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With the extreme growth in third party cloud applications, increased exposure of applications to 
the internet, and the impact of successful breaches, improving the security of software being 
produced is imperative. Static analysis tools can alert to quality and security vulnerabilities of an 
application; however, they present developers and analysts with a high rate of false positives and 
unactionable alerts. This problem may lead to the loss of confidence in the scanning tools, 
possibly resulting in the tools not being used. The discontinued use of these tools may increase 
the likelihood of insecure software being released into production. Insecure software can be 
successfully attacked resulting in the compromise of one or several information security 
principles such as confidentiality, availability, and integrity. 
 
Feature selection methods have the potential to improve the classification of static analysis alerts 
and thereby reduce the false positive rates. Thus, the goal of this research effort was to improve 
the classification of static analysis alerts by proposing and testing a novel method leveraging 
feature selection. The proposed model was developed and subsequently tested on three open 
source PHP applications spanning several years. The results were compared to a classification 
model utilizing all features to gauge the classification improvement of the feature selection 
model. The model presented did result in the improved classification accuracy and reduction of 
the false positive rate on a reduced feature set.  
 
This work contributes a real-world static analysis dataset based upon three open source PHP 
applications. It also enhanced an existing data set generation framework to include additional 
predictive software features. However, the main contribution is a feature selection methodology 
that may be used to discover optimal feature sets that increase the classification accuracy of 
static analysis alerts.  
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Chapter 1 

Introduction 
 

Background 

Static analysis (SA) tools analyze source code to find flaws and defects without the 

need to execute the binaries. Static application security testing (SAST) is an extension of 

traditional static analysis that focuses on discovering security vulnerabilities either by 

analyzing source code or the binaries. Historical research in the literature began with 

static code analysis (SCA) to locate bugs (Graves, Karr, Marron, & Siy, 2000; Johnson, 

1978; Munson & Khoshgoftaar, 1992; Ostrand, Weyuker, & Bell, 2004). The domain has 

evolved to include security vulnerability testing (Chen & Wagner, 2002; Chess & 

McGraw, 2004; Evans & Larochelle, 2002); however, some SA tools find only traditional 

bugs or flaws, some find only security vulnerabilities, and some include both. Since some 

traditional bugs and flaws could be classified as security vulnerabilities there can be some 

overlap in what these tools report. Therefore, for the duration of this paper, reference to 

both SCA and SAST will be collectively referred to as static analysis (SA); the static 

scanning of code or binaries in order to locate bugs, defects, flaws or security 

vulnerabilities. 

For both types, there exist commercial and open-source tools. There are reasons why 

multiple tools would be used in conjunction. Different tools may have increased accuracy 

at detecting a specific type of defect (Nunes et al., 2017). Some tools are language 

specific while others may be capable of processing several languages. Employing 
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multiple static analysis tools can increase defect detection (Wang, Meng, Zhou, Li, & 

Mei, 2008; Wedyan, Alrmuny, & Bieman, 2009). Additionally, confidence in the alert 

may be increased if multiple tools alert on the same item (Muske & Serebrenik, 2016). 

SA tools may functionally operate in different manners. Typically, SA tools make an 

abstraction of the program by mapping variables, functions, methods, states, files, inputs, 

outputs, etc. How they accomplish this feat of abstraction can include one or several 

methodologies such as lexical analysis, model checking, control flow analysis, data flow 

analysis, symbolic analysis, information flow analysis, or taint analysis (Zhioua, Short, & 

Roudier, 2014a, 2014b). Most tools create an abstract syntax tree (AST) to represent the 

program and to map program flow. 

Who uses SA tools and at what point in the software development process they are 

leveraged varies between projects, organizations, and roles. SA tools are utilized by 

developers, security analysts, or other persons involved in the software development or 

operations process. The scans may be initiated via the tool running on a server, local 

machine, command line, automated script, an integrated development environment (IDE), 

or a continuous integration (CI) pipeline. Additionally, a user’s interaction with SA tools 

often depends on a person’s role in the development process. 

Problem Statement 

Software applications are used in innocuous applications such as games and 

entertainment as well as in critical or sensitive applications such as banking, electrical 

grids, and medical devices. Notwithstanding the criticality of an applications use, the 

successful attack of even an innocuous application, such as a game, could grant attackers 

access to sensitive data and networks. 
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In 2017, 48% of data security breaches involved hacking and 76% were financially 

motivated (Verizon, 2018). Over 60 million dollars of loss was reported due to corporate 

data breaches (FBI, 2017). In addition, 81% of breaches resulted in a loss of 

confidentiality (Verizon, 2018). The loss of confidentiality to personal identifiable 

information has also been evidenced by the Equifax data breach which exposed 145 

million Americans personally sensitive information (US Senator Elizabeth Warren, 2018) 

and in the Facebook data breach exposing 87 million Americans personal information 

(Badshah, 2018). With the extreme growth in third party cloud applications (Cisco, 

2017), increased exposure of applications to the internet, and the impact of successful 

breaches, improving the security of software being produced is imperative. 

The detection and remediation of security vulnerabilities early in the development 

lifecycle is less costly to correct than post development phases (Ayewah & Pugh, 2010; 

Bishop, Gashi, Littlewood, & Wright, 2007; Chess & McGraw, 2004; Ogasawara, 

Aizawa, & Yamada, 1998). SA tools can alert to quality and security vulnerabilities of an 

application; however, they present developers and analysts with a high rate of false 

positives and unactionable alerts (Goseva-Popstojanova & Perhinschi, 2015; Johnson, 

Song, Murphy-Hill, & Bowdidge, 2013). Additionally, ambiguity in prioritization 

schemas make the task of determining which alerts to address first confusing for 

developers and analysts (Kim & Ernst, 2007b). Valuable time and effort is wasted when 

analyzing irrelevant alerts (Beller, Bholanath, McIntosh, & Zaidman, 2016). This 

problem may lead to the loss of confidence in the scanning tools, possibly resulting in the 

tools not being used (Johnson et al., 2013; Reynolds et al., 2017). The discontinued use of 

these tools may increase the likelihood of insecure software being released into 
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production. Insecure software can be successfully attacked resulting in the compromise of 

one or several information security principles such as confidentiality, availability, and 

integrity. 

Software defects and faults are commonly referred to as bugs. The introduction of 

bugs into an application can result in the failure for the code to compile, unintended 

behavior, or the instability or un-usability of the application. Thus, early efforts in the SA 

domain were focused on analyzing source code to find bugs (Hovemeyer & Pugh, 2004; 

Ostrand et al., 2004). Application attacks attempt to cause an application to behave in an 

unintended manner by specifically targeting the application layer. SA tools were 

expanded to detect security vulnerabilities in source code (Chess & McGraw, 2004), 

referred to as static application security testing. However, SAST presents challenges 

including high false positive rates (Goseva-Popstojanova & Perhinschi, 2015; Johnson et 

al., 2013), poor prioritization schemas (Carrozza, Cinque, Giordano, Pietrantuono, & 

Russo, 2015; Heckman & Williams, 2013), unactionable alerts (Hanam, Tan, Holmes, & 

Lam, 2014; Heckman, 2007), and incomplete or missing data sets for testing (Delaitre, 

Stivalet, Fong, & Okun, 2015). 

Citing these problems, several research efforts have been made to prune, parse, mine, 

and prioritize the results from these tools. Pruning efforts result in the overall reduction 

of alerts (Chimdyalwar & Kumar, 2011; Hanam et al., 2014; Yüksel & Sözer, 2013). 

Parsing of the alerts and associated features have been used for clustering (Fry & 

Weimer, 2013; Podelski, Schäf, & Wies, 2016). Data mining of the results have been 

used to find statistically significant features for predicting false positives, actionable, and 

unactionable alerts (Medeiros, Neves, & Correia, 2016; Ruthruff, Penix, Morgenthaler, 
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Elbaum, & Rothermel, 2008). Ranking schemes for the prioritization of alerts have 

shown success (Carrozza et al., 2015; Heckman, 2007; Kremenek & Engler, 2003; 

Zhang, Jin, Xing, Zhang, & Gong, 2013). 

Despite these efforts, the problem of high false positive rates and irrelevant alerts 

persists and additional research is needed. Machine learning has been explored in the 

literature for this domain (Bleier, 2017; Koc, Saadatpanah, Foster, & Porter, 2017; Pang, 

Xue, & Wang, 2017); however, the work is limited. In-depth investigation into feature 

selection for improved alert classification will greatly add to the literature in the static 

analysis domain. 

Dissertation Goal 

Machine learning has successfully been used to classify items from other domains 

such as in intrusion detection systems (Buczak & Guven, 2015), financial systems 

(Heaton, Polson, & Witte, 2017; Sun & Vasarhelyi, 2018), medical diagnosis (Hussain, 

Aziz, Saeed, Rathore, & Rafique, 2018; Kourou, Exarchos, Exarchos, Karamouzis, & 

Fotiadis, 2015), as well as in the static analysis domain (Bleier, 2017; Koc et al., 2017; 

Pang et al., 2017). 

Feature selection is the process of determining which features are relevant or will 

improve classification accuracy (Xue, Zhang, Browne, & Yao, 2016). Feature selection 

prior to classification has shown to improve classification (Ambusaidi, He, Nanda, & 

Tan, 2016; Xue et al., 2016). 

In the SA domain, there lacks consensus as to what features are relevant (Bell, 

Ostrand, & Weyuker, 2006; Heckman, 2007; Ruthruff et al., 2008; Shivaji, Whitehead, 

Akella, & Kim, 2013). Additionally, relevant features may differ between projects 
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(Heckman & Williams, 2009). Knowledge of which features to focus on could allow 

more effort to be placed on gathering those relevant features. 

Although feature selection methods have previously been applied to the SA domain 

with success (Bell et al., 2006; Heckman & Williams, 2009; Ruthruff et al., 2008; Shivaji 

et al., 2013), the work is limited, sometimes conflicting, and recent advances in feature 

selection methodologies could improve results. 

Therefore, feature selection methods have the potential to improve the classification of 

static analysis alerts and thereby reduce the false positive rates. Thus, the goal of this 

research effort was to improve the classification of static analysis alerts by proposing and 

testing a novel method leveraging feature selection. 

The proposed feature selection model’s performance was tested against a similar 

model that utilized all features. Accuracy, precision, recall, and the false positive rate 

were used to compare the two models’ performance.  

Research Questions 

The research questions that guided this effort and were answered as a result include: 

1. Does the proposed model improve the classification of alerts? 

2. Do selected feature subsets from the proposed model vary between projects? 

3. Are some features never selected? 

4. Similarly, are some features always selected? 

Relevance and Significance 

In recent years the importance of application security has increased due to high profile 

data breaches (Badshah, 2018; Verizon, 2018; US Senator Elizabeth Warren, 2018), and 



	
 

	

7	 	

increased cloud computing (Cisco, 2017). Successful attacks can impact a company’s 

reputation and can result in financial loss (FBI, 2017). SA tools can alert to quality and 

security vulnerabilities of an application; however, they present developers and analysts 

with a high rate of false positives and unactionable alerts (Goseva-Popstojanova & 

Perhinschi, 2015; Johnson et al., 2013). There has been much research effort dedicated to 

the improvement of both the SA tools performance and accuracy as well as researching 

methods to process the data output of these tools. This research effort focused on 

processing the output of these tools and is relevant to today’s application security 

challenges. 

As a result of this research effort feature sets that are relevant for accurate 

classification of static analysis alerts were discovered.  

Barriers and Issues 

There were some challenges to this endeavor. Complete data sets are lacking in the 

domain (Heckman & Williams, 2008; Herter, Daniel, Mallon, Wilhelm, & Gmbh, 2017; 

Shiraishi, Mohan, & Marimuthu, 2015). However, a framework cited in the domain 

literature was followed to generate data sets (Heckman & Williams, 2008, 2009). This 

process was followed; however, it added additional complexity and time to the overall 

research task. Auxiliary information from systems were downloaded and queried such as 

vulnerability disclosures and release notes. Custom scripts were written, tested, and 

utilized to perform code scanning, gather and process the static analysis alerts, track 

alerts through versions, match alerts with features, and automatically label alerts.  

Static analysis tools lack consistency in their abilities and outputs. There exist a 

multitude of programming languages varying in syntax and semantics. Consequently, SA 
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tools must be designed to parse and process a particular language in order to perform a 

scan. Thus, some tools have the capability to scan multiple languages while other tools 

are limited to a few, if not one. None of the tools scan all languages. Additionally, SA 

tools output may widely vary from simple file, line of code, and alert type to robust 

information such as confidence, shared sinks, history, and data flow path. Consequently, 

the feature sets utilized in static analysis are often heterogenous. All of the scanners 

selected for this research were capable of scanning the selected languages and offered 

similar outputs; nevertheless, the resulting output from each tool was reviewed and 

features that were not provided in every tool were removed from the data set.  

Assumptions, Limitations and Delimitations 

The quantity of alerts to manually label was not feasible; therefore, a framework for 

automatic labeling of alerts was used (Heckman & Williams, 2008, 2009). A few 

assumptions were made during this process. Alerts that disappeared from one version to 

another, not due to file deletion or an easily detected file rename, was assumed to be 

fixed (a true positive). It was possible that the alerts disappeared for different reasons 

between versions; however, those reasons and their possible detections were beyond the 

scope of this work. Alerts that disappeared due to a deleted file were disregarded as there 

was no way to determine if the deletion was intended to correct the error (i.e., a complete 

re-write of a component) or for other reasons. These assumptions are consistent with 

previous works (Bleier, 2017; Heckman & Williams, 2008, 2009; Yan et al., 2017). 

Additionally, a limitation of this study is that only one main programming language 

was used in the test applications. It is possible that the feature selection model proposed 

may select different feature subsets for different programming languages. However, what 
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is presented within is a model that may be used to select relevant feature sets per project, 

programming language, or time frame. 

Definition of Terms 

Accuracy: the proportion of correctly classified instances.  

Actionable Alert: an alert in which action has been taken to resolve the alert.  

Abstract Syntax Tree: a representation of source code as a tree structure.  

Alert Characteristics: the features of an alert.  

Alert Lifetime: the time from which an alert appears to when it disappears.  

Artificial Data Set: a data set created with artificial data.  

Benchmark: a test suite developed by OWASP to evaluate static analysis tools.  

Chromosome: in genetic algorithms, a possible solution set.  

Churn: a source code metric for number of lines added, modified, and deleted. 

Classification: a machine learning process in which inputs are predicted to belong to a 

particular class.  

Comma-Separated Values: a type of file that organizes data in rows with columns 

separated by delimiters.  

Common Weakness Enumerations: a list of common security weaknesses.  

Concurrent Versioning System: a program that creates a common repository for source 

code that tracks versioning and changes. Allows multiple developers to share and modify 

the source code without overwriting each other’s changes.  

Confusion Matrix: a table used to present the performance of a classification model.  
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Continuous Integration: a software development practice by which upon software code 

being committed, a build is performed to assure the newly added code does not break in 

the desired environment or fail to build completely.  

Cross-Site Scripting: an application security vulnerability that allows attackers to inject 

client-side scripts.  

Crossover: in genetic algorithms, the process by which two parents generate offspring.  

Cyclomatic Complexity: a source code metric for the number of paths through a 

function.  

Data Set: a set of data that includes inputs (features) and expected outputs (labels).  

Deep Neural Network: a neural network comprised of three or more layers.  

Drupal: an open source web-based content management system.  

Dynamic Analysis: the process of testing applications for defects by executing the 

program in real-time.  

Engineered Feature: a new feature derived or calculated from an existing feature or set 

of features.  

F-Measure: the harmonic mean of precision and recall.  

Fan-In: a source code metric for number of functions calling a function.  

Fan-Out: a source code metric for number of functions called by a function.  

Feature Selection: the process by which a subset of relevant predictive features is 

selected from a full feature set.  

Feature: an attribute shared by all the independent instances upon which learning may be 

performed.  

FindBugs: an open source static analysis program that finds bugs in Java code.  
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FindSecBugs: an open source static analysis program that finds security vulnerabilities in 

Java code.  

Fitness Function: in genetic algorithms, a function used to evaluate the performance of a 

solution on the input.  

Genetic Algorithm: an algorithm that uses natural selection and evolutionary methods to 

find an optimal solution for inputs by optimizing for an objective function.  

Integrated Development Environment: a software tool used for software development.  

JAVA: a compiled programming language that is operating system agnostic.  

JULIET: a test suite of test cases developed by NIST to evaluate static analysis tools.   

Long Short-Term Memory: a machine learning network comprised of recurrent neural 

networks.  

Machine Learning: the computational process of building models based upon learning 

patterns in input data.  

MITRE: a non-for-profit research company.  

Moodle: an open source web-based learning management system.  

Mutation: in genetic algorithms, a random change in a chromosome to promote 

diversity, similar to biological mutation.  

National Vulnerability Database: The United States Government’s repository of 

standards-based vulnerability management data represented using the Security Content 

Automation Protocol (NIST, 2017b).   

Neural Network: a machine learning method based on the concepts of the human brain.  

PHP: a programming language for web-based applications.  

PhpMyAdmin: an open source web-based database administration tool for MySQL.  
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Precision: the proportion of true positives classified correctly.  

Preprocessing: the preparation and transformation of data for machine learning.  

Recall: the proportion of true positives correctly classified as positives.  

SonarQube: an open source static analysis program that finds security vulnerabilities and 

code quality issues for several languages.  

Static Analysis: the process for testing applications source code or binaries for bugs or 

flaws without executing the application.  

Static Application Security Testing: the process for testing applications source code or 

binaries for security vulnerabilities without executing the application.  

Structured Query Language Injection: a security vulnerability that allows attackers to 

inject queries on a data source.  

Support Vector Machine: an algorithm for machine learning classification.  

Test Suite: a collection of source code with labeled good and bad test cases that could be 

used to create labeled data sets.  

Testing Data Set: a subset of a data set used to evaluate a machine learning model. 

Training Data Set: a subset of a data set used to train a machine learning model. 

Unactionable Alert: an alert that persists between versions. 

List of Acronyms 

AC: Alert Characteristics  

ARM: Adaptive Ranking Model  

AST: Abstract Syntax Tree  

BLOC: Blank Lines of Code  

CAS: Center for Assured Software  
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CI: Continuous Integration  

CIT: Chrome Issues Tracker  

CLOC: Commented Lines of Code  

CSV: Comma-Separated Values  

CVS: Concurrent Versioning System  

CWE: Common Weakness Enumerations  

DNN: Deep Neural Network  

FN: False Negative  

FP: False Positive  

GA: Genetic Algorithm  

HTML: Hypertext Markup Language  

IDE: Integrated Development Environment  

JSON: JavaScript Object Notation  

LOC: Line of Code  

LSTM: Long Short-Term Memory  

MFSA: Mozilla Foundation Security Advisor  

NL: Number Lines  

NN: Neural Network  

NSA: National Security Agency  

NVD: National Vulnerability Database  

OWASP: Open Web Application Security Project  

OX1: Order Base Crossover  

PHP: Hypertext Preprocessor  
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PMD: Programming Mistake Detector  

PMX: Partially Mapped Crossover  

POS: Position Based (crossover)  

SA: Static Analysis  

SARD: Software Assurance Reference Dataset  

SAST: Static Application Security Testing  

SCAP: Security Content Automation Protocol  

SCX: Sequential Constructive Crossover  

SQLi: Structured Query Language Injection  

SVM: Support Vector Machine  

TN: True Negative  

TP: True Positive  

WAP: Web Application Protection  

XML: Extensible Markup Language  

XSS: Cross-Site Scripting 

Summary 

This Chapter has outlined a brief history of the static analysis domain and its current 

problems, discussed motivating factors for continued research, and posited the goal of 

this proposed research effort. Research questions that guided this research were 

presented. Barriers, limitations, and assumptions were identified. The rest of this paper is 

organized as follows: Chapter 2 presents a review of literature; Chapter 3 outlines the 

research methodology that was followed.  
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Chapter 2 

Review of the Literature 
 

Research efforts into the processing of alerts generated from static analysis tools 

began to flourish in the early 2000’s. This included ranking methodologies using 

statistical techniques, historical information, clustering, and feature selection for 

prediction models. 

An alert ranking program, Z-Ranking, was proposed in (Kremenek & Engler, 2003). 

This program ranked error messages in order of probability based upon frequency counts 

of successful and failed checks. After counting the number of successful verses 

unsuccessful checks, the program used statistical techniques to compute and sort error 

messages based upon those values. They tested their solution on two systems, Linux 2.5.8 

and a commercial code base. They ranked the reports for comparisons of: Z-Ranking, the 

tools default, random ranking, and optimal ranking. Their method outperformed the 

default and random for both programs in all three scenarios. It also performed better than 

randomized ranking 98.5% of the time. However, it never outperformed optimal thus 

leaving room for improvement. 

Improving the ranking of alerts by using correlation between reports was pursued in 

(Kremenek, Ashcraft, Yang, & Engler, 2004). Report errors were grouped into sets of 

correlated populations based on code locality using function, file, and directory. Initial 

ordering for reporting the errors was performed by assigning a probability that the item 

was a bug. After the inspection of an item was completed and ranked, the information 
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gained from feedback was used to update the probabilities using a Bayesian Network. 

The error report was then re-prioritized to display the next error. They tested their method 

using error reports from Linux 2.4.1 and a large commercial system. They manually 

classified the error reports and were able to cluster the errors into 4 regions. The authors 

saw a factor of 2-8 improvement over randomized ranking showing that re-prioritization 

of error reports using information gain is beneficial. 

A foundational work in the domain that attempted to accurately predict files that 

contain the largest amount of faults was presented in (Ostrand et al., 2004). The authors 

goal was to provide testers with a practical and reasonably accurate assessment of which 

files contained the largest faults. In other words, where to find the bugs. They created a 

negative binomial regression model using information from previous releases as 

predicting factors of fault probabilities. Files were ordered by descending number of 

predicted faults. Factors they used included log(LOC), file age, new file, changed file, 

number and magnitude of changes made to the file, square root of the number of detected 

faults in prior releases, number of faults in early development stages, programming 

language, and release number. 

They tested their model on a large telecommunications inventory system that had 17 

releases and another system that had 9 releases. Their results found that the top 20% of 

files from the model contained 83% of the faults. Statistically significant factors may 

have skewed this model to its simplest form such as lines of code (LOC); however, this 

work was extremely beneficial to the domain, well thought out, and executed well. 

FindBugs, a widely used SA tool, was presented in (Hovemeyer & Pugh, 2004). The 

authors described in detail how their program used 50 bug patterns in several rough 
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categories and tried to locate them in source code. They tested their program on six 

highly used programs, including open-source and very large programs. They found 

several bugs and reported the bugs to the vendors. The vendors fixed the bugs in future 

releases; thus, clearly illustrating that their program did in fact find legitimate bugs. They 

compared their program with PMD, another SA tool, and found that the two were 

complementary and not intended to replace each other. This tool is widely used today, 

even as a component in commercial SA tools. 

(Bell et al., 2006) extended their previous work by testing their model on a younger 

system using four different feature-based models. They used a variable selection process 

by computing statistical significance of different variables to include in their models. 

They created four models of different variable sets to test on the new system. 

1. Basic Model: included features log(LOC); log of proportion of the month the 

file was in the system; the age of the file in months; indicators if the file was 

new, one, two, three or four months old; the square root of the number of 

changes made in the prior month; the square root of the total number of 

changes made during the last five months; indicators for js or sh; indicators of 

language for which the average file size was very small or small; and dummy 

variables for all but one month. 

2. Enhanced Model: included all the features of the basic model plus dummy 

variables for conf, html, java, jsp, xml, and xsl; interactions of log(LOC) with 

each of conf, html, sh, xsl; and the very small grouping. 

3. Simplified Model: used log(LOC); new to the month or not; changed or not; 

months in the system as files age; and log of exposure variable which was a 

variable for duration of the month it was in the system. 

4. LOC Model: used a simple count of the number of lines of code in a file. 
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Their test results show that the LOC Model covered 55% of the faults, Simplified 

Model around 65-67%, the Basic Model 71-75%, and the Enhanced Model of 71-75%. It 

showed that the Basic or Enhanced models were in line with their previous research 

results. 

Another alert ranking system was outlined in (Williams & Hollingsworth, 2005) that 

leveraged source code change history. They mined a concurrent versioning system (CVS) 

repository for source code changes. They used two factors in ranking the alerts: whether 

the function was previously part of a bug fix and the percentage of times a function return 

value was checked prior to its use. They tested their ranking system on Apache Web 

Server and Wine and compared their results with a naive technique: solely consisting of 

an indication if the return value was checked more than half the time. They were able to 

demonstrate that ranking criteria can be improved by mining software repository 

historical information. 

(Kim & Ernst, 2007a) prioritized warning categories by analyzing software change 

history. Using the lifetime of a bug, they prioritized shorter lifetimes as higher priority 

and longer lifetimes as a lower priority. They analyzed two programs: Columba and 

jEdit. The authors ran scans on each compilable version of the code using three SA tools. 

The authors calculated the time between when a bug appeared to when the bug 

disappeared. The authors found that prioritized ranking varied between both tools and 

projects, and that the lifetime for each category of bug differed. The authors assumed 

more serious bugs were fixed first which may not always hold true. For unfixed bugs they 

set a default number of resolution days which could skew results since they also issued 
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the same priority level for all bugs of the same category. Another assumption was that all 

bugs reported were true positives. 

A work to prioritize alerts by utilizing source code change logs from versioning 

history was presented in (Kim & Ernst, 2007b), an extension of their previous work. In 

this work, they evaluated their weighted prioritization method on three programs, 

Columba, Lucene, and Scarab, using three code scanner tools. They identified potentially 

buggy lines of code by mining change log messages for bug related keywords. They 

marked the changed lines from the previous versions as buggy or non-buggy. They then 

ran code scanners and compared the alert reports to the list generated using the change 

logs. Grouping was performed by category. For each warning in a category, they 

increased the weights by different factors if the warning was removed in a fix change 

verses a non-fix change. The final weight was the weight divided by the number of 

warnings in a category. The list was re-prioritized using the new weights. Their 

prioritization method improved the warning precision overall by 17%, 25%, and 67% 

respectively. 

There are limitations to this work. For instance, all warnings in the same category 

were given the same weight. Additionally, they removed a warning if the file was 

deleted. Perhaps they could have searched for a hash of the file to verify if the file moved 

or changed names. Quite noteworthy, the Weighted majority voting and Winnow online 

machine learning algorithms cited as justification for their algorithm uses not only 

promotion but demotion; however, their algorithm lacks a demotion aspect. They 

encountered similar challenges to other works citing that bug fix data was incomplete in 
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the logs and matching warnings between versions was difficult due to line of code 

changes and the deletion of files. 

Adaptively ranking static analysis alerts by using historical data from developer 

feedback was proposed in (Heckman, 2007). The adaptive ranking model (ARM) 

gathered data from three sources: the alerts generated from static analysis, developer 

feedback, and historical ranking factors. The author gathered the alerts generated from 

static analysis and then ranked the listings using their algorithm. 

The author presented four equations which were utilized in the alert ranking process. 

The proportion of closed and suppressed alerts from the developer to all suppressed and 

closed alerts was used to arrive at an adjustment factor which modified ranking factors. 

Alert type accuracy was computed using the weighted average of historical data from 

observed true positive rates and the actions of suppression and closing of alerts by the 

developer. Code locality used the historical data based on alerts that the developer 

suppressed and closed in the same area of code by method, function, and folder. Finally, 

alert type accuracy and code locality were used for ranking the alerts. 

The author tested their ranking system on iTrust, a health care Java application written 

as a school project at North Carolina State University, and compared their ranking system 

with an optimal ranking, random ranking, and a tool default ranking. The ARM 

performed very close to the optimal ordering of alerts and discovered 81% of the true 

positive alerts in the first 20% of inspections. The random ranking found only 22% in the 

first 20% of results. The ARM’s performance then did degrade; however, it still 

outperformed random and eclipse. 
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Although this work was promising it presented with limitations. First, it was used on 

an unused software product. iTrust is not a real-world application so is not indicative of 

the types of issues found. Additionally, this was not previously used for testing in the 

domain. For some types of alerts, the initial weights used were taken from other 

published works. This model ranks alerts based upon what the developers are closing or 

ranking. This can create lists specific to what an organization is deeming to be most 

valuable to them. However, if developers choose to tackle one type of alert at a time, 

those alerts may get erroneously ranked higher. 

From the work performed by researching the historical data it was soon discovered 

that some bugs persisted over time. These were soon classified as unactionable: true 

alerts yet not acted on by developers. Reasons for not correcting the bugs are not proven 

and lacks exploration in the literature. 

Machine learning was used to build false positive mitigation models to classify static 

analysis alerts as actionable or unactionable in (Heckman & Williams, 2009). They 

wanted to find from the static analysis alerts a set of alert characteristics (AC) that are 

predictive of actionable alerts and which models are best at classifying them. 

For possible ACs, the author used features from: the static analysis alert (project, 

package, file, method, type, category, priority, extension, and number of alert 

modifications); software metrics (size, number of methods, number of classes, cyclomatic 

complexity); source code history (open in revision, developer, file creation version, file 

deletion revision); source code churn (number of added, modified, and deleted lines, 

growth, and percentage of modified lines); and aggregate features (total alerts for 
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revision, total open alerts for revision, alert lifetime, file age, alerts for artifact, and 

staleness). 

They performed tests on two programs: jdom and org.eclipse.core.runtime. They 

collected source code history and code churn. They checked out every 25th revision and 

built the project. If the project failed to build it was skipped. They gathered the size and 

complexity metrics. By comparing one version to the next they were able to gather all the 

required ACs. For alert characteristic feature selection they used Best First, Greedy 

Stepwise, and RankSearch. Using Weka, they ran several classifiers using ten-fold cross 

validations and default settings for each method used. They evaluated each set using 

several default machine learning algorithms and presented their results. 

The authors found that a subset of ACs should be project specific. They also found 

consistencies in which ACs were selected or excluded. Their results included averages 

for precision (89%, 98%), recall (83%,99%), and accuracy (87.8%, 96.8%) for jdom and 

runtime respectively. 

An attempt to identify actionable static analysis alerts was presented in (Ruthruff et 

al., 2008). The authors created a statistical model leveraging logistic regression to 

classify results as true, false positives, or actionable. They tested their model on Google® 

source code over a three-month period in 2007. 

The code factors evaluated by the model included 33 factors: the FindBug warning 

descriptors; their in-house tool at Google® titled BugRank in which developers rank the 

bugs in priority from 0-100; file characters of age and extension; history of warnings in 

code from file and project warnings, and file, package and product staleness; source code 

factors of depth, file length, and indentation; churn factors such as added, changed, 



	
 

	

23	 	

deleted, growth, and both total and percentage of lines changed. They used a screening 

methodology for selecting a subset of at least six predictive factors to use as independent 

variables for their logistic regression models. This consisted of four stages. In each stage 

the percentage of alerts they evaluated was increased. For each factor in each stage, they 

performed an analysis of deviance from the logistic regression model using a Chi-squared 

test and eliminated factors with small effect sizes using a gradual reduction of p-values. 

The logistic regression model was then fit using the remaining factors as independent 

variables. 

They found that code churn factors were almost immediately eliminated and 

speculated that this was most likely due to the amount of code change that occurred daily. 

Factors such as their in-house ranking system and bug pattern were consistently selected. 

Further, the models built on screened data was, in general, at least as good as that of the 

models leveraging the entire warning data sets. The models were 85% accurate in 

predicting false positives and 70% accurate on actionable alerts. 

An interesting piece of work using a more mature feature selection methodology than 

previously used in the literature; however, it cannot be reproduced as this was tested on 

proprietary source code. Bias may have been introduced in the priority ranking performed 

by developers and this factor was always selected in their models. 

It was evidenced that the domain continued to be plagued with inaccuracies and high 

false positive rates when the capabilities of static analysis to detect security 

vulnerabilities was explored in (Goseva-Popstojanova & Perhinschi, 2015). The authors 

tested three well known commercial static analysis tools on the Juliet test set as well as 

three open-source programs: Gzip, Dovecot, and Tomcat. They measured accuracy, 
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recall, probability of false alarm, and G-score. None of the tools were able to detect all 

vulnerabilities. For the C/C++ test cases, 27% of the common weakness enumerations 

(CWE) were not detected by any tool, 32% were detected by a one or two tools, and 41% 

were detected by all three tools. Likewise, for the Java test cases 11% were not detected 

by any tool, 68% detected by a single or two tools, and only 25% were detected by all 

three tools. For both the C/C++ and Java vulnerabilities, none of the tools showed 

statistically significant differences in their detection rates. The mean, median, and recall 

for all tools was around or lower than 50%. The authors stated that this is comparable or 

worse than random guessing. 

A survey paper (Muske & Serebrenik, 2016) presented a thorough review of the extant 

literature of research efforts on the processing of static analysis alerts. After performing a 

systematic search for peer reviewed works using a combination of keyword searches and 

snowballing, the authors reviewed and categorized the resulting papers into seven 

categories: Clustering; Ranking; Pruning; False Positive Elimination; Static and Dynamic 

Analysis Combination; Simplifying Inspections; and Design of Light-Weight Static 

Analysis Tools. For each category the authors provided a short review of a few works. 

This paper provides evidence of both the breadth and varied approaches regarding the 

processing of alert output from static analysis in peer reviewed literature. 

Recent research efforts that utilized methods similar to the research effort performed 

herein include SA works in machine learning, feature selection, and classification of 

alerts. 

An effort to classify alerts using machine learning algorithms was presented in 

(Yüksel & Sözer, 2013). They created their own dataset using thousands of alerts from a 



	
 

	

25	 	

digital TV software application. After classification, they trained and tested several 

machine learning algorithms using Weka. In addition to the alert characteristics generated 

from the SA tool, they gathered alert characteristics such as severity, alert code, lifetime, 

developer classification, file name, folder name, number of open alerts, total alerts, and 

alerts in module. They performed three studies: first, they used ten different attribute 

evaluator tools; second, they used the full data set to evaluate the accuracy of 34 machine 

learning algorithms; and third, they trained on alerts generated until the 5th run of the SA 

tool and classified alerts in later releases. In the first study, they found that file name, 

lifetime, alert code, developer classification, and severity were the most relevant 

characteristics for classification. In the second study, they found that random forest, 

random committee, and DTNB performed the best with accuracies over 83.6% and 

recalls over 83.6%. In the third study, they found that the average accuracy, precision and 

recall was around 90% on the third test set; however, the third test set had a higher 

number of true positives in the test set. 

(Hanam et al., 2014) proposed an alert classification and ranking method by applying 

machine learning techniques to find patterns in the source code near the source of the 

alert. Their method involves backwards program slicing near the source of the alert. The 

source code is parsed into an abstract syntax tree (AST) which is used to build a call 

graph and pointer analysis. The call graph, pointer analysis, and the alert seed statements 

are used to construct backwards slices for each alert. They then determined alert 

characteristics for each statement type. To classify the alerts they used decision trees, 

Naive Bayes, and Bayesian network in Weka. They tested their method on FindBug alerts 
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from Tomcat6, Apache Log4j, and Apache Commons. They discovered alert patterns do 

exist and their method also improves actionable ranking. 

(Yoon, Jin, & Jung, 2014) reduced the false alarm rate by classifying alerts using a 

support vector machine (SVM). They created an AST from the source code and then 

performed feature vector extraction from the AST as a preprocessing step. They then 

trained and tested their SVM classifier on ten open source Java applications. They were 

able to reduce the false positive alarms by 37.33%. 

An attempt to detect and correct vulnerable code using data mining techniques was 

presented in (Medeiros, Neves, & Correia, 2014). Their method involved four steps: a 

web application protection (WAP) taint analyzer for finding vulnerable code, data mining 

to learn and classify false positives, code correction to resolve the vulnerable code, and 

feedback to present information back to the developer. For the data mining module that 

predicted false positives from the output of the WAP tool, they used Weka to discover 

which algorithms would perform best for their data. They found that logistic regression, 

SVM, and random tree were the top performers. They ultimately choose to implement 

logistic regression for their classification. They tested their model on 35 open source PHP 

applications. Their model resulted in an accuracy of 92.1% and precision of 92.5%. 

A method using feedback to train classifiers to reduce false positives was presented in 

(Tripp, Pistoia, & Aravkin, 2014). This method took the raw output of static analysis 

alerts and asked users to classify a small subset as true or false. This information, along 

with selected warning attributes, were used to train different classifiers. Each of the 

candidate filters were applied to the test set and scored. The filter that attained the highest 

score was used to classify the remaining alerts. They manually choose features of: source 
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identifier, sink identifier, source line number, sink line number, source URL, sink URL, 

external objects, total results, number of steps, time, number of path conditions, number 

of functions, rule name, and severity. For the learning algorithms they evaluated: Naive 

Bayes, OneR, SVM, J48, and a Naive Bayes tree. They tested their method on security 

warnings from 1,706 HTML pages. In all cases the model was able to improve precision 

by a factor between 2.8 and 16.6 times. This model was implemented into a leading 

commercial SA tool. 

Machine learning techniques to predict cross-project vulnerabilities in source code 

was explored in (Abunadi & Alenezi, 2015). The authors built fault prediction models 

based on two projects and ran the models on a third to measure its prediction power. 

They used a previously collected dataset that contained software and vulnerability 

information regarding three PHP open-source web applications: Drupal, Moodle, and 

PhpMyAdmin. Code characteristics included: lines of code, lines of non-HTML code, 

number of functions, cyclomatic complexity, maximum nesting complexity, Halstead’s 

volume, total external calls, fan-in, fan-out, internal functions or methods called, external 

functions or methods called, and external calls to functions or methods. They applied 

Naive Bayes, logistic regression, support vector machine, J48, and random forest 

classifiers to the datasets using Weka. J48 and random forest outperformed the other 

classifiers. Using the two best performing models they ran predicted errors in the third 

project and both had high prediction rates. For both models the metrics were within 

hundredths of each other with around 98% precision, 96% recall, and 97% for F-measure. 

This work shows promise to cross-project vulnerability prediction; but it must be stated 

that the code bases tested are very similar. 
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Several previous papers include source code history in their alert processing models; 

however, (Hovsepyan, Scandariato, & Joosen, 2016) tried to quantify how much history 

is beneficial. To investigate, they used Mozilla Firefox and Google Chrome. They 

gathered the programs revisions and associated histories, as well as data from the Mozilla 

Foundation Security Advisor (MFSA), National Vulnerability Database (NVD), and 

Chrome Issues Tracker (CIT). For each security issue they mapped the vulnerability to 

the related files. The authors used two different methods for feature selection. One was 

38 traditional code level metrics such as lines of code, count, cyclomatic complexity, 

ration comment to code, highest amount of nested conditional statements, etc. The other 

method was a bag-of-words approach measuring the frequencies of the tokens appearing 

in the source code. To test prediction of their models, for each application they selected 

previous versions, built that version and used that version to predict vulnerabilities in 

later versions. This idea was set forth by Shin (Shin & Williams, 2013) as well as 

Scandariato (Scandariato, Walden, Hovsepyan, & Joosen, 2014). They then ran the 

models to predict vulnerabilities in the next release. The ones with more history 

performed better but at a cost of file inspection ratio. The authors ultimately determined 

that recent history is more beneficial. 

An effort to accurately find and correct cross-site scripting (XSS), SQLi, and other 

injection attacks in PHP code was attempted in (Medeiros et al., 2016). Their system was 

composed of three modules: Code analyzer, FP predictor, and Code Corrector. To train 

the FP predictor, the authors manually classified 76 vulnerabilities as either FP or TP 

using 15 data characteristics pulled from the WAP tool. They then used Weka to 

determine which classifiers performed best for their model: Logistic Regression, Random 
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Tree, and SVM. For prediction they used a voting methodology; however, results were 

not provided on how often the classifiers disagreed. They evaluated their solution on 45 

open source packages of all sizes and application types and found their predictor was 

92% accurate. This effort only evaluated one language for two types of vulnerabilities. 

The statistical correlation between actionable alerts, unactionable alerts, and defects 

was explored in (Yan et al., 2017). They took 40 releases from three open source 

applications: MyFaces, Camel, and CXF, and tested them using the static analysis tool 

FindBugs. They classified the alerts as either actionable or unactionable using Heckman’s 

(Heckman & Williams, 2009) method of classifying alerts. This method classifies an alert 

as actionable if it is removed from one version to another; remaining alerts are classified 

as unactionable. They then collected defect data from Jira reported bugs from Bugzilla. 

They then performed statistical calculations to determine if there was a correlation 

between alerts and defects; and additionally, if there was a correlation between actionable 

alerts and defects. They found that the overall quantity of alerts was not an indication of 

defects; however, they did find that actionable alerts was an indication of defects. 

The application of deep neural networks to the discovery of vulnerable software 

components was recently published by (Pang et al., 2017). Their model used statistical n-

gram analysis feature selection prior to a deep neural network (DNN) for classification. 

They tested their model on four Java applications and obtained averages of 92% 

accuracy, 95% precision, and 90% recall. These are promising results and prove that 

DNNs can be successfully applied to the SA domain; however, the paper lacks through 

details preventing the replication of their work. Although this paper is not classifying 
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static analysis alerts but rather predicting vulnerable software components the feature sets 

may be similar. 

Predicting false positive alerts using program slicing to learn program structures that 

cause false reports was presented in (Koc et al., 2017). Their method first involves code 

reduction by taking the body of the method where the alert was generated from as well as 

a backward slice from the warning line. They used this reduced code to train two 

classifiers: a Naive Bayes and a long short-term memory (LSTM) classifier. They tested 

their models on the OWASP benchmark test suite. The LSTM classifiers performed 

better than the Naive Bayes. The LSTM using method body had 81% recall and 89.6% 

accuracy while the LSTM using backward slicing had 97% recall and 85% accuracy. 

It is evidenced that classifying static analysis alerts is still an active problem in the 

research community. Recent efforts to address the problem have included data mining, 

feature selection, and machine learning. These methods have shown promise; however, 

more work is still needed.
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Chapter 3 

Methodology 
 

Introduction 

To address the problem of high false positive rates the goal of this research effort was 

to develop and evaluate methods for feature selections that helps to improve the 

classification accuracy of static analysis alerts. This research effort presented and tested a 

novel method leveraging feature selection that resulted in the improved classification of 

alerts. 

A feature selection method was developed and evaluated to investigate the improved 

classification accuracy of static analysis alerts. After data was gathered and preprocessed, 

the data was split into train and test sets. A genetic feature selection model was trained 

and tested on the train and test sets respectively. The process was performed iteratively, 

testing selected feature subsets for an improvement in classification accuracy in an 

embedded fashion. This process resulted in a subset of relevant features for the 

classification of the alerts. To quantify the feature selection model’s classification 

improvement, the model was compared with a control classifier that excluded the feature 

selection component.  

The Model 

The model first performs feature selection. Second, classification is performed. Third, 

data analysis is performed. 
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Feature Selection Method 

Feature selection methodologies were developed and evaluated for the improved 

classification accuracy of static analysis alerts. After data was prepared and pre-

processed, the first step in the model was to perform feature selection. 

For the feature selection component genetic algorithms were employed. Genetic 

algorithms (GA) are based upon Darwin’s theory of evolution. They are used to find 

optimal solutions to difficult problems, for instance an optimal set or optimal shape. GAs 

utilize an objective function, called a fitness function, to progressively evaluate 

individuals. Better performing individuals of each generation are selected for breeding. 

The GA performs crossovers, mutations, and selection of the fittest to arrive at an optimal 

generation referenced as a solution (Holland, 1975). 

The general outline of a GA is: 

Create the initial population of chromosomes. 
For each of N generations { 

Selection: Select parents based on the fitness, with replacement. 
Recombination: Pair parents and perform recombination to produce 

offspring. 
Mutation: Mutate offspring. 
Replacement: Replace the parents with the mutated offspring. 

} 
 

GAs are iterative functions that begin with an initial population. A population is a 

subset of all the possible solutions. Chromosomes represent one solution. A gene 

represents one element in the chromosome. In each generation, chromosomes are 

evaluated on their performance on the fitness function. Better performing chromosomes 

have a higher probability to mate and, thereby create even better fit chromosomes. 

Crossover is used to create new chromosomes from the existing better performing 

chromosomes. The point at which each chromosome is separated is called the crossover 
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point. Crossover points may be random or predefined. There may also be single or 

multiple crossover points. In the case of a single crossover point, the first section from 

each chromosome will be merged with the secondary section of the other chromosome. 

Figure 1 shows an example of a single point cross over. This is a simplistic example of 

crossover; however, several methods to perform crossover functions exist including 

uniform, sequential constructive (SCX), position based (POS), partially mapped (PMX), 

order-based (OX1), and more. This overall crossover process results in offspring that is 

composed of genes from both sets of the parent chromosomes. 

	

Figure 1 GA Crossover 
 

Mutation, a random inversion or minor modification to a gene, is performed to ensure 

diversity in the generations. This helps to prevent the algorithm from getting stuck in a 

local minima by exploring the search space. Mutations may flip bits, perform string 

manipulation, swap values, invert subsets, or other types of random minor modifications. 

This overall process continues until a termination condition is met. Termination 

conditions may vary but include a predefined number of generations, a sufficiently 

performing solution presented, or a plateau of consecutive generations performance on 

the objective function. 

There are different methods of feature selection including filter, wrapper, embedded, 

and more recently hybrid (Li et al., 2018). Filter methods do not consider learning 

algorithms but use statistical measures to determine feature importance. Features are 
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ranked and either kept or removed from the dataset. They are more computationally 

efficient than wrapper methods but feature sets may not be optimal for predictive models. 

Wrapper methods take the selected feature sets and evaluate their accuracy on a 

predictive model. Each subset is used to train a model and then tested. The classification 

accuracy is used to score the performance of the subset. This can be computationally 

expensive but often provides the best performing feature set for the model. However, the 

selected feature set may not generalize to other data as this method is prone to overfitting. 

Embedded methods perform feature selection and classification simultaneously. It is 

similar to wrappers in that it considers the predictive model’s performance; yet it is less 

computationally expensive and less prone to overfitting. Hybrid models are some sort of 

combined method of filter, wrapper, and/or embedded (Li et al., 2018). 

The following outlines the employed genetic algorithm specifics. 

Method: The method used for the feature selection model was an embedded model.  

Representation: Binary encoding was used to represent feature selection or exclusion 

in the solution set. Each chromosome, candidate solution, was represented as a bit string 

of length n, where n was the total number of features. The jth feature was retained if the jth 

bit was 1 and removed if the jth bit was 0.  

Initial Population: The initial population was randomly selected. This was performed 

by randomly generating bit strings of length n as members of the initial population. The 

probability that any bit in a chromosome was a 1 bit was independently 0.5.  

Fitness: The fitness of a chromosome was proportional to the classification accuracy 

of the model on the test set using the selected subset of features. 
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Selection: Tournament selection was used. Selected chromosomes (parents) from the 

current population were placed in a mating pool. Selected chromosomes randomly mated 

using recombination to create offspring. 

Recombination: A standard single-point crossover was used. With probability pc, the 

crossover operation was applied, and with probability (1- pc) the offspring were identical 

to the parents.  

Mutation: With a small probability pb, a random bit in a chromosome was inverted; 

with probability (1- pb) the chromosome remained unchanged. 

Replacement:  The offspring generated through recombination and mutation replaced 

the parents in each generation. Elitist replacement strategies were used. 

 Termination: Generations continued to be created and evaluated until improvement 

of the fitness function was absent, minimal for a number of generations, or until a 

predefined number of generations were evaluated, whichever occurred first. 

Parameters: The GA was run with several combinations of the settings as fully 

outlined in Appendix C. These included variations on population sizes, generations, 

selection rates, mutation probabilities, and termination conditions.   

Code: The complete genetic algorithm code is included in Appendix I. 

Classification Method 

The classification method used for this research was a support vector machine (SVM), 

a machine learning classifier. For both the control classifier and the feature selection 

model a SciPy Linear SVC with default settings was used. 

An SVM is a supervised method for classifying objects introduced in 1963 by 

Vladimir Vapnik. He later worked with Alexey Chervonenkis to refine the algorithm. The 
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algorithm classifies objects by finding an optimal hyperplane, or decision line, that 

distinctly separates objects in the data set (Fig. 3 !"). Figure 2 shows several possible 

hyperplanes that separates the two classes of objects. !# has some classification errors, 

!$ and !% correctly classify all objects; however, the distance between the two classes is 

greater in !$. Thus, SVMs not only want to separate the classes but separate them as 

distinctly (i.e., optimally) as possible. The objective becomes to maximize the margin, 

which is the area between the positive and negative hyperplanes. Larger margins have 

lower generalization errors whereas smaller margins are more prone to overfitting. Once 

the hyperplane is determined, classification of new objects occur based upon which side 

of the hyperplane the object falls. The hyperplane could be linear or non-linear. Finding 

the hyperplane for non-linearly separable data can be accomplished by using a kernel 

trick, projecting the data into a higher dimensional feature space. The non-linear 

hyperplane may then be found. Pushing the data and hyperplane back onto the original 

feature space, the hyperplane appears to weave through the data set. Additionally, SVMs 

have a single global minimum (Kowalczyk, 2017; Russell & Norvig, 2014). 

The equation for a hyperplane is: 

& ⋅ ( + * = 0 

This is another way of writing the two-dimensional equation of a line - = ./ + *. 

However, by using vectors it also works for finding a hyperplane in multi-dimensions. 

Items are classified depending on which side of the hyperplane they fall. Relative to 

the decision line, positive items (1) reside further than the positive hyperplane (Fig. 3 
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Figure	2	Possible	Hyperplanes	

 

Figure	3	Linear	SVM	Hyperplane	

 

!012) and negative items (-1) reside further than the negative hyperplane (Fig. 3 !345). 

Support vectors reside on the hyperplanes. The positive and negative hyperplanes are 

defined by: 

& ⋅ (6 + * = 1
& ⋅ (6 + * = −1

 

Which is a dot product of the vector normal to the hyperplane & and the vector (6 plus 

the bias *. By using these two hyperplanes the margin can be computed. The margin is 

defined as: 

9 =
2

||&||
 

Classification of items use the following with a constraint to ensure that no data point 

resides inside the margin. 

& ⋅ (6 + * >= 1, if	-A = 1
& ⋅ (6 + * <= −1, if	-A = −1

 

Which can be combined to: 
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-A(& ⋅ (6 + *) >= 1∀A  

SVMs want to maximize the margin and thus minimize the norm or ||&||. Rather than 

maximizing the margin it is easier to minimize ||&|| which becomes the constrained 

optimization problem: 

minimize	
(J,K)

 
1
2
||&||$

subject	to  -A(& ⋅ (6) + * − 1 >= 0
 T = 1,2, . . . , 9

 

This is a quadratic problem which can be solved using the Lagrangian multiplier 

method resulting in the following SVM primal optimization function: 

ℒ(&, *, W) =
1
2
||&||$ −XWA

Y

AZ#

[-A(& ⋅ (6 + *) − 1] 

The above problem can be solved by taking the Wolfe dual of the above primal 

problem: 

maximize	
_

 XWA

Y

AZ#

−
1
2
XXWA

Y

`Z#

Y

AZ#

W`-A-̀ (6 ⋅ (a

subject	to  WA >= 0, for	any	T = 1, . . . . . , 9

 XWA

Y

AZ#

-A = 0

 

Which has removed the dependence on w and b. 

By satisfying the Karush-Kuhn-Tucker (KKT) condition, the problem can be solved by 

computing just the inner products of /A, /̀  while also guaranteeing the optimal solution. 

The following SVM classification hypothesis is derived: 

ℎ((6) = eTfg(XW`

h

`Z#

-̀ ((a ⋅ (6) + *) 
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Soft margin SVMs allow for noisy data creating outliers that could alter margin 

calculations. Slack variables were introduced to relax the constraints, thereby allowing 

for some classification mistakes. The goal is not to have zero misclassifications but rather 

only a few and penalize any classification errors. Thus, the new constraint becomes: 

-A(& ⋅ (6 + *) >= 1 − iA 

To limit the number of incorrect guesses the sum value of all i must be minimized. 

Additionally, the sum must not be negative. A new conditional is added to the objective 

function becoming: 

maximize	
_

 XWA

Y

AZ#

−
1
2
XXWA

Y

`Z#

Y

AZ#

W`-A-̀ (6 ⋅ (a

subject	to  0 <= WA <= j, for	any	T = 1, . . . . . , 9

 XWA

Y

AZ#

-A = 0

 

Choosing a small j will give a wider margin and more classification errors. The 

alternative it true that a larger j will give a harder margin with less errors. 

Kernel functions return the dot product as if they had been transformed into vectors 

without actually transforming them. This minimizes computation effort. By adding the 

kernel function k, the dual problem becomes: 

maximize	
_

 XWA

Y

AZ#

−
1
2
XXWA

Y

`Z#

Y

AZ#

W`-A-̀ k((6 ⋅ (a)

subject	to  0 <= WA <= j, for	any	T = 1, . . . . . , 9

 XWA

Y

AZ#

-A = 0

 

The hypothesis therefore becomes: 
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ℎ((6) = eTfg(XW`

h

`Z#

-̀ k((a ⋅ (6) + *) 

There are several kernel functions. Some commonly used kernel functions include: 

• Linear k((, (l) = ( ⋅ (l 

• Polynomial k((, (l) = (( ⋅ (l + m)n 

• RBF / Gaussian k((, (l) = o/p(−q||( − (l||$) 

SVMs have previously been used to classify static analysis alerts in (Bleier, 2017; 

Medeiros et al., 2016; Tripp et al., 2014; Yi, Choi, Kim, & Kim, 2007; Yoon et al., 2014).  

For this research, both the control classifier and the feature selection model leveraged 

a SciPy SVM Linear SVC with default settings. The classification confusion matrix is 

presented in Table 1.  

Table 1 Confusion Matrix 
	 Actual	

Positive	 Negative	

Classified	
Positive	 True	Positive	(TP)	 False	Positive	(FP)	

Negative	 False	Negative	(FN)	 True	Negative	(TN)	

	

Measures 

Accuracy, precision, recall, F-measure, and the false positive rate, were used to 

evaluate the model’s performance. Table 2 details the metrics used and the directions that 

indicate improved classification.  

Table 2 Definitions and Metrics 

Name Formula/Notation Improvement Description 
True Positive rs Increase The alert is true and classified 

correctly. 
True Negative rt Increase The alert is false and classified 

correctly. 
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False Positive us Decrease The alert is false and classified 
incorrectly as true. 

False 
Negative 

ut Decrease The alert is true and classified 
incorrectly as false. 

False Positive 
Rate 

us
us	 + 	rt

 Decrease The proportion of negative 
instances incorrectly classified as 
positives. 

False 
Negative Rate 

ut
ut	 + 	rs

 Decrease The proportion of positive 
instances incorrectly classified as 
negatives. 

Accuracy rs	 + 	rt
rs	 + 	rt	 + 	us	 + 	ut

 Increase The proportion of correctly 
classified instances, either true 
positives (TP) or true negatives 
(TN) 

Precision rs
rs	 + 	us

 Increase The proportion of true positives 
classified correctly. 

Recall rs
rs	 + 	ut

 Increase Also referred to as the true 
positive rate or sensitivity, is the 
proportion of true positives 
correctly classified as positives. 

F-Measure 2	 ∗ 	rs
2	 ∗ 	rs	 + 	ut	 + 	us

 Increase The harmonic mean of precision 
and recall. 

Data Sets 

Data sets in the static analysis domain are limited (Herter et al., 2017; Heckman & 

Williams, 2008; Shiraishi et al., 2015). As a result, researchers in this domain often 

generate their own data sets using a predefined methodology. A thorough review of the 

existing data sets was performed and compared with the data set requirements for this 

research. Although some data sets were promising, upon further investigation each lacked 

at least one necessary component. However, one was found to contain most of the 

required elements. Therefore, that data set was utilized; however, it was augmented with 

the additional static analysis components needed. The additional components were 

gathered by following the framework as outlined in the literature (Heckman & Williams, 

2008, 2009). 
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The data set criteria for this effort was as follows. The data set must contain real world 

labeled static analysis alerts. A problem with artificially generated data sets is that they 

are not a true representation of real-world data. Real world applications contain bona fide 

developer errors, complex variable paths that are difficult to follow, and often contain 

multiple flaws per function. Additionally, the source code of the applications must be 

available. Moreover, the data set should contain source code metrics (such as code churn, 

fan-in, fan-out, etc.) and historical data (such as the lifetime of alerts and the types of 

alerts resolved). If they are not included, they must be easily calculated given the other 

information provided in the data set. Furthermore, the data set must contain a sufficient 

number of test cases. Ideally, the data set contains ample alerts regarding software 

security issues and not just software bugs. Finally, if the data set does not contain SA 

alerts, the application must have several versions, issue tracking systems, and published 

vulnerabilities in order to generate and label the alerts. 

Static analysis test suites are designed to create data sets for tool comparisons. These 

test suites are collections of source code with labeled good and bad test cases. The data 

sets are generated by running the test cases through the SA tools and labeling the alerts 

by matching them to the known list of good and bad test cases. Several test suites exist 

for static analysis; however, they lacked the required features. 

Test Suite and Data Set Evaluations 

JULIET, Benchmark and the Software Assurance Reference Dataset (SARD) are 

labeled vulnerable software test suites that have previously been used in the literature to 

generate static analysis alerts. These test suites were specifically designed to test and 

study static analysis tools. The test suites consist of functions that contain intentional 
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security vulnerabilities or programming flaws. Each function is designed to test for one 

issue and is mapped to its related MITRE’s CWE. Test cases also contain functions in 

which no known flaw exists. However, the creators do note that in some instances other 

unrelated flaws may also be present. The test cases are packaged by CWE and therefore 

can be tested individually or in concert using static analysis tools. The resulting alerts can 

be easily labeled. 

The JULIET Test Suite was created by the National Security Agency’s (NSA) Center 

for Assured Software (CAS) to evaluate static analysis tools (NIST, 2017a). Test suites 

for both Java and C/C++ are provided. The Java version 1.3 contains 28,886 test cases 

covering 112 CWEs in more than 46,000 files using over 4 million lines of code. The 

C/C++ version 1.3 contains 64,099 test cases and over 100 classes of errors in more than 

100,000 files using over 8 million lines of code. The set consists of buildable code files 

labeled in a systematic method. Each test case contains one type of test for the flaw in a 

function labeled as ’bad’. Additionally, there are also test cases in the same file labeled 

with some inclusion of the string ’good’ (ie. good, goodG2B, goodB2G, good1, etc.). 

Helper methods are labeled containing some string of ’helperBad’ or ’helperGood’ 

indicating that it is a helper function to the ultimately ’good’ or ’bad’ function. Sources 

and sink methods are also labeled with some string containing ’badSource’, ’badSink’, 

’good*Source’, ’good*Sink’. Additionally, the naming convention of the test case files 

includes the CWE and test number. Although this test suite has the potential to create an 

adequate number of labeled static analysis alerts, it lacks historical features, source code 

metrics, and is not reflective of real-world source code. Additionally, although the 
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labeling of alerts is easily performed based on the naming conventions, the naming 

conventions alone could be picked up by scanning tools as patterns. 

The OWASP Benchmark project was created to test and compare static analysis tools. 

Version 1.2 was released in June of 2016 and consists of 2,740 test cases covering 11 

CWEs and is a complete web application with a UI such that test cases are fully 

exploitable. The suite contains an expected results CSV file that labels test cases as true 

or false and maps them to the related CWE. All test cases reside in the folder ’testcode’ 

and the naming convention of the files are generic. Functions that reside in test cases 

have generic names such as ’doGet’, ’doPost’, etc. Each test case is a servlet or JSP and 

is either a true positive or a false positive test case. The test suite also consists of a 

scoring portion in which scan results from tools may be imported and then automatically 

ranked for the comparison to other tools. The scoring outputs the true positive rate, false 

positive rate, true negative rate, and it’s Youden Index. This test suite also has the 

potential to create an adequate number of labeled static analysis alerts. It uses an external 

list and not the source code itself to label the test cases. However, it lacks historical 

features and realistic source code metrics. 

The ability to create labeled data sets is a clear benefit to using these artificial test 

suites as all true and false positives are known. They also offer excellent opportunities to 

compare static analysis tools; however, the comparison of static analysis tools was not the 

goal of this research effort. 

Limitations are inherent as they are artificial in nature and are not reflective of natural 

code bases. They lack the complexity of natural code as the test cases have been reduced 
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to their simplest form in order to test for one issue per test case. As a result, the alerts 

generated from the tools may not reflect real world alerts. 

Another limitation to these test suites is the frequency of flaws included in the suites. 

Some flaws may present more often than others. Therefore, the test cases and subsequent 

alerts could be skewed. Another limitation is that several features that may assist in alert 

classification are absent such as source code metrics and historical data. 

It is also noteworthy that these test suites are available to tool vendors. Vendors may 

use these test suites to improve their scanning techniques and thereby improve their 

accuracy on these tests. This is a clear advantage for the vendors of these tools as they 

possess the answers to the benchmark tests. Therefore, these test suites were not 

sufficient for this use case. 

Several other data sets were reviewed and compared to the pre-defined criteria. A 

matrix of the findings is presented in Table 3. 

Table 3 Data Set / Test Suite Requirements Matrix 

Name	 Source	 Test Suite 
or Data Set 

Source	
Code	

SA	
Alert
s	

Code	
Metrics	 Historical	 Security	 Realistic	

JULIET	 NIST,	2017a	 Test ✓	 	 	 	 ✓	 	

Benchmark	 OWASP,	2017a	 Test	 ✓	 	 	 	 ✓	 	

WebGoat	 OWASP,	2017b	 Test	 ✓	 	 	 	 ✓	 	

Toyota	ITC	 Shiraishi	et	al.,	
2015	

Test	 ✓	 	 	 	 	 	

Software	Defect	
Prediction	Set	

Mausa,	
Grbac,&Basic,	
2014	

Data	 ✓	 	 ✓	 ✓	 	 ✓	

Bug	Prediction	
Set	

D’Ambros,	Lanza,	
&	Robbes,	2012	

Data	 ✓	 	 ✓	 ✓	 	 	

FaultBench	 Heckman	&	
Williams,	2008	

Data	 *	 ✓	 ✓	 ✓	 	 ✓	

PHP	Security	
Data	Set	

Walden,	Stuckman,	
&	Scandariato,	
2014	

Data	 ✓	 	 ✓	 ✓	 ✓	 ✓	

*Source code available. Evidence of errors building packages again in subsequent works (Bleier, 2017). 
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The Selected Data Set 

A public data set containing security vulnerability data and machine learning features 

of three open source PHP applications has recently been cited in the literature referred to 

as the PHP Security Vulnerability Dataset (Walden, Stuckman, & Scandariato, 2014). 

The complete raw data set, replication data set, and all scripts used to create the data sets 

can be downloaded from https://seam.cs.umd.edu/webvuldata. The data set contains 233 

verified security vulnerabilities and has been used for subsequent studies in (Abunadi & 

Alenezi, 2015; Walden et al., 2014; Zhang et al., 2016). The authors collected data from 

95 versions of PhpMyAdmin from 2.2.0 and 4.0.9, 71 versions of Moodle from 1.0.0 to 

2.6.1, and 1 version of Drupal v6.0.0. 

PhpMyAdmin is a web-based database administration tool for MySQL initially 

released in 1998. Moodle is an online learning management system first released in 2002. 

Drupal is a web content management system initially released in 2000. All of these 

applications have ample release history, change history, and published security 

vulnerability information.  

The authors collected the source code and release history of each version. All three 

applications used Git to house their repositories, thus the authors were able to download 

the main branch which included previous release information. Included in the data set is a 

file for each applications version, Git hash for the release, and dates for the release. 

Source code metrics were collected and included in the data set. Metrics were included 

and linked to file names for each project and version. These include: lines of code, lines 

of non-html code, number of functions, cyclomatic complexity, maximum nesting 
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complexity, Halstead’s volume, total external calls, fan-in, fan-out, internal functions 

called, external functions called, and external calls to functions. 

The authors collected vulnerability information for each project and version by 

gathering data from the NVD and security announcements from the product. Included in 

the data set is the Git hash of the version the vulnerability was introduced, the Git hash of 

the version in which the vulnerability was resolved, the associated CVE identifier, and 

the file associated with the fix. 

They tracked vulnerabilities throughout versions for PhpMyAdmin and Moodle. They 

did not use multiple versions of Drupal; thus, vulnerability tracking information was not 

performed for Drupal. The data set includes a matrix of the file associated with each 

vulnerability tracked over versions. 

They compiled tokens of the source code for text mining. They parsed through the 

source code files, extracted the PHP tokens, and then labeled the resulting concatenated 

tokenized string as vulnerable or not vulnerable. 

They merged the data together and evaluated the data set using machine learning to 

predict defects. They published their scripts for study replication, source code of the 

applications, and the collected features as R and Weka files. 

A limitation of this data set is that this only covers three PHP applications, the authors 

excluded several published vulnerabilities, and the set does not include labeled static 

analysis alerts. However, of all the data sets evaluated, this data set was the closest to the 

desired criteria. These releases and their related source codes were still available on each 

applications website archive for download. Additionally, all of these applications bug 

tracking systems were available for query. Therefore, this data set was leveraged; 
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however, augmented with labeled static analysis alerts using the framework as outlined in 

(Heckman & Williams, 2008, 2009). 

For this research effort, the Drupal versions were expanded to include 38 versions 

from 6.0.0 to 6.38. The PhpMyAdmin and Moodle versions evaluated remained 

unchanged. Each release of each application was scanned by each tool and the resulting 

alerts labeled. The existing data set contained 233 known TPs and the resulting static 

analysis alerts from the tools exceeded 250,000. As a result, the existing data set was not 

sufficient to label the static analysis alerts. Additional work was performed to match 

auxiliary information such as change logs, security notices, release notes, bug tracking 

systems, and CVEs to the alerts. For labeling, alerts were tracked between versions and 

auxiliary information inspected. Additional software metrics were gathered and merged 

to augment this data set to create a static analysis data set.  

Overall Framework for Gathering Alerts 

The method for creating and labeling static analysis alerts was well outlined in 

(Heckman & Williams, 2008, 2009). The overall framework consists of four steps. 

1. Generate subject revision history: source code is gathered with versioning and 

change history. 

2. Build Process: if required, build the version. Compute code metrics, run 

through static analysis, and gather the alerts. 

3. Alert Classification: use source code histories to track and label the alerts 

throughout versions. 

4. Artifact Characteristic Generation: gather information about the alerts and 

surrounding source code that may be predictive factors. 
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This overall process was followed with some additions. In addition, the CVEs, release 

notes, security notices, and change logs were gathered, and the bug report systems 

queried. This additional information was used to assist in alert labeling and feature 

generation. 

Detailed Framework for Gathering Alerts 

Scanning the source code to create static analysis alerts was a trivial matter as all 

source code was downloaded and utilized a Git repository. A script was written to 

iteratively checkout each projects version, send a request to each scanner to scan the 

version, query the scanner for the results, and download the scan results. Output features 

and formats varied between scanners. Formats included CSV, JSON, TXT, XML, and 

proprietary vendor formats. All alert features provided by the tool were exported. To 

convert the results into a consistent CSV format, a script was written to cipher through 

the scan results and merge the alerts to allow for further processing and analysis. 

Additionally, alert characteristics were gathered during this process such as alert 

lifetimes, alert start and end versions, number of path hops, and path file names. 

Two industry leading commercial scanners were used for code scanning. Permission 

to disclose the commercial tools names was not granted. Therefore, they are referenced as 

Tool A and Tool B. To protect incidental disclosure, identifiable information regarding 

these tools will not be disclosed such as unique identifiers or features specific to those 

tools. 

In addition to the commercial scanners, an open source scanner was also used. 

SonarQube is an open source scanner capable of scanning 25 languages, including PHP. 

It may be downloaded and run locally or may be used as a service online. It is capable of 
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finding bugs and security vulnerabilities. This scanner was downloaded and installed 

using the default configurations. This scanner had a limitation upon exporting of scan 

results to a maximum of 10,000 records per API query. To overcome this obstacle, 

queries were written to export different alert types per query if the quantity of alerts 

exceeded the maximum allowed.  

Upon completion of each project and version being scanned by each scanner, and the 

results downloaded and parsed into a consistent CSV format, the resulting features from 

all tools were manually evaluated. If features were not represented by all scanners or 

leaked identifying tool information, the feature was removed. If these features remained 

in the final data set, the learning algorithms could possibly learn on a particular tool 

rather than the alert characteristics.  

All alerts were initially labeled as unactionable, or FP. By gathering multiple versions 

of the same application, alerts that disappear from one version to another could indicate 

that a bug or flaw was fixed. It could also indicate the deletion, renaming, or movement 

of a file. However, tracking the renaming of files is a difficult task beyond the scope of 

this research effort. It is possible that if a simple rename of the file was performed, a 

similar alert should appear in the immediate version after the disappearance of the 

original alert with a different file name. In this simple instance, the renamed file could be 

determined, and the alert matched. However, file renames beyond this simple case were 

considered deleted. Therefore, a Python script was written to track alerts throughout the 

lifetime of the project. Alerts that moved due to simple file rename cases remained 

unchanged. Alerts that were found to get resolved were marked as actionable, or TPs. 

Alerts where the originating alert files were absent in the next version and a matching 
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alert was not found, the alert was marked as deleted and subsequently not included in the 

data set.  

Additional information was gathered to assist in labeling the alerts generated from the 

static analysis scans. Scripts were written to assist in matching the alerts to the relevant 

records. Labeling was performed if alerts could be linked to bug reports, change logs, 

security notices, release notes, issue tracking system, or vulnerability publication list. The 

projects were not consistent in what auxiliary information was provided; however, all 

projects had public vulnerability publication lists and some type of release notes or bug 

tracking system.  

Publicly posted vulnerability information for each application was gathered using the 

National Vulnerability Database (NVD) by NIST at nvd.nist.gov and MITREs CVE 

Online Database at cve.mitre.org. CVEs found in one database will often be duplicated in 

the other database; however, it is possible one database contains vulnerabilities that 

another database lacks. Therefore, these databases were manually searched for each 

application. All necessary information regarding the vulnerability was contained in the 

published record including CVE, versions affected, exploit information, links to commit 

records and fix information, severity rating and scores, and vulnerability type. The 

original data set contained 233 CVEs; however, during this process 630 CVEs were 

discovered. This could be the result of additional discoveries over time or the addition of 

Drupal versions. To match alerts to the CVE records required the fix file name and line of 

code. To determine the files and lines of code for the fix required manual work. Although 

many records had links to commits and fix files, the method for linking, publicizing, and 

outlining the fixes were not consistent enough to compose a meaningful and reliable 
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script. Therefore, for each CVE, the fix file(s) and line of code(s) was/were manually 

determined via the CVE records and logged into a CSV. Next, a script was written to 

match the alerts to the CVE records by matching the fix file names, lines of code, and 

versions. The original data set fix files were also verified during this process and lines of 

code added to those records. Matched alerts were labeled as actionable, the CVE Boolean 

feature marked as true, and CVE identifier logged. Other information gathered but not 

utilized during this step included CVE severity, base, exploit, and impact scores, 

published dates, descriptions, start and fix versions and commit hashes, if provided.  

Bug tracking systems may be used to track bugs and their resolutions. These systems 

keep records of the type of bug or flaw, what the issue was, how it was resolved, who 

fixed it and when. Some open source applications make their bug tracking systems 

public. The projects used in this data set had publicly facing bug tracking systems. This 

information was queried to find bugs that had been resolved and link them to alerts. They 

were linked via file names and line of code. Bug reports often do not follow a standard 

format and critical information may be in natural language. Therefore, the analysis of the 

bug reports and linking to alerts was manually performed. Matched alerts were labeled as 

actionable. 

Source code change logs, commit histories, security notices, and release notes contain 

valuable information that can be linked to alerts. Commit histories specify file names, 

line of code, what exactly changed, and when. Change logs and release notes may specify 

files that changed, the reason for the change, and in what version it occurred. Security 

notices and release notes specify what changed and why. For each project and version, 

the available logs were manually reviewed. Any corresponding alerts were labeled as 
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actionable. It was found that the security notices and release notes often referenced 

specific CVEs. In those cases, the matching alerts were already labeled as actionable. 

Additional features were gathered to complement the alert data set. The original data 

set contained some source code metrics on the file level; however, several other metrics 

could be gathered. Software metrics were easily gathered using Understand, Git, and 

basic file information.  

A shell script was written to iteratively checkout each project and version and then 

export a metrics report from the software metrics tool Understand. This resulted in a 

software metrics report for each project and version. It included 50 metrics and was 

exported into CSV’s and text formats. The resulting metrics were then matched to alerts 

by source and destination file names and versions. The metrics were added directly to the 

alert for the specified files.  

The original data sets file level metrics were matched to each alert using a custom 

script for both the source and destination files. Additional metrics were also added by 

matching alerts to Git commit information such as last edited date, commit dates, and 

authors. 

The original framework for gathering and labeling static analysis alerts has now been 

augmented and is outlined below. A graphical workflow of this new process is displayed 

in Figure 4. 

1. Generate Subject Revision History 

a. Gather and verify all source code and histories. 

b. Gather CVEs.  

c. Gather of bug report systems, change logs, security notices, and release 

notes.  

2. Build Process 
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a. Compute source code metrics. 

b. Iteratively for each project and each version, build the project then run 

the source code through the specified static analysis tools. 

c. Download the alerts from the tools as CSV, XML, JSON or other 

standardized tool output.  

3. Alert Classification 

a. Using alert and source code histories, label the alerts following the 

labeling process. 

b. Label alerts if matched to CVEs. 

c. Label alerts if matched to bug report systems, change logs, security 

notices, and release notes. 

4. Artifact Characteristic Generation 

a. Gather metrics regarding alert lifetimes, resolution type, and other 

historic alert features. Match to alerts as features.  

b. If possible, gather source code around the alert. 

c. Match additionally gathered or engineered metrics and features to 

alerts.  
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Figure 4 Framework for Static Analysis Alert Generation and Labeling 
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The Resulting Data Set 

The result of this process was a data set for each project containing labeled real-world 

static analysis alerts from three static analysis scanners, complete with source code 

metrics and historical features of the alerts. The data sets altogether included 256,198 

alerts. Alerts labeled as deleted were excluded from the experiments bringing the number 

of alerts to 207,259.  

The resulting data set is a mixture of the original data sets information merged with 

labeled static analysis alerts with additional features and metrics. A complete feature list 

and the feature’s origination is presented in Appendix A. The statistics of the raw project 

data sets are presented in Table 4. There resulted a data set for each project, each version, 

as well as a combined data set (a compilation of all the data sets).  

Table	4	Raw	Data	Set	Alert	Statistics	

 Total Raw Alerts Actionable 
(TP) 

Unactionable 
(FP) 

Deleted 

Drupal 3,834 491 3,343 0 
Moodle 126,427 67,345 39,509 19,573 
PhpMyAdmin 125,937 75,960 20,611 29,366 
Total 256,198 143,796 63,463 48,939 

Experiments 

Experiments were performed to train and evaluate the feature selection model. Python 

was used to create and evaluate the model. The model’s selected feature subsets and 

classification performance metrics were output for each experiment. To measure 

improved classification accuracy, the feature selection model was compared with a 

similar model that excluded the feature selection component. Therefore, for each 

experiment, a SVM classifier was trained and tested on the same train and test data sets 

and compared to the feature selection model’s performance. 
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Data Pre-processing 
 

Prior to running experiments, the respective raw data sets were pre-processed which 

included the removal of duplicate records, changing categorical features into contiguous, 

normalizing ranges, and ensuring adequate representation of features and alert types. 

After pre-processing, the data sets were split into train and test sets. Once train and test 

sets were created, the experiments were performed to evaluate the feature selection 

model’s performance. 

Several pre-processing steps were performed on the raw data sets to prepare the data 

for machine learning. Python scripts were written to perform the preprocessing steps 

using Pandas, Numpy, and SciPy functions. For each raw data set for each experiment the 

following was performed. All alerts labeled as ‘deleted’ were removed. Duplicate alerts 

were also removed. Alerts were considered duplicates if the following feature values 

were identical: project, tool, priority, category, type, code/bug/vuln, language, CWE id, 

OWASP 2013 Boolean, OWASP 2017 Boolean, OWASP Top Ten 2013, OWASP Top 

Ten 2017, source and destination file, source and destination line, source and destination 

column, source and destination function. Most data sets were heavily skewed between 

actionable and unactionable alerts. To adjust for this skewness, alerts were randomly 

dropped to create an equal proportion of actionable and unactionable alerts. Features that 

had no data at all were dropped and logged. Categorical data was capitalized, 

standardized, and then one-hot encoding was performed. Statistical analysis of the 

numerical features mean, median, modes, and standard deviations was performed. It was 

discovered that the mean was not an appropriate value to use for any of the numerical 

features. Therefore, for numerical data, missing values were replaced with the median or 
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mode, depending on the analysis of the feature statistics. Finally, features were dropped if 

all the values in the data set were identical. All dropped features for each data set were 

logged for later use to prevent those features from being selected in the feature selection 

component of the model. Similarly, new feature names created during categorical 

encoding were mapped to the original feature name allowing for mapping during the 

feature selection component. A list of dropped features from each data set is outlined in 

Appendix D. The resulting data set statistics are presented in Table 5. 

Table	5	Pre-Processed	Data	Set	Alert	Statistics	

 Alerts Actionable 
(TP) 

Unactionable 
(FP) 

Drupal 960 480 480 
Moodle 77,996 38,998 38,998 
PhpMyAdmin 40,986 20,493 20,493 
Total 119,942 59,971 59,971 

 

Next, the respective data sets were split into train and test sets for each experiment. 

There were 200 features available prior to one-hot encoding and thousands of iterations 

for each experiment. The feature space complexity could create excessive run times for 

the experiments. It was determined during preliminary tests to further reduce the larger 

data sets to a more manageable quantity. During train and test splits, if the alerts 

exceeded 30,000 then an equal number of actionable and unactionable alerts were 

randomly dropped. The resulting alert counts are presented in Table 6.  

Table	6	Final	Data	Set	Alert	Statistics	

 Alerts Actionable 
(TP) 

Unactionable 
(FP) 

Drupal 960 480 480 
Moodle 23,398 11,699 11,699 
PhpMyAdmin 12,296 6,148 6148 
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The final pre-processing step was to split the sets into train and test sets using a 66-33 

split. 10-Fold cross validation was tested on a few SVMs. The classification accuracy 

was similar to the 66-33 split results; however, it increased processing time.  

Model Creation 
 

The control classifier, Model A, creation was easily performed. The following was 

performed for each experiment. All features from the data set were included for the 

control classifier. Feature scaling was performed using SciPy’s Robust Scaler function 

with default settings. Preliminary analysis of several SVM kernels was performed on the 

data set and it was determined, based upon processing times and overall accuracies, that 

the linear SVC would perform quickly and sufficiently on the data sets. Thus, the train 

data was used to train a SVM using SciPy Linear SVC with default settings. The trained 

model and scaler were saved. The model was then tested using the test set. The test data 

was scaled using the saved scaler. Metrics were exported including a confusion matrix, 

classification report, accuracy, F-measure, precision, recall, and time.  

The feature selection model, Model B, was then created. The following was executed 

for each experiment. The settings for the genetic algorithm were set and the termination 

conditions calculated, based upon the number of generations being iterated through. The 

initial population was randomly generated. The population was evolved by evaluating the 

fitness of the population, the selected feature subset’s classification accuracy. The same 

train and test data that was used in Model A was used in Model B. Again, SciPy’s Robust 

Scaler was used as well as SciPy’s Liner SVC, both with default settings. The top 

performers were retained based upon the specified settings; mutations, lower performer 

inclusions, and cross-overs were performed. The iterations of the genetic algorithm were 
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continued until termination conditions were met. Exported metrics included for the top 

performing feature set: the features selected, feature subset model’s accuracy, confusion 

matrix, classification report, accuracy, F-measure, precision, recall, and time. Also 

exported was the average accuracy for the top ten performing feature subset’s for each 

GA. 

Model Validation 
 

Several experiments were designed and executed to validate the feature selection 

model’s performance. These included a test for each project, a test for all projects 

together, a test for version predictions, and a test for cross-project predictions. The 

model’s performance metrics for each experiment was compared with the control 

classifier’s performance on all features.  

Table 7 outlines the experiments that were performed. Figure 5 shows the experiment 

process. Features excluded during pre-processing for each experiment are listed in 

Appendix D. Results for all experiments are presented in Chapter 4. 

Table 7 Experiment, Project, and Data Set Used 

Experiment Project Data Set 
Experiment 1 Models Performance on PhpMyAdmin PhpMyAdmin 

Experiment 2 Models Performance on Moodle Moodle 

Experiment 3 Models Performance on Drupal Drupal 

Experiment 4 Models Performance on  
Cross Project 

Train: PhpMyAdmin and Moodle  
Test: Drupal 

Experiment 5 Models Performance on  
Version Prediction 

Train: PhpMyAdmin Alert Data for v2.2.0 to v3.4.9  
Test: PhpMyAdmin Alert Data for v3.5.0 to 4.0.9 

Experiment 6 Models Performance on  
Combined Projects 

All 



	
 

	

61	 	

	

Figure 5 Model Training, Testing, and Analysis 

 

Resources 

This research effort required software, hardware, and data sets.  

The software programs used for this research included SonarQube, Python, R, 

Understand, and two commercial static analysis tools. SonarQube is an open source static 

code analysis application. Python is an open source programming language capable of 

running on most operating systems. There are machine learning libraries that can perform 

classification, regression, and clustering (Python Software Foundation, n.d.). R is a 

popular program in the research community and has been used in several published 
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works (R Core Team, 2013). Understand is a software metrics and analysis tool 

(Understand, n.d.).  

For hardware, sufficient memory, processors, and storage to run SA tools and data 

analysis models was necessary. Each SA application had specific hardware requirements 

minimums. Servers that had commercial SA tools installed exceeding the commercial 

tools hardware requirements were used for the scanning of the code bases using the 

commercial tools. A stand-alone MacOsX quad core with 2.8 GHz processors with 16GB 

of RAM, with over 1 TB of storage was also used for this research effort. This machine 

was used for SonarQube scans, all Python scripting, and for all model building, testing, 

and evaluation. 

All data sets that were evaluated were downloaded as well as the original version of 

the PHP Security Vulnerability Dataset. Data sets used for the model’s evaluation were 

generated using the methods previously outlined. 

Summary 

A feature selection method to assist in the classification of static analysis alerts was 

presented. Candidate test suites and data sets were evaluated. An existing data set was 

selected and enhanced. A detailed and literature justified framework for both the data sets 

usage and enhancement method was thoroughly investigated, described, and executed. 

Several experiments were outlined and performed to evaluate the feature selection 

model’s performance.  
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Chapter 4 

Results 
 

All experiments outlined in Chapter 3 were performed and the results exported. The 

control classifier is referred to as Model A. The feature selection model is referred to as 

Model B. A full list of both model’s metrics for each experiment is listed in Appendix B 

and Appendix C as well as a full list of the Top Performing Feature Subsets in Appendix 

E. The results are presented herein.  

During initial testing, some models were learning on particular features erroneously. 

Specifically, version last seen and alert lifetime were sensitive features for some models. 

This was because in those data sets, the values for unactionable alerts had similar values 

while actionable alerts had distinct values. All features dropped for each experiment were 

logged and are presented in Appendix D. 

Experiment 1 

This experiment tested the model’s performance on static analysis alerts from 95 

versions of PhpMyAdmin from version 2.2.0 to version 4.0.9. This data set included 

12,296 alerts. There was an improvement in the classification accuracy of alerts using the 

feature selection model. Model A had an accuracy of 84.52% and a false positive rate of 

11.85% on 172 features while Model B’s best performance had an accuracy of 89.9% and 

a false positive rate of 10.66% from utilizing only 94 features.  

There was an increased accuracy of 6.35%, a decrease in the false positive rate of 

10%, and a feature set reduction of 45.35%.  
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Table	8	Experiment	1	Results		

 Model A Model B % Change 

Accuracy 84.52 89.90 6.35 

Recall 84.52 89.90 6.35 

Precision 84.85 89.90 5.95 

F-Measure 84.49 89.90 6.40 

FPR 11.85 10.66 -10.04 

Feature Count 172 94 - 45.35 

*numbers in percentages 

 

Experiment 2 

This experiment tested the model’s performance on static analysis alerts from 71 

versions of Moodle from version 1.0.0 to version 2.6.1. This data set included 23,398 

alerts. There was an improvement in the classification accuracy of alerts using the feature 

selection model. Model A had an accuracy of 65.72% and a false positive rate of 38.6% 

on 172 features while Model B’s best performance had an accuracy of 83.24% and a false 

positive rate of 21.61% from utilizing only 80 features.  

There was an increased accuracy of 26.66%, a decrease in the FPR of 44%, and a 

feature set reduction of 53.49%.  

Table	9	Experiment	2	Results	

 Model A Model B % Change 

Accuracy 65.72 83.24 26.66 

Recall 65.91 83.24 26.29 

Precision 67.84 84.17 24.07 

F-Measure 64.84 83.15 28.24 

FPR 38.60 21.61 -44.02 

Feature Count 172 80 -53.49 

*numbers in percentages 
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Experiment 3 

Experiment 3 tested the model’s performance on static analysis alerts from 38 versions 

of Drupal from version 6.0.0 to version 6.38. This data set included 960 alerts. There was 

an improvement in the classification accuracy of alerts using the feature selection model. 

Model A had an accuracy of 69.72% and a false positive rate of 36.28% on 162 features 

while Model B’s best performance had an accuracy of 83.6% and a false positive rate of 

20.93% from utilizing only 85 features.  

There was an increased accuracy of 19.91%, a decrease in the FPR of 42.31%, and a 

feature set reduction of 47.53%.  

Table	10	Experiment	3	Results	

 Model A Model B % Change 

Accuracy 69.72 83.60 19.91 

Recall 70.34 83.60 18.85 

Precision 72.13 84.22 16.76 

F-Measure 69.25 83.57 20.68 

FPR 36.28 20.93 -42.31 

Feature Count 162 85 -47.53 

*numbers in percentages 

 

Experiment 4 
 

Experiment 4 tested the model’s performance on static analysis alerts across projects. 

Models were trained using PhpMyAdmin and Moodle data and then tested on Drupal 

data. This data set included 21,186 alerts. This experiment was the longest running 

experiment. Improvement was not anticipated for this test. There was an improvement in 

the classification accuracy of alerts using the feature selection model; however, there was 

also an increase in the false positive rate.  
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Model A had an accuracy of 63.54% and a false positive rate of 16.5% on 174 features 

while Model B’s best performance had an accuracy of 70.63% and a false positive rate of 

22.5% from utilizing only 79 features.  

There was an increased accuracy of 11.16%, an increase in the FPR of 36.36%, and a 

feature set reduction of 54.6%.  

This was the only experiment that increased the false positive rate. The increased 

accuracy was not consistent amongst all GAs tested for this experiment. Full results for 

each GA tested is in Appendix C.  

Table	11	Experiment	4	Results	

 Model A Model B % Change 

Accuracy 63.54 70.63 11.16 

Recall 63.54 70.63 11.16 

Precision 71.00 72.00 1.41 

F-Measure 59.99 70.16 16.95 

FPR 16.50 22.50 36.36 

Feature Count 174 79 -54.60 

*numbers in percentages 

 

Experiment 5 
 

This experiment tested the model’s performance on static analysis alerts for version 

prediction of PhpMyAdmin. Models were trained on data from PhpMyAdmin versions 

2.2.0 to 3.4.9 and then tested on data from PhpMyAdmin versions 3.5.0 to 4.0.9. This 

data set included 32,499 alerts. There was an improvement in the classification accuracy 

of alerts using the feature selection model. Model A had an accuracy of 69.49% and a 

false positive rate of 20% on 174 features while Model B’s best performance had an 

accuracy of 82.92% and a false positive rate of 16.71% from utilizing only 75 features.  
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There was an increased accuracy of 19.33%, a decrease in the FPR of 16.49%, and a 

feature set reduction of 56.9%.  

Table	12	Experiment	5	Results	

 Model A Model B % Change 

Accuracy 69.49 82.92 19.33 

Recall 69.49 82.92 19.33 

Precision 70.99 82.78 16.61 

F-Measure 70.04 82.12 17.25 

FPR 20.01 16.71 -16.49 

Feature Count 174 75 -56.90 

*numbers in percentages 

 

Experiment 6 
 

This experiment tested the model’s performance on static analysis alerts across all 

three projects. Due to the imbalance in alert quantities from the project specific data sets, 

two tests were performed. One test was performed on a data set that randomly selected 

alerts from the main project data sets disregarding imbalanced alert quantities, 6A. 

Another test was performed on a data set that ensured that there were equal alerts from 

each project represented in the data set, 6B.  

For 6A, the data set included 20,390 alerts. There was an improvement in the 

classification accuracy of alerts using the feature selection model. Model A had an 

accuracy of 74.94% and a false positive rate of 30.67% on 174 features while Model B’s 

best performance had an accuracy of 82.52% and a false positive rate of 20.18% from 

utilizing only 65 features.  

There was an increased accuracy of 10.12%, a decrease in the FPR of 34.2%, and a 

feature set reduction of 62.64%.  
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Table	13	Experiment	6A	Results	

 Model A Model B % Change 

Accuracy 74.94 82.52 10.12 

Recall 75.00 82.52 10.03 

Precision 77.14 82.78 7.31 

F-Measure 74.45 82.49 10.80 

FPR 30.67 20.18 -34.20 

Feature Count 174 65 -62.64 

*numbers in percentages 

 

For 6B, the data set included 2,880 alerts. There was an improvement in the 

classification accuracy of alerts using the feature selection model. Model A had an 

accuracy of 77.71% and a false positive rate of 21.43% on 174 features while Model B’s 

best performance had an accuracy of 81.49% and a false positive rate of 18.75% from 

utilizing only 87 features.  

There was an increased accuracy of 4.86%, a decrease in the FPR of 12.51%, and a 

feature set reduction of 50%.  

Table	14	Experiment	6B	Results	
 Model A Model B % Change 

Accuracy 77.71 81.49 4.86 

Recall 77.71 81.49 4.86 

Precision 77.73 81.50 4.85 

F-Measure 77.70 81.49 4.88 

FPR 21.43 18.75 -12.51 

Feature Count 174 87 -50.00 

*all numbers in percentages 

 

Research Questions Answered 

The research questions were answered based on the results from the experiments. This 

included the model performance and feature subset commonalities. Below are the 
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answers to the research questions asked. For reference, a list of the Top Performing 

Feature Subsets for all experiments are presented in Appendix E. 

1. Did the proposed model improve the classification of alerts?  

Yes. The lowest performing experiment, Experiment 6B, resulted in an 

accuracy improvement of 4.86% and a false positive rate improvement of 

12.51%. This was accomplished on a feature set reduced by 50%. The best 

performing experiment, Experiment 2, resulted in an accuracy improvement of 

26.66% and a false positive rate improvement of 44%. This was accomplished 

on a feature set reduced by 53.49%. 

2. Did selected feature subsets from the proposed model vary between projects? 

Yes, feature subsets did vary between projects. 

3. Were some features never selected? 

Only one feature was not selected by any top performing feature subset, 

destination file to version alert line of code ratio. 

4. Similarly, were some features always selected? 

Yes. In all experiments the top performing feature subset included the matched 

CVE Boolean. A complete list of top performing feature subsets is presented in 

Appendix E. 
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Chapter 5 

Conclusions and Summary 
 

Conclusions 

This research evidenced that the feature selection methodologies do increase the 

classification accuracy and reduce the false positive rate in the classification of static 

analysis alerts. In particular, genetic feature selection methodologies showed statistically 

significant increases in the classification accuracy of alerts over a model leveraging all 

features. In brief, the feature selection model presented showed increase accuracy on the 

classification of alerts on a reduced feature set. 

The only feature that was selected in all experiments was the CVE matched Boolean. 

The second highest selected features in 6 of the 7 experiments were: the destination file’s 

line, and sum Cyclomatic modified; in OWASP 2013 Boolean; and the source file’s 

average blank lines, average lines of code, line count, count of declarative statements, 

and JavaScript count of declarative statements.  

There was only one feature that was never selected outside of dropped features and 

that was the destination file to version alert line of code ratio. Other less popular features 

only selected in one experiment were: the source and destination file deleted lines; the 

destination file original data sets Cyclomatic complexity, average cyclomatic strict, count 

of declarative files, path count, ratio of comment to code; the OWASP 2017 Boolean; and 

the source file Halstead’s volume, percent modified, average Cyclomatic modified, count 

of blank HTML lines, code line count, path count, count of executable PHP statements, 

and maximum nesting complexity. 
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The feature selection model performed well on the three experiments that tested same 

project alert classification. Experiments 1, 2, and 3 showed accuracy improvements of 

6%, 27%, and 20% with false positive rate reductions of 10%, 44% and 42%. The 

reduction in feature sets was also significant. The features sets were reduced by 45%, 

53%, and 48%, respectively. This validates that the feature selection model improved the 

classification accuracy and reduced the false positive rate by training models using 

around half of the features from the original set specified.  

The feature selection model also performed well for version prediction. Experiment 5 

had an accuracy improvement of 19.33% and a false positive rate reduction of 16.49%. 

This was on a feature set that was reduced by 56.9%. This indeed showed that new 

version static analysis alerts may be classified using previous version alerts with a 

significantly reduced feature set.  

Interestingly, the feature selection model increased accuracy and but also increased the 

false positive rate. On cross-project prediction, the model showed an increase in accuracy 

over 11% on a feature set reduced by 55%.  

It was shown that the feature selection model also improved classification accuracy on 

data sets that combined alerts from several projects. The accuracy increased by 10% and 

the false positive rate was reduced by 34% using only 62% of the features. 

For each experiment the model was tested on several genetic algorithm instances 

utilizing different settings for population size, generations, cross-over rates, mutation 

rates, and termination conditions. Of the multiple tests per experiment, there were only a 

few instances in which the model did not outperform the control. These were in 

Experiments 4 and 6B. This is interesting because Experiment 4 was the cross-project 



	
 

	

72	 	

test. Improvement was not anticipated; however, 40% of the genetic tests performed 

showed better accuracy while using less than half of the features. In Experiment 6B, only 

two of the 12 genetic tests performed did not show improvement in accuracy over the 

control; however, the accuracies of those two instances were within one percentage point 

of the control yet used around half of the features. In all other experiments, the feature 

selection model always outperformed the control. 

Output from the experiments included the average accuracy of the top ten performing 

feature sets, chromosomes, for each test. If the average of the top ten chromosomes was 

significantly different than the top performing chromosome, it could be determined that 

the feature set is unique. Similarly, if the average accuracies and the top performer 

accuracies are closer in range, it may indicate that there are several feature sets that 

would produce similar accuracies. Results indicate that the average accuracies of the top 

ten chromosomes in the final populations were similar to the top preforming 

chromosomes, or feature sets, in the final populations. This indicates that there are 

multiple feature sets that may provide similar accuracy results. The Average Top Ten 

Accuracy metric may be found in Appendix C.  

In summary, the feature selection model performed well on all tests performed. By 

using this model to classify alerts generated from static analysis tools, there can be 

increased confidence in their classifications. Additionally, more focus could be placed on 

gathering relevant predictive features rather than irrelevant features. In practice, by 

gathering these additional predictive features and implementing this feature selection 

model, static analysis alerts could be more confidently classified prior to the analysis of 

scan results or any alert investigation is commenced. 
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This study is presented with limitations. A main limitation was the creation of the data 

set. Although an initial data set was used in previous research, the addition of the static 

analysis alerts changed the composition, features, and size of the data set significantly. 

Automatic labeling of alerts was performed based on historical data and some manual 

investigation performed. Ideally, every alert in the data set should be manually verified as 

true or false. Thus, although this work provides a data set, future research into creating a 

labeled real-world static analysis alert data set should ensue. Perhaps the data set could be 

improved as a future update. However, this data set offers a starting point in the pursuit of 

a real-world labeled static analysis data set. It allows future research to utilize this data 

set to compare static analysis machine learning models to one another.  

Another limitation was the analysis of projects containing mainly one programming 

language. Ancillary languages were included for instance JavaScript and HTML; 

however, the main language for the analysis was PHP.  

Implications and Recommendations 

The impacts of this work on the static analysis domain is meaningful. This work has 

presented a real-world static analysis data set based upon three open source PHP 

applications that may be used in future research efforts. As part of this work, this data set 

is now published and freely available for other researchers use. This is a significant 

addition to the domain. Additionally, the framework for generating static analysis data 

sets has been enhanced to include additional security related features. This framework 

could also be used to create other real-world static analysis data sets. Continued research 

that produces and publishes labeled real-world static analysis data sets is still needed. 
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A significant addition to the knowledge base is the evidence that software metric 

features were consistently selected as relevant features in the improved classification 

accuracy of static analysis alerts. The static analysis literature has often focused on 

histories with limited file or software metrics. Further research to explore the association 

between software code metrics and static analysis alert classification could prove 

promising. 

The main contribution of this work, however, is a feature selection method that 

improves the classification of static analysis alerts, ergo, reducing the false positive rate. 

Research of other feature selection methods and the further investigation into relevant 

feature sets for static analysis alert classification could be further explored. 

Summary 

It is imperative that software being developed is secure and free from security 

vulnerabilities and bugs. One method to assist in detecting insecure code is to perform 

static code analysis. Currently, static analysis tools present developers with a high 

amount of false positive and unactionable alerts. The goal of this research effort was to 

develop and evaluate methods for feature selections that helped to improve the 

classification accuracy of static analysis alerts; thereby, addressing the problem of high 

false positive rates. This research effort presented and tested a novel method leveraging 

feature selection that resulted in the improved classification of alerts. 

A review of the extant literature and history of the static analysis domain was 

performed. The domain’s current problems were discussed. Motivating factors for the 

continued research were clearly outlined and a goal for the research effort was posited. 
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Research questions that guided this research were presented and answered. Barriers, 

limitations, and assumptions were identified.  

A genetic feature selection method was presented as a potential solution. Genetic 

algorithm methodologies were explored and the model’s specifications outlined. A 

support vector machine classification method was chosen and a review of the classifier 

specifics was presented.  

Candidate test suites and data sets were evaluated. An existing data set was selected 

and enhanced. A detailed and literature justified framework for both the data sets usage 

and enhancement method was thoroughly investigated, described, and executed. The data 

set generation process was followed with some additions. In addition, the CVEs, release 

notes, security notices, and change logs were gathered, and the bug report systems 

queried. This additional information was used to assist in alert labeling and feature 

generation.  

From the original dataset, Drupal versions were expanded to include 38 versions from 

6.0.0 to 6.38. The PhpMyAdmin and Moodle versions evaluated remained unchanged. 

397 additional CVEs were discovered.  

Each release of each application was scanned by each tool and the resulting alerts 

labeled. Work was performed to match auxiliary information such as change logs, 

security notices, release notes, bug tracking systems, and CVEs to the alerts. For labeling, 

alerts were tracked between versions and auxiliary information inspected. Additional 

software metrics were gathered and merged to augment the data set to create a static 

analysis data set.  
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The result of this process was a data set for each project containing labeled real-world 

static analysis alerts from three static analysis scanners, complete with source code 

metrics and historical features of the alerts. The raw data sets totaled 256,198 alerts.  

Prior to running experiments, the respective raw data sets were pre-processed. After 

pre-processing the data sets were split into train and test sets. Once train and test sets 

were created, the experiments were performed. 

Experiments were executed to train and evaluate the feature selection model. The 

model’s selected feature subsets and classification performance metrics were exported for 

each experiment. To measure improved classification accuracy, the feature selection 

model was compared with a similar model that excluded the feature selection component. 

In essence, for each experiment, a SVM classifier was trained and tested on the same 

train and test data sets and compared to the feature selection model’s performance. 

Several experiments ensued. These included a test for each project, a test for all 

projects in aggregate, a version prediction test, and a cross-project predication test. The 

model’s performance metrics for each experiment was compared with the control 

classifier’s performance on all features.  

Results were presented showing increased classification accuracies and lower false 

positive rates in all experiments using reduced feature sets generated using a genetic 

algorithm. It was shown that predictions could be made about alert classifications within 

the same projects. It was also shown that alert classification predictions could be made on 

future project versions. Interestingly, the model even showed improvements on cross-

project alert classification predictions; however, the projects tested were all of a similar 

language and structure as they were all open source PHP applications. 



	
 

	

77	 	

Conclusions, limitations, implications, and impacts to the domain were discussed. 

Some directions of future research were identified.  

Succinctly, a feature selection method was presented, developed, and evaluated. A 

data set was selected and enhanced. The final data set was composed of static analysis 

alerts generated from three scanning tools on the source code of three open source PHP 

projects spanning several years. Once data was gathered and preprocessed, the data was 

split into train and test sets. A genetic feature selection model was trained and tested on 

the train and test sets respectively. The process was performed iteratively, testing selected 

feature subsets for an improvement in classification accuracy in an embedded fashion. 

This process resulted in a subset of relevant features for the classification of the alerts. 

The results were compared to a classification model, sans feature selection, to quantify 

the classification improvement of the feature selection model. There were statistically 

significant improvements in the classification accuracy of the alerts using a reduced 

feature set. Therefore, feature selection methods can be used to increase the classification 

accuracy of static analysis alerts and, thereby reduce the false positive rate. 
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Appendix A 
 

List and Descriptions of Features 
FEATURE NAME ORIGIN DESCRIPTION 
ALERT_LIFETIME Engineered Age of the alert. 
CATEGORY Alert Category of the warning. 
CODE_BUG_VULN Alert Type of alert. 
COMMITTED_DATE Git The commit date of the file. 
CVE_ID Engineered The CVE id associated with the alert. 

CWE_ID Alert The CWE associated with the alert. 
DEST_CREATED_DATE Git The date the file was created. 
DEST_FILE_AGE Engineered Age of file from creation date. 
DEST_FILE_CHURN Engineered Sum of lines added, modified, and deleted. 
DEST_FILE_CLOC Engineered Number of commented lines of code. 
DEST_FILE_COLUMN Alert Column of the variable, the location on the line. 
DEST_FILE_COMPLETE Alert The complete file name including the path. 
DEST_FILE_EDIT_FREQUENCY Engineered Number of times a file has been edited. 
DEST_FILE_ELOC Engineered Empty lines of code. 

DEST_FILE_EXT Alert Extension / type of the file. 
DEST_FILE_FOLDER Alert Immediate folder the file lives in. 
DEST_FILE_FUNCTION_VAR Alert Function or method the alert is originating from. 
DEST_FILE_GROWTH Engineered Difference between lines added and deleted. 
DEST_FILE_LINE Alert Destination line of code 
DEST_FILE_LINES_ADDED Git Number of lines added. 
DEST_FILE_LINES_DELETED Git Number of lines deleted. 
DEST_FILE_LOC Engineered Lines of code in the file. 

DEST_FILE_NAME Alert Name of the file. 
DEST_FILE_orig_ccom Dataset Cyclomatic complexity, the number of independent paths through a 

function. 
DEST_FILE_orig_ccomdeep Dataset Deep cyclomatic complexity. 
DEST_FILE_orig_hvol Dataset Halstead's Volume estimate (((N1 + N2)) logn1 + n1) using the 

number of unique operators (n1) and operands (n1) and the number 
of total operators (N1) and operands (N2) in the file. 

DEST_FILE_orig_loc Dataset Lines of code in the file. 
DEST_FILE_orig_nest Dataset Maximum depth for nested loops and control structures in the file. 
DEST_FILE_orig_nIncomingCalls Dataset Number of incoming calls. 
DEST_FILE_orig_nIncomingCallsUniq Dataset Number of unique incoming calls. 
DEST_FILE_orig_nmethods Dataset Number of methods. 
DEST_FILE_orig_nonecholoc Dataset Number of empty lines of code. 
DEST_FILE_orig_nOutgoingExternCallsUniq Dataset Number of unique external calls. 
DEST_FILE_orig_nOutgoingExternFlsCalled Dataset Number of external files called. 
DEST_FILE_orig_nOutgoingExternFlsCalledUniq Dataset Number of unique external files called. 
DEST_FILE_orig_nOutgoingInternCalls Dataset Number of internal calls. 
DEST_FILE_PATH Alert Complete directory path of the file. 
DEST_FILE_PERCENT_MODIFIED Engineered Percent of total modified lines. 
DEST_FILE_SIZE Engineered Size of the file. 

DEST_FILE_STALENESS Engineered Time from last change of the file. 
DEST_FILE_VERSION_ALERT_COUNT Engineered Number of alerts for the file. 
DEST_FILE_VERSION_ALERT_LOC_RATIO Engineered Percent of alerts in the file to the LOC of the file. 
DEST_LAST_AUTHOR_EMAIL Git The files last authors email. 
DEST_LAST_AUTHOR_NAME Git The files last authors name. 
DEST_LAST_EDITED_DATE Git The files last eedited date. 
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DEST_UNDRSTD_AvgCyclomatic Metrics Tool Average cyclomatic complexity for all nested functions or methods. 
DEST_UNDRSTD_AvgCyclomaticModified Metrics Tool Average modified cyclomatic complexity for all nested functions or 

methods. 
DEST_UNDRSTD_AvgCyclomaticStrict Metrics Tool Average strict cyclomatic complexity for all nested functions or 

methods. 
DEST_UNDRSTD_AvgEssential Metrics Tool Average strict cyclomatic complexity for all nested functions or 

methods. 
DEST_UNDRSTD_AvgLine Metrics Tool Average number of lines for all nested functions or methods. 
DEST_UNDRSTD_AvgLineBlank Metrics Tool Average number of blank for all nested functions or methods. 
DEST_UNDRSTD_AvgLineCode Metrics Tool Average number of lines containing source code for all nested 

functions or methods. 
DEST_UNDRSTD_AvgLineComment Metrics Tool Average number of lines containing comment for all nested 

functions or methods. 
DEST_UNDRSTD_CountDeclClass Metrics Tool Number of classes. 
DEST_UNDRSTD_CountDeclExecutableUnit Metrics Tool Executable Statements 
DEST_UNDRSTD_CountDeclFile Metrics Tool Number of files. 
DEST_UNDRSTD_CountDeclFunction Metrics Tool Number of functions. 
DEST_UNDRSTD_CountLine Metrics Tool Number of all lines. 
DEST_UNDRSTD_CountLine_Html Metrics Tool Number of all html lines. 
DEST_UNDRSTD_CountLine_Javascript Metrics Tool Number of all javascript lines. 
DEST_UNDRSTD_CountLine_Php Metrics Tool Number of all php lines. 
DEST_UNDRSTD_CountLineBlank Metrics Tool Number of blank lines. 
DEST_UNDRSTD_CountLineBlank_Html Metrics Tool Number of blank html lines. 
DEST_UNDRSTD_CountLineBlank_Javascript Metrics Tool Number of blank javascript lines. 
DEST_UNDRSTD_CountLineBlank_Php Metrics Tool Number of blank php lines. 
DEST_UNDRSTD_CountLineCode Metrics Tool Number of lines containing source code. 
DEST_UNDRSTD_CountLineCode_Javascript Metrics Tool Number of javascript lines containing source code. 
DEST_UNDRSTD_CountLineCode_Php Metrics Tool Number of php lines containing source code. 
DEST_UNDRSTD_CountLineComment Metrics Tool Number of lines containing comment. 
DEST_UNDRSTD_CountLineComment_Html Metrics Tool Number of html lines containing comment. 
DEST_UNDRSTD_CountLineComment_Javascript Metrics Tool Number of javascript lines containing comment. 
DEST_UNDRSTD_CountLineComment_Php Metrics Tool Number of php lines containing comment. 
DEST_UNDRSTD_CountPath Metrics Tool Number of possible paths, not counting abnormal exits or gotos. 
DEST_UNDRSTD_CountPathLog Metrics Tool Log10, truncated to an integer value, of the metric CountPath 
DEST_UNDRSTD_CountStmt Metrics Tool Number of statements. 
DEST_UNDRSTD_CountStmtDecl Metrics Tool Number of declarative statements. 
DEST_UNDRSTD_CountStmtDecl_Javascript Metrics Tool Number of javascript declarative statements. 
DEST_UNDRSTD_CountStmtDecl_Php Metrics Tool Number of php declarative statements. 
DEST_UNDRSTD_CountStmtExe Metrics Tool Number of executable statements. 
DEST_UNDRSTD_CountStmtExe_Javascript Metrics Tool Number of javascript executable statements. 
DEST_UNDRSTD_CountStmtExe_Php Metrics Tool Number of php executable statements. 
DEST_UNDRSTD_Cyclomatic Metrics Tool Cyclomatic complexity. 
DEST_UNDRSTD_CyclomaticModified Metrics Tool Modified cyclomatic complexity. 
DEST_UNDRSTD_CyclomaticStrict Metrics Tool Strict cyclomatic complexity. 
DEST_UNDRSTD_Essential Metrics Tool Essential complexity. 
DEST_UNDRSTD_MaxCyclomatic Metrics Tool Maximum cyclomatic complexity of all nested functions or 

methods. 
DEST_UNDRSTD_MaxCyclomaticModified Metrics Tool Maximum modified cyclomatic complexity of nested functions or 

methods. 
DEST_UNDRSTD_MaxEssential Metrics Tool Maximum essential complexity of all nested functions or methods. 
DEST_UNDRSTD_MaxInheritanceTree Metrics Tool Maximum depth of class in inheritance tree. 
DEST_UNDRSTD_MaxNesting Metrics Tool Maximum nesting level of control constructs. 
DEST_UNDRSTD_RatioCommentToCode Metrics Tool Ratio of comment lines to code lines. 
DEST_UNDRSTD_SumCyclomatic Metrics Tool Sum of cyclomatic complexity of all nested functions or methods. 
DEST_UNDRSTD_SumCyclomaticModified Metrics Tool Sum of modified complexity of all nested functions or methods. 
DEST_UNDRSTD_SumCyclomaticStrict Metrics Tool Sum of strict cyclomatic complexity of all nested functions or 

methods. 
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DEST_UNDRSTD_SumEssential Metrics Tool Sum of essential complexity of all nested functions or methods. 
FILES_IN_PATH Engineered Number of files the path of the alert traverses through. 
IN_OWASP_2013 Alert Is alert in the top ten OWASP 2013. 
IN_OWASP_2017 Alert Is alert in the top ten OWASP 2017. 
LANGUAGE Alert The programming language generating the alert. 
MATCHED_CVE Engineered Is there an associated CVE with the alert. 
NUM_PATH_HOPS Engineered Then number of hops in the alert path from source to destination. 
OWASP_TOP_TEN_2013 Alert The OWASP Top Ten 2013 category. 
OWASP_TOP_TEN_2017 Alert The OWASP Top Ten 2017 category. 
PRIORITY Alert Priority of the alert from tool. 
PROJECT Scan Project the alert resides in. 
SOURCE_CREATED_DATE Git The date the file was created. 
SOURCE_DEST_SAME_FILE Engineered Are the sourc and destination the same. 
SOURCE_FILE_AGE Engineered Age of file from creation date. 
SOURCE_FILE_CHURN Engineered Sum of lines added, modified, and deleted. 
SOURCE_FILE_CLOC Engineered Number of commented lines of code. 
SOURCE_FILE_COLUMN Alert Column of the variable, the location on the line. 
SOURCE_FILE_COMPLETE Alert The complete file name including the path. 
SOURCE_FILE_EDIT_FREQUENCY Engineered Number of times a file has been edited. 
SOURCE_FILE_ELOC Engineered Empty lines of code. 
SOURCE_FILE_EXT Alert Extension / type of the file. 
SOURCE_FILE_FOLDER Alert Immediate folder the file lives in. 
SOURCE_FILE_FUNCTION_VAR Alert Function or method the alert is originating from. 
SOURCE_FILE_GROWTH Engineered Difference between lines added and deleted. 
SOURCE_FILE_LINE Alert Source line of code. 
SOURCE_FILE_LINES_ADDED Git Number of lines added. 
SOURCE_FILE_LINES_DELETED Git Number of lines deleted. 
SOURCE_FILE_LOC Engineered Lines of code in the file. 
SOURCE_FILE_NAME Alert Name of the file. 
SOURCE_FILE_orig_ccom Dataset Cyclomatic complexity, the number of independent paths through a 

function. 
SOURCE_FILE_orig_ccomdeep Dataset Deep cyclomatic complexity. 
SOURCE_FILE_orig_hvol Dataset Halstead's Volume estimate (((N1 + N2)) logn1 + n1) using the 

number of unique operators (n1) and operands (n1) and the number 
of total operators (N1) and operands (N2) in the file. 

SOURCE_FILE_orig_loc Dataset  Lines of code in the file. 
SOURCE_FILE_orig_nest Dataset Maximum depth for nested loops and control structures in the file. 
SOURCE_FILE_orig_nIncomingCalls Dataset Number of incoming calls. 
SOURCE_FILE_orig_nIncomingCallsUniq Dataset Number of unique incoming calls. 
SOURCE_FILE_orig_nmethods Dataset Number of methods. 
SOURCE_FILE_orig_nonecholoc Dataset Number of empty lines of code. 
SOURCE_FILE_orig_nOutgoingExternCallsUniq Dataset Number of unique external calls. 
SOURCE_FILE_orig_nOutgoingExternFlsCalled Dataset Number of external files called. 
SOURCE_FILE_orig_nOutgoingExternFlsCalledUniq Dataset Number of unique external files called. 
SOURCE_FILE_orig_nOutgoingInternCalls Dataset Number of internal calls. 
SOURCE_FILE_PATH Alert Complete directory path of the file. 
SOURCE_FILE_PERCENT_MODIFIED Engineered Percent of total modified lines. 
SOURCE_FILE_SIZE Engineered Size of the file. 
SOURCE_FILE_STALENESS Engineered Time from last change of the file. 
SOURCE_FILE_VERSION_ALERT_COUNT Engineered Number of alerts for the file. 
SOURCE_FILE_VERSION_ALERT_LOC_RATIO Engineered Percent of alerts in the file to the LOC of the file. 
SOURCE_LAST_AUTHOR_EMAIL Git The files last authors email. 
SOURCE_LAST_AUTHOR_NAME Git The files last authors name. 
SOURCE_LAST_EDITED_DATE Git The files last eedited date. 
SOURCE_UNDRSTD_AvgCyclomatic Metrics Tool Average cyclomatic complexity for all nested functions or methods. 
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SOURCE_UNDRSTD_AvgCyclomaticModified Metrics Tool Average modified cyclomatic complexity for all nested functions or 
methods. 

SOURCE_UNDRSTD_AvgCyclomaticStrict Metrics Tool Average strict cyclomatic complexity for all nested functions or 
methods. 

SOURCE_UNDRSTD_AvgEssential Metrics Tool Average strict cyclomatic complexity for all nested functions or 
methods. 

SOURCE_UNDRSTD_AvgLine Metrics Tool Average number of lines for all nested functions or methods. 
SOURCE_UNDRSTD_AvgLineBlank Metrics Tool Average number of blank for all nested functions or methods. 
SOURCE_UNDRSTD_AvgLineCode Metrics Tool Average number of lines containing source code for all nested 

functions or methods. 
SOURCE_UNDRSTD_AvgLineComment Metrics Tool Average number of lines containing comment for all nested 

functions or methods. 
SOURCE_UNDRSTD_CountDeclClass Metrics Tool Number of classes. 
SOURCE_UNDRSTD_CountDeclExecutableUnit Metrics Tool Executable Statements 
SOURCE_UNDRSTD_CountDeclFile Metrics Tool Number of files. 
SOURCE_UNDRSTD_CountDeclFunction Metrics Tool Number of functions. 
SOURCE_UNDRSTD_CountLine Metrics Tool Number of all lines. 
SOURCE_UNDRSTD_CountLine_Html Metrics Tool Number of all html lines. 
SOURCE_UNDRSTD_CountLine_Javascript Metrics Tool Number of all javascript lines. 
SOURCE_UNDRSTD_CountLine_Php Metrics Tool Number of all php lines. 
SOURCE_UNDRSTD_CountLineBlank Metrics Tool Number of blank lines. 
SOURCE_UNDRSTD_CountLineBlank_Html Metrics Tool Number of blank html lines. 
SOURCE_UNDRSTD_CountLineBlank_Javascript Metrics Tool Number of blank javascript lines. 
SOURCE_UNDRSTD_CountLineBlank_Php Metrics Tool Number of blank php lines. 
SOURCE_UNDRSTD_CountLineCode Metrics Tool Number of lines containing source code. 
SOURCE_UNDRSTD_CountLineCode_Javascript Metrics Tool Number of javascript lines containing source code. 
SOURCE_UNDRSTD_CountLineCode_Php Metrics Tool Number of php lines containing source code. 
SOURCE_UNDRSTD_CountLineComment Metrics Tool Number of lines containing comment. 
SOURCE_UNDRSTD_CountLineComment_Html Metrics Tool Number of html lines containing comment. 
SOURCE_UNDRSTD_CountLineComment_Javascrip
t 

Metrics Tool Number of javascript lines containing comment. 

SOURCE_UNDRSTD_CountLineComment_Php Metrics Tool Number of php lines containing comment. 
SOURCE_UNDRSTD_CountPath Metrics Tool Number of possible paths, not counting abnormal exits or gotos. 
SOURCE_UNDRSTD_CountPathLog Metrics Tool Log10, truncated to an integer value, of the metric CountPath 
SOURCE_UNDRSTD_CountStmt Metrics Tool Number of statements. 
SOURCE_UNDRSTD_CountStmtDecl Metrics Tool Number of declarative statements. 
SOURCE_UNDRSTD_CountStmtDecl_Javascript Metrics Tool Number of javascript declarative statements. 
SOURCE_UNDRSTD_CountStmtDecl_Php Metrics Tool Number of php declarative statements. 
SOURCE_UNDRSTD_CountStmtExe Metrics Tool Number of executable statements. 
SOURCE_UNDRSTD_CountStmtExe_Javascript Metrics Tool Number of javascript executable statements. 
SOURCE_UNDRSTD_CountStmtExe_Php Metrics Tool Number of php executable statements. 
SOURCE_UNDRSTD_Cyclomatic Metrics Tool Cyclomatic complexity. 
SOURCE_UNDRSTD_CyclomaticModified Metrics Tool Modified cyclomatic complexity. 
SOURCE_UNDRSTD_CyclomaticStrict Metrics Tool Strict cyclomatic complexity. 
SOURCE_UNDRSTD_Essential Metrics Tool Essential complexity. 
SOURCE_UNDRSTD_MaxCyclomatic Metrics Tool Maximum cyclomatic complexity of all nested functions or 

methods. 
SOURCE_UNDRSTD_MaxCyclomaticModified Metrics Tool Maximum modified cyclomatic complexity of nested functions or 

methods. 
SOURCE_UNDRSTD_MaxEssential Metrics Tool Maximum essential complexity of all nested functions or methods. 
SOURCE_UNDRSTD_MaxInheritanceTree Metrics Tool Maximum depth of class in inheritance tree. 
SOURCE_UNDRSTD_MaxNesting Metrics Tool Maximum nesting level of control constructs. 
SOURCE_UNDRSTD_RatioCommentToCode Metrics Tool Ratio of comment lines to code lines. 
SOURCE_UNDRSTD_SumCyclomatic Metrics Tool Sum of cyclomatic complexity of all nested functions or methods. 
SOURCE_UNDRSTD_SumCyclomaticModified Metrics Tool Sum of modified complexity of all nested functions or methods. 
SOURCE_UNDRSTD_SumCyclomaticStrict Metrics Tool Sum of strict cyclomatic complexity of all nested functions or 

methods. 
SOURCE_UNDRSTD_SumEssential Metrics Tool Sum of essential complexity of all nested functions or methods. 



	
 

	

82	 	

TOOL Scan The tool generating the alert. 
TYPE Alert The type of alert as specified by the tool. 
VERSION_ALERT_COUNT Scan The number alerts in the version scan results. 
VERSION_LAST_SEEN Engineered The last version the alert was seen. 
VERSION_START Scan The first version the alert was seen. 
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Appendix B 
 

Experiment Result Metrics 

 Model A Model B Top Performer 

 Accuracy Recall Precision F 
Measure 

FPR Feature 
Count 

Accuracy Recall Precision F 
Measure 

FPR Feature 
Subset 
Count 

Experiment 1 84.52 84.52 84.85 84.49 11.85 172 89.90 89.90 89.90 89.90 10.66 94 

Experiment 2 65.72 65.91 67.84 64.84 38.60 172 83.24 83.24 84.17 83.15 21.61 80 

Experiment 3 69.72 70.34 72.13 69.25 36.28 162 83.60 83.60 84.22 83.57 20.93 85 

Experiment 4* 63.54 63.54 71.00 59.99 16.50 174 70.63 70.63 72.00 70.16 22.50 79 

Experiment 5* 69.49 69.49 70.99 70.04 20.01 174 82.92 82.92 82.78 82.12 16.71 75 

Experiment 6A 74.94 75.00 77.14 74.45 30.67 174 82.52 82.52 82.78 82.49 20.18 65 

Experiment 6B 77.71 77.71 77.73 77.70 21.43 174 81.49 81.49 81.50 81.49 18.75 87 

*weighted 
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Appendix C 
 

GA Performance Metrics 
 

EXP POPULATION Gens Mating Random 
Selection 

Mutation Imp. Thres. Avg. Top 10 
Accuracy 

Gen. 
of Best 

Set 

Best Feature Set 
Accuracy 

Number 
Features 

Terminated Gen 
Term. 

1 200 500 0.7 0.01 0.025 0.003 0.89812716 206 0.898965 94 TRUE 283 

1 200 500 0.8 0.05 0.03 0.0003 0.89645145 149 0.89674717 92 TRUE 251 

1 150 100 0.75 0.03 0.02 0.003 0.89497289 49 0.89576146 86 TRUE 66 

1 200 500 0.75 0.03 0.02 0.003 0.89517003 130 0.89576146 91 TRUE 207 

1 150 50 0.8 0.05 0.03 0.0003 0.89231148 36 0.89354362 90 TRUE 48 

1 150 50 0.75 0.05 0.03 0.0003 0.89078364 11 0.89280434 93 TRUE 20 

1 100 50 0.8 0.05 0.03 0.0003 0.89083292 19 0.89280434 90 TRUE 31 

1 100 50 0.7 0.01 0.025 0.003 0.89110399 20 0.89255791 92 TRUE 29 

1 150 100 0.7 0.03 0.02 0.003 0.89112863 18 0.8915722 103 TRUE 35 

1 50 20 0.7 0.01 0.025 0.003 0.88767866 12 0.8905865 84 TRUE 17 

1 50 20 0.75 0.03 0.02 0.003 0.88851651 10 0.8905865 86 TRUE 15 

1 100 50 0.75 0.03 0.02 0.003 0.88861508 11 0.8905865 86 TRUE 20 

1 150 50 0.7 0.05 0.03 0.0003 0.88945293 8 0.89034007 81 TRUE 17 

1 50 20 0.8 0.05 0.03 0.0003 0.88546082 6 0.88639724 85 TRUE 12 

2 200 500 0.8 0.05 0.03 0.0003 0.83161098 434 0.83281533 80 TRUE 485 

2 150 100 0.75 0.03 0.02 0.003 0.82645688 90 0.82750583 82 FALSE 0 

2 150 100 0.7 0.03 0.02 0.003 0.82602953 70 0.82659933 78 TRUE 87 

2 100 50 0.75 0.03 0.02 0.003 0.82341362 34 0.82530433 83 TRUE 43 

2 150 50 0.8 0.05 0.03 0.0003 0.81801347 28 0.82012432 92 TRUE 40 

2 100 50 0.7 0.01 0.025 0.003 0.81253561 9 0.81377881 85 TRUE 18 
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2 100 50 0.8 0.05 0.03 0.0003 0.81003626 2 0.81339031 78 TRUE 14 

2 50 20 0.75 0.03 0.02 0.003 0.80934991 15 0.81248381 88 TRUE 19 

2 50 20 0.8 0.05 0.03 0.0003 0.7997928 0 0.80769231 84 TRUE 6 

2 50 20 0.7 0.01 0.025 0.003 0.79853665 0 0.80549081 90 TRUE 5 

3 200 500 0.8 0.05 0.03 0.0003 0.83312303 54 0.83596215 85 TRUE 156 

3 150 200 0.7 0.01 0.025 0.003 0.83059937 32 0.83280757 72 TRUE 74 

3 200 500 0.7 0.01 0.025 0.003 0.83280757 80 0.83280757 80 TRUE 182 

3 200 500 0.75 0.03 0.02 0.003 0.83280757 78 0.83280757 82 TRUE 180 

3 100 50 0.7 0.01 0.025 0.003 0.82429022 31 0.82649842 77 TRUE 43 

3 150 100 0.75 0.03 0.02 0.003 0.82113565 34 0.82334385 84 TRUE 46 

3 50 20 0.7 0.01 0.025 0.003 0.81104101 4 0.8170347 68 TRUE 10 

3 150 50 0.8 0.05 0.03 0.0003 0.81230284 25 0.8170347 90 TRUE 37 

3 50 20 0.8 0.05 0.03 0.0003 0.80157729 5 0.81388013 91 TRUE 11 

3 100 50 0.75 0.03 0.02 0.003 0.80694006 18 0.81072555 90 TRUE 30 

3 100 50 0.8 0.05 0.03 0.0003 0.80883281 17 0.81072555 87 TRUE 29 

3 50 20 0.75 0.03 0.02 0.003 0.78990536 1 0.79495268 68 TRUE 7 

4 200 500 0.8 0.05 0.03 0.0003 0.70625 340 0.70625 79 TRUE 442 

4 150 100 0.7 0.03 0.02 0.005 0.6925 73 0.69375 91 TRUE 90 

4 150 100 0.75 0.03 0.02 0.005 0.66145833 26 0.66666667 86 TRUE 43 

4 100 50 0.8 0.05 0.03 0.0003 0.63739583 31 0.64583333 75 TRUE 41 

4 150 50 0.8 0.05 0.03 0.0003 0.61895833 9 0.628125 84 TRUE 21 

4 100 50 0.7 0.01 0.025 0.003 0.59958333 0 0.62291667 83 TRUE 9 

4 100 50 0.75 0.03 0.02 0.003 0.610625 42 0.621875 81 FALSE 0 

4 50 20 0.7 0.01 0.025 0.003 0.60552083 9 0.61458333 84 TRUE 14 

4 50 20 0.8 0.05 0.03 0.0003 0.57677083 15 0.58229167 87 FALSE 0 

4 50 20 0.75 0.03 0.02 0.003 0.56677083 0 0.571875 70 TRUE 5 

5 200 500 0.75 0.03 0.02 0.003 0.829651692 343 0.8291552 75 TRUE 420 
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5 200 500 0.7 0.01 0.025 0.003 0.802869819 158 0.819765037 78 TRUE 163 

5 200 500 0.8 0.05 0.03 0.0003 0.81774634 303 0.8185654 75 TRUE 405 

5 150 100 0.75 0.03 0.02 0.003 0.80976669 72 0.81082982 73 TRUE 89 

5 100 50 0.8 0.05 0.03 0.0003 0.79044014 47 0.79453131 93 FALSE 0 

5 150 100 0.7 0.03 0.02 0.003 0.78939356 40 0.79113924 77 TRUE 57 

5 100 50 0.75 0.03 0.02 0.003 0.78895094 25 0.79113924 85 TRUE 34 

5 150 50 0.8 0.05 0.03 0.0003 0.78173244 21 0.7895673 71 TRUE 33 

5 100 50 0.7 0.01 0.025 0.003 0.77560602 22 0.78418963 88 TRUE 31 

5 50 20 0.75 0.03 0.02 0.003 0.77086539 12 0.77732274 93 TRUE 17 

5 150 50 0.75 0.05 0.03 0.0003 0.76498718 11 0.77467527 85 TRUE 20 

5 150 50 0.7 0.05 0.03 0.0003 0.76208323 5 0.76648465 81 TRUE 14 

5 50 20 0.8 0.05 0.03 0.0003 0.73612559 2 0.74195417 93 TRUE 8 

5 50 20 0.7 0.01 0.025 0.003 0.72258625 1 0.73827252 77 TRUE 6 

6A 200 500 0.75 0.03 0.02 0.003 0.813722693 215 0.8245234 65 TRUE 292 

6A 200 500 0.8 0.05 0.03 0.0003 0.82235102 169 0.82315351 79 TRUE 271 

6A 200 500 0.7 0.01 0.025 0.003 0.806244613 36 0.820627136 79 TRUE 68 

6A 150 100 0.7 0.03 0.02 0.003 0.81821965 36 0.82032992 96 TRUE 53 

6A 150 50 0.75 0.05 0.03 0.0003 0.81749145 18 0.81973547 92 TRUE 27 

6A 100 50 0.8 0.05 0.03 0.0003 0.81500966 18 0.81899242 93 TRUE 30 

6A 150 50 0.8 0.05 0.03 0.0003 0.81536632 18 0.81884381 84 TRUE 30 

6A 100 50 0.75 0.03 0.02 0.003 0.81627285 35 0.81839798 83 TRUE 44 

6A 150 100 0.75 0.03 0.02 0.003 0.81584188 42 0.81765493 87 TRUE 59 

6A 100 50 0.7 0.01 0.025 0.003 0.81361272 20 0.81572299 91 TRUE 29 

6A 50 20 0.7 0.01 0.025 0.003 0.81023926 4 0.81497994 98 TRUE 9 

6A 50 20 0.8 0.05 0.03 0.0003 0.80105513 3 0.81483133 107 TRUE 9 

6A 150 50 0.7 0.05 0.03 0.0003 0.81016496 3 0.81200773 95 TRUE 12 

6A 50 20 0.75 0.03 0.02 0.003 0.79527419 2 0.80472581 75 TRUE 7 
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6B 200 500 0.7 0.01 0.025 0.003 0.80883281 121 0.8149316 87 TRUE 198 

6B 150 200 0.7 0.01 0.025 0.003 0.806204 77 0.80757098 73 TRUE 109 

6B 200 500 0.75 0.03 0.02 0.003 0.80672976 111 0.80757098 76 TRUE 188 

6B 200 500 0.8 0.05 0.03 0.0003 0.80672976 235 0.80757098 82 TRUE 337 

6B 150 100 0.75 0.03 0.02 0.003 0.80105152 60 0.8044164 90 TRUE 77 

6B 150 50 0.8 0.05 0.03 0.0003 0.79085174 31 0.79390116 69 TRUE 43 

6B 100 50 0.8 0.05 0.03 0.0003 0.78548896 26 0.78864353 89 TRUE 38 

6B 100 50 0.7 0.01 0.025 0.003 0.7849632 14 0.78759201 86 TRUE 23 

6B 100 50 0.75 0.03 0.02 0.003 0.77539432 5 0.78443743 85 TRUE 14 

6B 50 20 0.8 0.05 0.03 0.0003 0.77444795 9 0.78023134 80 TRUE 15 

6B 50 20 0.75 0.03 0.02 0.003 0.76319664 4 0.76971609 82 TRUE 9 

6B 50 20 0.7 0.01 0.025 0.003 0.75825447 1 0.76656151 84 TRUE 6 
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Appendix D 

 
Dropped Features by Experiment 

FEATURE EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP 6 A/B 

ALERT_LIFETIME X X X  X  
COMMITTED_DATE X X X X X X 

CVE_ID X X X X X X 

CWE_ID X X X X X X 

DEST_CREATED_DATE X X X X X X 

DEST_FILE_COMPLETE X X X X X X 

DEST_FILE_FOLDER X X X X X X 

DEST_FILE_FUNCTION_VAR X X X X X X 

DEST_FILE_NAME X X X X X X 

DEST_FILE_PATH X X X X X X 

DEST_LAST_AUTHOR_EMAIL X X X X X X 

DEST_LAST_AUTHOR_NAME X X X X X X 

DEST_LAST_EDITED_DATE X X X X X X 

DEST_UNDRSTD_AvgEssential   X    
DEST_UNDRSTD_CountDeclClass   X    
DEST_UNDRSTD_CountDeclFile X X X X X X 

DEST_UNDRSTD_CountLine_Html   X    
DEST_UNDRSTD_CountLineBlank_Html   X    
DEST_UNDRSTD_CountLineComment_Html   X    
DEST_UNDRSTD_MaxInheritanceTree X X X X X X 

PROJECT X X X  X  
SOURCE_CREATED_DATE X X X X X X 

SOURCE_FILE_COMPLETE X X X X X X 

SOURCE_FILE_FOLDER X X X X X X 

SOURCE_FILE_FUNCTION_VAR X X X X X X 

SOURCE_FILE_NAME X X X X X X 

SOURCE_FILE_PATH X X X X X X 

SOURCE_LAST_AUTHOR_EMAIL X X X X X X 

SOURCE_LAST_AUTHOR_NAME X X X X X X 

SOURCE_LAST_EDITED_DATE X X X X X X 

SOURCE_UNDRSTD_AvgEssential   X    
SOURCE_UNDRSTD_CountDeclClass   X    
SOURCE_UNDRSTD_CountDeclFile X X X X X X 

SOURCE_UNDRSTD_CountLine_Html   X    
SOURCE_UNDRSTD_CountLineBlank_Html   X    
SOURCE_UNDRSTD_CountLineComment_Html   X    
SOURCE_UNDRSTD_MaxInheritanceTree X X X X X X 

VERSION_LAST_SEEN X X X X X X 

VERSION_START X X X X X X 
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Appendix E 
 

Top Performing Feature Subsets by Experiment 
FEATURE EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 EXP 

6A 
EXP 
6B 

TOTAL 

ALERT_LIFETIME 
       

0 
CATEGORY X X X 

  
X X 5 

CODE_BUG_VULN 
  

X 
 

X X X 4 
COMMITTED_DATE 

 
X 

     
1 

CVE_ID 
       

0 
CWE_ID 

       
0 

DEST_CREATED_DATE 
       

0 
DEST_FILE_AGE X 

 
X 

  
X X 4 

DEST_FILE_CHURN 
 

X 
    

X 2 
DEST_FILE_CLOC X X 

     
2 

DEST_FILE_COLUMN 
 

X X X 
 

X X 5 
DEST_FILE_COMPLETE 

       
0 

DEST_FILE_EDIT_FREQUENCY 
   

X 
  

X 2 
DEST_FILE_ELOC 

 
X X X X 

  
4 

DEST_FILE_EXT 
     

X X 2 
DEST_FILE_FOLDER 

       
0 

DEST_FILE_FUNCTION_VAR 
       

0 
DEST_FILE_GROWTH 

    
X 

 
X 2 

DEST_FILE_LINE X X X X X 
 

X 6 
DEST_FILE_LINES_ADDED X 

 
X X 

 
X 

 
4 

DEST_FILE_LINES_DELETED 
  

X 
    

1 
DEST_FILE_LOC X 

   
X X 

 
3 

DEST_FILE_NAME 
 

X 
     

1 
DEST_FILE_orig_ccom 

   
X 

   
1 

DEST_FILE_orig_ccomdeep 
  

X X X 
  

3 
DEST_FILE_orig_hvol X 

 
X 

 
X X X 5 

DEST_FILE_orig_loc 
  

X X 
  

X 3 
DEST_FILE_orig_nest X X 

   
X X 4 

DEST_FILE_orig_nIncomingCalls 
 

X 
    

X 2 
DEST_FILE_orig_nIncomingCallsUniq X 

  
X 

  
X 3 

DEST_FILE_orig_nmethods X 
 

X 
 

X 
  

3 
DEST_FILE_orig_nonecholoc X 

  
X 

  
X 3 

DEST_FILE_orig_nOutgoingExternCallsUniq 
 

X 
 

X 
 

X 
 

3 
DEST_FILE_orig_nOutgoingExternFlsCalled X 

 
X X X 

  
4 

DEST_FILE_orig_nOutgoingExternFlsCalledUniq 
 

X X 
    

2 
DEST_FILE_orig_nOutgoingInternCalls X 

    
X 

 
2 

DEST_FILE_PATH 
       

0 
DEST_FILE_PERCENT_MODIFIED X 

   
X X X 4 

DEST_FILE_SIZE X 
  

X X X 
 

4 
DEST_FILE_STALENESS 

  
X X X 

  
3 

DEST_FILE_VERSION_ALERT_COUNT X X X 
 

X 
 

X 5 
DEST_FILE_VERSION_ALERT_LOC_RATIO 

       
0 

DEST_LAST_AUTHOR_EMAIL 
       

0 
DEST_LAST_AUTHOR_NAME 

       
0 

DEST_LAST_EDITED_DATE 
       

0 
DEST_UNDRSTD_AvgCyclomatic 

   
X 

 
X X 3 

DEST_UNDRSTD_AvgCyclomaticModified X 
  

X X X 
 

4 
DEST_UNDRSTD_AvgCyclomaticStrict X 

      
1 

DEST_UNDRSTD_AvgEssential X 
     

X 2 
DEST_UNDRSTD_AvgLine X 

     
X 2 

DEST_UNDRSTD_AvgLineBlank X 
  

X 
 

X X 4 
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DEST_UNDRSTD_AvgLineCode 
 

X 
  

X X 
 

3 
DEST_UNDRSTD_AvgLineComment 

 
X X X 

 
X X 5 

DEST_UNDRSTD_CountDeclClass X 
   

X 
  

2 
DEST_UNDRSTD_CountDeclExecutableUnit X X X 

   
X 4 

DEST_UNDRSTD_CountDeclFile 
 

X 
     

1 
DEST_UNDRSTD_CountDeclFunction 

 
X X X 

  
X 4 

DEST_UNDRSTD_CountLine 
 

X X 
 

X X X 5 
DEST_UNDRSTD_CountLine_Html X 

  
X 

   
2 

DEST_UNDRSTD_CountLine_Javascript X X X X X 
  

5 
DEST_UNDRSTD_CountLine_Php 

 
X X 

 
X X X 5 

DEST_UNDRSTD_CountLineBlank X X 
    

X 3 
DEST_UNDRSTD_CountLineBlank_Html X 

  
X X 

  
3 

DEST_UNDRSTD_CountLineBlank_Javascript X X 
 

X 
  

X 4 
DEST_UNDRSTD_CountLineBlank_Php X 

 
X 

 
X X X 5 

DEST_UNDRSTD_CountLineCode X X X 
   

X 4 
DEST_UNDRSTD_CountLineCode_Javascript 

   
X X 

 
X 3 

DEST_UNDRSTD_CountLineCode_Php X 
  

X X X 
 

4 
DEST_UNDRSTD_CountLineComment 

 
X 

 
X X X 

 
4 

DEST_UNDRSTD_CountLineComment_Html 
 

X 
   

X X 3 
DEST_UNDRSTD_CountLineComment_Javascript X 

   
X 

  
2 

DEST_UNDRSTD_CountLineComment_Php 
 

X 
 

X 
  

X 3 
DEST_UNDRSTD_CountPath 

   
X 

   
1 

DEST_UNDRSTD_CountPathLog X X X X X 
  

5 
DEST_UNDRSTD_CountStmt X X X 

 
X X 

 
5 

DEST_UNDRSTD_CountStmtDecl X X X 
   

X 4 
DEST_UNDRSTD_CountStmtDecl_Javascript 

  
X 

 
X X 

 
3 

DEST_UNDRSTD_CountStmtDecl_Php X 
  

X 
  

X 3 
DEST_UNDRSTD_CountStmtExe 

 
X X 

 
X 

  
3 

DEST_UNDRSTD_CountStmtExe_Javascript X X 
   

X X 4 
DEST_UNDRSTD_CountStmtExe_Php X X X 

 
X 

  
4 

DEST_UNDRSTD_Cyclomatic 
 

X 
 

X 
   

2 
DEST_UNDRSTD_CyclomaticModified X 

   
X 

  
2 

DEST_UNDRSTD_CyclomaticStrict X 
  

X 
   

2 
DEST_UNDRSTD_Essential 

  
X 

 
X 

 
X 3 

DEST_UNDRSTD_MaxCyclomatic X 
 

X X 
 

X X 5 
DEST_UNDRSTD_MaxCyclomaticModified 

 
X 

 
X X 

 
X 4 

DEST_UNDRSTD_MaxEssential X 
  

X 
 

X 
 

3 
DEST_UNDRSTD_MaxInheritanceTree 

       
0 

DEST_UNDRSTD_MaxNesting X 
  

X 
   

2 
DEST_UNDRSTD_RatioCommentToCode 

  
X 

    
1 

DEST_UNDRSTD_SumCyclomatic 
  

X X 
 

X 
 

3 
DEST_UNDRSTD_SumCyclomaticModified X X X X 

 
X X 6 

DEST_UNDRSTD_SumCyclomaticStrict X 
 

X X 
   

3 
DEST_UNDRSTD_SumEssential 

  
X 

 
X 

 
X 3 

FILES_IN_PATH 
 

X 
  

X 
  

2 
IN_OWASP_2013 

 
X X X X X X 6 

IN_OWASP_2017 X X 
   

X X 4 
LANGUAGE 

  
X 

 
X 

  
2 

MATCHED_CVE X X X X X X X 7 
NUM_PATH_HOPS X X 

   
X X 4 

OWASP_TOP_TEN_2013 X 
  

X 
   

2 
OWASP_TOP_TEN_2017 X 

      
1 

PRIORITY 
    

X X X 3 
PROJECT 

   
X 

  
X 2 

SOURCE_CREATED_DATE 
       

0 
SOURCE_DEST_SAME_FILE X 

 
X 

 
X 

 
X 4 

SOURCE_FILE_AGE X X X 
   

X 4 
SOURCE_FILE_CHURN 

   
X 

 
X 

 
2 
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SOURCE_FILE_CLOC X 
 

X 
   

X 3 
SOURCE_FILE_COLUMN X 

 
X X X 

 
X 5 

SOURCE_FILE_COMPLETE 
       

0 
SOURCE_FILE_EDIT_FREQUENCY 

 
X 

  
X X 

 
3 

SOURCE_FILE_ELOC X X 
    

X 3 
SOURCE_FILE_EXT X X X 

   
X 4 

SOURCE_FILE_FOLDER 
       

0 
SOURCE_FILE_FUNCTION_VAR 

       
0 

SOURCE_FILE_GROWTH 
 

X 
 

X X X X 5 
SOURCE_FILE_LINE X X 

    
X 3 

SOURCE_FILE_LINES_ADDED X X X 
    

3 
SOURCE_FILE_LINES_DELETED 

  
X 

    
1 

SOURCE_FILE_LOC X 
 

X X 
  

X 4 
SOURCE_FILE_NAME 

       
0 

SOURCE_FILE_orig_ccom 
  

X 
 

X 
  

2 
SOURCE_FILE_orig_ccomdeep X X X 

  
X 

 
4 

SOURCE_FILE_orig_hvol 
   

X 
   

1 
SOURCE_FILE_orig_loc X X X 

    
3 

SOURCE_FILE_orig_nest 
 

X X 
    

2 
SOURCE_FILE_orig_nIncomingCalls X 

 
X 

    
2 

SOURCE_FILE_orig_nIncomingCallsUniq 
  

X 
 

X 
 

X 3 
SOURCE_FILE_orig_nmethods X 

  
X 

 
X X 4 

SOURCE_FILE_orig_nonecholoc 
 

X 
  

X X X 4 
SOURCE_FILE_orig_nOutgoingExternCallsUniq 

  
X 

 
X 

 
X 3 

SOURCE_FILE_orig_nOutgoingExternFlsCalled X X 
  

X 
 

X 4 
SOURCE_FILE_orig_nOutgoingExternFlsCalledUniq 

 
X 

  
X 

 
X 3 

SOURCE_FILE_orig_nOutgoingInternCalls 
   

X X X X 4 
SOURCE_FILE_PATH 

       
0 

SOURCE_FILE_PERCENT_MODIFIED 
     

X 
 

1 
SOURCE_FILE_SIZE X 

 
X 

 
X 

 
X 4 

SOURCE_FILE_STALENESS X X X 
 

X X 
 

5 
SOURCE_FILE_VERSION_ALERT_COUNT X X X 

    
3 

SOURCE_FILE_VERSION_ALERT_LOC_RATIO X 
  

X 
 

X 
 

3 
SOURCE_LAST_AUTHOR_EMAIL 

       
0 

SOURCE_LAST_AUTHOR_NAME 
       

0 
SOURCE_LAST_EDITED_DATE 

       
0 

SOURCE_UNDRSTD_AvgCyclomatic 
 

X 
 

X 
  

X 3 
SOURCE_UNDRSTD_AvgCyclomaticModified 

      
X 1 

SOURCE_UNDRSTD_AvgCyclomaticStrict 
  

X X X 
  

3 
SOURCE_UNDRSTD_AvgEssential X X 

 
X X 

 
X 5 

SOURCE_UNDRSTD_AvgLine X X 
 

X 
  

X 4 
SOURCE_UNDRSTD_AvgLineBlank X X X X X 

 
X 6 

SOURCE_UNDRSTD_AvgLineCode X X X X X 
 

X 6 
SOURCE_UNDRSTD_AvgLineComment 

 
X 

 
X X X X 5 

SOURCE_UNDRSTD_CountDeclClass 
 

X 
 

X 
 

X X 4 
SOURCE_UNDRSTD_CountDeclExecutableUnit 

  
X 

   
X 2 

SOURCE_UNDRSTD_CountDeclFile 
       

0 
SOURCE_UNDRSTD_CountDeclFunction 

  
X X 

 
X 

 
3 

SOURCE_UNDRSTD_CountLine X 
 

X X X X X 6 
SOURCE_UNDRSTD_CountLine_Html 

   
X X 

  
2 

SOURCE_UNDRSTD_CountLine_Javascript X X 
 

X X 
  

4 
SOURCE_UNDRSTD_CountLine_Php 

 
X X 

 
X X 

 
4 

SOURCE_UNDRSTD_CountLineBlank X 
 

X X 
 

X 
 

4 
SOURCE_UNDRSTD_CountLineBlank_Html 

      
X 1 

SOURCE_UNDRSTD_CountLineBlank_Javascript X X X 
 

X 
 

X 5 
SOURCE_UNDRSTD_CountLineBlank_Php X 

 
X 

  
X 

 
3 

SOURCE_UNDRSTD_CountLineCode 
    

X 
  

1 
SOURCE_UNDRSTD_CountLineCode_Javascript 

 
X X 

 
X X 

 
4 
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SOURCE_UNDRSTD_CountLineCode_Php X X X 
 

X 
  

4 
SOURCE_UNDRSTD_CountLineComment X 

  
X X X 

 
4 

SOURCE_UNDRSTD_CountLineComment_Html 
   

X X 
  

2 
SOURCE_UNDRSTD_CountLineComment_Javascript X X X X 

   
4 

SOURCE_UNDRSTD_CountLineComment_Php 
    

X X X 3 
SOURCE_UNDRSTD_CountPath 

  
X 

    
1 

SOURCE_UNDRSTD_CountPathLog X 
 

X X X 
  

4 
SOURCE_UNDRSTD_CountStmt X 

 
X 

    
2 

SOURCE_UNDRSTD_CountStmtDecl 
 

X X X X X X 6 
SOURCE_UNDRSTD_CountStmtDecl_Javascript X 

 
X X X X X 6 

SOURCE_UNDRSTD_CountStmtDecl_Php 
    

X 
 

X 2 
SOURCE_UNDRSTD_CountStmtExe X 

    
X 

 
2 

SOURCE_UNDRSTD_CountStmtExe_Javascript 
 

X X X 
  

X 4 
SOURCE_UNDRSTD_CountStmtExe_Php 

      
X 1 

SOURCE_UNDRSTD_Cyclomatic X 
 

X X 
   

3 
SOURCE_UNDRSTD_CyclomaticModified X 

 
X X X 

  
4 

SOURCE_UNDRSTD_CyclomaticStrict X 
  

X 
   

2 
SOURCE_UNDRSTD_Essential X X X X 

   
4 

SOURCE_UNDRSTD_MaxCyclomatic 
 

X 
   

X X 3 
SOURCE_UNDRSTD_MaxCyclomaticModified X X X 

   
X 4 

SOURCE_UNDRSTD_MaxEssential X 
  

X 
  

X 3 
SOURCE_UNDRSTD_MaxInheritanceTree 

       
0 

SOURCE_UNDRSTD_MaxNesting 
 

X 
     

1 
SOURCE_UNDRSTD_RatioCommentToCode 

 
X X X X 

  
4 

SOURCE_UNDRSTD_SumCyclomatic X 
 

X 
  

X 
 

3 
SOURCE_UNDRSTD_SumCyclomaticModified X X X 

   
X 4 

SOURCE_UNDRSTD_SumCyclomaticStrict X 
  

X 
 

X 
 

3 
SOURCE_UNDRSTD_SumEssential 

 
X 

   
X 

 
2 

TOOL 
 

X 
   

X 
 

2 
TYPE 

  
X X X 

  
3 

VERSION_ALERT_COUNT X X 
   

X X 4 
VERSION_LAST_SEEN 

       
0 

VERSION_START 
       

0 
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Appendix F 
 

Sonar Scan Script 
################################################################# 
#AUTHOR: KATHY GOESCHEL 
#DATE 09/02/2019 
#PURPOSE: PHD DISSERTATION - NOVA SOUTHEASTERN UNIVERSITY 
#GENERAL ML MODEL - SVM ONLY - FOR STATIC ANALYSIS CLASSIFICATION IMPROVEMENTS 
################################################################# 
#python sonar-scan.py 
 
import os, sys, logging, time, csv, datetime 
from git import Repo 
from git import Git 
from subprocess import PIPE 
import subprocess 
 
#TO USE -- MAKE SURE THE SONAR SERVER IS RUNNING ON LOCALHOST 
#1. go to cmd line to start server (/sonarqube-6.7.1/bin/macosx-universal-64/sonar.sh console) 
#2. go the new cmd line (export PATH=$PATH:/DATASET/sonar-scanner-3.3.0.1492-macosx/bin) 
#3. workon [specify virtualenv] 
#4. Run script with arg of project name (sonar-scan.py PHPMYADMIN) 
 
projectSpecified = str(sys.argv[1]) 
 
now = datetime.datetime.now() 
nowFormatted = now.strftime("%Y-%m-%d_%H_%M") 
 
dirRoot = os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..')) 
logging.basicConfig(filename=dirRoot+'/logs/SonarScanLog-'+nowFormatted+'.log', 

filemode='w',level=logging.DEBUG) 
inputFile = dirRoot + "/toScan.csv" 
scanList = [] 
repoPath = "" 
 
 
def getProjectsFromCSV(): 
    logging.info("IMPORTING CSV") 
    with open(inputFile, mode='rb') as csv_file: 
        csv_reader = csv.DictReader(csv_file) 
        for line in csv_reader: 
            scanList.append(line) 
        return scanList 
 
try: 
    getProjectsFromCSV() 
 
    for i in scanList: 
 
        #skip ones that we dont have a tag for 
        if i['TAG'] == 'NA': 
            continue 
 
        #skip ones that are not the project we specified 
        if i['PROJECT'] != projectSpecified: 
            continue 
     
        logging.info("Scanning " + i['PROJECT'] + " " + i['COMMIT_HASH']) 
 
        if i['PROJECT'] == 'DRUPAL': 
            repoPath = "/SOURCE_CODE/DRUPAL/drupal/" 
        elif i['PROJECT'] == 'MOODLE': 
            repoPath = "/SOURCE_CODE/MOODLE/moodle/" 
        elif i['PROJECT'] == 'PHPMYADMIN': 
            repoPath = "/SOURCE_CODE/PHPMYADMIN/phpmyadmin/" 
        else: 
            logging.error("repo location problem") 
            sys.exit(1) 
 
        #GIT CHECKOUT HASH VERSION 
        try: 
            g = Git(repoPath) 
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            g.checkout(i['COMMIT_HASH']) 
        except: 
            logging.error("ERROR: Changing Repo Checkout Hash") 
            continue 
 
        #START SCAN 
        try: 
            retcode = subprocess.call("echo PASSWORD|sudo -S sonar-scanner -Dsonar.projectKey=" + 

i['PROJECT']  + "_" + i['TAG'] + " -Dproject.projectName=" + i['PROJECT'] + "_" + i['TAG'] + " -
Dsonar.projectVersion=" + i['TAG'] + " -Dsonar.projectBaseDir=" + repoPath + " -Dsonar.sources=.", shell=True) 

            if retcode < 0: 
                logging.debug("\tMSG: was terminated " + str(retcode)) 
            else: 
                if retcode == 0: 
                    logging.debug("\tMSG: Success - scan returned " + str(retcode)) 
                else: 
                    logging.error("\tERROR: Failure - scan returned " + str(retcode)) 
        except OSError as e: 
            logging.error("\tERROR: Scan execution failed: " + e) 
 
 
        #GET REPORT 
        try: 
            num = 1 
            maxPage = 500 
            r = requests.get('http://localhost:9000/api/issues/search?componentKeys=' + i['PROJECT'] + '_' + 

i['TAG'] + '&pageIndex='+str(num)+'&pageSize=-1&types=BUG%2CVULNERABILITY', allow_redirects=True) 
            temp = json.loads(r.content) 
            totalIssues = int(temp['total']) 
            if totalIssues > 10000: 
                print('ALERT: more issues than possible to grab...' + i['PROJECT'] + '_' + i['TAG']) 
                continue 
            open(dirRoot + '/SCAN_RESULTS/Sonar' + i["PROJECT"] + '_' + i["TAG"] + '_' + str(num) + '.json', 

'wb').write(r.content) 
            while num < ((totalIssues/maxPage)+1): 
                logging.info(str(num)) 
                num += 1 
                s = requests.get('http://localhost:9000/api/issues/search?componentKeys=' + i['PROJECT'] + 

'_' + i['TAG'] + '&pageIndex='+str(num)+'&pageSize=-1&types=BUG%2CVULNERABILITY', allow_redirects=True) 
                temp2 = json.loads(s.content) 
                open(dirRoot + '/SCAN_RESULTS/Sonar' + i["PROJECT"] + '_' + i["TAG"] + '_' + str(num) + 

'.json', 'wb').write(s.content) 
                time.sleep(2) 
        except OSError as e: 
            logging.error("\tERROR: Failed to get issues page: " + e) 
 
 
except: 
    logging.error("ERROR: Overall") 
    sys.exit(1) 
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Appendix G 
 

Data Pre-Processing 
################################################################# 
#AUTHOR: KATHY GOESCHEL 
#DATE 09/02/2019 
#PURPOSE: PHD DISSERTATION - NOVA SOUTHEASTERN UNIVERSITY 
#GENERAL ML MODEL FOR STATIC ANALYSIS CLASSIFICATION IMPROVEMENTS 
################################################################# 
 
from datetime import datetime 
import csv 
import logging 
import os 
import sys 
import time 
 
import numpy as np 
import pandas as pd 
from random import random, randint 
 
from sklearn.preprocessing import LabelEncoder, LabelBinarizer, OneHotEncoder, OrdinalEncoder 
from sklearn.model_selection import train_test_split 
from sklearn import svm 
import sklearn.metrics as metrics 
 
###################################DECLARE PATHS / VARIABLES################################### 
 
pythonFileUsed = str(sys.argv[0]).split(".")[0] 
experimentRun = str(sys.argv[1]) 
datetimeFormat = '%Y-%m-%d %H:%M:%S.%f' 
rightNow = datetime.now().strftime(datetimeFormat) 
 
dataFiles = [] 
dataFilePreProcessed = "PreProcessed_"+experimentRun+".csv" 
dataFilePreProcessedScaled = "PreProcessedScaled_"+experimentRun+".csv" 
dataFilePreProcessedFeatures = "PreProcessed_"+experimentRun+"_Features.txt" 
 
######MAIN PATHS 
mainDir = "/MODEL/" 
 
#RAW DATASET 
dataDir = "/DATASET/NEW/THE_SET/"  
 
#WHERE TO SAVE THE PREPROCESSED DATA SET (SANS SCALING) 
dataDirSave = mainDir + "DATA/" 
if not os.path.exists(dataDirSave + pythonFileUsed): 
 os.mkdir(dataDirSave + pythonFileUsed) 
dataDirSave = dataDirSave + pythonFileUsed + "/" 
 
######INPUT FILES 
dataFilePreProcessed = dataDirSave + dataFilePreProcessed 
dataFilePreProcessedScaled = dataDirSave + dataFilePreProcessedScaled 
dataFilePreProcessedFeatures = dataDirSave + dataFilePreProcessedFeatures 
 
theFeatures = [] 
theLabel = "CLASSIFICATION" 
numFeatures = 0 
 
drupalversions = 

['6.0','6.1','6.2','6.3','6.4','6.5','6.6','6.7','6.10','6.11','6.12','6.13','6.14','6.15','6.16','6.17','6.18'
,'6.19','6.20','6.22','6.23','6.24','6.26','6.29','6.31','6.33','6.34','6.35','6.37','6.38'] 

phpversions = 
['RELEASE_2_2_0','RELEASE_2_2_1','RELEASE_2_2_2','RELEASE_2_2_3','RELEASE_2_2_4','RELEASE_2_2_5','RELEASE_2_2_6
','RELEASE_2_3_0','RELEASE_2_3_1','RELEASE_2_3_2','RELEASE_2_3_3PL1','RELEASE_2_4_0','RELEASE_2_5_0','RELEASE_2
_5_1','RELEASE_2_5_2','RELEASE_2_5_4','RELEASE_2_5_5PL1','RELEASE_2_5_6','RELEASE_2_6_1PL3','RELEASE_2_6_2PL1',
'RELEASE_2_6_3PL1','RELEASE_2_6_4PL4','RELEASE_2_7_0PL2','RELEASE_2_8_1','RELEASE_2_9_0','RELEASE_2_9_1_1','REL
EASE_2_9_2','RELEASE_2_10_0','RELEASE_2_10_1RC1','RELEASE_2_10_2','RELEASE_2_10_3','RELEASE_2_11_0','RELEASE_2_
11_1','RELEASE_2_11_2','RELEASE_2_11_3','RELEASE_2_11_4','RELEASE_2_11_5','RELEASE_2_11_6','RELEASE_2_11_7','RE
LEASE_2_11_8','RELEASE_2_11_9','RELEASE_3_0_0','RELEASE_3_0_1','RELEASE_3_1_0','RELEASE_3_1_1','RELEASE_3_1_2',
'RELEASE_3_1_3','RELEASE_3_1_4','RELEASE_3_1_5','RELEASE_3_2_0','RELEASE_3_2_2','RELEASE_3_2_3','RELEASE_3_2_4'
,'RELEASE_3_2_5','RELEASE_3_3_0','RELEASE_3_3_1','RELEASE_3_3_2','RELEASE_3_3_3','RELEASE_3_3_4','RELEASE_3_3_5
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','RELEASE_3_3_6','RELEASE_3_3_7','RELEASE_3_3_8','RELEASE_3_3_9','RELEASE_3_4_0','RELEASE_3_4_1','RELEASE_3_4_
2','RELEASE_3_4_3','RELEASE_3_4_4','RELEASE_3_4_5','RELEASE_3_4_6','RELEASE_3_4_7','RELEASE_3_4_8','RELEASE_3_4
_9','RELEASE_3_5_0','RELEASE_3_5_1','RELEASE_3_5_2','RELEASE_3_5_3','RELEASE_3_5_4','RELEASE_3_5_5','RELEASE_3_
5_6','RELEASE_3_5_7','RELEASE_3_5_8','RELEASE_4_0_0','RELEASE_4_0_1','RELEASE_4_0_2','RELEASE_4_0_3','RELEASE_4
_0_4','RELEASE_4_0_5','RELEASE_4_0_6','RELEASE_4_0_7','RELEASE_4_0_8'] 

moodleversions = 
['v1.0.0','v1.0.1','v1.0.2','v1.0.3','v1.0.4','v1.0.5','v1.0.6','v1.0.7','v1.0.8','v1.0.9','v1.1.0','v1.1.1','v
1.2.0','v1.2.1','v1.3.0','v1.3.1','v1.3.2','v1.3.3','v1.3.4','v1.4.0','v1.4.1','v1.4.2','v1.4.3','v1.4.4','v1.4
.5','v1.5.0','v1.5.1','v1.5.2','v1.5.3','v1.6.0','v1.6.1','v1.6.2','v1.6.3','v1.7.0','v1.7.1','v1.7.2','v1.8.0'
,'v1.8.1','v1.8.2','v1.8.3','v1.8.4','v1.9.0','v1.9.1','v1.9.2','v2.0.0','v2.0.1','v2.0.2','v2.0.3','v2.1.0','v
2.1.1','v2.1.2','v2.1.3','v2.2.0','v2.2.1','v2.2.2','v2.2.3','v2.3.0','v2.3.1','v2.3.2','v2.3.3','v2.4.0','v2.4
.1','v2.4.2','v2.4.3','v2.4.4','v2.5.0','v2.5.1','v2.5.2','v2.5.3','v2.6.0'] 

 
######PRE-PROCESSING DECLARATIONS 
featuresToOneHot = 

["PROJECT","TOOL","CATEGORY","OWASP_TOP_TEN_2013","OWASP_TOP_TEN_2017","TYPE","CODE_BUG_VULN","LANGUAGE","SOURC
E_FILE_EXT","DEST_FILE_EXT"] 

featuresToCatEncode = [] 
featuresBoolean = ["IN_OWASP_2013","IN_OWASP_2017","SOURCE_DEST_SAME_FILE","MATCHED_CVE"] 
featuresToDrop =  

["VERSION_START","VERSION_LAST_SEEN","COMMITTED_DATE","CWE_ID","SOURCE_FILE_COMPLETE","SOURCE_FILE_PATH","SOURC
E_FILE_FOLDER","SOURCE_FILE_NAME","SOURCE_FILE_FUNCTION_VAR","DEST_FILE_COMPLETE","DEST_FILE_PATH","DEST_FILE_F
OLDER","DEST_FILE_NAME","DEST_FILE_FUNCTION_VAR","SOURCE_CREATED_DATE","SOURCE_LAST_EDITED_DATE","SOURCE_LAST_A
UTHOR_NAME","SOURCE_LAST_AUTHOR_EMAIL","DEST_CREATED_DATE","DEST_LAST_EDITED_DATE","DEST_LAST_AUTHOR_NAME","DES
T_LAST_AUTHOR_EMAIL","CVE_ID"] 

featuresDropAfterEncoding = 
["OWASP_TOP_TEN_2017_NONE","OWASP_TOP_TEN_2013_NONE","SOURCE_FILE_EXT_NONE","DEST_FILE_EXT_NONE","CATEGORY_NONE
"] 

featuresNumericalScaleNoBlanks = ["ALERT_LIFETIME","NUM_PATH_HOPS","FILES_IN_PATH","VERSION_ALERT_COUNT"] 
featuresNumericalScaleHasBlanks = 

["SOURCE_FILE_LINE","SOURCE_FILE_COLUMN","DEST_FILE_LINE","DEST_FILE_COLUMN","SOURCE_FILE_SIZE","SOURCE_FILE_LO
C","SOURCE_FILE_CLOC","SOURCE_FILE_ELOC","SOURCE_FILE_AGE","SOURCE_FILE_STALENESS","DEST_FILE_SIZE","DEST_FILE_
LOC","DEST_FILE_CLOC","DEST_FILE_ELOC","DEST_FILE_AGE","DEST_FILE_STALENESS","SOURCE_UNDRSTD_AvgCyclomatic","SO
URCE_UNDRSTD_AvgCyclomaticModified","SOURCE_UNDRSTD_AvgCyclomaticStrict","SOURCE_UNDRSTD_AvgEssential","SOURCE_
UNDRSTD_AvgLine","SOURCE_UNDRSTD_AvgLineBlank","SOURCE_UNDRSTD_AvgLineCode","SOURCE_UNDRSTD_AvgLineComment","SO
URCE_UNDRSTD_CountDeclClass","SOURCE_UNDRSTD_CountDeclExecutableUnit","SOURCE_UNDRSTD_CountDeclFile","SOURCE_UN
DRSTD_CountDeclFunction","SOURCE_UNDRSTD_CountLine","SOURCE_UNDRSTD_CountLineBlank","SOURCE_UNDRSTD_CountLineBl
ank_Html","SOURCE_UNDRSTD_CountLineBlank_Javascript","SOURCE_UNDRSTD_CountLineBlank_Php","SOURCE_UNDRSTD_CountL
ineCode","SOURCE_UNDRSTD_CountLineCode_Javascript","SOURCE_UNDRSTD_CountLineCode_Php","SOURCE_UNDRSTD_CountLine
Comment","SOURCE_UNDRSTD_CountLineComment_Html","SOURCE_UNDRSTD_CountLineComment_Javascript","SOURCE_UNDRSTD_Co
untLineComment_Php","SOURCE_UNDRSTD_CountLine_Html","SOURCE_UNDRSTD_CountLine_Javascript","SOURCE_UNDRSTD_Count
Line_Php","SOURCE_UNDRSTD_CountPath","SOURCE_UNDRSTD_CountPathLog","SOURCE_UNDRSTD_CountStmt","SOURCE_UNDRSTD_C
ountStmtDecl","SOURCE_UNDRSTD_CountStmtDecl_Javascript","SOURCE_UNDRSTD_CountStmtDecl_Php","SOURCE_UNDRSTD_Coun
tStmtExe","SOURCE_UNDRSTD_CountStmtExe_Javascript","SOURCE_UNDRSTD_CountStmtExe_Php","SOURCE_UNDRSTD_Cyclomatic
","SOURCE_UNDRSTD_CyclomaticModified","SOURCE_UNDRSTD_CyclomaticStrict","SOURCE_UNDRSTD_Essential","SOURCE_UNDR
STD_MaxCyclomatic","SOURCE_UNDRSTD_MaxCyclomaticModified","SOURCE_UNDRSTD_MaxEssential","SOURCE_UNDRSTD_MaxInhe
ritanceTree","SOURCE_UNDRSTD_MaxNesting","SOURCE_UNDRSTD_RatioCommentToCode","SOURCE_UNDRSTD_SumCyclomatic","SO
URCE_UNDRSTD_SumCyclomaticModified","SOURCE_UNDRSTD_SumCyclomaticStrict","SOURCE_UNDRSTD_SumEssential","DEST_UN
DRSTD_AvgCyclomatic","DEST_UNDRSTD_AvgCyclomaticModified","DEST_UNDRSTD_AvgCyclomaticStrict","DEST_UNDRSTD_AvgE
ssential","DEST_UNDRSTD_AvgLine","DEST_UNDRSTD_AvgLineBlank","DEST_UNDRSTD_AvgLineCode","DEST_UNDRSTD_AvgLineCo
mment","DEST_UNDRSTD_CountDeclClass","DEST_UNDRSTD_CountDeclExecutableUnit","DEST_UNDRSTD_CountDeclFile","DEST_
UNDRSTD_CountDeclFunction","DEST_UNDRSTD_CountLine","DEST_UNDRSTD_CountLineBlank","DEST_UNDRSTD_CountLineBlank_
Html","DEST_UNDRSTD_CountLineBlank_Javascript","DEST_UNDRSTD_CountLineBlank_Php","DEST_UNDRSTD_CountLineCode","
DEST_UNDRSTD_CountLineCode_Javascript","DEST_UNDRSTD_CountLineCode_Php","DEST_UNDRSTD_CountLineComment","DEST_U
NDRSTD_CountLineComment_Html","DEST_UNDRSTD_CountLineComment_Javascript","DEST_UNDRSTD_CountLineComment_Php","D
EST_UNDRSTD_CountLine_Html","DEST_UNDRSTD_CountLine_Javascript","DEST_UNDRSTD_CountLine_Php","DEST_UNDRSTD_Coun
tPath","DEST_UNDRSTD_CountPathLog","DEST_UNDRSTD_CountStmt","DEST_UNDRSTD_CountStmtDecl","DEST_UNDRSTD_CountStm
tDecl_Javascript","DEST_UNDRSTD_CountStmtDecl_Php","DEST_UNDRSTD_CountStmtExe","DEST_UNDRSTD_CountStmtExe_Javas
cript","DEST_UNDRSTD_CountStmtExe_Php","DEST_UNDRSTD_Cyclomatic","DEST_UNDRSTD_CyclomaticModified","DEST_UNDRST
D_CyclomaticStrict","DEST_UNDRSTD_Essential","DEST_UNDRSTD_MaxCyclomatic","DEST_UNDRSTD_MaxCyclomaticModified",
"DEST_UNDRSTD_MaxEssential","DEST_UNDRSTD_MaxInheritanceTree","DEST_UNDRSTD_MaxNesting","DEST_UNDRSTD_RatioComm
entToCode","DEST_UNDRSTD_SumCyclomatic","DEST_UNDRSTD_SumCyclomaticModified","DEST_UNDRSTD_SumCyclomaticStrict"
,"DEST_UNDRSTD_SumEssential","SOURCE_FILE_VERSION_ALERT_COUNT","SOURCE_FILE_VERSION_ALERT_LOC_RATIO","DEST_FILE
_VERSION_ALERT_COUNT","DEST_FILE_VERSION_ALERT_LOC_RATIO","SOURCE_FILE_LINES_ADDED","SOURCE_FILE_LINES_DELETED"
,"SOURCE_FILE_CHURN","SOURCE_FILE_GROWTH","SOURCE_FILE_PERCENT_MODIFIED","SOURCE_FILE_EDIT_FREQUENCY","DEST_FIL
E_LINES_ADDED","DEST_FILE_LINES_DELETED","DEST_FILE_CHURN","DEST_FILE_GROWTH","DEST_FILE_PERCENT_MODIFIED","DES
T_FILE_EDIT_FREQUENCY"] 

featuresNumericalScaleHasBlanksIsSparse = 
["SOURCE_FILE_orig_nonecholoc","SOURCE_FILE_orig_loc","SOURCE_FILE_orig_nmethods","SOURCE_FILE_orig_ccomdeep","
SOURCE_FILE_orig_ccom","SOURCE_FILE_orig_nest","SOURCE_FILE_orig_hvol","SOURCE_FILE_orig_nIncomingCalls","SOURC
E_FILE_orig_nIncomingCallsUniq","SOURCE_FILE_orig_nOutgoingInternCalls","SOURCE_FILE_orig_nOutgoingExternFlsCal
led","SOURCE_FILE_orig_nOutgoingExternFlsCalledUniq","SOURCE_FILE_orig_nOutgoingExternCallsUniq","DEST_FILE_ori
g_nonecholoc","DEST_FILE_orig_loc","DEST_FILE_orig_nmethods","DEST_FILE_orig_ccomdeep","DEST_FILE_orig_ccom","D
EST_FILE_orig_nest","DEST_FILE_orig_hvol","DEST_FILE_orig_nIncomingCalls","DEST_FILE_orig_nIncomingCallsUniq","
DEST_FILE_orig_nOutgoingInternCalls","DEST_FILE_orig_nOutgoingExternFlsCalled","DEST_FILE_orig_nOutgoingExternF
lsCalledUniq","DEST_FILE_orig_nOutgoingExternCallsUniq"] 
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featuresNewMapping = [] 
deletedCols = [] 
 
###################################FUNCTIONS################################### 
 
def loadCSV(file): 
 temp = pd.read_csv(file, delimiter=',', skiprows=0).replace('"','') 
 return temp 
 
def loadMultCSV(): 
 df_from_each_file = (pd.read_csv(dataDir + f) for f in dataFiles) 
 concatenated_df   = pd.concat(df_from_each_file, ignore_index=True) 
 return concatenated_df 
 
def returnTimeFormatted(): 
 return datetime.now().strftime(datetimeFormat) 
 
def secondsBetween(d1, d2): 
 d1 = datetime.strptime(d1, datetimeFormat) 
 d2 = datetime.strptime(d2, datetimeFormat) 
 return abs((d2 - d1).seconds) 
 
def dayOfWeek(theDate, dateFormat): 
 res = datetime.strptime(theDate, dateFormat) 
 return datetime.weekday(res) 
 
def columnHasUniqueValues(column): 
 if howManyUniqueValues(column) > 1: 
 return True 
 return False 
 
def howManyUniqueValues(column): 
 return len(np.unique(data[column])) 
 
def trackNewColumnNames(column): 
 featuresNewMapping.append({column:[column+"_"+i for i in np.unique(data[column])]}) 
 
def encodeLabel(column): 
 lb_make = LabelEncoder() 
 lb_results = lb_make.fit_transform(data[column]) 
 return pd.DataFrame(lb_results,columns=[column]) 
 
def encodeLabelBinarizer(column): 
 lb_style = LabelBinarizer() 
 lb_results = lb_style.fit_transform(data[column]) 
 return pd.DataFrame(lb_results, columns=[column + "_" +str(lb_style.classes_[i]) for i in 

range(len(lb_style.classes_))]) 
 
###################################START################################### 
 
######PREAMBLE 
rightNow = returnTimeFormatted() 
 
#GET THE DATA FILES 
for i in phpversions: 
 dataFiles.append("PHPMYADMIN/PHPMYADMIN_"+i+".csv") 
for i in moodleversions: 
 dataFiles.append("MOODLE/MOODLE_"+i+".csv") 
for i in drupalversions: 
 dataFiles.append("DRUPAL/DRUPAL_"+i+".csv") 
print(dataFiles) 
 
######LOAD / GET DATA SET 
data = loadMultCSV() 
 
#GET THE COLUMN HEADERS / FEATURE NAMES 
for i in data.columns: 
 #DONT TAKE THE CLASSIFICATION COLUMN 
 if i != theLabel: 
 theFeatures.append(i)  
numFeatures = len(theFeatures) 
 
######DATA PRE-PROCESSING  
 
#DROP CLASSIFICATION OF DELETED..... 



	
 

	

98	 	

data = data[data.CLASSIFICATION != 'DELETED'] 
 
#DROP DUPLICATE ROWS 
considerDups = 

["PROJECT","TOOL","PRIORITY","CATEGORY","CWE_ID","IN_OWASP_2013","IN_OWASP_2017","OWASP_TOP_TEN_2013","OWASP_TO
P_TEN_2017","TYPE","CODE_BUG_VULN","LANGUAGE","SOURCE_FILE_COMPLETE","SOURCE_FILE_LINE","SOURCE_FILE_COLUMN","S
OURCE_FILE_FUNCTION_VAR","DEST_FILE_COMPLETE","DEST_FILE_LINE","DEST_FILE_COLUMN","DEST_FILE_FUNCTION_VAR"] 

t = len(data) 
data.drop_duplicates(subset=considerDups, keep='first',inplace=True)  
 
#KEEP SAME NUMBER OF EACH CLASS (DATA SET IS HEAVILY SKEWED) 
numActionable = len(data[data['CLASSIFICATION'] == 'ACTIONABLE']) 
numRows = len(data) 
numUnactionable = numRows - numActionable 
 
if (numActionable / numRows) < .45: 
 numRowsToDrop = (numRows - numActionable) - numActionable 
 data.drop(data[data['CLASSIFICATION'] == 'UNACTIONABLE'].sample(n=numRowsToDrop).index,inplace=True) 
elif (numUnactionable / numRows) < .45: 
 numRowsToDrop = (numRows - numUnactionable) - numUnactionable 
 data.drop(data[data['CLASSIFICATION'] == 'ACTIONABLE'].sample(n=numRowsToDrop).index,inplace=True) 
 
#GET THE COLUMN HEADERS / FEATURE NAMES 
for i in data.columns: 
 #DONT INCLUDE THE CLASSIFICATION COLUMN 
 if i != theLabel: 
 theFeatures.append(i)  
numFeatures = len(theFeatures) 
 
#DROP FEATURES SPECIFIED...........  
for i in featuresToDrop: 
 data = data.drop(columns=i) 
 deletedCols.append(i) 
 
#DROP COLUMNS WITH NO DATA AT ALL 
colsBeforeDrop = data.columns 
data.dropna(axis=1, how='all', inplace=True) 
colsAfterDrop = data.columns 
#TRACK WHICH COLUMNS WERE DELETED 
for i in colsBeforeDrop: 
 if i not in colsAfterDrop: 
 deletedCols.append(i) 
 
#BOOLEAN  
for i in featuresBoolean: 
 if i in data: 
 data[i] = data[i].astype(int) 
 
#FILL SOME MISSING DATA BEFORE LABEL ENCODING 
for i in featuresToOneHot: 
 if i in data: 
 data[i] = data[i].fillna(value="None") 
 
for i in featuresToCatEncode: 
 if i in data: 
 data[i] = data[i].fillna(value="None") 
 
#DROP COLUMN IF ALL DATA IN THAT COLUMN IS THE SAME 
for i in theFeatures: 
 if i in data: 
 if not columnHasUniqueValues(i): 
 data = data.drop(columns=i) 
 deletedCols.append(i) 
 
#CAPITILIZATION CONSISTENCY FOR VALUES 
for i in featuresToOneHot: 
 if i in data: 
 data[i] = data[i].str.upper() 
 
for i in featuresToCatEncode: 
 if i in data: 
 data[i] = data[i].str.upper() 
 
for i in featuresToOneHot: 
 if i in data: 
 if columnHasUniqueValues(i): 
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 trackNewColumnNames(i) 
 res = encodeLabelBinarizer(i) 
 data = data.drop(columns=i) #this is really a replace 
 data = pd.concat([data, res], axis=1) 
 
for i in featuresToCatEncode: 
 if i in data: 
 if columnHasUniqueValues(i): 
 res = encodeLabel(i) 
 data = data.drop(columns=i) #this is really a replace 
 data = pd.concat([data, res], axis=1) 
 
for i in featuresDropAfterEncoding: 
 if i in data: 
 data = data.drop(columns=i) 
 for n in featuresNewMapping: 
 for m in n: 
 if m == i: 
 m.remove(i) 
 
#FILL MISSING NUMERICAL DATA WITH MEDIAN OR MODES BASED ON ANALYSIS 
for i in featuresNumericalScaleHasBlanks: 
 if i in data: 
 data[i].fillna(data[i].median(), inplace=True) 
 
for i in featuresNumericalScaleNoBlanks: 
 if i in data: 
 data[i].fillna(data[i].median(), inplace=True) 
 
for i in featuresNumericalScaleHasBlanksIsSparse: 
 if i in data: 
 if i == 'SOURCE_FILE_orig_hvol' or i == 'DEST_FILE_orig_hvol': 
 data[i].fillna(data[i].median(), inplace=True) 
 else: 
 data[i].fillna(data[i].mode()[0], inplace=True) 
 
#AFTER PROCESSING DONE.....DROP COLUMN IF ALL DATA IN THAT COLUMN IS THE SAME 
for i in theFeatures: 
 if i in data: 
 if not columnHasUniqueValues(i): 
 data = data.drop(columns=i) 
 deletedCols.append(i) 
 
for i in deletedCols: 
 if i in theFeatures: 
 theFeatures.remove(i) 
 
data.to_csv(dataFilePreProcessed,index=False) 
 
with open(dataFilePreProcessedFeatures,"a+") as f: 
 f.write("DELETED COLS: \r\n%s" %deletedCols) 
 f.write("\r\n\r\nNEW FEATURES MAPPING: \r\n%s" %featuresNewMapping) 
 f.write("\r\nREMOVE THE FOLLOWING BEFORE MODEL: \r\n%s" %featuresDropAfterEncoding) 
 f.write("\r\n\r\nRAW DATA FILES USED FOR THIS DATASET....\r\n%s" %dataFiles) 
 f.write("\r\n\r\n%s" %printNote) 
 
exit() 
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Appendix H 
 

Control Classifier – Model A 
################################################################# 
#AUTHOR: KATHY GOESCHEL 
#DATE 09/02/2019 
#PURPOSE: PHD DISSERTATION - NOVA SOUTHEASTERN UNIVERSITY 
#GENERAL ML MODEL - SVM ONLY - FOR STATIC ANALYSIS CLASSIFICATION IMPROVEMENTS 
################################################################# 
#python MODEL_A.py 
#THIS FILE WILL LOOP THROUGH THE EXPERIMENTS AND TRAIN AND TEST THE EXPIRMENT FILES FOR ALL SVMs SPECIFIED 
 
from datetime import datetime 
import csv 
import os 
import sys 
import time 
 
import numpy as np 
import pandas as pd 
from random import random, randint 
 
from sklearn.preprocessing import RobustScaler 
from sklearn import svm 
from sklearn.externals import joblib 
import sklearn.metrics as metrics 
 
###################################DECLARE PATHS / VARIABLES################################### 
 
kernel = '' 
pythonFileUsed = str(sys.argv[0]).split(".")[0] 
experimentRun = ['Exp1','Exp2','Exp3','Exp4','Exp5','Exp6a','Exp6b'] 
trainOrTest = ['TRAIN','TEST'] 
mod = ['BasicLinear'] 
 
datetimeFormat = '%Y-%m-%d %H:%M:%S.%f' 
 
note = "SVM MODEL A - SVM ONLY - USING PREPROCESSED, SCALED DATA" 
 
######MAIN PATHS 
mainDir = "/MODEL/" 
 
######LOAD CSV 
def loadCSV(file): 
 temp = pd.read_csv(file, delimiter=',', skiprows=0).replace('"','') 
 return temp 
 
def returnTimeFormatted(): 
 return datetime.now().strftime(datetimeFormat) 
 
def secondsBetween(d1, d2): 
 d1 = datetime.strptime(d1, datetimeFormat) 
 d2 = datetime.strptime(d2, datetimeFormat) 
 return abs((d2 - d1).seconds) 
 
######PREAMBLE 
print(note) 
 
for e in experimentRun: 
 for t in trainOrTest: 
 for m in mod: 
 
 start = returnTimeFormatted() 
 data = '' 
 
 dataFile = mainDir + "DATA/MODEL_PRE-PROCESS/PreProcessed_" + e + "_" + t + ".csv" 
 modelFile = mainDir + "RESULTS/" + pythonFileUsed + "/TRAINED_MODELS/" + e + "_" + m + "_MODEL.sav" 
 scalerFile = mainDir + "RESULTS/" + pythonFileUsed + "/TRAINED_MODELS/" + e + "_" + m + "_SCALER.sav" 
 
 ######RESULTS FILE 
 resultsDir = mainDir + "RESULTS/" 
 if not os.path.exists(resultsDir + pythonFileUsed): 
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 os.mkdir(resultsDir + pythonFileUsed) 
 resultsDir = mainDir + "RESULTS/" + pythonFileUsed + "/" 
 resultsFile = resultsDir + pythonFileUsed + "_" + e + "_" + m + "_" + t + ".txt" 
 
 theFeatures = [] 
 theLabel = "CLASSIFICATION" 
 numFeatures = 0 
 
 data = loadCSV(dataFile) 
 
 for i in data.columns: 
 if i != theLabel: 
 theFeatures.append(i) 
 
 x = data.loc[:, theFeatures] 
 y = data[theLabel] 
 
 if t == 'TRAIN': 
 
 #SCALE THE DATA 
 scaler = RobustScaler() 
 x = scaler.fit_transform(x) 
 
 #TRAIN MODEL 
 model = svm.LinearSVC() 
 model.fit(x, y) 
 
 #SAVE MODEL AND SCALER 
 joblib.dump(scaler, scalerFile) 
 joblib.dump(model, modelFile) 
 
 rightNow = returnTimeFormatted() 
 diff = secondsBetween(start, rightNow) 
 
 with open(resultsFile,"a") as f: 
 f.write("%s \r\n" %note) 
 f.write('%s %s %s' %(e,t,m)) 
 f.write("*****************\r\n") 
 f.write("SCRIPT: %s\r\n" %pythonFileUsed) 
 f.write("DATA FILE USED: %s\r\n" %dataFile) 
 f.write("STARTED: %s\r\n" %start) 
 f.write("FINISHED: %s\r\n" %rightNow) 
 f.write("TIME ELAPSED IN SECONDS: %s\r\n" %diff) 
 f.write("*****************\r\n") 
 f.write("MODEL USED: SVM\r\n") 
 f.write("SETTINGS USED: %s\r\n" %model) 
 f.write("*****************\r\n") 
 
 else: 
 
 #SCALE THE DATA 
 scaler = joblib.load(scalerFile) 
 model = joblib.load(modelFile) 
 
 x = scaler.transform(x) 
 #TEST MODEL 
 prediction = model.predict(x) 
 
 rightNow = returnTimeFormatted() 
 diff = secondsBetween(start, rightNow) 
 
 cm = metrics.confusion_matrix(y, prediction) 
 cr = metrics.classification_report(y, prediction) 
 accuracy = metrics.accuracy_score(y, prediction) 
 f1M = metrics.f1_score(y, prediction, average='macro') 
 f1W = metrics.f1_score(y, prediction, average='weighted') 
 precisionM = metrics.precision_score(y, prediction, average='macro') 
 precisionW = metrics.precision_score(y, prediction, average='weighted') 
 recallM = metrics.recall_score(y, prediction, average='macro') 
 recallW = metrics.recall_score(y, prediction, average='weighted') 
 
 #SVM / Metrics Print 
 print("Confusion Matrix: \n", cm) 
 print("Accuracy: ", round(accuracy,4)) 
 print("TIME ELAPSED IN SECONDS: %s\r\n" %diff) 
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 with open(resultsFile,"a+") as f: 
 f.write("%s \r\n" %note) 
 f.write("*****************\r\n") 
 f.write("SCRIPT: %s\r\n" %pythonFileUsed) 
 f.write("DATA FILE USED: %s\r\n" %dataFile) 
 f.write("STARTED: %s\r\n" %start) 
 f.write("*****************\r\n") 
 f.write("MODEL USED: SVM\r\n") 
 f.write("SETTINGS USED: %s\r\n" %model) 
 f.write("*****************\r\n") 
 f.write("Confusion Matrix: \r\n %s\r\n" %cm) 
 f.write("Classification Report: \r\n %s\r\n" %cr) 
 f.write("Accuracy: %s\r\n" %round(accuracy,4)) 
 f.write("F1 Macro: %s\r\n" %round(f1M,4)) 
 f.write("F1 Weighted: %s\r\n" %round(f1W,4)) 
 f.write("Precision Macro: %s\r\n" %round(precisionM,4)) 
 f.write("Precision Weighted: %s\r\n" %round(precisionW,4)) 
 f.write("Recall Macro: %s\r\n" %round(recallM,4)) 
 f.write("Recall Weighted: %s\r\n" %round(recallW,4)) 
 f.write("Matthews Corr Coef: %s\r\n" %round(matthews_corrcoef,4)) 
 f.write("*****************\r\n") 
 f.write("*****************\r\n") 
 f.write("*****************\r\n") 
 f.write("FINISHED: %s\r\n" %rightNow) 
 f.write("TIME ELAPSED IN SECONDS: %s\r\n" %diff) 
 f.write("*****************\r\n") 
 
exit() 
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Appendix I 
 

Genetic Feature Selection – Model B 
################################################################# 
#AUTHOR: KATHY GOESCHEL 
#DATE 09/02/2019 
#PURPOSE: PHD DISSERTATION - NOVA SOUTHEASTERN UNIVERSITY 
#ML MODEL FOR STATIC ANALYSIS CLASSIFICATION IMPROVEMENTS 
#STATUS PRINTS AND RESULT EXPORTS REMOVED FROM SCRIPT PRIOR TO PUBLICATION 
################################################################# 
#python Model_B.py 
 
from datetime import datetime 
import csv 
import os 
import sys 
import time 
 
import numpy as np 
import pandas as pd 
from random import random, randint 
 
from sklearn.preprocessing import RobustScaler 
from sklearn import svm 
 
import sklearn.metrics as metrics 
 
###################################DECLARE PATHS / VARIABLES################################### 
 
pythonFileUsed = str(sys.argv[0]).split(".")[0] 
experimentRun = str(sys.argv[1]) 
datetimeFormat = '%Y-%m-%d %H:%M:%S.%f' 
scriptStart = datetime.now().strftime(datetimeFormat) 
 
note = "MODEL B - SVM with GA - USING SAME TRAIN TEST DATA AS MODEL A -- MODEL: Basic Linear" 
 
######MAIN PATHS 
mainDir = "/MODEL/" 
trainData = '' 
testData = '' 
 
######RESULTS FILE 
#used to export results 
resultsDir = mainDir + "RESULTS/" 
if not os.path.exists(resultsDir + pythonFileUsed): 
 os.mkdir(resultsDir + pythonFileUsed) 
resultsDir = mainDir + "RESULTS/" + pythonFileUsed + "/" 
resultsFile = resultsDir + pythonFileUsed + "_" + experimentRun + ".txt" 
resultsFileCSV = resultsDir + pythonFileUsed + "_" + experimentRun + ".csv" 
 
theLabel = "CLASSIFICATION" 
numFeatures = 0 
gensNoImprovements = 0 
 
currGA = 0 
currGABest = [] 
currGen = 0 
prevGenPerf = 0 
bestGenAcc = 0 
kgGenImprov = [] 
 
gaSettings = [ {'populationSize' : 50, 'generations' : 20, 'retain' : 0.8, 'randomKeep' : 0.05, 

'mutationProbability' : .03, 'improvementThreshold' : .0003}, 
 {'populationSize' : 50, 'generations' : 20, 'retain' : 0.75, 'randomKeep' : 0.03, 'mutationProbability' 

: .02, 'improvementThreshold' : .003}, 
 {'populationSize' : 50, 'generations' : 20, 'retain' : 0.70, 'randomKeep' : 0.01, 'mutationProbability' 

: .025, 'improvementThreshold' : .003}, 
 {'populationSize' : 100, 'generations' : 50, 'retain' : 0.8, 'randomKeep' : 0.05, 'mutationProbability' 

: .03, 'improvementThreshold' : .0003}, 
 {'populationSize' : 100, 'generations' : 50, 'retain' : 0.75, 'randomKeep' : 0.03, 

'mutationProbability' : .02, 'improvementThreshold' : .003}, 
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 {'populationSize' : 100, 'generations' : 50, 'retain' : 0.70, 'randomKeep' : 0.01, 
'mutationProbability' : .025, 'improvementThreshold' : .003}, 

 {'populationSize' : 150, 'generations' : 50, 'retain' : 0.8, 'randomKeep' : 0.05, 'mutationProbability' 
: .03, 'improvementThreshold' : .0003}, 

 {'populationSize' : 150, 'generations' : 50, 'retain' : 0.75, 'randomKeep' : 0.05, 
'mutationProbability' : .03, 'improvementThreshold' : .0003}, 

 {'populationSize' : 150, 'generations' : 50, 'retain' : 0.70, 'randomKeep' : 0.05, 
'mutationProbability' : .03, 'improvementThreshold' : .0003}, 

 {'populationSize' : 150, 'generations' : 100, 'retain' : 0.75, 'randomKeep' : 0.03, 
'mutationProbability' : .02, 'improvementThreshold' : .003}, 

 {'populationSize' : 150, 'generations' : 100, 'retain' : 0.70, 'randomKeep' : 0.03, 
'mutationProbability' : .02, 'improvementThreshold' : .003}, 

 {'populationSize' : 150, 'generations' : 100, 'retain' : 0.8, 'randomKeep' : 0.03, 
'mutationProbability' : .02, 'improvementThreshold' : .003}, 

 {'populationSize' : 200, 'generations' : 500, 'retain' : 0.8, 'randomKeep' : 0.05, 
'mutationProbability' : .03, 'improvementThreshold' : .0003}, 

 {'populationSize' : 200, 'generations' : 500, 'retain' : 0.75, 'randomKeep' : 0.03, 
'mutationProbability' : .02, 'improvementThreshold' : .003}, 

 {'populationSize' : 200, 'generations' : 500, 'retain' : 0.70, 'randomKeep' : 0.01, 
'mutationProbability' : .025, 'improvementThreshold' : .003}, 

 ] 
 
#used to export results 
gaResults = [] 
gaResultsKey = () 
###################################FUNCTIONS################################### 
 
######LOAD CSV 
def loadCSV(file): 
 temp = pd.read_csv(file, delimiter=',', skiprows=0).replace('"','') 
 return temp 
 
def returnTimeFormatted(): 
 return datetime.now().strftime(datetimeFormat) 
 
def secondsBetween(d1, d2): 
 d1 = datetime.strptime(d1, datetimeFormat) 
 d2 = datetime.strptime(d2, datetimeFormat) 
 return abs((d2 - d1).seconds) 
 
def createSet(numFeatures):  
 temp = bytearray() 
 for i in range(numFeatures): 
 temp.append(round(random())) 
 return temp 
 
def createPopulation(popSize, numFeatures): 
 population = [] 
 for i in range(popSize): 
 population.append(createSet(numFeatures)) 
 return population 
 
def featureSetToNames(featureSet): 
 temp = [] 
 x = 0 
 for f in featureSet: 
 if f == 1: 
 temp.append(originalFeatures[x]) 
 x += 1 
 return temp 
 
def terminationCondition(val1, val2): 
 if val1 >= val2: 
 return True 
 return False 
 
def getFitness(p): 
 tempSet = [] 
 
 for i in range(len(p)): 
 if p[i] == 1: 
 #this is a selected feature to be included in the feature set 
 tempSet.append(originalFeatures[i]) 
 
 #MATCH NAMES FROM ORIGNAL SET TO NEW SET 
 for j in newFeaturesMapping: 
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 for k in j: 
 if k in tempSet: 
 for x in j[k]: 
 tempSet.append(x) 
 tempSet.remove(k) 
 return evaluateFeatureSet(tempSet) 
 
def evaluateFeatureSet(tempSet): 
 
 trainDataSubSet = trainData 
 testDataSubSet = testData 
 
 #remove features not selected 
 for h in trainDataSubSet.columns: 
 if h not in tempSet and h != theLabel: 
 trainDataSubSet = trainDataSubSet.drop(columns=h) 
 testDataSubSet = testDataSubSet.drop(columns=h) 
 
 x_train = trainDataSubSet.loc[:, tempSet] 
 y_train = trainDataSubSet[theLabel] 
 
 x_test = testDataSubSet.loc[:, tempSet] 
 y_test = testDataSubSet[theLabel] 
 
 scaler = RobustScaler() 
 x_train = scaler.fit_transform(x_train) 
 x_test = scaler.transform(x_test) 
 
 model = svm.LinearSVC() 
 model.fit(x_train, y_train) 
 prediction = model.predict(x_test) 
 accuracy = metrics.accuracy_score(y_test, prediction) 
  
 return accuracy 
 
def evolve(population): 
 global currGABest, currGA, currGen 
 temp = [] 
 parents = [] 
 children = [] 
 y = 0 
  
 #get the fitness of the population set 
 for p in population: 
 temp.append([y,getFitness(p)]) 
 y += 1 
 
 #sort the population sets by increasing fitness 
 temp = sorted(temp, key=lambda tup: tup[1], reverse=True) 
 
 kgGenImprov.append({currGA,currGen,sum([c[1] for c in temp])/len(temp)}) 
 
 for x in temp: 
 found = False 
 for j in currGABest: 
 if list(population[x[0]]) == j[3] and x[1] == j[2]: 
 found = True 
 if not found: 
 ll = featureSetToNames(population[x[0]]) 
 currGABest.append([currGA,currGen,x[1],list(population[x[0]]),ll,len(ll)]) 
 currGABest = sorted(currGABest, key=lambda tup: tup[2], reverse=True)[:10] 
 
 #save the top % and make them parents 
 retainLength = int(len(temp)*retain) 
  
 #keep the top performing sets as parents 
 for i in range(retainLength): 
 indexFromPopulation = temp[i][0] 
 parents.append(population[indexFromPopulation])  
 
 #include random poor performing sets for diversity 
 for i in temp[retainLength:]: 
 if randomKeep > random(): 
 indexFromPopulation = i[0] 
 parents.append(population[indexFromPopulation]) 
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 #mutate a parent for additional diversity 
 for i in parents: 
 if mutationProbability > random(): 
 positionToMutate = randint(0, len(i)-1) 
 if i[positionToMutate] == 1: 
 i[positionToMutate] = 0 
 else: 
 i[positionToMutate] = 1 
  
 #crossover parents to create children 
 while len(children) < (populationSize - len(parents)): 
 male = randint(0, len(parents)-1) 
 female = randint(0, len(parents)-1) 
 if male != female: 
 male = parents[male] 
 female = parents[female] 
 #CROSSOVER 
 #split 50/50 
 #half = int(len(male) / 2) 
 #split randomly 
 half = randint(0, numTotalFeatures-1) 
 child = male[:half] + female[half:] 
 children.append(child) 
  
 parents.extend(children) 
 return parents 
 
###################################START################################### 
 
######LOAD / GET DATA SET 
trainFile = mainDir + "DATA/MODEL_PRE-PROCESS/PreProcessed_" + experimentRun + "_TRAIN.csv" 
trainData = loadCSV(trainFile) 
testFile = mainDir + "DATA/MODEL_PRE-PROCESS/PreProcessed_" + experimentRun + "_TEST.csv" 
testData = loadCSV(testFile) 
 
#FILL IN THE ORIGINAL FEATURE LIST AS DICTLIST 
originalFeatures = [] 
 
#GET THIS VALUE FROM THE PRE-PROCESSED TEXT FILE THAT PRINTS THE DELETED COLUMNS FROM PRE-PROCESSING STEP 

(DICTLIST) 
preProcessedDeletedFeatures = [] 
 
#GET THIS VALUE FROM THE PRE-PROCESSED TEXT FILE THAT PRINTS THE NEW COLUMN NAME MAPPINGS FROM PRE-

PROCESSING STEP (DICTLIST) 
newFeaturesMapping = [] 
 
#ALL FEATURES ARE GATHERED FROM THE DATASET USED 
allFeatures = [] 
 
for x in preProcessedDeletedFeatures: 
 if x in originalFeatures: 
 originalFeatures.remove(x) 
 
allFeatures = [] 
for i in trainData.columns: 
 if i != theLabel: 
 allFeatures.append(i) 
 
numTotalFeatures = len(originalFeatures) 
 
#LOOP THROUGH ALL OF THE SPECIFIED GA SETTINGS AND RUN THOSE GAs ONE AFTER THE OTHER 
for t in range(len(gaSettings)): 
  
 currGA = t 
 currGABest = [] 
 currGAWorst = [] 
 prevGenPerf = 0 
 bestGenAcc = 0 
 gensNoImprovements = 0 
 
 for x in gaSettings[t]: 
 if (x == 'populationSize') or (x == 'generations'): 
 exec("%s = %d" % (x,gaSettings[t][x])) 
 else: 
 exec("%s = %.4f" % (x,gaSettings[t][x])) 
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 maxGenerationsNoImprovements = int(generations / 10) 
 
 #CREATE INITAL POPULATION 
 population = createPopulation(populationSize, numTotalFeatures) 
 
 terminiation = False 
 terminiationGen = 0 
 topPerfomer = [] 
 topPerformerNoChange = 0 
 
 #EVOLVE THE GENERATIONS 
 for i in range(0, generations): 
 if terminationCondition(gensNoImprovements,maxGenerationsNoImprovements) or (topPerformerNoChange > 

(maxGenerationsNoImprovements*1.5)): 
 terminiation = True 
 terminiationGen = i 
 break 
 
 currGen = i 
 
 kgStart = returnTimeFormatted() 
 
 population = evolve(population) 
  
 #NEW TOP PERFORMER 
 if topPerfomer == currGABest[0]: 
 topPerformerNoChange += 1 
 else: 
 topPerformerNoChange = 0 
 topPerfomer = currGABest[0] 
 
 thisGenPerf = (sum([c[2] for c in currGABest])/len(currGABest)) 
 
 #detect the accuracy delta to be sufficient between generations or multiple gens 
 if ((thisGenPerf - prevGenPerf) > improvementThreshold): 
 gensNoImprovements = 0 
 else: 
 gensNoImprovements += 1 
 
 if thisGenPerf > bestGenAcc: 
 bestGenAcc = thisGenPerf 
 gensNoImprovements = 0 
 
 prevGenPerf = thisGenPerf 
 
 gaResults.append(tempRes) 
 
exit() 
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