools; second, they used the full data set to evaluate the accuracy of 34 machine

learning algorithms; and third, they trained on alerts generated until the 5th run of the SA

tool and classified alerts in later releases. In the first study, they found that file name,

lifetime, alert code, developer classification, and severity were the most relevant

characteristics for classification. In the second study, they found that random forest,

random committee, and DTNB performed the best with accuracies over 83.6% and

recalls over 83.6%. In the third study, they found that the average accuracy, precision and

recall was around 90% on the third test set; however, the third test set had a higher

number of true positives in the test set.

(Hanam et al., 2014) proposed an alert classification and ranking method by applying

machine learning techniques to find patterns in the source code near the source of the

alert. Their method involves backwards program slicing near the source of the alert. The

source code is parsed into an abstract syntax tree (AST) which is used to build a call

graph and pointer analysis. The call graph, pointer analysis, and the alert seed statements

are used to construct backwards slices for each alert. They then determined alert

characteristics for each statement type. To classify the alerts they used decision trees,

Naive Bayes, and Bayesian network in Weka. They tested their method on FindBug alerts

	

	

26	 	

from Tomcat6, Apache Log4j, and Apache Commons. They discovered alert patterns do

exist and their method also improves actionable ranking.

(Yoon, Jin, & Jung, 2014) reduced the false alarm rate by classifying alerts using a

support vector machine (SVM). They created an AST from the source code and then

performed feature vector extraction from the AST as a preprocessing step. They then

trained and tested their SVM classifier on ten open source Java applications. They were

able to reduce the false positive alarms by 37.33%.

An attempt to detect and correct vulnerable code using data mining techniques was

presented in (Medeiros, Neves, & Correia, 2014). Their method involved four steps: a

web application protection (WAP) taint analyzer for finding vulnerable code, data mining

to learn and classify false positives, code correction to resolve the vulnerable code, and

feedback to present information back to the developer. For the data mining module that

predicted false positives from the output of the WAP tool, they used Weka to discover

which algorithms would perform best for their data. They found that logistic regression,

SVM, and random tree were the top performers. They ultimately choose to implement

logistic regression for their classification. They tested their model on 35 open source PHP

applications. Their model resulted in an accuracy of 92.1% and precision of 92.5%.

A method using feedback to train classifiers to reduce false positives was presented in

(Tripp, Pistoia, & Aravkin, 2014). This method took the raw output of static analysis

alerts and asked users to classify a small subset as true or false. This information, along

with selected warning attributes, were used to train different classifiers. Each of the

candidate filters were applied to the test set and scored. The filter that attained the highest

score was used to classify the remaining alerts. They manually choose features of: source

	

	

27	 	

identifier, sink identifier, source line number, sink line number, source URL, sink URL,

external objects, total results, number of steps, time, number of path conditions, number

of functions, rule name, and severity. For the learning algorithms they evaluated: Naive

Bayes, OneR, SVM, J48, and a Naive Bayes tree. They tested their method on security

warnings from 1,706 HTML pages. In all cases the model was able to improve precision

by a factor between 2.8 and 16.6 times. This model was implemented into a leading

commercial SA tool.

Machine learning techniques to predict cross-project vulnerabilities in source code

was explored in (Abunadi & Alenezi, 2015). The authors built fault prediction models

based on two projects and ran the models on a third to measure its prediction power.

They used a previously collected dataset that contained software and vulnerability

information regarding three PHP open-source web applications: Drupal, Moodle, and

PhpMyAdmin. Code characteristics included: lines of code, lines of non-HTML code,

number of functions, cyclomatic complexity, maximum nesting complexity, Halstead’s

volume, total external calls, fan-in, fan-out, internal functions or methods called, external

functions or methods called, and external calls to functions or methods. They applied

Naive Bayes, logistic regression, support vector machine, J48, and random forest

classifiers to the datasets using Weka. J48 and random forest outperformed the other

classifiers. Using the two best performing models they ran predicted errors in the third

project and both had high prediction rates. For both models the metrics were within

hundredths of each other with around 98% precision, 96% recall, and 97% for F-measure.

This work shows promise to cross-project vulnerability prediction; but it must be stated

that the code bases tested are very similar.

	

	

28	 	

Several previous papers include source code history in their alert processing models;

however, (Hovsepyan, Scandariato, & Joosen, 2016) tried to quantify how much history

is beneficial. To investigate, they used Mozilla Firefox and Google Chrome. They

gathered the programs revisions and associated histories, as well as data from the Mozilla

Foundation Security Advisor (MFSA), National Vulnerability Database (NVD), and

Chrome Issues Tracker (CIT). For each security issue they mapped the vulnerability to

the related files. The authors used two different methods for feature selection. One was

38 traditional code level metrics such as lines of code, count, cyclomatic complexity,

ration comment to code, highest amount of nested conditional statements, etc. The other

method was a bag-of-words approach measuring the frequencies of the tokens appearing

in the source code. To test prediction of their models, for each application they selected

previous versions, built that version and used that version to predict vulnerabilities in

later versions. This idea was set forth by Shin (Shin & Williams, 2013) as well as

Scandariato (Scandariato, Walden, Hovsepyan, & Joosen, 2014). They then ran the

models to predict vulnerabilities in the next release. The ones with more history

performed better but at a cost of file inspection ratio. The authors ultimately determined

that recent history is more beneficial.

An effort to accurately find and correct cross-site scripting (XSS), SQLi, and other

injection attacks in PHP code was attempted in (Medeiros et al., 2016). Their system was

composed of three modules: Code analyzer, FP predictor, and Code Corrector. To train

the FP predictor, the authors manually classified 76 vulnerabilities as either FP or TP

using 15 data characteristics pulled from the WAP tool. They then used Weka to

determine which classifiers performed best for their model: Logistic Regression, Random

	

	

29	 	

Tree, and SVM. For prediction they used a voting methodology; however, results were

not provided on how often the classifiers disagreed. They evaluated their solution on 45

open source packages of all sizes and application types and found their predictor was

92% accurate. This effort only evaluated one language for two types of vulnerabilities.

The statistical correlation between actionable alerts, unactionable alerts, and defects

was explored in (Yan et al., 2017). They took 40 releases from three open source

applications: MyFaces, Camel, and CXF, and tested them using the static analysis tool

FindBugs. They classified the alerts as either actionable or unactionable using Heckman’s

(Heckman & Williams, 2009) method of classifying alerts. This method classifies an alert

as actionable if it is removed from one version to another; remaining alerts are classified

as unactionable. They then collected defect data from Jira reported bugs from Bugzilla.

They then performed statistical calculations to determine if there was a correlation

between alerts and defects; and additionally, if there was a correlation between actionable

alerts and defects. They found that the overall quantity of alerts was not an indication of

defects; however, they did find that actionable alerts was an indication of defects.

The application of deep neural networks to the discovery of vulnerable software

components was recently published by (Pang et al., 2017). Their model used statistical n-

gram analysis feature selection prior to a deep neural network (DNN) for classification.

They tested their model on four Java applications and obtained averages of 92%

accuracy, 95% precision, and 90% recall. These are promising results and prove that

DNNs can be successfully applied to the SA domain; however, the paper lacks through

details preventing the replication of their work. Although this paper is not classifying

	

	

30	 	

static analysis alerts but rather predicting vulnerable software components the feature sets

may be similar.

Predicting false positive alerts using program slicing to learn program structures that

cause false reports was presented in (Koc et al., 2017). Their method first involves code

reduction by taking the body of the method where the alert was generated from as well as

a backward slice from the warning line. They used this reduced code to train two

classifiers: a Naive Bayes and a long short-term memory (LSTM) classifier. They tested

their models on the OWASP benchmark test suite. The LSTM classifiers performed

better than the Naive Bayes. The LSTM using method body had 81% recall and 89.6%

accuracy while the LSTM using backward slicing had 97% recall and 85% accuracy.

It is evidenced that classifying static analysis alerts is still an active problem in the

research community. Recent efforts to address the problem have included data mining,

feature selection, and machine learning. These methods have shown promise; however,

more work is still needed.

	

	

31	 	

Chapter 3

Methodology

Introduction

To address the problem of high false positive rates the goal of this research effort was

to develop and evaluate methods for feature selections that helps to improve the

classification accuracy of static analysis alerts. This research effort presented and tested a

novel method leveraging feature selection that resulted in the improved classification of

alerts.

A feature selection method was developed and evaluated to investigate the improved

classification accuracy of static analysis alerts. After data was gathered and preprocessed,

the data was split into train and test sets. A genetic feature selection model was trained

and tested on the train and test sets respectively. The process was performed iteratively,

testing selected feature subsets for an improvement in classification accuracy in an

embedded fashion. This process resulted in a subset of relevant features for the

classification of the alerts. To quantify the feature selection model’s classification

improvement, the model was compared with a control classifier that excluded the feature

selection component.

The Model

The model first performs feature selection. Second, classification is performed. Third,

data analysis is performed.

	

	

32	 	

Feature Selection Method

Feature selection methodologies were developed and evaluated for the improved

classification accuracy of static analysis alerts. After data was prepared and pre-

processed, the first step in the model was to perform feature selection.

For the feature selection component genetic algorithms were employed. Genetic

algorithms (GA) are based upon Darwin’s theory of evolution. They are used to find

optimal solutions to difficult problems, for instance an optimal set or optimal shape. GAs

utilize an objective function, called a fitness function, to progressively evaluate

individuals. Better performing individuals of each generation are selected for breeding.

The GA performs crossovers, mutations, and selection of the fittest to arrive at an optimal

generation referenced as a solution (Holland, 1975).

The general outline of a GA is:

Create the initial population of chromosomes.
For each of N generations {

Selection: Select parents based on the fitness, with replacement.
Recombination: Pair parents and perform recombination to produce

offspring.
Mutation: Mutate offspring.
Replacement: Replace the parents with the mutated offspring.

}

GAs are iterative functions that begin with an initial population. A population is a

subset of all the possible solutions. Chromosomes represent one solution. A gene

represents one element in the chromosome. In each generation, chromosomes are

evaluated on their performance on the fitness function. Better performing chromosomes

have a higher probability to mate and, thereby create even better fit chromosomes.

Crossover is used to create new chromosomes from the existing better performing

chromosomes. The point at which each chromosome is separated is called the crossover

	

	

33	 	

point. Crossover points may be random or predefined. There may also be single or

multiple crossover points. In the case of a single crossover point, the first section from

each chromosome will be merged with the secondary section of the other chromosome.

Figure 1 shows an example of a single point cross over. This is a simplistic example of

crossover; however, several methods to perform crossover functions exist including

uniform, sequential constructive (SCX), position based (POS), partially mapped (PMX),

order-based (OX1), and more. This overall crossover process results in offspring that is

composed of genes from both sets of the parent chromosomes.

	

Figure 1 GA Crossover

Mutation, a random inversion or minor modification to a gene, is performed to ensure

diversity in the generations. This helps to prevent the algorithm from getting stuck in a

local minima by exploring the search space. Mutations may flip bits, perform string

manipulation, swap values, invert subsets, or other types of random minor modifications.

This overall process continues until a termination condition is met. Termination

conditions may vary but include a predefined number of generations, a sufficiently

performing solution presented, or a plateau of consecutive generations performance on

the objective function.

There are different methods of feature selection including filter, wrapper, embedded,

and more recently hybrid (Li et al., 2018). Filter methods do not consider learning

algorithms but use statistical measures to determine feature importance. Features are

	

	

34	 	

ranked and either kept or removed from the dataset. They are more computationally

efficient than wrapper methods but feature sets may not be optimal for predictive models.

Wrapper methods take the selected feature sets and evaluate their accuracy on a

predictive model. Each subset is used to train a model and then tested. The classification

accuracy is used to score the performance of the subset. This can be computationally

expensive but often provides the best performing feature set for the model. However, the

selected feature set may not generalize to other data as this method is prone to overfitting.

Embedded methods perform feature selection and classification simultaneously. It is

similar to wrappers in that it considers the predictive model’s performance; yet it is less

computationally expensive and less prone to overfitting. Hybrid models are some sort of

combined method of filter, wrapper, and/or embedded (Li et al., 2018).

The following outlines the employed genetic algorithm specifics.

Method: The method used for the feature selection model was an embedded model.

Representation: Binary encoding was used to represent feature selection or exclusion

in the solution set. Each chromosome, candidate solution, was represented as a bit string

of length n, where n was the total number of features. The jth feature was retained if the jth

bit was 1 and removed if the jth bit was 0.

Initial Population: The initial population was randomly selected. This was performed

by randomly generating bit strings of length n as members of the initial population. The

probability that any bit in a chromosome was a 1 bit was independently 0.5.

Fitness: The fitness of a chromosome was proportional to the classification accuracy

of the model on the test set using the selected subset of features.

	

	

35	 	

Selection: Tournament selection was used. Selected chromosomes (parents) from the

current population were placed in a mating pool. Selected chromosomes randomly mated

using recombination to create offspring.

Recombination: A standard single-point crossover was used. With probability pc, the

crossover operation was applied, and with probability (1- pc) the offspring were identical

to the parents.

Mutation: With a small probability pb, a random bit in a chromosome was inverted;

with probability (1- pb) the chromosome remained unchanged.

Replacement: The offspring generated through recombination and mutation replaced

the parents in each generation. Elitist replacement strategies were used.

 Termination: Generations continued to be created and evaluated until improvement

of the fitness function was absent, minimal for a number of generations, or until a

predefined number of generations were evaluated, whichever occurred first.

Parameters: The GA was run with several combinations of the settings as fully

outlined in Appendix C. These included variations on population sizes, generations,

selection rates, mutation probabilities, and termination conditions.

Code: The complete genetic algorithm code is included in Appendix I.

Classification Method

The classification method used for this research was a support vector machine (SVM),

a machine learning classifier. For both the control classifier and the feature selection

model a SciPy Linear SVC with default settings was used.

An SVM is a supervised method for classifying objects introduced in 1963 by

Vladimir Vapnik. He later worked with Alexey Chervonenkis to refine the algorithm. The

	

	

36	 	

algorithm classifies objects by finding an optimal hyperplane, or decision line, that

distinctly separates objects in the data set (Fig. 3 !"). Figure 2 shows several possible

hyperplanes that separates the two classes of objects. !# has some classification errors,

!$ and !% correctly classify all objects; however, the distance between the two classes is

greater in !$. Thus, SVMs not only want to separate the classes but separate them as

distinctly (i.e., optimally) as possible. The objective becomes to maximize the margin,

which is the area between the positive and negative hyperplanes. Larger margins have

lower generalization errors whereas smaller margins are more prone to overfitting. Once

the hyperplane is determined, classification of new objects occur based upon which side

of the hyperplane the object falls. The hyperplane could be linear or non-linear. Finding

the hyperplane for non-linearly separable data can be accomplished by using a kernel

trick, projecting the data into a higher dimensional feature space. The non-linear

hyperplane may then be found. Pushing the data and hyperplane back onto the original

feature space, the hyperplane appears to weave through the data set. Additionally, SVMs

have a single global minimum (Kowalczyk, 2017; Russell & Norvig, 2014).

The equation for a hyperplane is:

& ⋅ (+ * = 0

This is another way of writing the two-dimensional equation of a line - = ./ + *.

However, by using vectors it also works for finding a hyperplane in multi-dimensions.

Items are classified depending on which side of the hyperplane they fall. Relative to

the decision line, positive items (1) reside further than the positive hyperplane (Fig. 3

	

	

37	 	

Figure	2	Possible	Hyperplanes	

Figure	3	Linear	SVM	Hyperplane	

!012) and negative items (-1) reside further than the negative hyperplane (Fig. 3 !345).

Support vectors reside on the hyperplanes. The positive and negative hyperplanes are

defined by:

& ⋅ (6 + * = 1
& ⋅ (6 + * = −1

Which is a dot product of the vector normal to the hyperplane & and the vector (6 plus

the bias *. By using these two hyperplanes the margin can be computed. The margin is

defined as:

9 =
2

||&||

Classification of items use the following with a constraint to ensure that no data point

resides inside the margin.

& ⋅ (6 + * >= 1, if	-A = 1
& ⋅ (6 + * <= −1, if	-A = −1

Which can be combined to:

	

	

38	 	

-A(& ⋅ (6 + *) >= 1∀A

SVMs want to maximize the margin and thus minimize the norm or ||&||. Rather than

maximizing the margin it is easier to minimize ||&|| which becomes the constrained

optimization problem:

minimize	
(J,K)

 
1
2
||&||$

subject	to  -A(& ⋅ (6) + * − 1 >= 0
 T = 1,2, . . . , 9

This is a quadratic problem which can be solved using the Lagrangian multiplier

method resulting in the following SVM primal optimization function:

ℒ(&, *, W) =
1
2
||&||$ −XWA

Y

AZ#

[-A(& ⋅ (6 + *) − 1]

The above problem can be solved by taking the Wolfe dual of the above primal

problem:

maximize	
_

 XWA

Y

AZ#

−
1
2
XXWA

Y

`Z#

Y

AZ#

W`-A-̀ (6 ⋅ (a

subject	to  WA >= 0, for	any	T = 1, , 9

 XWA

Y

AZ#

-A = 0

Which has removed the dependence on w and b.

By satisfying the Karush-Kuhn-Tucker (KKT) condition, the problem can be solved by

computing just the inner products of /A, /̀ while also guaranteeing the optimal solution.

The following SVM classification hypothesis is derived:

ℎ((6) = eTfg(XW`

h

`Z#

-̀ ((a ⋅ (6) + *)

	

	

39	 	

Soft margin SVMs allow for noisy data creating outliers that could alter margin

calculations. Slack variables were introduced to relax the constraints, thereby allowing

for some classification mistakes. The goal is not to have zero misclassifications but rather

only a few and penalize any classification errors. Thus, the new constraint becomes:

-A(& ⋅ (6 + *) >= 1 − iA

To limit the number of incorrect guesses the sum value of all i must be minimized.

Additionally, the sum must not be negative. A new conditional is added to the objective

function becoming:

maximize	
_

 XWA

Y

AZ#

−
1
2
XXWA

Y

`Z#

Y

AZ#

W`-A-̀ (6 ⋅ (a

subject	to  0 <= WA <= j, for	any	T = 1, , 9

 XWA

Y

AZ#

-A = 0

Choosing a small j will give a wider margin and more classification errors. The

alternative it true that a larger j will give a harder margin with less errors.

Kernel functions return the dot product as if they had been transformed into vectors

without actually transforming them. This minimizes computation effort. By adding the

kernel function k, the dual problem becomes:

maximize	
_

 XWA

Y

AZ#

−
1
2
XXWA

Y

`Z#

Y

AZ#

W`-A-̀ k((6 ⋅ (a)

subject	to  0 <= WA <= j, for	any	T = 1, , 9

 XWA

Y

AZ#

-A = 0

The hypothesis therefore becomes:

	

	

40	 	

ℎ((6) = eTfg(XW`

h

`Z#

-̀ k((a ⋅ (6) + *)

There are several kernel functions. Some commonly used kernel functions include:

• Linear k((, (l) = (⋅ (l

• Polynomial k((, (l) = ((⋅ (l + m)n

• RBF / Gaussian k((, (l) = o/p(−q||(− (l||$)

SVMs have previously been used to classify static analysis alerts in (Bleier, 2017;

Medeiros et al., 2016; Tripp et al., 2014; Yi, Choi, Kim, & Kim, 2007; Yoon et al., 2014).

For this research, both the control classifier and the feature selection model leveraged

a SciPy SVM Linear SVC with default settings. The classification confusion matrix is

presented in Table 1.

Table 1 Confusion Matrix
	 Actual	

Positive	 Negative	

Classified	
Positive	 True	Positive	(TP)	 False	Positive	(FP)	

Negative	 False	Negative	(FN)	 True	Negative	(TN)	

	

Measures

Accuracy, precision, recall, F-measure, and the false positive rate, were used to

evaluate the model’s performance. Table 2 details the metrics used and the directions that

indicate improved classification.

Table 2 Definitions and Metrics

Name Formula/Notation Improvement Description
True Positive rs Increase The alert is true and classified

correctly.
True Negative rt Increase The alert is false and classified

correctly.

	

	

41	 	

False Positive us Decrease The alert is false and classified
incorrectly as true.

False
Negative

ut Decrease The alert is true and classified
incorrectly as false.

False Positive
Rate

us
us	 + 	rt

 Decrease The proportion of negative
instances incorrectly classified as
positives.

False
Negative Rate

ut
ut	 + 	rs

 Decrease The proportion of positive
instances incorrectly classified as
negatives.

Accuracy rs	 + 	rt
rs	 + 	rt	 + 	us	 + 	ut

 Increase The proportion of correctly
classified instances, either true
positives (TP) or true negatives
(TN)

Precision rs
rs	 + 	us

 Increase The proportion of true positives
classified correctly.

Recall rs
rs	 + 	ut

 Increase Also referred to as the true
positive rate or sensitivity, is the
proportion of true positives
correctly classified as positives.

F-Measure 2	 ∗ 	rs
2	 ∗ 	rs	 + 	ut	 + 	us

 Increase The harmonic mean of precision
and recall.

Data Sets

Data sets in the static analysis domain are limited (Herter et al., 2017; Heckman &

Williams, 2008; Shiraishi et al., 2015). As a result, researchers in this domain often

generate their own data sets using a predefined methodology. A thorough review of the

existing data sets was performed and compared with the data set requirements for this

research. Although some data sets were promising, upon further investigation each lacked

at least one necessary component. However, one was found to contain most of the

required elements. Therefore, that data set was utilized; however, it was augmented with

the additional static analysis components needed. The additional components were

gathered by following the framework as outlined in the literature (Heckman & Williams,

2008, 2009).

	

	

42	 	

The data set criteria for this effort was as follows. The data set must contain real world

labeled static analysis alerts. A problem with artificially generated data sets is that they

are not a true representation of real-world data. Real world applications contain bona fide

developer errors, complex variable paths that are difficult to follow, and often contain

multiple flaws per function. Additionally, the source code of the applications must be

available. Moreover, the data set should contain source code metrics (such as code churn,

fan-in, fan-out, etc.) and historical data (such as the lifetime of alerts and the types of

alerts resolved). If they are not included, they must be easily calculated given the other

information provided in the data set. Furthermore, the data set must contain a sufficient

number of test cases. Ideally, the data set contains ample alerts regarding software

security issues and not just software bugs. Finally, if the data set does not contain SA

alerts, the application must have several versions, issue tracking systems, and published

vulnerabilities in order to generate and label the alerts.

Static analysis test suites are designed to create data sets for tool comparisons. These

test suites are collections of source code with labeled good and bad test cases. The data

sets are generated by running the test cases through the SA tools and labeling the alerts

by matching them to the known list of good and bad test cases. Several test suites exist

for static analysis; however, they lacked the required features.

Test Suite and Data Set Evaluations

JULIET, Benchmark and the Software Assurance Reference Dataset (SARD) are

labeled vulnerable software test suites that have previously been used in the literature to

generate static analysis alerts. These test suites were specifically designed to test and

study static analysis tools. The test suites consist of functions that contain intentional

	

	

43	 	

security vulnerabilities or programming flaws. Each function is designed to test for one

issue and is mapped to its related MITRE’s CWE. Test cases also contain functions in

which no known flaw exists. However, the creators do note that in some instances other

unrelated flaws may also be present. The test cases are packaged by CWE and therefore

can be tested individually or in concert using static analysis tools. The resulting alerts can

be easily labeled.

The JULIET Test Suite was created by the National Security Agency’s (NSA) Center

for Assured Software (CAS) to evaluate static analysis tools (NIST, 2017a). Test suites

for both Java and C/C++ are provided. The Java version 1.3 contains 28,886 test cases

covering 112 CWEs in more than 46,000 files using over 4 million lines of code. The

C/C++ version 1.3 contains 64,099 test cases and over 100 classes of errors in more than

100,000 files using over 8 million lines of code. The set consists of buildable code files

labeled in a systematic method. Each test case contains one type of test for the flaw in a

function labeled as ’bad’. Additionally, there are also test cases in the same file labeled

with some inclusion of the string ’good’ (ie. good, goodG2B, goodB2G, good1, etc.).

Helper methods are labeled containing some string of ’helperBad’ or ’helperGood’

indicating that it is a helper function to the ultimately ’good’ or ’bad’ function. Sources

and sink methods are also labeled with some string containing ’badSource’, ’badSink’,

’good*Source’, ’good*Sink’. Additionally, the naming convention of the test case files

includes the CWE and test number. Although this test suite has the potential to create an

adequate number of labeled static analysis alerts, it lacks historical features, source code

metrics, and is not reflective of real-world source code. Additionally, although the

	

	

44	 	

labeling of alerts is easily performed based on the naming conventions, the naming

conventions alone could be picked up by scanning tools as patterns.

The OWASP Benchmark project was created to test and compare static analysis tools.

Version 1.2 was released in June of 2016 and consists of 2,740 test cases covering 11

CWEs and is a complete web application with a UI such that test cases are fully

exploitable. The suite contains an expected results CSV file that labels test cases as true

or false and maps them to the related CWE. All test cases reside in the folder ’testcode’

and the naming convention of the files are generic. Functions that reside in test cases

have generic names such as ’doGet’, ’doPost’, etc. Each test case is a servlet or JSP and

is either a true positive or a false positive test case. The test suite also consists of a

scoring portion in which scan results from tools may be imported and then automatically

ranked for the comparison to other tools. The scoring outputs the true positive rate, false

positive rate, true negative rate, and it’s Youden Index. This test suite also has the

potential to create an adequate number of labeled static analysis alerts. It uses an external

list and not the source code itself to label the test cases. However, it lacks historical

features and realistic source code metrics.

The ability to create labeled data sets is a clear benefit to using these artificial test

suites as all true and false positives are known. They also offer excellent opportunities to

compare static analysis tools; however, the comparison of static analysis tools was not the

goal of this research effort.

Limitations are inherent as they are artificial in nature and are not reflective of natural

code bases. They lack the complexity of natural code as the test cases have been reduced

	

	

45	 	

to their simplest form in order to test for one issue per test case. As a result, the alerts

generated from the tools may not reflect real world alerts.

Another limitation to these test suites is the frequency of flaws included in the suites.

Some flaws may present more often than others. Therefore, the test cases and subsequent

alerts could be skewed. Another limitation is that several features that may assist in alert

classification are absent such as source code metrics and historical data.

It is also noteworthy that these test suites are available to tool vendors. Vendors may

use these test suites to improve their scanning techniques and thereby improve their

accuracy on these tests. This is a clear advantage for the vendors of these tools as they

possess the answers to the benchmark tests. Therefore, these test suites were not

sufficient for this use case.

Several other data sets were reviewed and compared to the pre-defined criteria. A

matrix of the findings is presented in Table 3.

Table 3 Data Set / Test Suite Requirements Matrix

Name	 Source	 Test Suite
or Data Set

Source	
Code	

SA	
Alert
s	

Code	
Metrics	 Historical	 Security	 Realistic	

JULIET	 NIST,	2017a	 Test ✓	 	 	 	 ✓	 	

Benchmark	 OWASP,	2017a	 Test	 ✓	 	 	 	 ✓	 	

WebGoat	 OWASP,	2017b	 Test	 ✓	 	 	 	 ✓	 	

Toyota	ITC	 Shiraishi	et	al.,	
2015	

Test	 ✓	 	 	 	 	 	

Software	Defect	
Prediction	Set	

Mausa,	
Grbac,&Basic,	
2014	

Data	 ✓	 	 ✓	 ✓	 	 ✓	

Bug	Prediction	
Set	

D’Ambros,	Lanza,	
&	Robbes,	2012	

Data	 ✓	 	 ✓	 ✓	 	 	

FaultBench	 Heckman	&	
Williams,	2008	

Data	 *	 ✓	 ✓	 ✓	 	 ✓	

PHP	Security	
Data	Set	

Walden,	Stuckman,	
&	Scandariato,	
2014	

Data	 ✓	 	 ✓	 ✓	 ✓	 ✓	

*Source code available. Evidence of errors building packages again in subsequent works (Bleier, 2017).

	

	

46	 	

	

The Selected Data Set

A public data set containing security vulnerability data and machine learning features

of three open source PHP applications has recently been cited in the literature referred to

as the PHP Security Vulnerability Dataset (Walden, Stuckman, & Scandariato, 2014).

The complete raw data set, replication data set, and all scripts used to create the data sets

can be downloaded from https://seam.cs.umd.edu/webvuldata. The data set contains 233

verified security vulnerabilities and has been used for subsequent studies in (Abunadi &

Alenezi, 2015; Walden et al., 2014; Zhang et al., 2016). The authors collected data from

95 versions of PhpMyAdmin from 2.2.0 and 4.0.9, 71 versions of Moodle from 1.0.0 to

2.6.1, and 1 version of Drupal v6.0.0.

PhpMyAdmin is a web-based database administration tool for MySQL initially

released in 1998. Moodle is an online learning management system first released in 2002.

Drupal is a web content management system initially released in 2000. All of these

applications have ample release history, change history, and published security

vulnerability information.

The authors collected the source code and release history of each version. All three

applications used Git to house their repositories, thus the authors were able to download

the main branch which included previous release information. Included in the data set is a

file for each applications version, Git hash for the release, and dates for the release.

Source code metrics were collected and included in the data set. Metrics were included

and linked to file names for each project and version. These include: lines of code, lines

of non-html code, number of functions, cyclomatic complexity, maximum nesting

	

	

47	 	

complexity, Halstead’s volume, total external calls, fan-in, fan-out, internal functions

called, external functions called, and external calls to functions.

The authors collected vulnerability information for each project and version by

gathering data from the NVD and security announcements from the product. Included in

the data set is the Git hash of the version the vulnerability was introduced, the Git hash of

the version in which the vulnerability was resolved, the associated CVE identifier, and

the file associated with the fix.

They tracked vulnerabilities throughout versions for PhpMyAdmin and Moodle. They

did not use multiple versions of Drupal; thus, vulnerability tracking information was not

performed for Drupal. The data set includes a matrix of the file associated with each

vulnerability tracked over versions.

They compiled tokens of the source code for text mining. They parsed through the

source code files, extracted the PHP tokens, and then labeled the resulting concatenated

tokenized string as vulnerable or not vulnerable.

They merged the data together and evaluated the data set using machine learning to

predict defects. They published their scripts for study replication, source code of the

applications, and the collected features as R and Weka files.

A limitation of this data set is that this only covers three PHP applications, the authors

excluded several published vulnerabilities, and the set does not include labeled static

analysis alerts. However, of all the data sets evaluated, this data set was the closest to the

desired criteria. These releases and their related source codes were still available on each

applications website archive for download. Additionally, all of these applications bug

tracking systems were available for query. Therefore, this data set was leveraged;

	

	

48	 	

however, augmented with labeled static analysis alerts using the framework as outlined in

(Heckman & Williams, 2008, 2009).

For this research effort, the Drupal versions were expanded to include 38 versions

from 6.0.0 to 6.38. The PhpMyAdmin and Moodle versions evaluated remained

unchanged. Each release of each application was scanned by each tool and the resulting

alerts labeled. The existing data set contained 233 known TPs and the resulting static

analysis alerts from the tools exceeded 250,000. As a result, the existing data set was not

sufficient to label the static analysis alerts. Additional work was performed to match

auxiliary information such as change logs, security notices, release notes, bug tracking

systems, and CVEs to the alerts. For labeling, alerts were tracked between versions and

auxiliary information inspected. Additional software metrics were gathered and merged

to augment this data set to create a static analysis data set.

Overall Framework for Gathering Alerts

The method for creating and labeling static analysis alerts was well outlined in

(Heckman & Williams, 2008, 2009). The overall framework consists of four steps.

1. Generate subject revision history: source code is gathered with versioning and

change history.

2. Build Process: if required, build the version. Compute code metrics, run

through static analysis, and gather the alerts.

3. Alert Classification: use source code histories to track and label the alerts

throughout versions.

4. Artifact Characteristic Generation: gather information about the alerts and

surrounding source code that may be predictive factors.

	

	

49	 	

This overall process was followed with some additions. In addition, the CVEs, release

notes, security notices, and change logs were gathered, and the bug report systems

queried. This additional information was used to assist in alert labeling and feature

generation.

Detailed Framework for Gathering Alerts

Scanning the source code to create static analysis alerts was a trivial matter as all

source code was downloaded and utilized a Git repository. A script was written to

iteratively checkout each projects version, send a request to each scanner to scan the

version, query the scanner for the results, and download the scan results. Output features

and formats varied between scanners. Formats included CSV, JSON, TXT, XML, and

proprietary vendor formats. All alert features provided by the tool were exported. To

convert the results into a consistent CSV format, a script was written to cipher through

the scan results and merge the alerts to allow for further processing and analysis.

Additionally, alert characteristics were gathered during this process such as alert

lifetimes, alert start and end versions, number of path hops, and path file names.

Two industry leading commercial scanners were used for code scanning. Permission

to disclose the commercial tools names was not granted. Therefore, they are referenced as

Tool A and Tool B. To protect incidental disclosure, identifiable information regarding

these tools will not be disclosed such as unique identifiers or features specific to those

tools.

In addition to the commercial scanners, an open source scanner was also used.

SonarQube is an open source scanner capable of scanning 25 languages, including PHP.

It may be downloaded and run locally or may be used as a service online. It is capable of

	

	

50	 	

finding bugs and security vulnerabilities. This scanner was downloaded and installed

using the default configurations. This scanner had a limitation upon exporting of scan

results to a maximum of 10,000 records per API query. To overcome this obstacle,

queries were written to export different alert types per query if the quantity of alerts

exceeded the maximum allowed.

Upon completion of each project and version being scanned by each scanner, and the

results downloaded and parsed into a consistent CSV format, the resulting features from

all tools were manually evaluated. If features were not represented by all scanners or

leaked identifying tool information, the feature was removed. If these features remained

in the final data set, the learning algorithms could possibly learn on a particular tool

rather than the alert characteristics.

All alerts were initially labeled as unactionable, or FP. By gathering multiple versions

of the same application, alerts that disappear from one version to another could indicate

that a bug or flaw was fixed. It could also indicate the deletion, renaming, or movement

of a file. However, tracking the renaming of files is a difficult task beyond the scope of

this research effort. It is possible that if a simple rename of the file was performed, a

similar alert should appear in the immediate version after the disappearance of the

original alert with a different file name. In this simple instance, the renamed file could be

determined, and the alert matched. However, file renames beyond this simple case were

considered deleted. Therefore, a Python script was written to track alerts throughout the

lifetime of the project. Alerts that moved due to simple file rename cases remained

unchanged. Alerts that were found to get resolved were marked as actionable, or TPs.

Alerts where the originating alert files were absent in the next version and a matching

	

	

51	 	

alert was not found, the alert was marked as deleted and subsequently not included in the

data set.

Additional information was gathered to assist in labeling the alerts generated from the

static analysis scans. Scripts were written to assist in matching the alerts to the relevant

records. Labeling was performed if alerts could be linked to bug reports, change logs,

security notices, release notes, issue tracking system, or vulnerability publication list. The

projects were not consistent in what auxiliary information was provided; however, all

projects had public vulnerability publication lists and some type of release notes or bug

tracking system.

Publicly posted vulnerability information for each application was gathered using the

National Vulnerability Database (NVD) by NIST at nvd.nist.gov and MITREs CVE

Online Database at cve.mitre.org. CVEs found in one database will often be duplicated in

the other database; however, it is possible one database contains vulnerabilities that

another database lacks. Therefore, these databases were manually searched for each

application. All necessary information regarding the vulnerability was contained in the

published record including CVE, versions affected, exploit information, links to commit

records and fix information, severity rating and scores, and vulnerability type. The

original data set contained 233 CVEs; however, during this process 630 CVEs were

discovered. This could be the result of additional discoveries over time or the addition of

Drupal versions. To match alerts to the CVE records required the fix file name and line of

code. To determine the files and lines of code for the fix required manual work. Although

many records had links to commits and fix files, the method for linking, publicizing, and

outlining the fixes were not consistent enough to compose a meaningful and reliable

	

	

52	 	

script. Therefore, for each CVE, the fix file(s) and line of code(s) was/were manually

determined via the CVE records and logged into a CSV. Next, a script was written to

match the alerts to the CVE records by matching the fix file names, lines of code, and

versions. The original data set fix files were also verified during this process and lines of

code added to those records. Matched alerts were labeled as actionable, the CVE Boolean

feature marked as true, and CVE identifier logged. Other information gathered but not

utilized during this step included CVE severity, base, exploit, and impact scores,

published dates, descriptions, start and fix versions and commit hashes, if provided.

Bug tracking systems may be used to track bugs and their resolutions. These systems

keep records of the type of bug or flaw, what the issue was, how it was resolved, who

fixed it and when. Some open source applications make their bug tracking systems

public. The projects used in this data set had publicly facing bug tracking systems. This

information was queried to find bugs that had been resolved and link them to alerts. They

were linked via file names and line of code. Bug reports often do not follow a standard

format and critical information may be in natural language. Therefore, the analysis of the

bug reports and linking to alerts was manually performed. Matched alerts were labeled as

actionable.

Source code change logs, commit histories, security notices, and release notes contain

valuable information that can be linked to alerts. Commit histories specify file names,

line of code, what exactly changed, and when. Change logs and release notes may specify

files that changed, the reason for the change, and in what version it occurred. Security

notices and release notes specify what changed and why. For each project and version,

the available logs were manually reviewed. Any corresponding alerts were labeled as

	

	

53	 	

actionable. It was found that the security notices and release notes often referenced

specific CVEs. In those cases, the matching alerts were already labeled as actionable.

Additional features were gathered to complement the alert data set. The original data

set contained some source code metrics on the file level; however, several other metrics

could be gathered. Software metrics were easily gathered using Understand, Git, and

basic file information.

A shell script was written to iteratively checkout each project and version and then

export a metrics report from the software metrics tool Understand. This resulted in a

software metrics report for each project and version. It included 50 metrics and was

exported into CSV’s and text formats. The resulting metrics were then matched to alerts

by source and destination file names and versions. The metrics were added directly to the

alert for the specified files.

The original data sets file level metrics were matched to each alert using a custom

script for both the source and destination files. Additional metrics were also added by

matching alerts to Git commit information such as last edited date, commit dates, and

authors.

The original framework for gathering and labeling static analysis alerts has now been

augmented and is outlined below. A graphical workflow of this new process is displayed

in Figure 4.

1. Generate Subject Revision History

a. Gather and verify all source code and histories.

b. Gather CVEs.

c. Gather of bug report systems, change logs, security notices, and release

notes.

2. Build Process

	

	

54	 	

a. Compute source code metrics.

b. Iteratively for each project and each version, build the project then run

the source code through the specified static analysis tools.

c. Download the alerts from the tools as CSV, XML, JSON or other

standardized tool output.

3. Alert Classification

a. Using alert and source code histories, label the alerts following the

labeling process.

b. Label alerts if matched to CVEs.

c. Label alerts if matched to bug report systems, change logs, security

notices, and release notes.

4. Artifact Characteristic Generation

a. Gather metrics regarding alert lifetimes, resolution type, and other

historic alert features. Match to alerts as features.

b. If possible, gather source code around the alert.

c. Match additionally gathered or engineered metrics and features to

alerts.

	

	

55	 	

	

Figure 4 Framework for Static Analysis Alert Generation and Labeling

	

	

56	 	

The Resulting Data Set

The result of this process was a data set for each project containing labeled real-world

static analysis alerts from three static analysis scanners, complete with source code

metrics and historical features of the alerts. The data sets altogether included 256,198

alerts. Alerts labeled as deleted were excluded from the experiments bringing the number

of alerts to 207,259.

The resulting data set is a mixture of the original data sets information merged with

labeled static analysis alerts with additional features and metrics. A complete feature list

and the feature’s origination is presented in Appendix A. The statistics of the raw project

data sets are presented in Table 4. There resulted a data set for each project, each version,

as well as a combined data set (a compilation of all the data sets).

Table	4	Raw	Data	Set	Alert	Statistics	

 Total Raw Alerts Actionable
(TP)

Unactionable
(FP)

Deleted

Drupal 3,834 491 3,343 0
Moodle 126,427 67,345 39,509 19,573
PhpMyAdmin 125,937 75,960 20,611 29,366
Total 256,198 143,796 63,463 48,939

Experiments

Experiments were performed to train and evaluate the feature selection model. Python

was used to create and evaluate the model. The model’s selected feature subsets and

classification performance metrics were output for each experiment. To measure

improved classification accuracy, the feature selection model was compared with a

similar model that excluded the feature selection component. Therefore, for each

experiment, a SVM classifier was trained and tested on the same train and test data sets

and compared to the feature selection model’s performance.

	

	

57	 	

Data Pre-processing

Prior to running experiments, the respective raw data sets were pre-processed which

included the removal of duplicate records, changing categorical features into contiguous,

normalizing ranges, and ensuring adequate representation of features and alert types.

After pre-processing, the data sets were split into train and test sets. Once train and test

sets were created, the experiments were performed to evaluate the feature selection

model’s performance.

Several pre-processing steps were performed on the raw data sets to prepare the data

for machine learning. Python scripts were written to perform the preprocessing steps

using Pandas, Numpy, and SciPy functions. For each raw data set for each experiment the

following was performed. All alerts labeled as ‘deleted’ were removed. Duplicate alerts

were also removed. Alerts were considered duplicates if the following feature values

were identical: project, tool, priority, category, type, code/bug/vuln, language, CWE id,

OWASP 2013 Boolean, OWASP 2017 Boolean, OWASP Top Ten 2013, OWASP Top

Ten 2017, source and destination file, source and destination line, source and destination

column, source and destination function. Most data sets were heavily skewed between

actionable and unactionable alerts. To adjust for this skewness, alerts were randomly

dropped to create an equal proportion of actionable and unactionable alerts. Features that

had no data at all were dropped and logged. Categorical data was capitalized,

standardized, and then one-hot encoding was performed. Statistical analysis of the

numerical features mean, median, modes, and standard deviations was performed. It was

discovered that the mean was not an appropriate value to use for any of the numerical

features. Therefore, for numerical data, missing values were replaced with the median or

	

	

58	 	

mode, depending on the analysis of the feature statistics. Finally, features were dropped if

all the values in the data set were identical. All dropped features for each data set were

logged for later use to prevent those features from being selected in the feature selection

component of the model. Similarly, new feature names created during categorical

encoding were mapped to the original feature name allowing for mapping during the

feature selection component. A list of dropped features from each data set is outlined in

Appendix D. The resulting data set statistics are presented in Table 5.

Table	5	Pre-Processed	Data	Set	Alert	Statistics	

 Alerts Actionable
(TP)

Unactionable
(FP)

Drupal 960 480 480
Moodle 77,996 38,998 38,998
PhpMyAdmin 40,986 20,493 20,493
Total 119,942 59,971 59,971

Next, the respective data sets were split into train and test sets for each experiment.

There were 200 features available prior to one-hot encoding and thousands of iterations

for each experiment. The feature space complexity could create excessive run times for

the experiments. It was determined during preliminary tests to further reduce the larger

data sets to a more manageable quantity. During train and test splits, if the alerts

exceeded 30,000 then an equal number of actionable and unactionable alerts were

randomly dropped. The resulting alert counts are presented in Table 6.

Table	6	Final	Data	Set	Alert	Statistics	

 Alerts Actionable
(TP)

Unactionable
(FP)

Drupal 960 480 480
Moodle 23,398 11,699 11,699
PhpMyAdmin 12,296 6,148 6148

	

	

59	 	

The final pre-processing step was to split the sets into train and test sets using a 66-33

split. 10-Fold cross validation was tested on a few SVMs. The classification accuracy

was similar to the 66-33 split results; however, it increased processing time.

Model Creation

The control classifier, Model A, creation was easily performed. The following was

performed for each experiment. All features from the data set were included for the

control classifier. Feature scaling was performed using SciPy’s Robust Scaler function

with default settings. Preliminary analysis of several SVM kernels was performed on the

data set and it was determined, based upon processing times and overall accuracies, that

the linear SVC would perform quickly and sufficiently on the data sets. Thus, the train

data was used to train a SVM using SciPy Linear SVC with default settings. The trained

model and scaler were saved. The model was then tested using the test set. The test data

was scaled using the saved scaler. Metrics were exported including a confusion matrix,

classification report, accuracy, F-measure, precision, recall, and time.

The feature selection model, Model B, was then created. The following was executed

for each experiment. The settings for the genetic algorithm were set and the termination

conditions calculated, based upon the number of generations being iterated through. The

initial population was randomly generated. The population was evolved by evaluating the

fitness of the population, the selected feature subset’s classification accuracy. The same

train and test data that was used in Model A was used in Model B. Again, SciPy’s Robust

Scaler was used as well as SciPy’s Liner SVC, both with default settings. The top

performers were retained based upon the specified settings; mutations, lower performer

inclusions, and cross-overs were performed. The iterations of the genetic algorithm were

	

	

60	 	

continued until termination conditions were met. Exported metrics included for the top

performing feature set: the features selected, feature subset model’s accuracy, confusion

matrix, classification report, accuracy, F-measure, precision, recall, and time. Also

exported was the average accuracy for the top ten performing feature subset’s for each

GA.

Model Validation

Several experiments were designed and executed to validate the feature selection

model’s performance. These included a test for each project, a test for all projects

together, a test for version predictions, and a test for cross-project predictions. The

model’s performance metrics for each experiment was compared with the control

classifier’s performance on all features.

Table 7 outlines the experiments that were performed. Figure 5 shows the experiment

process. Features excluded during pre-processing for each experiment are listed in

Appendix D. Results for all experiments are presented in Chapter 4.

Table 7 Experiment, Project, and Data Set Used

Experiment Project Data Set
Experiment 1 Models Performance on PhpMyAdmin PhpMyAdmin

Experiment 2 Models Performance on Moodle Moodle

Experiment 3 Models Performance on Drupal Drupal

Experiment 4 Models Performance on
Cross Project

Train: PhpMyAdmin and Moodle
Test: Drupal

Experiment 5 Models Performance on
Version Prediction

Train: PhpMyAdmin Alert Data for v2.2.0 to v3.4.9
Test: PhpMyAdmin Alert Data for v3.5.0 to 4.0.9

Experiment 6 Models Performance on
Combined Projects

All

	

	

61	 	

	

Figure 5 Model Training, Testing, and Analysis

Resources

This research effort required software, hardware, and data sets.

The software programs used for this research included SonarQube, Python, R,

Understand, and two commercial static analysis tools. SonarQube is an open source static

code analysis application. Python is an open source programming language capable of

running on most operating systems. There are machine learning libraries that can perform

classification, regression, and clustering (Python Software Foundation, n.d.). R is a

popular program in the research community and has been used in several published

	

	

62	 	

works (R Core Team, 2013). Understand is a software metrics and analysis tool

(Understand, n.d.).

For hardware, sufficient memory, processors, and storage to run SA tools and data

analysis models was necessary. Each SA application had specific hardware requirements

minimums. Servers that had commercial SA tools installed exceeding the commercial

tools hardware requirements were used for the scanning of the code bases using the

commercial tools. A stand-alone MacOsX quad core with 2.8 GHz processors with 16GB

of RAM, with over 1 TB of storage was also used for this research effort. This machine

was used for SonarQube scans, all Python scripting, and for all model building, testing,

and evaluation.

All data sets that were evaluated were downloaded as well as the original version of

the PHP Security Vulnerability Dataset. Data sets used for the model’s evaluation were

generated using the methods previously outlined.

Summary

A feature selection method to assist in the classification of static analysis alerts was

presented. Candidate test suites and data sets were evaluated. An existing data set was

selected and enhanced. A detailed and literature justified framework for both the data sets

usage and enhancement method was thoroughly investigated, described, and executed.

Several experiments were outlined and performed to evaluate the feature selection

model’s performance.

	

	

63	 	

Chapter 4

Results

All experiments outlined in Chapter 3 were performed and the results exported. The

control classifier is referred to as Model A. The feature selection model is referred to as

Model B. A full list of both model’s metrics for each experiment is listed in Appendix B

and Appendix C as well as a full list of the Top Performing Feature Subsets in Appendix

E. The results are presented herein.

During initial testing, some models were learning on particular features erroneously.

Specifically, version last seen and alert lifetime were sensitive features for some models.

This was because in those data sets, the values for unactionable alerts had similar values

while actionable alerts had distinct values. All features dropped for each experiment were

logged and are presented in Appendix D.

Experiment 1

This experiment tested the model’s performance on static analysis alerts from 95

versions of PhpMyAdmin from version 2.2.0 to version 4.0.9. This data set included

12,296 alerts. There was an improvement in the classification accuracy of alerts using the

feature selection model. Model A had an accuracy of 84.52% and a false positive rate of

11.85% on 172 features while Model B’s best performance had an accuracy of 89.9% and

a false positive rate of 10.66% from utilizing only 94 features.

There was an increased accuracy of 6.35%, a decrease in the false positive rate of

10%, and a feature set reduction of 45.35%.

	

	

64	 	

Table	8	Experiment	1	Results		

 Model A Model B % Change

Accuracy 84.52 89.90 6.35

Recall 84.52 89.90 6.35

Precision 84.85 89.90 5.95

F-Measure 84.49 89.90 6.40

FPR 11.85 10.66 -10.04

Feature Count 172 94 - 45.35

*numbers in percentages

Experiment 2

This experiment tested the model’s performance on static analysis alerts from 71

versions of Moodle from version 1.0.0 to version 2.6.1. This data set included 23,398

alerts. There was an improvement in the classification accuracy of alerts using the feature

selection model. Model A had an accuracy of 65.72% and a false positive rate of 38.6%

on 172 features while Model B’s best performance had an accuracy of 83.24% and a false

positive rate of 21.61% from utilizing only 80 features.

There was an increased accuracy of 26.66%, a decrease in the FPR of 44%, and a

feature set reduction of 53.49%.

Table	9	Experiment	2	Results	

 Model A Model B % Change

Accuracy 65.72 83.24 26.66

Recall 65.91 83.24 26.29

Precision 67.84 84.17 24.07

F-Measure 64.84 83.15 28.24

FPR 38.60 21.61 -44.02

Feature Count 172 80 -53.49

*numbers in percentages

	

	

65	 	

Experiment 3

Experiment 3 tested the model’s performance on static analysis alerts from 38 versions

of Drupal from version 6.0.0 to version 6.38. This data set included 960 alerts. There was

an improvement in the classification accuracy of alerts using the feature selection model.

Model A had an accuracy of 69.72% and a false positive rate of 36.28% on 162 features

while Model B’s best performance had an accuracy of 83.6% and a false positive rate of

20.93% from utilizing only 85 features.

There was an increased accuracy of 19.91%, a decrease in the FPR of 42.31%, and a

feature set reduction of 47.53%.

Table	10	Experiment	3	Results	

 Model A Model B % Change

Accuracy 69.72 83.60 19.91

Recall 70.34 83.60 18.85

Precision 72.13 84.22 16.76

F-Measure 69.25 83.57 20.68

FPR 36.28 20.93 -42.31

Feature Count 162 85 -47.53

*numbers in percentages

Experiment 4

Experiment 4 tested the model’s performance on static analysis alerts across projects.

Models were trained using PhpMyAdmin and Moodle data and then tested on Drupal

data. This data set included 21,186 alerts. This experiment was the longest running

experiment. Improvement was not anticipated for this test. There was an improvement in

the classification accuracy of alerts using the feature selection model; however, there was

also an increase in the false positive rate.

	

	

66	 	

Model A had an accuracy of 63.54% and a false positive rate of 16.5% on 174 features

while Model B’s best performance had an accuracy of 70.63% and a false positive rate of

22.5% from utilizing only 79 features.

There was an increased accuracy of 11.16%, an increase in the FPR of 36.36%, and a

feature set reduction of 54.6%.

This was the only experiment that increased the false positive rate. The increased

accuracy was not consistent amongst all GAs tested for this experiment. Full results for

each GA tested is in Appendix C.

Table	11	Experiment	4	Results	

 Model A Model B % Change

Accuracy 63.54 70.63 11.16

Recall 63.54 70.63 11.16

Precision 71.00 72.00 1.41

F-Measure 59.99 70.16 16.95

FPR 16.50 22.50 36.36

Feature Count 174 79 -54.60

*numbers in percentages

Experiment 5

This experiment tested the model’s performance on static analysis alerts for version

prediction of PhpMyAdmin. Models were trained on data from PhpMyAdmin versions

2.2.0 to 3.4.9 and then tested on data from PhpMyAdmin versions 3.5.0 to 4.0.9. This

data set included 32,499 alerts. There was an improvement in the classification accuracy

of alerts using the feature selection model. Model A had an accuracy of 69.49% and a

false positive rate of 20% on 174 features while Model B’s best performance had an

accuracy of 82.92% and a false positive rate of 16.71% from utilizing only 75 features.

	

	

67	 	

There was an increased accuracy of 19.33%, a decrease in the FPR of 16.49%, and a

feature set reduction of 56.9%.

Table	12	Experiment	5	Results	

 Model A Model B % Change

Accuracy 69.49 82.92 19.33

Recall 69.49 82.92 19.33

Precision 70.99 82.78 16.61

F-Measure 70.04 82.12 17.25

FPR 20.01 16.71 -16.49

Feature Count 174 75 -56.90

*numbers in percentages

Experiment 6

This experiment tested the model’s performance on static analysis alerts across all

three projects. Due to the imbalance in alert quantities from the project specific data sets,

two tests were performed. One test was performed on a data set that randomly selected

alerts from the main project data sets disregarding imbalanced alert quantities, 6A.

Another test was performed on a data set that ensured that there were equal alerts from

each project represented in the data set, 6B.

For 6A, the data set included 20,390 alerts. There was an improvement in the

classification accuracy of alerts using the feature selection model. Model A had an

accuracy of 74.94% and a false positive rate of 30.67% on 174 features while Model B’s

best performance had an accuracy of 82.52% and a false positive rate of 20.18% from

utilizing only 65 features.

There was an increased accuracy of 10.12%, a decrease in the FPR of 34.2%, and a

feature set reduction of 62.64%.

	

	

68	 	

Table	13	Experiment	6A	Results	

 Model A Model B % Change

Accuracy 74.94 82.52 10.12

Recall 75.00 82.52 10.03

Precision 77.14 82.78 7.31

F-Measure 74.45 82.49 10.80

FPR 30.67 20.18 -34.20

Feature Count 174 65 -62.64

*numbers in percentages

For 6B, the data set included 2,880 alerts. There was an improvement in the

classification accuracy of alerts using the feature selection model. Model A had an

accuracy of 77.71% and a false positive rate of 21.43% on 174 features while Model B’s

best performance had an accuracy of 81.49% and a false positive rate of 18.75% from

utilizing only 87 features.

There was an increased accuracy of 4.86%, a decrease in the FPR of 12.51%, and a

feature set reduction of 50%.

Table	14	Experiment	6B	Results	
 Model A Model B % Change

Accuracy 77.71 81.49 4.86

Recall 77.71 81.49 4.86

Precision 77.73 81.50 4.85

F-Measure 77.70 81.49 4.88

FPR 21.43 18.75 -12.51

Feature Count 174 87 -50.00

*all numbers in percentages

Research Questions Answered

The research questions were answered based on the results from the experiments. This

included the model performance and feature subset commonalities. Below are the

	

	

69	 	

answers to the research questions asked. For reference, a list of the Top Performing

Feature Subsets for all experiments are presented in Appendix E.

1. Did the proposed model improve the classification of alerts?

Yes. The lowest performing experiment, Experiment 6B, resulted in an

accuracy improvement of 4.86% and a false positive rate improvement of

12.51%. This was accomplished on a feature set reduced by 50%. The best

performing experiment, Experiment 2, resulted in an accuracy improvement of

26.66% and a false positive rate improvement of 44%. This was accomplished

on a feature set reduced by 53.49%.

2. Did selected feature subsets from the proposed model vary between projects?

Yes, feature subsets did vary between projects.

3. Were some features never selected?

Only one feature was not selected by any top performing feature subset,

destination file to version alert line of code ratio.

4. Similarly, were some features always selected?

Yes. In all experiments the top performing feature subset included the matched

CVE Boolean. A complete list of top performing feature subsets is presented in

Appendix E.

	

	

70	 	

Chapter 5

Conclusions and Summary

Conclusions

This research evidenced that the feature selection methodologies do increase the

classification accuracy and reduce the false positive rate in the classification of static

analysis alerts. In particular, genetic feature selection methodologies showed statistically

significant increases in the classification accuracy of alerts over a model leveraging all

features. In brief, the feature selection model presented showed increase accuracy on the

classification of alerts on a reduced feature set.

The only feature that was selected in all experiments was the CVE matched Boolean.

The second highest selected features in 6 of the 7 experiments were: the destination file’s

line, and sum Cyclomatic modified; in OWASP 2013 Boolean; and the source file’s

average blank lines, average lines of code, line count, count of declarative statements,

and JavaScript count of declarative statements.

There was only one feature that was never selected outside of dropped features and

that was the destination file to version alert line of code ratio. Other less popular features

only selected in one experiment were: the source and destination file deleted lines; the

destination file original data sets Cyclomatic complexity, average cyclomatic strict, count

of declarative files, path count, ratio of comment to code; the OWASP 2017 Boolean; and

the source file Halstead’s volume, percent modified, average Cyclomatic modified, count

of blank HTML lines, code line count, path count, count of executable PHP statements,

and maximum nesting complexity.

	

	

71	 	

The feature selection model performed well on the three experiments that tested same

project alert classification. Experiments 1, 2, and 3 showed accuracy improvements of

6%, 27%, and 20% with false positive rate reductions of 10%, 44% and 42%. The

reduction in feature sets was also significant. The features sets were reduced by 45%,

53%, and 48%, respectively. This validates that the feature selection model improved the

classification accuracy and reduced the false positive rate by training models using

around half of the features from the original set specified.

The feature selection model also performed well for version prediction. Experiment 5

had an accuracy improvement of 19.33% and a false positive rate reduction of 16.49%.

This was on a feature set that was reduced by 56.9%. This indeed showed that new

version static analysis alerts may be classified using previous version alerts with a

significantly reduced feature set.

Interestingly, the feature selection model increased accuracy and but also increased the

false positive rate. On cross-project prediction, the model showed an increase in accuracy

over 11% on a feature set reduced by 55%.

It was shown that the feature selection model also improved classification accuracy on

data sets that combined alerts from several projects. The accuracy increased by 10% and

the false positive rate was reduced by 34% using only 62% of the features.

For each experiment the model was tested on several genetic algorithm instances

utilizing different settings for population size, generations, cross-over rates, mutation

rates, and termination conditions. Of the multiple tests per experiment, there were only a

few instances in which the model did not outperform the control. These were in

Experiments 4 and 6B. This is interesting because Experiment 4 was the cross-project

	

	

72	 	

test. Improvement was not anticipated; however, 40% of the genetic tests performed

showed better accuracy while using less than half of the features. In Experiment 6B, only

two of the 12 genetic tests performed did not show improvement in accuracy over the

control; however, the accuracies of those two instances were within one percentage point

of the control yet used around half of the features. In all other experiments, the feature

selection model always outperformed the control.

Output from the experiments included the average accuracy of the top ten performing

feature sets, chromosomes, for each test. If the average of the top ten chromosomes was

significantly different than the top performing chromosome, it could be determined that

the feature set is unique. Similarly, if the average accuracies and the top performer

accuracies are closer in range, it may indicate that there are several feature sets that

would produce similar accuracies. Results indicate that the average accuracies of the top

ten chromosomes in the final populations were similar to the top preforming

chromosomes, or feature sets, in the final populations. This indicates that there are

multiple feature sets that may provide similar accuracy results. The Average Top Ten

Accuracy metric may be found in Appendix C.

In summary, the feature selection model performed well on all tests performed. By

using this model to classify alerts generated from static analysis tools, there can be

increased confidence in their classifications. Additionally, more focus could be placed on

gathering relevant predictive features rather than irrelevant features. In practice, by

gathering these additional predictive features and implementing this feature selection

model, static analysis alerts could be more confidently classified prior to the analysis of

scan results or any alert investigation is commenced.

	

	

73	 	

This study is presented with limitations. A main limitation was the creation of the data

set. Although an initial data set was used in previous research, the addition of the static

analysis alerts changed the composition, features, and size of the data set significantly.

Automatic labeling of alerts was performed based on historical data and some manual

investigation performed. Ideally, every alert in the data set should be manually verified as

true or false. Thus, although this work provides a data set, future research into creating a

labeled real-world static analysis alert data set should ensue. Perhaps the data set could be

improved as a future update. However, this data set offers a starting point in the pursuit of

a real-world labeled static analysis data set. It allows future research to utilize this data

set to compare static analysis machine learning models to one another.

Another limitation was the analysis of projects containing mainly one programming

language. Ancillary languages were included for instance JavaScript and HTML;

however, the main language for the analysis was PHP.

Implications and Recommendations

The impacts of this work on the static analysis domain is meaningful. This work has

presented a real-world static analysis data set based upon three open source PHP

applications that may be used in future research efforts. As part of this work, this data set

is now published and freely available for other researchers use. This is a significant

addition to the domain. Additionally, the framework for generating static analysis data

sets has been enhanced to include additional security related features. This framework

could also be used to create other real-world static analysis data sets. Continued research

that produces and publishes labeled real-world static analysis data sets is still needed.

	

	

74	 	

A significant addition to the knowledge base is the evidence that software metric

features were consistently selected as relevant features in the improved classification

accuracy of static analysis alerts. The static analysis literature has often focused on

histories with limited file or software metrics. Further research to explore the association

between software code metrics and static analysis alert classification could prove

promising.

The main contribution of this work, however, is a feature selection method that

improves the classification of static analysis alerts, ergo, reducing the false positive rate.

Research of other feature selection methods and the further investigation into relevant

feature sets for static analysis alert classification could be further explored.

Summary

It is imperative that software being developed is secure and free from security

vulnerabilities and bugs. One method to assist in detecting insecure code is to perform

static code analysis. Currently, static analysis tools present developers with a high

amount of false positive and unactionable alerts. The goal of this research effort was to

develop and evaluate methods for feature selections that helped to improve the

classification accuracy of static analysis alerts; thereby, addressing the problem of high

false positive rates. This research effort presented and tested a novel method leveraging

feature selection that resulted in the improved classification of alerts.

A review of the extant literature and history of the static analysis domain was

performed. The domain’s current problems were discussed. Motivating factors for the

continued research were clearly outlined and a goal for the research effort was posited.

	

	

75	 	

Research questions that guided this research were presented and answered. Barriers,

limitations, and assumptions were identified.

A genetic feature selection method was presented as a potential solution. Genetic

algorithm methodologies were explored and the model’s specifications outlined. A

support vector machine classification method was chosen and a review of the classifier

specifics was presented.

Candidate test suites and data sets were evaluated. An existing data set was selected

and enhanced. A detailed and literature justified framework for both the data sets usage

and enhancement method was thoroughly investigated, described, and executed. The data

set generation process was followed with some additions. In addition, the CVEs, release

notes, security notices, and change logs were gathered, and the bug report systems

queried. This additional information was used to assist in alert labeling and feature

generation.

From the original dataset, Drupal versions were expanded to include 38 versions from

6.0.0 to 6.38. The PhpMyAdmin and Moodle versions evaluated remained unchanged.

397 additional CVEs were discovered.

Each release of each application was scanned by each tool and the resulting alerts

labeled. Work was performed to match auxiliary information such as change logs,

security notices, release notes, bug tracking systems, and CVEs to the alerts. For labeling,

alerts were tracked between versions and auxiliary information inspected. Additional

software metrics were gathered and merged to augment the data set to create a static

analysis data set.

	

	

76	 	

The result of this process was a data set for each project containing labeled real-world

static analysis alerts from three static analysis scanners, complete with source code

metrics and historical features of the alerts. The raw data sets totaled 256,198 alerts.

Prior to running experiments, the respective raw data sets were pre-processed. After

pre-processing the data sets were split into train and test sets. Once train and test sets

were created, the experiments were performed.

Experiments were executed to train and evaluate the feature selection model. The

model’s selected feature subsets and classification performance metrics were exported for

each experiment. To measure improved classification accuracy, the feature selection

model was compared with a similar model that excluded the feature selection component.

In essence, for each experiment, a SVM classifier was trained and tested on the same

train and test data sets and compared to the feature selection model’s performance.

Several experiments ensued. These included a test for each project, a test for all

projects in aggregate, a version prediction test, and a cross-project predication test. The

model’s performance metrics for each experiment was compared with the control

classifier’s performance on all features.

Results were presented showing increased classification accuracies and lower false

positive rates in all experiments using reduced feature sets generated using a genetic

algorithm. It was shown that predictions could be made about alert classifications within

the same projects. It was also shown that alert classification predictions could be made on

future project versions. Interestingly, the model even showed improvements on cross-

project alert classification predictions; however, the projects tested were all of a similar

language and structure as they were all open source PHP applications.

	

	

77	 	

Conclusions, limitations, implications, and impacts to the domain were discussed.

Some directions of future research were identified.

Succinctly, a feature selection method was presented, developed, and evaluated. A

data set was selected and enhanced. The final data set was composed of static analysis

alerts generated from three scanning tools on the source code of three open source PHP

projects spanning several years. Once data was gathered and preprocessed, the data was

split into train and test sets. A genetic feature selection model was trained and tested on

the train and test sets respectively. The process was performed iteratively, testing selected

feature subsets for an improvement in classification accuracy in an embedded fashion.

This process resulted in a subset of relevant features for the classification of the alerts.

The results were compared to a classification model, sans feature selection, to quantify

the classification improvement of the feature selection model. There were statistically

significant improvements in the classification accuracy of the alerts using a reduced

feature set. Therefore, feature selection methods can be used to increase the classification

accuracy of static analysis alerts and, thereby reduce the false positive rate.

	

	

78	 	

Appendix A

List and Descriptions of Features
FEATURE NAME ORIGIN DESCRIPTION
ALERT_LIFETIME Engineered Age of the alert.
CATEGORY Alert Category of the warning.
CODE_BUG_VULN Alert Type of alert.
COMMITTED_DATE Git The commit date of the file.
CVE_ID Engineered The CVE id associated with the alert.

CWE_ID Alert The CWE associated with the alert.
DEST_CREATED_DATE Git The date the file was created.
DEST_FILE_AGE Engineered Age of file from creation date.
DEST_FILE_CHURN Engineered Sum of lines added, modified, and deleted.
DEST_FILE_CLOC Engineered Number of commented lines of code.
DEST_FILE_COLUMN Alert Column of the variable, the location on the line.
DEST_FILE_COMPLETE Alert The complete file name including the path.
DEST_FILE_EDIT_FREQUENCY Engineered Number of times a file has been edited.
DEST_FILE_ELOC Engineered Empty lines of code.

DEST_FILE_EXT Alert Extension / type of the file.
DEST_FILE_FOLDER Alert Immediate folder the file lives in.
DEST_FILE_FUNCTION_VAR Alert Function or method the alert is originating from.
DEST_FILE_GROWTH Engineered Difference between lines added and deleted.
DEST_FILE_LINE Alert Destination line of code
DEST_FILE_LINES_ADDED Git Number of lines added.
DEST_FILE_LINES_DELETED Git Number of lines deleted.
DEST_FILE_LOC Engineered Lines of code in the file.

DEST_FILE_NAME Alert Name of the file.
DEST_FILE_orig_ccom Dataset Cyclomatic complexity, the number of independent paths through a

function.
DEST_FILE_orig_ccomdeep Dataset Deep cyclomatic complexity.
DEST_FILE_orig_hvol Dataset Halstead's Volume estimate (((N1 + N2)) logn1 + n1) using the

number of unique operators (n1) and operands (n1) and the number
of total operators (N1) and operands (N2) in the file.

DEST_FILE_orig_loc Dataset Lines of code in the file.
DEST_FILE_orig_nest Dataset Maximum depth for nested loops and control structures in the file.
DEST_FILE_orig_nIncomingCalls Dataset Number of incoming calls.
DEST_FILE_orig_nIncomingCallsUniq Dataset Number of unique incoming calls.
DEST_FILE_orig_nmethods Dataset Number of methods.
DEST_FILE_orig_nonecholoc Dataset Number of empty lines of code.
DEST_FILE_orig_nOutgoingExternCallsUniq Dataset Number of unique external calls.
DEST_FILE_orig_nOutgoingExternFlsCalled Dataset Number of external files called.
DEST_FILE_orig_nOutgoingExternFlsCalledUniq Dataset Number of unique external files called.
DEST_FILE_orig_nOutgoingInternCalls Dataset Number of internal calls.
DEST_FILE_PATH Alert Complete directory path of the file.
DEST_FILE_PERCENT_MODIFIED Engineered Percent of total modified lines.
DEST_FILE_SIZE Engineered Size of the file.

DEST_FILE_STALENESS Engineered Time from last change of the file.
DEST_FILE_VERSION_ALERT_COUNT Engineered Number of alerts for the file.
DEST_FILE_VERSION_ALERT_LOC_RATIO Engineered Percent of alerts in the file to the LOC of the file.
DEST_LAST_AUTHOR_EMAIL Git The files last authors email.
DEST_LAST_AUTHOR_NAME Git The files last authors name.
DEST_LAST_EDITED_DATE Git The files last eedited date.

	

	

79	 	

DEST_UNDRSTD_AvgCyclomatic Metrics Tool Average cyclomatic complexity for all nested functions or methods.
DEST_UNDRSTD_AvgCyclomaticModified Metrics Tool Average modified cyclomatic complexity for all nested functions or

methods.
DEST_UNDRSTD_AvgCyclomaticStrict Metrics Tool Average strict cyclomatic complexity for all nested functions or

methods.
DEST_UNDRSTD_AvgEssential Metrics Tool Average strict cyclomatic complexity for all nested functions or

methods.
DEST_UNDRSTD_AvgLine Metrics Tool Average number of lines for all nested functions or methods.
DEST_UNDRSTD_AvgLineBlank Metrics Tool Average number of blank for all nested functions or methods.
DEST_UNDRSTD_AvgLineCode Metrics Tool Average number of lines containing source code for all nested

functions or methods.
DEST_UNDRSTD_AvgLineComment Metrics Tool Average number of lines containing comment for all nested

functions or methods.
DEST_UNDRSTD_CountDeclClass Metrics Tool Number of classes.
DEST_UNDRSTD_CountDeclExecutableUnit Metrics Tool Executable Statements
DEST_UNDRSTD_CountDeclFile Metrics Tool Number of files.
DEST_UNDRSTD_CountDeclFunction Metrics Tool Number of functions.
DEST_UNDRSTD_CountLine Metrics Tool Number of all lines.
DEST_UNDRSTD_CountLine_Html Metrics Tool Number of all html lines.
DEST_UNDRSTD_CountLine_Javascript Metrics Tool Number of all javascript lines.
DEST_UNDRSTD_CountLine_Php Metrics Tool Number of all php lines.
DEST_UNDRSTD_CountLineBlank Metrics Tool Number of blank lines.
DEST_UNDRSTD_CountLineBlank_Html Metrics Tool Number of blank html lines.
DEST_UNDRSTD_CountLineBlank_Javascript Metrics Tool Number of blank javascript lines.
DEST_UNDRSTD_CountLineBlank_Php Metrics Tool Number of blank php lines.
DEST_UNDRSTD_CountLineCode Metrics Tool Number of lines containing source code.
DEST_UNDRSTD_CountLineCode_Javascript Metrics Tool Number of javascript lines containing source code.
DEST_UNDRSTD_CountLineCode_Php Metrics Tool Number of php lines containing source code.
DEST_UNDRSTD_CountLineComment Metrics Tool Number of lines containing comment.
DEST_UNDRSTD_CountLineComment_Html Metrics Tool Number of html lines containing comment.
DEST_UNDRSTD_CountLineComment_Javascript Metrics Tool Number of javascript lines containing comment.
DEST_UNDRSTD_CountLineComment_Php Metrics Tool Number of php lines containing comment.
DEST_UNDRSTD_CountPath Metrics Tool Number of possible paths, not counting abnormal exits or gotos.
DEST_UNDRSTD_CountPathLog Metrics Tool Log10, truncated to an integer value, of the metric CountPath
DEST_UNDRSTD_CountStmt Metrics Tool Number of statements.
DEST_UNDRSTD_CountStmtDecl Metrics Tool Number of declarative statements.
DEST_UNDRSTD_CountStmtDecl_Javascript Metrics Tool Number of javascript declarative statements.
DEST_UNDRSTD_CountStmtDecl_Php Metrics Tool Number of php declarative statements.
DEST_UNDRSTD_CountStmtExe Metrics Tool Number of executable statements.
DEST_UNDRSTD_CountStmtExe_Javascript Metrics Tool Number of javascript executable statements.
DEST_UNDRSTD_CountStmtExe_Php Metrics Tool Number of php executable statements.
DEST_UNDRSTD_Cyclomatic Metrics Tool Cyclomatic complexity.
DEST_UNDRSTD_CyclomaticModified Metrics Tool Modified cyclomatic complexity.
DEST_UNDRSTD_CyclomaticStrict Metrics Tool Strict cyclomatic complexity.
DEST_UNDRSTD_Essential Metrics Tool Essential complexity.
DEST_UNDRSTD_MaxCyclomatic Metrics Tool Maximum cyclomatic complexity of all nested functions or

methods.
DEST_UNDRSTD_MaxCyclomaticModified Metrics Tool Maximum modified cyclomatic complexity of nested functions or

methods.
DEST_UNDRSTD_MaxEssential Metrics Tool Maximum essential complexity of all nested functions or methods.
DEST_UNDRSTD_MaxInheritanceTree Metrics Tool Maximum depth of class in inheritance tree.
DEST_UNDRSTD_MaxNesting Metrics Tool Maximum nesting level of control constructs.
DEST_UNDRSTD_RatioCommentToCode Metrics Tool Ratio of comment lines to code lines.
DEST_UNDRSTD_SumCyclomatic Metrics Tool Sum of cyclomatic complexity of all nested functions or methods.
DEST_UNDRSTD_SumCyclomaticModified Metrics Tool Sum of modified complexity of all nested functions or methods.
DEST_UNDRSTD_SumCyclomaticStrict Metrics Tool Sum of strict cyclomatic complexity of all nested functions or

methods.

	

	

80	 	

DEST_UNDRSTD_SumEssential Metrics Tool Sum of essential complexity of all nested functions or methods.
FILES_IN_PATH Engineered Number of files the path of the alert traverses through.
IN_OWASP_2013 Alert Is alert in the top ten OWASP 2013.
IN_OWASP_2017 Alert Is alert in the top ten OWASP 2017.
LANGUAGE Alert The programming language generating the alert.
MATCHED_CVE Engineered Is there an associated CVE with the alert.
NUM_PATH_HOPS Engineered Then number of hops in the alert path from source to destination.
OWASP_TOP_TEN_2013 Alert The OWASP Top Ten 2013 category.
OWASP_TOP_TEN_2017 Alert The OWASP Top Ten 2017 category.
PRIORITY Alert Priority of the alert from tool.
PROJECT Scan Project the alert resides in.
SOURCE_CREATED_DATE Git The date the file was created.
SOURCE_DEST_SAME_FILE Engineered Are the sourc and destination the same.
SOURCE_FILE_AGE Engineered Age of file from creation date.
SOURCE_FILE_CHURN Engineered Sum of lines added, modified, and deleted.
SOURCE_FILE_CLOC Engineered Number of commented lines of code.
SOURCE_FILE_COLUMN Alert Column of the variable, the location on the line.
SOURCE_FILE_COMPLETE Alert The complete file name including the path.
SOURCE_FILE_EDIT_FREQUENCY Engineered Number of times a file has been edited.
SOURCE_FILE_ELOC Engineered Empty lines of code.
SOURCE_FILE_EXT Alert Extension / type of the file.
SOURCE_FILE_FOLDER Alert Immediate folder the file lives in.
SOURCE_FILE_FUNCTION_VAR Alert Function or method the alert is originating from.
SOURCE_FILE_GROWTH Engineered Difference between lines added and deleted.
SOURCE_FILE_LINE Alert Source line of code.
SOURCE_FILE_LINES_ADDED Git Number of lines added.
SOURCE_FILE_LINES_DELETED Git Number of lines deleted.
SOURCE_FILE_LOC Engineered Lines of code in the file.
SOURCE_FILE_NAME Alert Name of the file.
SOURCE_FILE_orig_ccom Dataset Cyclomatic complexity, the number of independent paths through a

function.
SOURCE_FILE_orig_ccomdeep Dataset Deep cyclomatic complexity.
SOURCE_FILE_orig_hvol Dataset Halstead's Volume estimate (((N1 + N2)) logn1 + n1) using the

number of unique operators (n1) and operands (n1) and the number
of total operators (N1) and operands (N2) in the file.

SOURCE_FILE_orig_loc Dataset Lines of code in the file.
SOURCE_FILE_orig_nest Dataset Maximum depth for nested loops and control structures in the file.
SOURCE_FILE_orig_nIncomingCalls Dataset Number of incoming calls.
SOURCE_FILE_orig_nIncomingCallsUniq Dataset Number of unique incoming calls.
SOURCE_FILE_orig_nmethods Dataset Number of methods.
SOURCE_FILE_orig_nonecholoc Dataset Number of empty lines of code.
SOURCE_FILE_orig_nOutgoingExternCallsUniq Dataset Number of unique external calls.
SOURCE_FILE_orig_nOutgoingExternFlsCalled Dataset Number of external files called.
SOURCE_FILE_orig_nOutgoingExternFlsCalledUniq Dataset Number of unique external files called.
SOURCE_FILE_orig_nOutgoingInternCalls Dataset Number of internal calls.
SOURCE_FILE_PATH Alert Complete directory path of the file.
SOURCE_FILE_PERCENT_MODIFIED Engineered Percent of total modified lines.
SOURCE_FILE_SIZE Engineered Size of the file.
SOURCE_FILE_STALENESS Engineered Time from last change of the file.
SOURCE_FILE_VERSION_ALERT_COUNT Engineered Number of alerts for the file.
SOURCE_FILE_VERSION_ALERT_LOC_RATIO Engineered Percent of alerts in the file to the LOC of the file.
SOURCE_LAST_AUTHOR_EMAIL Git The files last authors email.
SOURCE_LAST_AUTHOR_NAME Git The files last authors name.
SOURCE_LAST_EDITED_DATE Git The files last eedited date.
SOURCE_UNDRSTD_AvgCyclomatic Metrics Tool Average cyclomatic complexity for all nested functions or methods.

	

	

81	 	

SOURCE_UNDRSTD_AvgCyclomaticModified Metrics Tool Average modified cyclomatic complexity for all nested functions or
methods.

SOURCE_UNDRSTD_AvgCyclomaticStrict Metrics Tool Average strict cyclomatic complexity for all nested functions or
methods.

SOURCE_UNDRSTD_AvgEssential Metrics Tool Average strict cyclomatic complexity for all nested functions or
methods.

SOURCE_UNDRSTD_AvgLine Metrics Tool Average number of lines for all nested functions or methods.
SOURCE_UNDRSTD_AvgLineBlank Metrics Tool Average number of blank for all nested functions or methods.
SOURCE_UNDRSTD_AvgLineCode Metrics Tool Average number of lines containing source code for all nested

functions or methods.
SOURCE_UNDRSTD_AvgLineComment Metrics Tool Average number of lines containing comment for all nested

functions or methods.
SOURCE_UNDRSTD_CountDeclClass Metrics Tool Number of classes.
SOURCE_UNDRSTD_CountDeclExecutableUnit Metrics Tool Executable Statements
SOURCE_UNDRSTD_CountDeclFile Metrics Tool Number of files.
SOURCE_UNDRSTD_CountDeclFunction Metrics Tool Number of functions.
SOURCE_UNDRSTD_CountLine Metrics Tool Number of all lines.
SOURCE_UNDRSTD_CountLine_Html Metrics Tool Number of all html lines.
SOURCE_UNDRSTD_CountLine_Javascript Metrics Tool Number of all javascript lines.
SOURCE_UNDRSTD_CountLine_Php Metrics Tool Number of all php lines.
SOURCE_UNDRSTD_CountLineBlank Metrics Tool Number of blank lines.
SOURCE_UNDRSTD_CountLineBlank_Html Metrics Tool Number of blank html lines.
SOURCE_UNDRSTD_CountLineBlank_Javascript Metrics Tool Number of blank javascript lines.
SOURCE_UNDRSTD_CountLineBlank_Php Metrics Tool Number of blank php lines.
SOURCE_UNDRSTD_CountLineCode Metrics Tool Number of lines containing source code.
SOURCE_UNDRSTD_CountLineCode_Javascript Metrics Tool Number of javascript lines containing source code.
SOURCE_UNDRSTD_CountLineCode_Php Metrics Tool Number of php lines containing source code.
SOURCE_UNDRSTD_CountLineComment Metrics Tool Number of lines containing comment.
SOURCE_UNDRSTD_CountLineComment_Html Metrics Tool Number of html lines containing comment.
SOURCE_UNDRSTD_CountLineComment_Javascrip
t

Metrics Tool Number of javascript lines containing comment.

SOURCE_UNDRSTD_CountLineComment_Php Metrics Tool Number of php lines containing comment.
SOURCE_UNDRSTD_CountPath Metrics Tool Number of possible paths, not counting abnormal exits or gotos.
SOURCE_UNDRSTD_CountPathLog Metrics Tool Log10, truncated to an integer value, of the metric CountPath
SOURCE_UNDRSTD_CountStmt Metrics Tool Number of statements.
SOURCE_UNDRSTD_CountStmtDecl Metrics Tool Number of declarative statements.
SOURCE_UNDRSTD_CountStmtDecl_Javascript Metrics Tool Number of javascript declarative statements.
SOURCE_UNDRSTD_CountStmtDecl_Php Metrics Tool Number of php declarative statements.
SOURCE_UNDRSTD_CountStmtExe Metrics Tool Number of executable statements.
SOURCE_UNDRSTD_CountStmtExe_Javascript Metrics Tool Number of javascript executable statements.
SOURCE_UNDRSTD_CountStmtExe_Php Metrics Tool Number of php executable statements.
SOURCE_UNDRSTD_Cyclomatic Metrics Tool Cyclomatic complexity.
SOURCE_UNDRSTD_CyclomaticModified Metrics Tool Modified cyclomatic complexity.
SOURCE_UNDRSTD_CyclomaticStrict Metrics Tool Strict cyclomatic complexity.
SOURCE_UNDRSTD_Essential Metrics Tool Essential complexity.
SOURCE_UNDRSTD_MaxCyclomatic Metrics Tool Maximum cyclomatic complexity of all nested functions or

methods.
SOURCE_UNDRSTD_MaxCyclomaticModified Metrics Tool Maximum modified cyclomatic complexity of nested functions or

methods.
SOURCE_UNDRSTD_MaxEssential Metrics Tool Maximum essential complexity of all nested functions or methods.
SOURCE_UNDRSTD_MaxInheritanceTree Metrics Tool Maximum depth of class in inheritance tree.
SOURCE_UNDRSTD_MaxNesting Metrics Tool Maximum nesting level of control constructs.
SOURCE_UNDRSTD_RatioCommentToCode Metrics Tool Ratio of comment lines to code lines.
SOURCE_UNDRSTD_SumCyclomatic Metrics Tool Sum of cyclomatic complexity of all nested functions or methods.
SOURCE_UNDRSTD_SumCyclomaticModified Metrics Tool Sum of modified complexity of all nested functions or methods.
SOURCE_UNDRSTD_SumCyclomaticStrict Metrics Tool Sum of strict cyclomatic complexity of all nested functions or

methods.
SOURCE_UNDRSTD_SumEssential Metrics Tool Sum of essential complexity of all nested functions or methods.

	

	

82	 	

TOOL Scan The tool generating the alert.
TYPE Alert The type of alert as specified by the tool.
VERSION_ALERT_COUNT Scan The number alerts in the version scan results.
VERSION_LAST_SEEN Engineered The last version the alert was seen.
VERSION_START Scan The first version the alert was seen.

	

	

83	 	

Appendix B

Experiment Result Metrics

 Model A Model B Top Performer

 Accuracy Recall Precision F
Measure

FPR Feature
Count

Accuracy Recall Precision F
Measure

FPR Feature
Subset
Count

Experiment 1 84.52 84.52 84.85 84.49 11.85 172 89.90 89.90 89.90 89.90 10.66 94

Experiment 2 65.72 65.91 67.84 64.84 38.60 172 83.24 83.24 84.17 83.15 21.61 80

Experiment 3 69.72 70.34 72.13 69.25 36.28 162 83.60 83.60 84.22 83.57 20.93 85

Experiment 4* 63.54 63.54 71.00 59.99 16.50 174 70.63 70.63 72.00 70.16 22.50 79

Experiment 5* 69.49 69.49 70.99 70.04 20.01 174 82.92 82.92 82.78 82.12 16.71 75

Experiment 6A 74.94 75.00 77.14 74.45 30.67 174 82.52 82.52 82.78 82.49 20.18 65

Experiment 6B 77.71 77.71 77.73 77.70 21.43 174 81.49 81.49 81.50 81.49 18.75 87

*weighted

	

	

84		

Appendix C

GA Performance Metrics

EXP POPULATION Gens Mating Random
Selection

Mutation Imp. Thres. Avg. Top 10
Accuracy

Gen.
of Best

Set

Best Feature Set
Accuracy

Number
Features

Terminated Gen
Term.

1 200 500 0.7 0.01 0.025 0.003 0.89812716 206 0.898965 94 TRUE 283

1 200 500 0.8 0.05 0.03 0.0003 0.89645145 149 0.89674717 92 TRUE 251

1 150 100 0.75 0.03 0.02 0.003 0.89497289 49 0.89576146 86 TRUE 66

1 200 500 0.75 0.03 0.02 0.003 0.89517003 130 0.89576146 91 TRUE 207

1 150 50 0.8 0.05 0.03 0.0003 0.89231148 36 0.89354362 90 TRUE 48

1 150 50 0.75 0.05 0.03 0.0003 0.89078364 11 0.89280434 93 TRUE 20

1 100 50 0.8 0.05 0.03 0.0003 0.89083292 19 0.89280434 90 TRUE 31

1 100 50 0.7 0.01 0.025 0.003 0.89110399 20 0.89255791 92 TRUE 29

1 150 100 0.7 0.03 0.02 0.003 0.89112863 18 0.8915722 103 TRUE 35

1 50 20 0.7 0.01 0.025 0.003 0.88767866 12 0.8905865 84 TRUE 17

1 50 20 0.75 0.03 0.02 0.003 0.88851651 10 0.8905865 86 TRUE 15

1 100 50 0.75 0.03 0.02 0.003 0.88861508 11 0.8905865 86 TRUE 20

1 150 50 0.7 0.05 0.03 0.0003 0.88945293 8 0.89034007 81 TRUE 17

1 50 20 0.8 0.05 0.03 0.0003 0.88546082 6 0.88639724 85 TRUE 12

2 200 500 0.8 0.05 0.03 0.0003 0.83161098 434 0.83281533 80 TRUE 485

2 150 100 0.75 0.03 0.02 0.003 0.82645688 90 0.82750583 82 FALSE 0

2 150 100 0.7 0.03 0.02 0.003 0.82602953 70 0.82659933 78 TRUE 87

2 100 50 0.75 0.03 0.02 0.003 0.82341362 34 0.82530433 83 TRUE 43

2 150 50 0.8 0.05 0.03 0.0003 0.81801347 28 0.82012432 92 TRUE 40

2 100 50 0.7 0.01 0.025 0.003 0.81253561 9 0.81377881 85 TRUE 18

	

	

85		

2 100 50 0.8 0.05 0.03 0.0003 0.81003626 2 0.81339031 78 TRUE 14

2 50 20 0.75 0.03 0.02 0.003 0.80934991 15 0.81248381 88 TRUE 19

2 50 20 0.8 0.05 0.03 0.0003 0.7997928 0 0.80769231 84 TRUE 6

2 50 20 0.7 0.01 0.025 0.003 0.79853665 0 0.80549081 90 TRUE 5

3 200 500 0.8 0.05 0.03 0.0003 0.83312303 54 0.83596215 85 TRUE 156

3 150 200 0.7 0.01 0.025 0.003 0.83059937 32 0.83280757 72 TRUE 74

3 200 500 0.7 0.01 0.025 0.003 0.83280757 80 0.83280757 80 TRUE 182

3 200 500 0.75 0.03 0.02 0.003 0.83280757 78 0.83280757 82 TRUE 180

3 100 50 0.7 0.01 0.025 0.003 0.82429022 31 0.82649842 77 TRUE 43

3 150 100 0.75 0.03 0.02 0.003 0.82113565 34 0.82334385 84 TRUE 46

3 50 20 0.7 0.01 0.025 0.003 0.81104101 4 0.8170347 68 TRUE 10

3 150 50 0.8 0.05 0.03 0.0003 0.81230284 25 0.8170347 90 TRUE 37

3 50 20 0.8 0.05 0.03 0.0003 0.80157729 5 0.81388013 91 TRUE 11

3 100 50 0.75 0.03 0.02 0.003 0.80694006 18 0.81072555 90 TRUE 30

3 100 50 0.8 0.05 0.03 0.0003 0.80883281 17 0.81072555 87 TRUE 29

3 50 20 0.75 0.03 0.02 0.003 0.78990536 1 0.79495268 68 TRUE 7

4 200 500 0.8 0.05 0.03 0.0003 0.70625 340 0.70625 79 TRUE 442

4 150 100 0.7 0.03 0.02 0.005 0.6925 73 0.69375 91 TRUE 90

4 150 100 0.75 0.03 0.02 0.005 0.66145833 26 0.66666667 86 TRUE 43

4 100 50 0.8 0.05 0.03 0.0003 0.63739583 31 0.64583333 75 TRUE 41

4 150 50 0.8 0.05 0.03 0.0003 0.61895833 9 0.628125 84 TRUE 21

4 100 50 0.7 0.01 0.025 0.003 0.59958333 0 0.62291667 83 TRUE 9

4 100 50 0.75 0.03 0.02 0.003 0.610625 42 0.621875 81 FALSE 0

4 50 20 0.7 0.01 0.025 0.003 0.60552083 9 0.61458333 84 TRUE 14

4 50 20 0.8 0.05 0.03 0.0003 0.57677083 15 0.58229167 87 FALSE 0

4 50 20 0.75 0.03 0.02 0.003 0.56677083 0 0.571875 70 TRUE 5

5 200 500 0.75 0.03 0.02 0.003 0.829651692 343 0.8291552 75 TRUE 420

	

	

86		

5 200 500 0.7 0.01 0.025 0.003 0.802869819 158 0.819765037 78 TRUE 163

5 200 500 0.8 0.05 0.03 0.0003 0.81774634 303 0.8185654 75 TRUE 405

5 150 100 0.75 0.03 0.02 0.003 0.80976669 72 0.81082982 73 TRUE 89

5 100 50 0.8 0.05 0.03 0.0003 0.79044014 47 0.79453131 93 FALSE 0

5 150 100 0.7 0.03 0.02 0.003 0.78939356 40 0.79113924 77 TRUE 57

5 100 50 0.75 0.03 0.02 0.003 0.78895094 25 0.79113924 85 TRUE 34

5 150 50 0.8 0.05 0.03 0.0003 0.78173244 21 0.7895673 71 TRUE 33

5 100 50 0.7 0.01 0.025 0.003 0.77560602 22 0.78418963 88 TRUE 31

5 50 20 0.75 0.03 0.02 0.003 0.77086539 12 0.77732274 93 TRUE 17

5 150 50 0.75 0.05 0.03 0.0003 0.76498718 11 0.77467527 85 TRUE 20

5 150 50 0.7 0.05 0.03 0.0003 0.76208323 5 0.76648465 81 TRUE 14

5 50 20 0.8 0.05 0.03 0.0003 0.73612559 2 0.74195417 93 TRUE 8

5 50 20 0.7 0.01 0.025 0.003 0.72258625 1 0.73827252 77 TRUE 6

6A 200 500 0.75 0.03 0.02 0.003 0.813722693 215 0.8245234 65 TRUE 292

6A 200 500 0.8 0.05 0.03 0.0003 0.82235102 169 0.82315351 79 TRUE 271

6A 200 500 0.7 0.01 0.025 0.003 0.806244613 36 0.820627136 79 TRUE 68

6A 150 100 0.7 0.03 0.02 0.003 0.81821965 36 0.82032992 96 TRUE 53

6A 150 50 0.75 0.05 0.03 0.0003 0.81749145 18 0.81973547 92 TRUE 27

6A 100 50 0.8 0.05 0.03 0.0003 0.81500966 18 0.81899242 93 TRUE 30

6A 150 50 0.8 0.05 0.03 0.0003 0.81536632 18 0.81884381 84 TRUE 30

6A 100 50 0.75 0.03 0.02 0.003 0.81627285 35 0.81839798 83 TRUE 44

6A 150 100 0.75 0.03 0.02 0.003 0.81584188 42 0.81765493 87 TRUE 59

6A 100 50 0.7 0.01 0.025 0.003 0.81361272 20 0.81572299 91 TRUE 29

6A 50 20 0.7 0.01 0.025 0.003 0.81023926 4 0.81497994 98 TRUE 9

6A 50 20 0.8 0.05 0.03 0.0003 0.80105513 3 0.81483133 107 TRUE 9

6A 150 50 0.7 0.05 0.03 0.0003 0.81016496 3 0.81200773 95 TRUE 12

6A 50 20 0.75 0.03 0.02 0.003 0.79527419 2 0.80472581 75 TRUE 7

	

	

87		

6B 200 500 0.7 0.01 0.025 0.003 0.80883281 121 0.8149316 87 TRUE 198

6B 150 200 0.7 0.01 0.025 0.003 0.806204 77 0.80757098 73 TRUE 109

6B 200 500 0.75 0.03 0.02 0.003 0.80672976 111 0.80757098 76 TRUE 188

6B 200 500 0.8 0.05 0.03 0.0003 0.80672976 235 0.80757098 82 TRUE 337

6B 150 100 0.75 0.03 0.02 0.003 0.80105152 60 0.8044164 90 TRUE 77

6B 150 50 0.8 0.05 0.03 0.0003 0.79085174 31 0.79390116 69 TRUE 43

6B 100 50 0.8 0.05 0.03 0.0003 0.78548896 26 0.78864353 89 TRUE 38

6B 100 50 0.7 0.01 0.025 0.003 0.7849632 14 0.78759201 86 TRUE 23

6B 100 50 0.75 0.03 0.02 0.003 0.77539432 5 0.78443743 85 TRUE 14

6B 50 20 0.8 0.05 0.03 0.0003 0.77444795 9 0.78023134 80 TRUE 15

6B 50 20 0.75 0.03 0.02 0.003 0.76319664 4 0.76971609 82 TRUE 9

6B 50 20 0.7 0.01 0.025 0.003 0.75825447 1 0.76656151 84 TRUE 6

	

	

88	 	

Appendix D

Dropped Features by Experiment

FEATURE EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP 6 A/B

ALERT_LIFETIME X X X X
COMMITTED_DATE X X X X X X

CVE_ID X X X X X X

CWE_ID X X X X X X

DEST_CREATED_DATE X X X X X X

DEST_FILE_COMPLETE X X X X X X

DEST_FILE_FOLDER X X X X X X

DEST_FILE_FUNCTION_VAR X X X X X X

DEST_FILE_NAME X X X X X X

DEST_FILE_PATH X X X X X X

DEST_LAST_AUTHOR_EMAIL X X X X X X

DEST_LAST_AUTHOR_NAME X X X X X X

DEST_LAST_EDITED_DATE X X X X X X

DEST_UNDRSTD_AvgEssential X
DEST_UNDRSTD_CountDeclClass X
DEST_UNDRSTD_CountDeclFile X X X X X X

DEST_UNDRSTD_CountLine_Html X
DEST_UNDRSTD_CountLineBlank_Html X
DEST_UNDRSTD_CountLineComment_Html X
DEST_UNDRSTD_MaxInheritanceTree X X X X X X

PROJECT X X X X
SOURCE_CREATED_DATE X X X X X X

SOURCE_FILE_COMPLETE X X X X X X

SOURCE_FILE_FOLDER X X X X X X

SOURCE_FILE_FUNCTION_VAR X X X X X X

SOURCE_FILE_NAME X X X X X X

SOURCE_FILE_PATH X X X X X X

SOURCE_LAST_AUTHOR_EMAIL X X X X X X

SOURCE_LAST_AUTHOR_NAME X X X X X X

SOURCE_LAST_EDITED_DATE X X X X X X

SOURCE_UNDRSTD_AvgEssential X
SOURCE_UNDRSTD_CountDeclClass X
SOURCE_UNDRSTD_CountDeclFile X X X X X X

SOURCE_UNDRSTD_CountLine_Html X
SOURCE_UNDRSTD_CountLineBlank_Html X
SOURCE_UNDRSTD_CountLineComment_Html X
SOURCE_UNDRSTD_MaxInheritanceTree X X X X X X

VERSION_LAST_SEEN X X X X X X

VERSION_START X X X X X X

	

	

89	 	

Appendix E

Top Performing Feature Subsets by Experiment
FEATURE EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP

6A
EXP
6B

TOTAL

ALERT_LIFETIME

0
CATEGORY X X X

X X 5

CODE_BUG_VULN

X

X X X 4
COMMITTED_DATE

X

1

CVE_ID

0
CWE_ID

0

DEST_CREATED_DATE

0
DEST_FILE_AGE X

X

X X 4

DEST_FILE_CHURN

X

X 2
DEST_FILE_CLOC X X

2

DEST_FILE_COLUMN

X X X

X X 5
DEST_FILE_COMPLETE

0

DEST_FILE_EDIT_FREQUENCY

X

X 2
DEST_FILE_ELOC

X X X X

4

DEST_FILE_EXT

X X 2
DEST_FILE_FOLDER

0

DEST_FILE_FUNCTION_VAR

0
DEST_FILE_GROWTH

X

X 2

DEST_FILE_LINE X X X X X

X 6
DEST_FILE_LINES_ADDED X

X X

X

4

DEST_FILE_LINES_DELETED

X

1
DEST_FILE_LOC X

X X

3

DEST_FILE_NAME

X

1
DEST_FILE_orig_ccom

X

1

DEST_FILE_orig_ccomdeep

X X X

3
DEST_FILE_orig_hvol X

X

X X X 5

DEST_FILE_orig_loc

X X

X 3
DEST_FILE_orig_nest X X

X X 4

DEST_FILE_orig_nIncomingCalls

X

X 2
DEST_FILE_orig_nIncomingCallsUniq X

X

X 3

DEST_FILE_orig_nmethods X

X

X

3
DEST_FILE_orig_nonecholoc X

X

X 3

DEST_FILE_orig_nOutgoingExternCallsUniq

X

X

X

3
DEST_FILE_orig_nOutgoingExternFlsCalled X

X X X

4

DEST_FILE_orig_nOutgoingExternFlsCalledUniq

X X

2
DEST_FILE_orig_nOutgoingInternCalls X

X

2

DEST_FILE_PATH

0
DEST_FILE_PERCENT_MODIFIED X

X X X 4

DEST_FILE_SIZE X

X X X

4
DEST_FILE_STALENESS

X X X

3

DEST_FILE_VERSION_ALERT_COUNT X X X

X

X 5
DEST_FILE_VERSION_ALERT_LOC_RATIO

0

DEST_LAST_AUTHOR_EMAIL

0
DEST_LAST_AUTHOR_NAME

0

DEST_LAST_EDITED_DATE

0
DEST_UNDRSTD_AvgCyclomatic

X

X X 3

DEST_UNDRSTD_AvgCyclomaticModified X

X X X

4
DEST_UNDRSTD_AvgCyclomaticStrict X

1

DEST_UNDRSTD_AvgEssential X

X 2
DEST_UNDRSTD_AvgLine X

X 2

DEST_UNDRSTD_AvgLineBlank X

X

X X 4

	

	

90	 	

DEST_UNDRSTD_AvgLineCode

X

X X

3
DEST_UNDRSTD_AvgLineComment

X X X

X X 5

DEST_UNDRSTD_CountDeclClass X

X

2
DEST_UNDRSTD_CountDeclExecutableUnit X X X

X 4

DEST_UNDRSTD_CountDeclFile

X

1
DEST_UNDRSTD_CountDeclFunction

X X X

X 4

DEST_UNDRSTD_CountLine

X X

X X X 5
DEST_UNDRSTD_CountLine_Html X

X

2

DEST_UNDRSTD_CountLine_Javascript X X X X X

5
DEST_UNDRSTD_CountLine_Php

X X

X X X 5

DEST_UNDRSTD_CountLineBlank X X

X 3
DEST_UNDRSTD_CountLineBlank_Html X

X X

3

DEST_UNDRSTD_CountLineBlank_Javascript X X

X

X 4
DEST_UNDRSTD_CountLineBlank_Php X

X

X X X 5

DEST_UNDRSTD_CountLineCode X X X

X 4
DEST_UNDRSTD_CountLineCode_Javascript

X X

X 3

DEST_UNDRSTD_CountLineCode_Php X

X X X

4
DEST_UNDRSTD_CountLineComment

X

X X X

4

DEST_UNDRSTD_CountLineComment_Html

X

X X 3
DEST_UNDRSTD_CountLineComment_Javascript X

X

2

DEST_UNDRSTD_CountLineComment_Php

X

X

X 3
DEST_UNDRSTD_CountPath

X

1

DEST_UNDRSTD_CountPathLog X X X X X

5
DEST_UNDRSTD_CountStmt X X X

X X

5

DEST_UNDRSTD_CountStmtDecl X X X

X 4
DEST_UNDRSTD_CountStmtDecl_Javascript

X

X X

3

DEST_UNDRSTD_CountStmtDecl_Php X

X

X 3
DEST_UNDRSTD_CountStmtExe

X X

X

3

DEST_UNDRSTD_CountStmtExe_Javascript X X

X X 4
DEST_UNDRSTD_CountStmtExe_Php X X X

X

4

DEST_UNDRSTD_Cyclomatic

X

X

2
DEST_UNDRSTD_CyclomaticModified X

X

2

DEST_UNDRSTD_CyclomaticStrict X

X

2
DEST_UNDRSTD_Essential

X

X

X 3

DEST_UNDRSTD_MaxCyclomatic X

X X

X X 5
DEST_UNDRSTD_MaxCyclomaticModified

X

X X

X 4

DEST_UNDRSTD_MaxEssential X

X

X

3
DEST_UNDRSTD_MaxInheritanceTree

0

DEST_UNDRSTD_MaxNesting X

X

2
DEST_UNDRSTD_RatioCommentToCode

X

1

DEST_UNDRSTD_SumCyclomatic

X X

X

3
DEST_UNDRSTD_SumCyclomaticModified X X X X

X X 6

DEST_UNDRSTD_SumCyclomaticStrict X

X X

3
DEST_UNDRSTD_SumEssential

X

X

X 3

FILES_IN_PATH

X

X

2
IN_OWASP_2013

X X X X X X 6

IN_OWASP_2017 X X

X X 4
LANGUAGE

X

X

2

MATCHED_CVE X X X X X X X 7
NUM_PATH_HOPS X X

X X 4

OWASP_TOP_TEN_2013 X

X

2
OWASP_TOP_TEN_2017 X

1

PRIORITY

X X X 3
PROJECT

X

X 2

SOURCE_CREATED_DATE

0
SOURCE_DEST_SAME_FILE X

X

X

X 4

SOURCE_FILE_AGE X X X

X 4
SOURCE_FILE_CHURN

X

X

2

	

	

91	 	

SOURCE_FILE_CLOC X

X

X 3
SOURCE_FILE_COLUMN X

X X X

X 5

SOURCE_FILE_COMPLETE

0
SOURCE_FILE_EDIT_FREQUENCY

X

X X

3

SOURCE_FILE_ELOC X X

X 3
SOURCE_FILE_EXT X X X

X 4

SOURCE_FILE_FOLDER

0
SOURCE_FILE_FUNCTION_VAR

0

SOURCE_FILE_GROWTH

X

X X X X 5
SOURCE_FILE_LINE X X

X 3

SOURCE_FILE_LINES_ADDED X X X

3
SOURCE_FILE_LINES_DELETED

X

1

SOURCE_FILE_LOC X

X X

X 4
SOURCE_FILE_NAME

0

SOURCE_FILE_orig_ccom

X

X

2
SOURCE_FILE_orig_ccomdeep X X X

X

4

SOURCE_FILE_orig_hvol

X

1
SOURCE_FILE_orig_loc X X X

3

SOURCE_FILE_orig_nest

X X

2
SOURCE_FILE_orig_nIncomingCalls X

X

2

SOURCE_FILE_orig_nIncomingCallsUniq

X

X

X 3
SOURCE_FILE_orig_nmethods X

X

X X 4

SOURCE_FILE_orig_nonecholoc

X

X X X 4
SOURCE_FILE_orig_nOutgoingExternCallsUniq

X

X

X 3

SOURCE_FILE_orig_nOutgoingExternFlsCalled X X

X

X 4
SOURCE_FILE_orig_nOutgoingExternFlsCalledUniq

X

X

X 3

SOURCE_FILE_orig_nOutgoingInternCalls

X X X X 4
SOURCE_FILE_PATH

0

SOURCE_FILE_PERCENT_MODIFIED

X

1
SOURCE_FILE_SIZE X

X

X

X 4

SOURCE_FILE_STALENESS X X X

X X

5
SOURCE_FILE_VERSION_ALERT_COUNT X X X

3

SOURCE_FILE_VERSION_ALERT_LOC_RATIO X

X

X

3
SOURCE_LAST_AUTHOR_EMAIL

0

SOURCE_LAST_AUTHOR_NAME

0
SOURCE_LAST_EDITED_DATE

0

SOURCE_UNDRSTD_AvgCyclomatic

X

X

X 3
SOURCE_UNDRSTD_AvgCyclomaticModified

X 1

SOURCE_UNDRSTD_AvgCyclomaticStrict

X X X

3
SOURCE_UNDRSTD_AvgEssential X X

X X

X 5

SOURCE_UNDRSTD_AvgLine X X

X

X 4
SOURCE_UNDRSTD_AvgLineBlank X X X X X

X 6

SOURCE_UNDRSTD_AvgLineCode X X X X X

X 6
SOURCE_UNDRSTD_AvgLineComment

X

X X X X 5

SOURCE_UNDRSTD_CountDeclClass

X

X

X X 4
SOURCE_UNDRSTD_CountDeclExecutableUnit

X

X 2

SOURCE_UNDRSTD_CountDeclFile

0
SOURCE_UNDRSTD_CountDeclFunction

X X

X

3

SOURCE_UNDRSTD_CountLine X

X X X X X 6
SOURCE_UNDRSTD_CountLine_Html

X X

2

SOURCE_UNDRSTD_CountLine_Javascript X X

X X

4
SOURCE_UNDRSTD_CountLine_Php

X X

X X

4

SOURCE_UNDRSTD_CountLineBlank X

X X

X

4
SOURCE_UNDRSTD_CountLineBlank_Html

X 1

SOURCE_UNDRSTD_CountLineBlank_Javascript X X X

X

X 5
SOURCE_UNDRSTD_CountLineBlank_Php X

X

X

3

SOURCE_UNDRSTD_CountLineCode

X

1
SOURCE_UNDRSTD_CountLineCode_Javascript

X X

X X

4

	

	

92	 	

SOURCE_UNDRSTD_CountLineCode_Php X X X

X

4
SOURCE_UNDRSTD_CountLineComment X

X X X

4

SOURCE_UNDRSTD_CountLineComment_Html

X X

2
SOURCE_UNDRSTD_CountLineComment_Javascript X X X X

4

SOURCE_UNDRSTD_CountLineComment_Php

X X X 3
SOURCE_UNDRSTD_CountPath

X

1

SOURCE_UNDRSTD_CountPathLog X

X X X

4
SOURCE_UNDRSTD_CountStmt X

X

2

SOURCE_UNDRSTD_CountStmtDecl

X X X X X X 6
SOURCE_UNDRSTD_CountStmtDecl_Javascript X

X X X X X 6

SOURCE_UNDRSTD_CountStmtDecl_Php

X

X 2
SOURCE_UNDRSTD_CountStmtExe X

X

2

SOURCE_UNDRSTD_CountStmtExe_Javascript

X X X

X 4
SOURCE_UNDRSTD_CountStmtExe_Php

X 1

SOURCE_UNDRSTD_Cyclomatic X

X X

3
SOURCE_UNDRSTD_CyclomaticModified X

X X X

4

SOURCE_UNDRSTD_CyclomaticStrict X

X

2
SOURCE_UNDRSTD_Essential X X X X

4

SOURCE_UNDRSTD_MaxCyclomatic

X

X X 3
SOURCE_UNDRSTD_MaxCyclomaticModified X X X

X 4

SOURCE_UNDRSTD_MaxEssential X

X

X 3
SOURCE_UNDRSTD_MaxInheritanceTree

0

SOURCE_UNDRSTD_MaxNesting

X

1
SOURCE_UNDRSTD_RatioCommentToCode

X X X X

4

SOURCE_UNDRSTD_SumCyclomatic X

X

X

3
SOURCE_UNDRSTD_SumCyclomaticModified X X X

X 4

SOURCE_UNDRSTD_SumCyclomaticStrict X

X

X

3
SOURCE_UNDRSTD_SumEssential

X

X

2

TOOL

X

X

2
TYPE

X X X

3

VERSION_ALERT_COUNT X X

X X 4
VERSION_LAST_SEEN

0

VERSION_START

0

	

	

93	 	

Appendix F

Sonar Scan Script

#AUTHOR: KATHY GOESCHEL
#DATE 09/02/2019
#PURPOSE: PHD DISSERTATION - NOVA SOUTHEASTERN UNIVERSITY
#GENERAL ML MODEL - SVM ONLY - FOR STATIC ANALYSIS CLASSIFICATION IMPROVEMENTS

#python sonar-scan.py

import os, sys, logging, time, csv, datetime
from git import Repo
from git import Git
from subprocess import PIPE
import subprocess

#TO USE -- MAKE SURE THE SONAR SERVER IS RUNNING ON LOCALHOST
#1. go to cmd line to start server (/sonarqube-6.7.1/bin/macosx-universal-64/sonar.sh console)
#2. go the new cmd line (export PATH=$PATH:/DATASET/sonar-scanner-3.3.0.1492-macosx/bin)
#3. workon [specify virtualenv]
#4. Run script with arg of project name (sonar-scan.py PHPMYADMIN)

projectSpecified = str(sys.argv[1])

now = datetime.datetime.now()
nowFormatted = now.strftime("%Y-%m-%d_%H_%M")

dirRoot = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
logging.basicConfig(filename=dirRoot+'/logs/SonarScanLog-'+nowFormatted+'.log',

filemode='w',level=logging.DEBUG)
inputFile = dirRoot + "/toScan.csv"
scanList = []
repoPath = ""

def getProjectsFromCSV():
 logging.info("IMPORTING CSV")
 with open(inputFile, mode='rb') as csv_file:
 csv_reader = csv.DictReader(csv_file)
 for line in csv_reader:
 scanList.append(line)
 return scanList

try:
 getProjectsFromCSV()

 for i in scanList:

 #skip ones that we dont have a tag for
 if i['TAG'] == 'NA':
 continue

 #skip ones that are not the project we specified
 if i['PROJECT'] != projectSpecified:
 continue

 logging.info("Scanning " + i['PROJECT'] + " " + i['COMMIT_HASH'])

 if i['PROJECT'] == 'DRUPAL':
 repoPath = "/SOURCE_CODE/DRUPAL/drupal/"
 elif i['PROJECT'] == 'MOODLE':
 repoPath = "/SOURCE_CODE/MOODLE/moodle/"
 elif i['PROJECT'] == 'PHPMYADMIN':
 repoPath = "/SOURCE_CODE/PHPMYADMIN/phpmyadmin/"
 else:
 logging.error("repo location problem")
 sys.exit(1)

 #GIT CHECKOUT HASH VERSION
 try:
 g = Git(repoPath)

	

	

94	 	

 g.checkout(i['COMMIT_HASH'])
 except:
 logging.error("ERROR: Changing Repo Checkout Hash")
 continue

 #START SCAN
 try:
 retcode = subprocess.call("echo PASSWORD|sudo -S sonar-scanner -Dsonar.projectKey=" +

i['PROJECT'] + "_" + i['TAG'] + " -Dproject.projectName=" + i['PROJECT'] + "_" + i['TAG'] + " -
Dsonar.projectVersion=" + i['TAG'] + " -Dsonar.projectBaseDir=" + repoPath + " -Dsonar.sources=.", shell=True)

 if retcode < 0:
 logging.debug("\tMSG: was terminated " + str(retcode))
 else:
 if retcode == 0:
 logging.debug("\tMSG: Success - scan returned " + str(retcode))
 else:
 logging.error("\tERROR: Failure - scan returned " + str(retcode))
 except OSError as e:
 logging.error("\tERROR: Scan execution failed: " + e)

 #GET REPORT
 try:
 num = 1
 maxPage = 500
 r = requests.get('http://localhost:9000/api/issues/search?componentKeys=' + i['PROJECT'] + '_' +

i['TAG'] + '&pageIndex='+str(num)+'&pageSize=-1&types=BUG%2CVULNERABILITY', allow_redirects=True)
 temp = json.loads(r.content)
 totalIssues = int(temp['total'])
 if totalIssues > 10000:
 print('ALERT: more issues than possible to grab...' + i['PROJECT'] + '_' + i['TAG'])
 continue
 open(dirRoot + '/SCAN_RESULTS/Sonar' + i["PROJECT"] + '_' + i["TAG"] + '_' + str(num) + '.json',

'wb').write(r.content)
 while num < ((totalIssues/maxPage)+1):
 logging.info(str(num))
 num += 1
 s = requests.get('http://localhost:9000/api/issues/search?componentKeys=' + i['PROJECT'] +

'_' + i['TAG'] + '&pageIndex='+str(num)+'&pageSize=-1&types=BUG%2CVULNERABILITY', allow_redirects=True)
 temp2 = json.loads(s.content)
 open(dirRoot + '/SCAN_RESULTS/Sonar' + i["PROJECT"] + '_' + i["TAG"] + '_' + str(num) +

'.json', 'wb').write(s.content)
 time.sleep(2)
 except OSError as e:
 logging.error("\tERROR: Failed to get issues page: " + e)

except:
 logging.error("ERROR: Overall")
 sys.exit(1)

	

	

	

95	 	

Appendix G

Data Pre-Processing

#AUTHOR: KATHY GOESCHEL
#DATE 09/02/2019
#PURPOSE: PHD DISSERTATION - NOVA SOUTHEASTERN UNIVERSITY
#GENERAL ML MODEL FOR STATIC ANALYSIS CLASSIFICATION IMPROVEMENTS

from datetime import datetime
import csv
import logging
import os
import sys
import time

import numpy as np
import pandas as pd
from random import random, randint

from sklearn.preprocessing import LabelEncoder, LabelBinarizer, OneHotEncoder, OrdinalEncoder
from sklearn.model_selection import train_test_split
from sklearn import svm
import sklearn.metrics as metrics

###################################DECLARE PATHS / VARIABLES###################################

pythonFileUsed = str(sys.argv[0]).split(".")[0]
experimentRun = str(sys.argv[1])
datetimeFormat = '%Y-%m-%d %H:%M:%S.%f'
rightNow = datetime.now().strftime(datetimeFormat)

dataFiles = []
dataFilePreProcessed = "PreProcessed_"+experimentRun+".csv"
dataFilePreProcessedScaled = "PreProcessedScaled_"+experimentRun+".csv"
dataFilePreProcessedFeatures = "PreProcessed_"+experimentRun+"_Features.txt"

######MAIN PATHS
mainDir = "/MODEL/"

#RAW DATASET
dataDir = "/DATASET/NEW/THE_SET/"

#WHERE TO SAVE THE PREPROCESSED DATA SET (SANS SCALING)
dataDirSave = mainDir + "DATA/"
if not os.path.exists(dataDirSave + pythonFileUsed):
 os.mkdir(dataDirSave + pythonFileUsed)
dataDirSave = dataDirSave + pythonFileUsed + "/"

######INPUT FILES
dataFilePreProcessed = dataDirSave + dataFilePreProcessed
dataFilePreProcessedScaled = dataDirSave + dataFilePreProcessedScaled
dataFilePreProcessedFeatures = dataDirSave + dataFilePreProcessedFeatures

theFeatures = []
theLabel = "CLASSIFICATION"
numFeatures = 0

drupalversions =

['6.0','6.1','6.2','6.3','6.4','6.5','6.6','6.7','6.10','6.11','6.12','6.13','6.14','6.15','6.16','6.17','6.18'
,'6.19','6.20','6.22','6.23','6.24','6.26','6.29','6.31','6.33','6.34','6.35','6.37','6.38']

phpversions =
['RELEASE_2_2_0','RELEASE_2_2_1','RELEASE_2_2_2','RELEASE_2_2_3','RELEASE_2_2_4','RELEASE_2_2_5','RELEASE_2_2_6
','RELEASE_2_3_0','RELEASE_2_3_1','RELEASE_2_3_2','RELEASE_2_3_3PL1','RELEASE_2_4_0','RELEASE_2_5_0','RELEASE_2
_5_1','RELEASE_2_5_2','RELEASE_2_5_4','RELEASE_2_5_5PL1','RELEASE_2_5_6','RELEASE_2_6_1PL3','RELEASE_2_6_2PL1',
'RELEASE_2_6_3PL1','RELEASE_2_6_4PL4','RELEASE_2_7_0PL2','RELEASE_2_8_1','RELEASE_2_9_0','RELEASE_2_9_1_1','REL
EASE_2_9_2','RELEASE_2_10_0','RELEASE_2_10_1RC1','RELEASE_2_10_2','RELEASE_2_10_3','RELEASE_2_11_0','RELEASE_2_
11_1','RELEASE_2_11_2','RELEASE_2_11_3','RELEASE_2_11_4','RELEASE_2_11_5','RELEASE_2_11_6','RELEASE_2_11_7','RE
LEASE_2_11_8','RELEASE_2_11_9','RELEASE_3_0_0','RELEASE_3_0_1','RELEASE_3_1_0','RELEASE_3_1_1','RELEASE_3_1_2',
'RELEASE_3_1_3','RELEASE_3_1_4','RELEASE_3_1_5','RELEASE_3_2_0','RELEASE_3_2_2','RELEASE_3_2_3','RELEASE_3_2_4'
,'RELEASE_3_2_5','RELEASE_3_3_0','RELEASE_3_3_1','RELEASE_3_3_2','RELEASE_3_3_3','RELEASE_3_3_4','RELEASE_3_3_5

	

	

96	 	

','RELEASE_3_3_6','RELEASE_3_3_7','RELEASE_3_3_8','RELEASE_3_3_9','RELEASE_3_4_0','RELEASE_3_4_1','RELEASE_3_4_
2','RELEASE_3_4_3','RELEASE_3_4_4','RELEASE_3_4_5','RELEASE_3_4_6','RELEASE_3_4_7','RELEASE_3_4_8','RELEASE_3_4
_9','RELEASE_3_5_0','RELEASE_3_5_1','RELEASE_3_5_2','RELEASE_3_5_3','RELEASE_3_5_4','RELEASE_3_5_5','RELEASE_3_
5_6','RELEASE_3_5_7','RELEASE_3_5_8','RELEASE_4_0_0','RELEASE_4_0_1','RELEASE_4_0_2','RELEASE_4_0_3','RELEASE_4
_0_4','RELEASE_4_0_5','RELEASE_4_0_6','RELEASE_4_0_7','RELEASE_4_0_8']

moodleversions =
['v1.0.0','v1.0.1','v1.0.2','v1.0.3','v1.0.4','v1.0.5','v1.0.6','v1.0.7','v1.0.8','v1.0.9','v1.1.0','v1.1.1','v
1.2.0','v1.2.1','v1.3.0','v1.3.1','v1.3.2','v1.3.3','v1.3.4','v1.4.0','v1.4.1','v1.4.2','v1.4.3','v1.4.4','v1.4
.5','v1.5.0','v1.5.1','v1.5.2','v1.5.3','v1.6.0','v1.6.1','v1.6.2','v1.6.3','v1.7.0','v1.7.1','v1.7.2','v1.8.0'
,'v1.8.1','v1.8.2','v1.8.3','v1.8.4','v1.9.0','v1.9.1','v1.9.2','v2.0.0','v2.0.1','v2.0.2','v2.0.3','v2.1.0','v
2.1.1','v2.1.2','v2.1.3','v2.2.0','v2.2.1','v2.2.2','v2.2.3','v2.3.0','v2.3.1','v2.3.2','v2.3.3','v2.4.0','v2.4
.1','v2.4.2','v2.4.3','v2.4.4','v2.5.0','v2.5.1','v2.5.2','v2.5.3','v2.6.0']

######PRE-PROCESSING DECLARATIONS
featuresToOneHot =

["PROJECT","TOOL","CATEGORY","OWASP_TOP_TEN_2013","OWASP_TOP_TEN_2017","TYPE","CODE_BUG_VULN","LANGUAGE","SOURC
E_FILE_EXT","DEST_FILE_EXT"]

featuresToCatEncode = []
featuresBoolean = ["IN_OWASP_2013","IN_OWASP_2017","SOURCE_DEST_SAME_FILE","MATCHED_CVE"]
featuresToDrop =

["VERSION_START","VERSION_LAST_SEEN","COMMITTED_DATE","CWE_ID","SOURCE_FILE_COMPLETE","SOURCE_FILE_PATH","SOURC
E_FILE_FOLDER","SOURCE_FILE_NAME","SOURCE_FILE_FUNCTION_VAR","DEST_FILE_COMPLETE","DEST_FILE_PATH","DEST_FILE_F
OLDER","DEST_FILE_NAME","DEST_FILE_FUNCTION_VAR","SOURCE_CREATED_DATE","SOURCE_LAST_EDITED_DATE","SOURCE_LAST_A
UTHOR_NAME","SOURCE_LAST_AUTHOR_EMAIL","DEST_CREATED_DATE","DEST_LAST_EDITED_DATE","DEST_LAST_AUTHOR_NAME","DES
T_LAST_AUTHOR_EMAIL","CVE_ID"]

featuresDropAfterEncoding =
["OWASP_TOP_TEN_2017_NONE","OWASP_TOP_TEN_2013_NONE","SOURCE_FILE_EXT_NONE","DEST_FILE_EXT_NONE","CATEGORY_NONE
"]

featuresNumericalScaleNoBlanks = ["ALERT_LIFETIME","NUM_PATH_HOPS","FILES_IN_PATH","VERSION_ALERT_COUNT"]
featuresNumericalScaleHasBlanks =

["SOURCE_FILE_LINE","SOURCE_FILE_COLUMN","DEST_FILE_LINE","DEST_FILE_COLUMN","SOURCE_FILE_SIZE","SOURCE_FILE_LO
C","SOURCE_FILE_CLOC","SOURCE_FILE_ELOC","SOURCE_FILE_AGE","SOURCE_FILE_STALENESS","DEST_FILE_SIZE","DEST_FILE_
LOC","DEST_FILE_CLOC","DEST_FILE_ELOC","DEST_FILE_AGE","DEST_FILE_STALENESS","SOURCE_UNDRSTD_AvgCyclomatic","SO
URCE_UNDRSTD_AvgCyclomaticModified","SOURCE_UNDRSTD_AvgCyclomaticStrict","SOURCE_UNDRSTD_AvgEssential","SOURCE_
UNDRSTD_AvgLine","SOURCE_UNDRSTD_AvgLineBlank","SOURCE_UNDRSTD_AvgLineCode","SOURCE_UNDRSTD_AvgLineComment","SO
URCE_UNDRSTD_CountDeclClass","SOURCE_UNDRSTD_CountDeclExecutableUnit","SOURCE_UNDRSTD_CountDeclFile","SOURCE_UN
DRSTD_CountDeclFunction","SOURCE_UNDRSTD_CountLine","SOURCE_UNDRSTD_CountLineBlank","SOURCE_UNDRSTD_CountLineBl
ank_Html","SOURCE_UNDRSTD_CountLineBlank_Javascript","SOURCE_UNDRSTD_CountLineBlank_Php","SOURCE_UNDRSTD_CountL
ineCode","SOURCE_UNDRSTD_CountLineCode_Javascript","SOURCE_UNDRSTD_CountLineCode_Php","SOURCE_UNDRSTD_CountLine
Comment","SOURCE_UNDRSTD_CountLineComment_Html","SOURCE_UNDRSTD_CountLineComment_Javascript","SOURCE_UNDRSTD_Co
untLineComment_Php","SOURCE_UNDRSTD_CountLine_Html","SOURCE_UNDRSTD_CountLine_Javascript","SOURCE_UNDRSTD_Count
Line_Php","SOURCE_UNDRSTD_CountPath","SOURCE_UNDRSTD_CountPathLog","SOURCE_UNDRSTD_CountStmt","SOURCE_UNDRSTD_C
ountStmtDecl","SOURCE_UNDRSTD_CountStmtDecl_Javascript","SOURCE_UNDRSTD_CountStmtDecl_Php","SOURCE_UNDRSTD_Coun
tStmtExe","SOURCE_UNDRSTD_CountStmtExe_Javascript","SOURCE_UNDRSTD_CountStmtExe_Php","SOURCE_UNDRSTD_Cyclomatic
","SOURCE_UNDRSTD_CyclomaticModified","SOURCE_UNDRSTD_CyclomaticStrict","SOURCE_UNDRSTD_Essential","SOURCE_UNDR
STD_MaxCyclomatic","SOURCE_UNDRSTD_MaxCyclomaticModified","SOURCE_UNDRSTD_MaxEssential","SOURCE_UNDRSTD_MaxInhe
ritanceTree","SOURCE_UNDRSTD_MaxNesting","SOURCE_UNDRSTD_RatioCommentToCode","SOURCE_UNDRSTD_SumCyclomatic","SO
URCE_UNDRSTD_SumCyclomaticModified","SOURCE_UNDRSTD_SumCyclomaticStrict","SOURCE_UNDRSTD_SumEssential","DEST_UN
DRSTD_AvgCyclomatic","DEST_UNDRSTD_AvgCyclomaticModified","DEST_UNDRSTD_AvgCyclomaticStrict","DEST_UNDRSTD_AvgE
ssential","DEST_UNDRSTD_AvgLine","DEST_UNDRSTD_AvgLineBlank","DEST_UNDRSTD_AvgLineCode","DEST_UNDRSTD_AvgLineCo
mment","DEST_UNDRSTD_CountDeclClass","DEST_UNDRSTD_CountDeclExecutableUnit","DEST_UNDRSTD_CountDeclFile","DEST_
UNDRSTD_CountDeclFunction","DEST_UNDRSTD_CountLine","DEST_UNDRSTD_CountLineBlank","DEST_UNDRSTD_CountLineBlank_
Html","DEST_UNDRSTD_CountLineBlank_Javascript","DEST_UNDRSTD_CountLineBlank_Php","DEST_UNDRSTD_CountLineCode","
DEST_UNDRSTD_CountLineCode_Javascript","DEST_UNDRSTD_CountLineCode_Php","DEST_UNDRSTD_CountLineComment","DEST_U
NDRSTD_CountLineComment_Html","DEST_UNDRSTD_CountLineComment_Javascript","DEST_UNDRSTD_CountLineComment_Php","D
EST_UNDRSTD_CountLine_Html","DEST_UNDRSTD_CountLine_Javascript","DEST_UNDRSTD_CountLine_Php","DEST_UNDRSTD_Coun
tPath","DEST_UNDRSTD_CountPathLog","DEST_UNDRSTD_CountStmt","DEST_UNDRSTD_CountStmtDecl","DEST_UNDRSTD_CountStm
tDecl_Javascript","DEST_UNDRSTD_CountStmtDecl_Php","DEST_UNDRSTD_CountStmtExe","DEST_UNDRSTD_CountStmtExe_Javas
cript","DEST_UNDRSTD_CountStmtExe_Php","DEST_UNDRSTD_Cyclomatic","DEST_UNDRSTD_CyclomaticModified","DEST_UNDRST
D_CyclomaticStrict","DEST_UNDRSTD_Essential","DEST_UNDRSTD_MaxCyclomatic","DEST_UNDRSTD_MaxCyclomaticModified",
"DEST_UNDRSTD_MaxEssential","DEST_UNDRSTD_MaxInheritanceTree","DEST_UNDRSTD_MaxNesting","DEST_UNDRSTD_RatioComm
entToCode","DEST_UNDRSTD_SumCyclomatic","DEST_UNDRSTD_SumCyclomaticModified","DEST_UNDRSTD_SumCyclomaticStrict"
,"DEST_UNDRSTD_SumEssential","SOURCE_FILE_VERSION_ALERT_COUNT","SOURCE_FILE_VERSION_ALERT_LOC_RATIO","DEST_FILE
_VERSION_ALERT_COUNT","DEST_FILE_VERSION_ALERT_LOC_RATIO","SOURCE_FILE_LINES_ADDED","SOURCE_FILE_LINES_DELETED"
,"SOURCE_FILE_CHURN","SOURCE_FILE_GROWTH","SOURCE_FILE_PERCENT_MODIFIED","SOURCE_FILE_EDIT_FREQUENCY","DEST_FIL
E_LINES_ADDED","DEST_FILE_LINES_DELETED","DEST_FILE_CHURN","DEST_FILE_GROWTH","DEST_FILE_PERCENT_MODIFIED","DES
T_FILE_EDIT_FREQUENCY"]

featuresNumericalScaleHasBlanksIsSparse =
["SOURCE_FILE_orig_nonecholoc","SOURCE_FILE_orig_loc","SOURCE_FILE_orig_nmethods","SOURCE_FILE_orig_ccomdeep","
SOURCE_FILE_orig_ccom","SOURCE_FILE_orig_nest","SOURCE_FILE_orig_hvol","SOURCE_FILE_orig_nIncomingCalls","SOURC
E_FILE_orig_nIncomingCallsUniq","SOURCE_FILE_orig_nOutgoingInternCalls","SOURCE_FILE_orig_nOutgoingExternFlsCal
led","SOURCE_FILE_orig_nOutgoingExternFlsCalledUniq","SOURCE_FILE_orig_nOutgoingExternCallsUniq","DEST_FILE_ori
g_nonecholoc","DEST_FILE_orig_loc","DEST_FILE_orig_nmethods","DEST_FILE_orig_ccomdeep","DEST_FILE_orig_ccom","D
EST_FILE_orig_nest","DEST_FILE_orig_hvol","DEST_FILE_orig_nIncomingCalls","DEST_FILE_orig_nIncomingCallsUniq","
DEST_FILE_orig_nOutgoingInternCalls","DEST_FILE_orig_nOutgoingExternFlsCalled","DEST_FILE_orig_nOutgoingExternF
lsCalledUniq","DEST_FILE_orig_nOutgoingExternCallsUniq"]

	

	

97	 	

featuresNewMapping = []
deletedCols = []

###################################FUNCTIONS###################################

def loadCSV(file):
 temp = pd.read_csv(file, delimiter=',', skiprows=0).replace('"','')
 return temp

def loadMultCSV():
 df_from_each_file = (pd.read_csv(dataDir + f) for f in dataFiles)
 concatenated_df = pd.concat(df_from_each_file, ignore_index=True)
 return concatenated_df

def returnTimeFormatted():
 return datetime.now().strftime(datetimeFormat)

def secondsBetween(d1, d2):
 d1 = datetime.strptime(d1, datetimeFormat)
 d2 = datetime.strptime(d2, datetimeFormat)
 return abs((d2 - d1).seconds)

def dayOfWeek(theDate, dateFormat):
 res = datetime.strptime(theDate, dateFormat)
 return datetime.weekday(res)

def columnHasUniqueValues(column):
 if howManyUniqueValues(column) > 1:
 return True
 return False

def howManyUniqueValues(column):
 return len(np.unique(data[column]))

def trackNewColumnNames(column):
 featuresNewMapping.append({column:[column+"_"+i for i in np.unique(data[column])]})

def encodeLabel(column):
 lb_make = LabelEncoder()
 lb_results = lb_make.fit_transform(data[column])
 return pd.DataFrame(lb_results,columns=[column])

def encodeLabelBinarizer(column):
 lb_style = LabelBinarizer()
 lb_results = lb_style.fit_transform(data[column])
 return pd.DataFrame(lb_results, columns=[column + "_" +str(lb_style.classes_[i]) for i in

range(len(lb_style.classes_))])

###################################START###################################

######PREAMBLE
rightNow = returnTimeFormatted()

#GET THE DATA FILES
for i in phpversions:
 dataFiles.append("PHPMYADMIN/PHPMYADMIN_"+i+".csv")
for i in moodleversions:
 dataFiles.append("MOODLE/MOODLE_"+i+".csv")
for i in drupalversions:
 dataFiles.append("DRUPAL/DRUPAL_"+i+".csv")
print(dataFiles)

######LOAD / GET DATA SET
data = loadMultCSV()

#GET THE COLUMN HEADERS / FEATURE NAMES
for i in data.columns:
 #DONT TAKE THE CLASSIFICATION COLUMN
 if i != theLabel:
 theFeatures.append(i)
numFeatures = len(theFeatures)

######DATA PRE-PROCESSING

#DROP CLASSIFICATION OF DELETED.....

	

	

98	 	

data = data[data.CLASSIFICATION != 'DELETED']

#DROP DUPLICATE ROWS
considerDups =

["PROJECT","TOOL","PRIORITY","CATEGORY","CWE_ID","IN_OWASP_2013","IN_OWASP_2017","OWASP_TOP_TEN_2013","OWASP_TO
P_TEN_2017","TYPE","CODE_BUG_VULN","LANGUAGE","SOURCE_FILE_COMPLETE","SOURCE_FILE_LINE","SOURCE_FILE_COLUMN","S
OURCE_FILE_FUNCTION_VAR","DEST_FILE_COMPLETE","DEST_FILE_LINE","DEST_FILE_COLUMN","DEST_FILE_FUNCTION_VAR"]

t = len(data)
data.drop_duplicates(subset=considerDups, keep='first',inplace=True)

#KEEP SAME NUMBER OF EACH CLASS (DATA SET IS HEAVILY SKEWED)
numActionable = len(data[data['CLASSIFICATION'] == 'ACTIONABLE'])
numRows = len(data)
numUnactionable = numRows - numActionable

if (numActionable / numRows) < .45:
 numRowsToDrop = (numRows - numActionable) - numActionable
 data.drop(data[data['CLASSIFICATION'] == 'UNACTIONABLE'].sample(n=numRowsToDrop).index,inplace=True)
elif (numUnactionable / numRows) < .45:
 numRowsToDrop = (numRows - numUnactionable) - numUnactionable
 data.drop(data[data['CLASSIFICATION'] == 'ACTIONABLE'].sample(n=numRowsToDrop).index,inplace=True)

#GET THE COLUMN HEADERS / FEATURE NAMES
for i in data.columns:
 #DONT INCLUDE THE CLASSIFICATION COLUMN
 if i != theLabel:
 theFeatures.append(i)
numFeatures = len(theFeatures)

#DROP FEATURES SPECIFIED...........
for i in featuresToDrop:
 data = data.drop(columns=i)
 deletedCols.append(i)

#DROP COLUMNS WITH NO DATA AT ALL
colsBeforeDrop = data.columns
data.dropna(axis=1, how='all', inplace=True)
colsAfterDrop = data.columns
#TRACK WHICH COLUMNS WERE DELETED
for i in colsBeforeDrop:
 if i not in colsAfterDrop:
 deletedCols.append(i)

#BOOLEAN
for i in featuresBoolean:
 if i in data:
 data[i] = data[i].astype(int)

#FILL SOME MISSING DATA BEFORE LABEL ENCODING
for i in featuresToOneHot:
 if i in data:
 data[i] = data[i].fillna(value="None")

for i in featuresToCatEncode:
 if i in data:
 data[i] = data[i].fillna(value="None")

#DROP COLUMN IF ALL DATA IN THAT COLUMN IS THE SAME
for i in theFeatures:
 if i in data:
 if not columnHasUniqueValues(i):
 data = data.drop(columns=i)
 deletedCols.append(i)

#CAPITILIZATION CONSISTENCY FOR VALUES
for i in featuresToOneHot:
 if i in data:
 data[i] = data[i].str.upper()

for i in featuresToCatEncode:
 if i in data:
 data[i] = data[i].str.upper()

for i in featuresToOneHot:
 if i in data:
 if columnHasUniqueValues(i):

	

	

99	 	

 trackNewColumnNames(i)
 res = encodeLabelBinarizer(i)
 data = data.drop(columns=i) #this is really a replace
 data = pd.concat([data, res], axis=1)

for i in featuresToCatEncode:
 if i in data:
 if columnHasUniqueValues(i):
 res = encodeLabel(i)
 data = data.drop(columns=i) #this is really a replace
 data = pd.concat([data, res], axis=1)

for i in featuresDropAfterEncoding:
 if i in data:
 data = data.drop(columns=i)
 for n in featuresNewMapping:
 for m in n:
 if m == i:
 m.remove(i)

#FILL MISSING NUMERICAL DATA WITH MEDIAN OR MODES BASED ON ANALYSIS
for i in featuresNumericalScaleHasBlanks:
 if i in data:
 data[i].fillna(data[i].median(), inplace=True)

for i in featuresNumericalScaleNoBlanks:
 if i in data:
 data[i].fillna(data[i].median(), inplace=True)

for i in featuresNumericalScaleHasBlanksIsSparse:
 if i in data:
 if i == 'SOURCE_FILE_orig_hvol' or i == 'DEST_FILE_orig_hvol':
 data[i].fillna(data[i].median(), inplace=True)
 else:
 data[i].fillna(data[i].mode()[0], inplace=True)

#AFTER PROCESSING DONE.....DROP COLUMN IF ALL DATA IN THAT COLUMN IS THE SAME
for i in theFeatures:
 if i in data:
 if not columnHasUniqueValues(i):
 data = data.drop(columns=i)
 deletedCols.append(i)

for i in deletedCols:
 if i in theFeatures:
 theFeatures.remove(i)

data.to_csv(dataFilePreProcessed,index=False)

with open(dataFilePreProcessedFeatures,"a+") as f:
 f.write("DELETED COLS: \r\n%s" %deletedCols)
 f.write("\r\n\r\nNEW FEATURES MAPPING: \r\n%s" %featuresNewMapping)
 f.write("\r\nREMOVE THE FOLLOWING BEFORE MODEL: \r\n%s" %featuresDropAfterEncoding)
 f.write("\r\n\r\nRAW DATA FILES USED FOR THIS DATASET....\r\n%s" %dataFiles)
 f.write("\r\n\r\n%s" %printNote)

exit()

	

	

	

100	 	

Appendix H

Control Classifier – Model A

#AUTHOR: KATHY GOESCHEL
#DATE 09/02/2019
#PURPOSE: PHD DISSERTATION - NOVA SOUTHEASTERN UNIVERSITY
#GENERAL ML MODEL - SVM ONLY - FOR STATIC ANALYSIS CLASSIFICATION IMPROVEMENTS

#python MODEL_A.py
#THIS FILE WILL LOOP THROUGH THE EXPERIMENTS AND TRAIN AND TEST THE EXPIRMENT FILES FOR ALL SVMs SPECIFIED

from datetime import datetime
import csv
import os
import sys
import time

import numpy as np
import pandas as pd
from random import random, randint

from sklearn.preprocessing import RobustScaler
from sklearn import svm
from sklearn.externals import joblib
import sklearn.metrics as metrics

###################################DECLARE PATHS / VARIABLES###################################

kernel = ''
pythonFileUsed = str(sys.argv[0]).split(".")[0]
experimentRun = ['Exp1','Exp2','Exp3','Exp4','Exp5','Exp6a','Exp6b']
trainOrTest = ['TRAIN','TEST']
mod = ['BasicLinear']

datetimeFormat = '%Y-%m-%d %H:%M:%S.%f'

note = "SVM MODEL A - SVM ONLY - USING PREPROCESSED, SCALED DATA"

######MAIN PATHS
mainDir = "/MODEL/"

######LOAD CSV
def loadCSV(file):
 temp = pd.read_csv(file, delimiter=',', skiprows=0).replace('"','')
 return temp

def returnTimeFormatted():
 return datetime.now().strftime(datetimeFormat)

def secondsBetween(d1, d2):
 d1 = datetime.strptime(d1, datetimeFormat)
 d2 = datetime.strptime(d2, datetimeFormat)
 return abs((d2 - d1).seconds)

######PREAMBLE
print(note)

for e in experimentRun:
 for t in trainOrTest:
 for m in mod:

 start = returnTimeFormatted()
 data = ''

 dataFile = mainDir + "DATA/MODEL_PRE-PROCESS/PreProcessed_" + e + "_" + t + ".csv"
 modelFile = mainDir + "RESULTS/" + pythonFileUsed + "/TRAINED_MODELS/" + e + "_" + m + "_MODEL.sav"
 scalerFile = mainDir + "RESULTS/" + pythonFileUsed + "/TRAINED_MODELS/" + e + "_" + m + "_SCALER.sav"

 ######RESULTS FILE
 resultsDir = mainDir + "RESULTS/"
 if not os.path.exists(resultsDir + pythonFileUsed):

	

	

101	 	

 os.mkdir(resultsDir + pythonFileUsed)
 resultsDir = mainDir + "RESULTS/" + pythonFileUsed + "/"
 resultsFile = resultsDir + pythonFileUsed + "_" + e + "_" + m + "_" + t + ".txt"

 theFeatures = []
 theLabel = "CLASSIFICATION"
 numFeatures = 0

 data = loadCSV(dataFile)

 for i in data.columns:
 if i != theLabel:
 theFeatures.append(i)

 x = data.loc[:, theFeatures]
 y = data[theLabel]

 if t == 'TRAIN':

 #SCALE THE DATA
 scaler = RobustScaler()
 x = scaler.fit_transform(x)

 #TRAIN MODEL
 model = svm.LinearSVC()
 model.fit(x, y)

 #SAVE MODEL AND SCALER
 joblib.dump(scaler, scalerFile)
 joblib.dump(model, modelFile)

 rightNow = returnTimeFormatted()
 diff = secondsBetween(start, rightNow)

 with open(resultsFile,"a") as f:
 f.write("%s \r\n" %note)
 f.write('%s %s %s' %(e,t,m))
 f.write("*****************\r\n")
 f.write("SCRIPT: %s\r\n" %pythonFileUsed)
 f.write("DATA FILE USED: %s\r\n" %dataFile)
 f.write("STARTED: %s\r\n" %start)
 f.write("FINISHED: %s\r\n" %rightNow)
 f.write("TIME ELAPSED IN SECONDS: %s\r\n" %diff)
 f.write("*****************\r\n")
 f.write("MODEL USED: SVM\r\n")
 f.write("SETTINGS USED: %s\r\n" %model)
 f.write("*****************\r\n")

 else:

 #SCALE THE DATA
 scaler = joblib.load(scalerFile)
 model = joblib.load(modelFile)

 x = scaler.transform(x)
 #TEST MODEL
 prediction = model.predict(x)

 rightNow = returnTimeFormatted()
 diff = secondsBetween(start, rightNow)

 cm = metrics.confusion_matrix(y, prediction)
 cr = metrics.classification_report(y, prediction)
 accuracy = metrics.accuracy_score(y, prediction)
 f1M = metrics.f1_score(y, prediction, average='macro')
 f1W = metrics.f1_score(y, prediction, average='weighted')
 precisionM = metrics.precision_score(y, prediction, average='macro')
 precisionW = metrics.precision_score(y, prediction, average='weighted')
 recallM = metrics.recall_score(y, prediction, average='macro')
 recallW = metrics.recall_score(y, prediction, average='weighted')

 #SVM / Metrics Print
 print("Confusion Matrix: \n", cm)
 print("Accuracy: ", round(accuracy,4))
 print("TIME ELAPSED IN SECONDS: %s\r\n" %diff)

	

	

102	 	

 with open(resultsFile,"a+") as f:
 f.write("%s \r\n" %note)
 f.write("*****************\r\n")
 f.write("SCRIPT: %s\r\n" %pythonFileUsed)
 f.write("DATA FILE USED: %s\r\n" %dataFile)
 f.write("STARTED: %s\r\n" %start)
 f.write("*****************\r\n")
 f.write("MODEL USED: SVM\r\n")
 f.write("SETTINGS USED: %s\r\n" %model)
 f.write("*****************\r\n")
 f.write("Confusion Matrix: \r\n %s\r\n" %cm)
 f.write("Classification Report: \r\n %s\r\n" %cr)
 f.write("Accuracy: %s\r\n" %round(accuracy,4))
 f.write("F1 Macro: %s\r\n" %round(f1M,4))
 f.write("F1 Weighted: %s\r\n" %round(f1W,4))
 f.write("Precision Macro: %s\r\n" %round(precisionM,4))
 f.write("Precision Weighted: %s\r\n" %round(precisionW,4))
 f.write("Recall Macro: %s\r\n" %round(recallM,4))
 f.write("Recall Weighted: %s\r\n" %round(recallW,4))
 f.write("Matthews Corr Coef: %s\r\n" %round(matthews_corrcoef,4))
 f.write("*****************\r\n")
 f.write("*****************\r\n")
 f.write("*****************\r\n")
 f.write("FINISHED: %s\r\n" %rightNow)
 f.write("TIME ELAPSED IN SECONDS: %s\r\n" %diff)
 f.write("*****************\r\n")

exit()

	

	

	

103	 	

Appendix I

Genetic Feature Selection – Model B

#AUTHOR: KATHY GOESCHEL
#DATE 09/02/2019
#PURPOSE: PHD DISSERTATION - NOVA SOUTHEASTERN UNIVERSITY
#ML MODEL FOR STATIC ANALYSIS CLASSIFICATION IMPROVEMENTS
#STATUS PRINTS AND RESULT EXPORTS REMOVED FROM SCRIPT PRIOR TO PUBLICATION

#python Model_B.py

from datetime import datetime
import csv
import os
import sys
import time

import numpy as np
import pandas as pd
from random import random, randint

from sklearn.preprocessing import RobustScaler
from sklearn import svm

import sklearn.metrics as metrics

###################################DECLARE PATHS / VARIABLES###################################

pythonFileUsed = str(sys.argv[0]).split(".")[0]
experimentRun = str(sys.argv[1])
datetimeFormat = '%Y-%m-%d %H:%M:%S.%f'
scriptStart = datetime.now().strftime(datetimeFormat)

note = "MODEL B - SVM with GA - USING SAME TRAIN TEST DATA AS MODEL A -- MODEL: Basic Linear"

######MAIN PATHS
mainDir = "/MODEL/"
trainData = ''
testData = ''

######RESULTS FILE
#used to export results
resultsDir = mainDir + "RESULTS/"
if not os.path.exists(resultsDir + pythonFileUsed):
 os.mkdir(resultsDir + pythonFileUsed)
resultsDir = mainDir + "RESULTS/" + pythonFileUsed + "/"
resultsFile = resultsDir + pythonFileUsed + "_" + experimentRun + ".txt"
resultsFileCSV = resultsDir + pythonFileUsed + "_" + experimentRun + ".csv"

theLabel = "CLASSIFICATION"
numFeatures = 0
gensNoImprovements = 0

currGA = 0
currGABest = []
currGen = 0
prevGenPerf = 0
bestGenAcc = 0
kgGenImprov = []

gaSettings = [{'populationSize' : 50, 'generations' : 20, 'retain' : 0.8, 'randomKeep' : 0.05,

'mutationProbability' : .03, 'improvementThreshold' : .0003},
 {'populationSize' : 50, 'generations' : 20, 'retain' : 0.75, 'randomKeep' : 0.03, 'mutationProbability'

: .02, 'improvementThreshold' : .003},
 {'populationSize' : 50, 'generations' : 20, 'retain' : 0.70, 'randomKeep' : 0.01, 'mutationProbability'

: .025, 'improvementThreshold' : .003},
 {'populationSize' : 100, 'generations' : 50, 'retain' : 0.8, 'randomKeep' : 0.05, 'mutationProbability'

: .03, 'improvementThreshold' : .0003},
 {'populationSize' : 100, 'generations' : 50, 'retain' : 0.75, 'randomKeep' : 0.03,

'mutationProbability' : .02, 'improvementThreshold' : .003},

	

	

104	 	

 {'populationSize' : 100, 'generations' : 50, 'retain' : 0.70, 'randomKeep' : 0.01,
'mutationProbability' : .025, 'improvementThreshold' : .003},

 {'populationSize' : 150, 'generations' : 50, 'retain' : 0.8, 'randomKeep' : 0.05, 'mutationProbability'
: .03, 'improvementThreshold' : .0003},

 {'populationSize' : 150, 'generations' : 50, 'retain' : 0.75, 'randomKeep' : 0.05,
'mutationProbability' : .03, 'improvementThreshold' : .0003},

 {'populationSize' : 150, 'generations' : 50, 'retain' : 0.70, 'randomKeep' : 0.05,
'mutationProbability' : .03, 'improvementThreshold' : .0003},

 {'populationSize' : 150, 'generations' : 100, 'retain' : 0.75, 'randomKeep' : 0.03,
'mutationProbability' : .02, 'improvementThreshold' : .003},

 {'populationSize' : 150, 'generations' : 100, 'retain' : 0.70, 'randomKeep' : 0.03,
'mutationProbability' : .02, 'improvementThreshold' : .003},

 {'populationSize' : 150, 'generations' : 100, 'retain' : 0.8, 'randomKeep' : 0.03,
'mutationProbability' : .02, 'improvementThreshold' : .003},

 {'populationSize' : 200, 'generations' : 500, 'retain' : 0.8, 'randomKeep' : 0.05,
'mutationProbability' : .03, 'improvementThreshold' : .0003},

 {'populationSize' : 200, 'generations' : 500, 'retain' : 0.75, 'randomKeep' : 0.03,
'mutationProbability' : .02, 'improvementThreshold' : .003},

 {'populationSize' : 200, 'generations' : 500, 'retain' : 0.70, 'randomKeep' : 0.01,
'mutationProbability' : .025, 'improvementThreshold' : .003},

]

#used to export results
gaResults = []
gaResultsKey = ()
###################################FUNCTIONS###################################

######LOAD CSV
def loadCSV(file):
 temp = pd.read_csv(file, delimiter=',', skiprows=0).replace('"','')
 return temp

def returnTimeFormatted():
 return datetime.now().strftime(datetimeFormat)

def secondsBetween(d1, d2):
 d1 = datetime.strptime(d1, datetimeFormat)
 d2 = datetime.strptime(d2, datetimeFormat)
 return abs((d2 - d1).seconds)

def createSet(numFeatures):
 temp = bytearray()
 for i in range(numFeatures):
 temp.append(round(random()))
 return temp

def createPopulation(popSize, numFeatures):
 population = []
 for i in range(popSize):
 population.append(createSet(numFeatures))
 return population

def featureSetToNames(featureSet):
 temp = []
 x = 0
 for f in featureSet:
 if f == 1:
 temp.append(originalFeatures[x])
 x += 1
 return temp

def terminationCondition(val1, val2):
 if val1 >= val2:
 return True
 return False

def getFitness(p):
 tempSet = []

 for i in range(len(p)):
 if p[i] == 1:
 #this is a selected feature to be included in the feature set
 tempSet.append(originalFeatures[i])

 #MATCH NAMES FROM ORIGNAL SET TO NEW SET
 for j in newFeaturesMapping:

	

	

105	 	

 for k in j:
 if k in tempSet:
 for x in j[k]:
 tempSet.append(x)
 tempSet.remove(k)
 return evaluateFeatureSet(tempSet)

def evaluateFeatureSet(tempSet):

 trainDataSubSet = trainData
 testDataSubSet = testData

 #remove features not selected
 for h in trainDataSubSet.columns:
 if h not in tempSet and h != theLabel:
 trainDataSubSet = trainDataSubSet.drop(columns=h)
 testDataSubSet = testDataSubSet.drop(columns=h)

 x_train = trainDataSubSet.loc[:, tempSet]
 y_train = trainDataSubSet[theLabel]

 x_test = testDataSubSet.loc[:, tempSet]
 y_test = testDataSubSet[theLabel]

 scaler = RobustScaler()
 x_train = scaler.fit_transform(x_train)
 x_test = scaler.transform(x_test)

 model = svm.LinearSVC()
 model.fit(x_train, y_train)
 prediction = model.predict(x_test)
 accuracy = metrics.accuracy_score(y_test, prediction)

 return accuracy

def evolve(population):
 global currGABest, currGA, currGen
 temp = []
 parents = []
 children = []
 y = 0

 #get the fitness of the population set
 for p in population:
 temp.append([y,getFitness(p)])
 y += 1

 #sort the population sets by increasing fitness
 temp = sorted(temp, key=lambda tup: tup[1], reverse=True)

 kgGenImprov.append({currGA,currGen,sum([c[1] for c in temp])/len(temp)})

 for x in temp:
 found = False
 for j in currGABest:
 if list(population[x[0]]) == j[3] and x[1] == j[2]:
 found = True
 if not found:
 ll = featureSetToNames(population[x[0]])
 currGABest.append([currGA,currGen,x[1],list(population[x[0]]),ll,len(ll)])
 currGABest = sorted(currGABest, key=lambda tup: tup[2], reverse=True)[:10]

 #save the top % and make them parents
 retainLength = int(len(temp)*retain)

 #keep the top performing sets as parents
 for i in range(retainLength):
 indexFromPopulation = temp[i][0]
 parents.append(population[indexFromPopulation])

 #include random poor performing sets for diversity
 for i in temp[retainLength:]:
 if randomKeep > random():
 indexFromPopulation = i[0]
 parents.append(population[indexFromPopulation])

	

	

106	 	

 #mutate a parent for additional diversity
 for i in parents:
 if mutationProbability > random():
 positionToMutate = randint(0, len(i)-1)
 if i[positionToMutate] == 1:
 i[positionToMutate] = 0
 else:
 i[positionToMutate] = 1

 #crossover parents to create children
 while len(children) < (populationSize - len(parents)):
 male = randint(0, len(parents)-1)
 female = randint(0, len(parents)-1)
 if male != female:
 male = parents[male]
 female = parents[female]
 #CROSSOVER
 #split 50/50
 #half = int(len(male) / 2)
 #split randomly
 half = randint(0, numTotalFeatures-1)
 child = male[:half] + female[half:]
 children.append(child)

 parents.extend(children)
 return parents

###################################START###################################

######LOAD / GET DATA SET
trainFile = mainDir + "DATA/MODEL_PRE-PROCESS/PreProcessed_" + experimentRun + "_TRAIN.csv"
trainData = loadCSV(trainFile)
testFile = mainDir + "DATA/MODEL_PRE-PROCESS/PreProcessed_" + experimentRun + "_TEST.csv"
testData = loadCSV(testFile)

#FILL IN THE ORIGINAL FEATURE LIST AS DICTLIST
originalFeatures = []

#GET THIS VALUE FROM THE PRE-PROCESSED TEXT FILE THAT PRINTS THE DELETED COLUMNS FROM PRE-PROCESSING STEP

(DICTLIST)
preProcessedDeletedFeatures = []

#GET THIS VALUE FROM THE PRE-PROCESSED TEXT FILE THAT PRINTS THE NEW COLUMN NAME MAPPINGS FROM PRE-

PROCESSING STEP (DICTLIST)
newFeaturesMapping = []

#ALL FEATURES ARE GATHERED FROM THE DATASET USED
allFeatures = []

for x in preProcessedDeletedFeatures:
 if x in originalFeatures:
 originalFeatures.remove(x)

allFeatures = []
for i in trainData.columns:
 if i != theLabel:
 allFeatures.append(i)

numTotalFeatures = len(originalFeatures)

#LOOP THROUGH ALL OF THE SPECIFIED GA SETTINGS AND RUN THOSE GAs ONE AFTER THE OTHER
for t in range(len(gaSettings)):

 currGA = t
 currGABest = []
 currGAWorst = []
 prevGenPerf = 0
 bestGenAcc = 0
 gensNoImprovements = 0

 for x in gaSettings[t]:
 if (x == 'populationSize') or (x == 'generations'):
 exec("%s = %d" % (x,gaSettings[t][x]))
 else:
 exec("%s = %.4f" % (x,gaSettings[t][x]))

	

	

107	 	

 maxGenerationsNoImprovements = int(generations / 10)

 #CREATE INITAL POPULATION
 population = createPopulation(populationSize, numTotalFeatures)

 terminiation = False
 terminiationGen = 0
 topPerfomer = []
 topPerformerNoChange = 0

 #EVOLVE THE GENERATIONS
 for i in range(0, generations):
 if terminationCondition(gensNoImprovements,maxGenerationsNoImprovements) or (topPerformerNoChange >

(maxGenerationsNoImprovements*1.5)):
 terminiation = True
 terminiationGen = i
 break

 currGen = i

 kgStart = returnTimeFormatted()

 population = evolve(population)

 #NEW TOP PERFORMER
 if topPerfomer == currGABest[0]:
 topPerformerNoChange += 1
 else:
 topPerformerNoChange = 0
 topPerfomer = currGABest[0]

 thisGenPerf = (sum([c[2] for c in currGABest])/len(currGABest))

 #detect the accuracy delta to be sufficient between generations or multiple gens
 if ((thisGenPerf - prevGenPerf) > improvementThreshold):
 gensNoImprovements = 0
 else:
 gensNoImprovements += 1

 if thisGenPerf > bestGenAcc:
 bestGenAcc = thisGenPerf
 gensNoImprovements = 0

 prevGenPerf = thisGenPerf

 gaResults.append(tempRes)

exit()

	

	

108	 	

References

Abunadi, I., & Alenezi, M. (2015, September). Towards cross project vulnerability prediction in open source web

applications. In Proceedings of the The International Conference on Engineering & MIS 2015 (p. 42).
ACM.

Ambusaidi, M., He, X., Nanda, P., & Tan, Z. (2016). Building an intrusion detection system using a filter-based

feature selection algorithm. IEEE Transactions on Computers, 65(10), 2986–2998.

Ayewah, N., & Pugh, W. (2010, July). The google findbugs fixit. In Proceedings of the 19th international

symposium on Software testing and analysis - ISSTA ’10 (pp. 241–252). ACM.

Badshah, N. (2018). Facebook to contact 87 million users affected by data breach. Retrieved from

https://www.theguardian.com/technology/2018/apr/08/ facebook-to-contact-the-87-million-users-affected-
by-data-breach

Bell, R. M., Ostrand, T. J., & Weyuker, E. J. (2006, July). Looking for bugs in all the right places. In Proceedings of

the 2006 international symposium on Software testing and analysis (pp. 61–72). ACM.

Beller, M., Bholanath, R., McIntosh, S., & Zaidman, A. (2016, March). Analyzing the State of Static Analysis: A

Large-Scale Evaluation in Open Source Software. In 2016 ieee 23rd international conference on software
analysis, evolution, and reengineering (saner) (pp. 470–481). IEEE.

Bishop, P., Gashi, I., Littlewood, B., & Wright, D. (2007, November). Reliability modeling of a 1-out-of-2 system:

Research with diverse off-the-shelf sql database servers. In Software Reliability, 2007. ISSRE’07. The 18th
IEEE International Symposium on (pp. 49–58). IEEE.

Bleier, J. (2017). Improving the Usefulness of Alerts Generated by Automated Static Analysis Tools (Unpublished

doctoral dissertation). Radboud University Nijmegen.

Buczak, A., & Guven, E. (2015). A survey of data mining and machine learning methods for cyber security intrusion

detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176.

Carrozza, G., Cinque, M., Giordano, U., Pietrantuono, R., & Russo, S. (2015, May). Prioritizing correction of static

analysis infringements for cost-effective code sanitization. In Proceedings of the Second International
Workshop on Software Engineering Research and Industrial Practice (pp. 25–31). IEEE Press.

Chen, H., & Wagner, D. (2002, November). MOPS: an Infrastructure for Examining Security Properties of

Software. In Proceedings of the 9th acm conference on computer and communications security (pp. 235–
244). ACM.

Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE Security & Privacy, 2(6), 76–79.

Chimdyalwar, B., & Kumar, S. (2011, February). Effective false positive filtering for evolving software. In

Proceedings of the 4th India Software Engineering Conference (pp. 103–106). ACM.

Cisco. (2017). Annual Cyber Security Report (Tech. Rep.). Retrieved from http://b2me.cisco.com/en-us-annual-

cybersecurity-report-2017

Delaitre, A., Stivalet, B., Fong, E., & Okun, V. (2015, May). Evaluating Bug Finders. In Complex faults and

failures. In large software systems (coufless), 2015 ieee/acm 1st international workshop on (pp. 14–20).
IEEE.

	

	

109	 	

Evans, D., & Larochelle, D. (2002). Improving security using extensible lightweight static analysis. IEEE Software,
19(1), 42–51.

FBI. (2017). Internet crime report (Tech. Rep.). Federal Bureau of Investigation.

Fry, Z. P., & Weimer, W. (2013, October). Clustering static analysis defect reports to reduce maintenance costs. In

Reverse Engineering (WCRE), 2013 20th Working Conference on (pp. 282–291). IEEE.

Goseva-Popstojanova, K., & Perhinschi, A. (2015). On the capability of static code analysis to detect security

vulnerabilities. Information and Software Technology, 68, 18–33.

Graves, T. L., Karr, A. F., Marron, J. S., & Siy, H. (2000). Prediciting Fault Incidence Using Software Change

History. IEEE Transactions on software engineering, 26(7), 653–661.

Hanam, Q., Tan, L., Holmes, R., & Lam, P. (2014, May). Finding patterns in static analysis alerts: improving

actionable alert ranking. In Proceedings of the 11th Working Conference on Mining Software Repositories
(pp. 152–161). ACM.

Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: deep portfolios. Applied Stochastic

Models in Business and Industry, 33(1), 3–12.

Heckman, S., & Williams, L. (2008, October). On Establishing a Benchmark for Evaluating Static Analysis Alert

Prioritization and Classification Techniques. In Proceedings of the second acm-ieee international
symposium on empirical software engineering and measurement (pp. 41–50). ACM.

Heckman, S., & Williams, L. (2009, April). A model building process for identifying actionable static analysis

alerts. In Software Testing Verification and Validation, 2009. ICST’09. International Conference on (pp.
161–170). IEEE.

Heckman, S., & Williams, L. (2013, October). A Comparative Evaluation of Static Analysis Actionable Alert

Identification Techniques. In Proceedings of the 9th international conference on predictive models in
software engineering (p. 4). ACM.

Heckman, S. S. (2007). Adaptively ranking alerts generated from automated static analysis. Crossroads, 14(1), 7.

Herter, J., Daniel, K., Mallon, C., Wilhelm, R., & Gmbh, A. (2017, September). Benchmarking Static Code

Analyzers. In International conference on computer safety, reliability, and security (pp. 197–212).
Springer, Cham.

Holland, J. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to

biology, control, and artificial intelligence. MIT Press.

Hovemeyer, D., & Pugh, W. (2004). Finding bugs is easy. Acm sigplan notices, 39(12), 92–106.

Hovsepyan, A., Scandariato, R., & Joosen, W. (2016, September). Is Newer Always Better?: The Case of

Vulnerability Prediction Models. In Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (p. 26). ACM.

Hussain, L., Aziz, W., Saeed, S., Rathore, S., & Rafique, M. (2018, August). Automated Breast Cancer Detection
Using Machine Learning Techniques by Extracting Different Feature Extracting Strategies. In 2018 17th
ieee international conference on trust, security and privacy in computing and communications/ 12th ieee
international conference on big data science and engineering (trustcom/bigdatase) (pp. 327–331). IEEE.

Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013, May). Why don’t software developers use static
analysis tools to find bugs? In Proceedings of the 2013 International Conference on Software Engineering
(pp. 672–681). IEEE.

	

	

110	 	

Johnson, S. C. (1978). Lint, a C Program Checker. Comp. Sci. Tech. Rep, 78–1273. Kim, S., & Ernst, M. D. (2007a,
May). Prioritizing warning categories by analyzing software history. In Mining Software Repositories,
2007. ICSE Workshops MSR’07. Fourth International Workshop on (pp. 27–27). IEEE.

Kim, S., & Ernst, M. D. (2007b, September). Which warnings should i fix first? In Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM SIGSOFT symposium on the
foundations of software engineering - ESEC-FSE ’07 (pp. 45–54). ACM.

Koc, U., Saadatpanah, P., Foster, J. S., & Porter, A. A. (2017, June). Learning a classifier for false positive error
reports emitted by static code analysis tools. In Proceedings of the 1st acm sigplan international workshop
on machine learning and programming languages - mapl 2017 (pp. 35–42). ACM.

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning
applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13,
8–17.

Kowalczyk, A. (2017). Support Vector Machines Succinctly. Syncfusion, Inc.
Kremenek, T., Ashcraft, K., Yang, J., & Engler, D. (2004). Correlation exploitation in error ranking. ACM SIGSOFT

Software Engineering Notes, 29(6), 83–93.
Kremenek, T., & Engler, D. (2003, June). Z-ranking: Using statistical analysis to counter. In International Static

Analysis Symposium (pp. 295–315). Springer, Berlin, Heidelberg.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2018). Feature Selection: A Data

Perspective. ACM Computing Surveys (CSUR), 50(6), 94.
Medeiros, I., Neves, N., & Correia, M. (2016). Detecting and removing web application vulnerabilities with static

analysis and data mining. IEEE Transactions on Reliability, 65(1), 54–69.
Medeiros, I., Neves, N. F., & Correia, M. (2014, April). Automatic Detection and Correction of Web Application

Vulnerabilities using Data Mining to Predict False Positives. In Proceedings of the 23rd international
conference on world wide web (pp. 63–74). ACM.

Munson, J. C., & Khoshgoftaar, T. M. (1992). The Detection of Fault-Prone Programs. IEEE Transactions on
Software Engineering, 18(5), 423–433.

Muske, T., & Serebrenik, A. (2016, October). Survey of approaches for handling static analysis alarms. In Source
Code Analysis and Manipulation (SCAM), 2016 IEEE 16th International Working Conference on (pp. 157–
166). IEEE.

NIST. (2017a). JULIET Test Suite. Retrieved from https://samate.nist.gov/SARD/testsuite.php
NIST. (2017b). NIST. Retrieved from https://www.nist.gov/
Nunes, P., Medeiros, I., Fonseca, J., Neves, N., Correia, M., & Vieira, M. (2017, September). On Combining

Diverse Static Analysis Tools for Web Security: An Empirical Study. In 2017 13th European Dependable
Computing Conference (EDCC) (pp. 121–128). IEEE.

Ogasawara, H., Aizawa, M., & Yamada, A. (1998, November). Experiences with program static analysis. In
Software Metrics Symposium, 1998. Metrics 1998. Proceedings. Fifth International (pp. 109–112). IEEE.

Ostrand, T. J., Weyuker, E. J., & Bell, R. M. (2004, July). Where the bugs are. In Acm sigsoft software engineering
notes (Vol. 29, pp. 86–96). ACM.

Pang, Y., Xue, X., & Wang, H. (2017, June). Predicting Vulnerable Software Components through Deep Neural
Network. In Proceedings of the 2017 International Conference on Deep Learning Technologies - ICDLT
’17 (pp. 6–10). ACM.

Podelski, A., Schäf, M., & Wies, T. (2016, July). Classifying bugs with interpolants. In International Conference on
Tests and Proofs (pp. 151–168). Springer, Cham.

Python Software Foundation. (n.d.). Python. Retrieved from https://www.python.org/
R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria. Retrieved from

http://www.R-project.org/
Reynolds, Z. P., Jayanth, A. B., Koc, U., Porter, A. A., Raje, R. R., & Hill, J. H. (2017, May). Identifying and

Documenting False Positive Patterns Generated by Static Code Analysis Tools. In Proceedings - 2017
ieee/acm 4th international workshop on software engineering research and industrial practice, ser and ip
2017 (pp. 55–61). IEEE.

Russell, S., & Norvig, P. (2014). Artificial Intelligence A Modern Approach. New Jersey: Pearson.
Ruthruff, J. R., Penix, J., Morgenthaler, J. D., Elbaum, S., & Rothermel, G. (2008, May). Predicting accurate and

actionable static analysis warnings. In Proceedings of the 30th International Conference on Software
Engineering (pp. 341–350). ACM.

Scandariato, R., Walden, J., Hovsepyan, A., & Joosen, W. (2014). Predicting vulnerable software components via
text mining. IEEE Transactions on Software Engineering, 40(10), 993–1006.

	

	

111	 	

Shin, Y., & Williams, L. (2013). Can traditional fault prediction models be used for vulnerability prediction?
Empirical Software Engineering, 18(1), 25–59.

Shiraishi, S., Mohan, V., & Marimuthu, H. (2015, November). Test Suites for Benchmarks of Static Analysis Tools.
In Software reliability engineering workshops (issrew), 2015 ieee international symposium on (pp. 12–15).
IEEE.

Shivaji, S., Whitehead, E. J. J., Akella, R., & Kim, S. (2013). Reducing features to improve code change-based bug
prediction. IEEE Transactions on Software Engineering, 39(4), 552–569.

Sun, T., & Vasarhelyi, M. A. (2018). Predicting credit card delinquencies: An application of deep neural networks.
Intelligent Systems In Accounting, Finance and Management, 25(4), 174-189.

Tripp, O., Pistoia, M., & Aravkin, A. (2014, November). A LETHEIA: Improving the Usability of Static Security
Analysis. In Proceedings of the 2014 acm sigsac conference on computer and communications security
(pp. 762–774). ACM.

Understand. (n.d.). SciTools. Retrieved from https://scitools.com/
US Senator Elizabeth Warren. (2018). Bad Credit: Uncovering Equifax’s Failure to Protect American’s Personal

Information (Tech. Rep. No. February). United States Senate.
Verizon. (2018). 2018 Data Breach Investigations Report (DBIR). Verizon Business Journal.
Walden, J., Stuckman, J., & Scandariato, R. (2014). Predicting vulnerable components: Software metrics vs text

mining. In Software Reliability Engineering (ISSRE), 2014 IEEE 25th International Symposium on (pp. 23–
33). IEEE.

Wang, Q., Meng, N., Zhou, Z., Li, J., & Mei, H. (2008, December). Towards SOA-based Code Defect Analysis. In
Service-oriented system engineering, 2008. sose’08. ieee international symposium on (pp. 269–274). IEEE.

Wedyan, F., Alrmuny, D., & Bieman, J. M. (2009, April). The effectiveness of automated static analysis tools for
fault detection and refactoring prediction. In Software Testing Verification and Validation, 2009. ICST’09.
International Conference on (pp. 141–150). IEEE.

Williams, C. C., & Hollingsworth, J. K. (2005). Automatic mining of source code repositories to improve bug
finding techniques. IEEE Transactions on Software Engineering, 31(6), 466–480.

Xue, B., Zhang, M., Browne, W. N., & Yao, X. (2016). A Survey on Evolutionary Computation Approaches to
Feature Selection. IEEE Transactions on Evolutionary Computation, 20(4), 606–626.

Yan, M., Zhang, X., Xu, L., Hu, H., Sun, S., & Xia, X. (2017, July). Revisiting the Correlation Between Alerts and
Software Defects: A Case Study on MyFaces, Camel, and CXF. In Computer Software and Applications
Conference (COMPSAC), 2017 IEEE 41st Annual (Vol. 1, pp. 103–108). IEEE.

Yi, K., Choi, H., Kim, J., & Kim, Y. (2007). An empirical study on classification methods for alarms from a bug-
finding static C analyzer. Information Processing Letters, 102(2-3), 118–123.

Yoon, J., Jin, M., & Jung, Y. (2014, December). Reducing false alarms from an industrial-strength static analyzer by
SVM. In Proceedings - asia-pacific software engineering conference, apsec (Vol. 2, pp. 3–6). IEEE.

Yüksel, U., & Sözer, H. (2013, September). Automated classification of static code analysis alerts: A case study. In
Software Maintenance (ICSM), 2013 29th IEEE International Conference on (pp. 532–535). IEEE.

Zhang, D., Jin, D., Xing, Y., Zhang, H., & Gong, Y. (2013, July). Automatically mining similar warnings and
warning combinations. In Fuzzy Systems and Knowledge Discovery (FSKD), 2013 10th International
Conference on (pp. 783–788). IEEE.

Zhang, Y., Lo, D., Xia, X., Xu, B., Sun, J., & Li, S. (2016, January). Combining Software Metrics and Text Features
for Vulnerable File Prediction. In Proceedings of the ieee international conference on engineering of
complex computer systems, iceccs (pp. 40–49). IEEE.

Zhioua, Z., Short, S., & Roudier, Y. (2014a, July). Static code analysis for software security verification: Problems
and approaches. In Computer Software and Applications Conference Workshops (COMPSACW), 2014
IEEE 38th International (pp. 102–109). IEEE.

Zhioua, Z., Short, S., & Roudier, Y. (2014b). Towards the verification and validation of software security properties
using static code analysis. International Journal of Computer Science: Theory and Application, 2.

	Feature Set Selection for Improved Classification of Static Analysis Alerts
	Share Feedback About This Item

	Goeschel-Report-Final-Signed

