1,306 research outputs found

    Least Squares Based and Two-Stage Least Squares Based Iterative Estimation Algorithms for H-FIR-MA Systems

    Get PDF
    This paper studies the identification of Hammerstein finite impulse response moving average (H-FIR-MA for short) systems. A new two-stage least squares iterative algorithm is developed to identify the parameters of the H-FIR-MA systems. The simulation cases indicate the efficiency of the proposed algorithms

    Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

    Get PDF
    This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition-based least squares iterative algorithm is presented for estimating the parameter vector in each subsystem. Moreover, a data filtering-based decomposition least squares iterative algorithm is proposed. The simulation results indicate that the data filtering-based least squares iterative algorithm can generate more accurate parameter estimates than the least squares iterative algorithm

    On the use of L/sub 2/ gap metric for identifying Hammersteim models

    Get PDF
    We consider the identification of nonlinear systems of the Hammerstein class. Hammerstein models are special in the sense that they can be transformed into linear models on which linear systems techniques could be applicable. We propose an iterative identification algorithm to obtain a model that minimizes the L/sub 2/ gap between the true and the identified model. An example is given in illustration

    On the use of L/sub 2/ gap metric for identifying Hammersteim models

    Get PDF
    We consider the identification of nonlinear systems of the Hammerstein class. Hammerstein models are special in the sense that they can be transformed into linear models on which linear systems techniques could be applicable. We propose an iterative identification algorithm to obtain a model that minimizes the L/sub 2/ gap between the true and the identified model. An example is given in illustration

    A new kernel-based approach for overparameterized Hammerstein system identification

    Full text link
    In this paper we propose a new identification scheme for Hammerstein systems, which are dynamic systems consisting of a static nonlinearity and a linear time-invariant dynamic system in cascade. We assume that the nonlinear function can be described as a linear combination of pp basis functions. We reconstruct the pp coefficients of the nonlinearity together with the first nn samples of the impulse response of the linear system by estimating an npnp-dimensional overparameterized vector, which contains all the combinations of the unknown variables. To avoid high variance in these estimates, we adopt a regularized kernel-based approach and, in particular, we introduce a new kernel tailored for Hammerstein system identification. We show that the resulting scheme provides an estimate of the overparameterized vector that can be uniquely decomposed as the combination of an impulse response and pp coefficients of the static nonlinearity. We also show, through several numerical experiments, that the proposed method compares very favorably with two standard methods for Hammerstein system identification.Comment: 17 pages, submitted to IEEE Conference on Decision and Control 201

    Use of system identification techniques for improving airframe finite element models using test data

    Get PDF
    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory
    corecore