930 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationManual annotation of clinical texts is often used as a method of generating reference standards that provide data for training and evaluation of Natural Language Processing (NLP) systems. Manually annotating clinical texts is time consuming, expensive, and requires considerable cognitive effort on the part of human reviewers. Furthermore, reference standards must be generated in ways that produce consistent and reliable data but must also be valid in order to adequately evaluate the performance of those systems. The amount of labeled data necessary varies depending on the level of analysis, the complexity of the clinical use case, and the methods that will be used to develop automated machine systems for information extraction and classification. Evaluating methods that potentially reduce cost, manual human workload, introduce task efficiencies, and reduce the amount of labeled data necessary to train NLP tools for specific clinical use cases are active areas of research inquiry in the clinical NLP domain. This dissertation integrates a mixed methods approach using methodologies from cognitive science and artificial intelligence with manual annotation of clinical texts. Aim 1 of this dissertation identifies factors that affect manual annotation of clinical texts. These factors are further explored by evaluating approaches that may introduce efficiencies into manual review tasks applied to two different NLP development areas - semantic annotation of clinical concepts and identification of information representing Protected Health Information (PHI) as defined by HIPAA. Both experiments integrate iv different priming mechanisms using noninteractive and machine-assisted methods. The main hypothesis for this research is that integrating pre-annotation or other machineassisted methods within manual annotation workflows will improve efficiency of manual annotation tasks without diminishing the quality of generated reference standards

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Mining the Medical and Patent Literature to Support Healthcare and Pharmacovigilance

    Get PDF
    Recent advancements in healthcare practices and the increasing use of information technology in the medical domain has lead to the rapid generation of free-text data in forms of scientific articles, e-health records, patents, and document inventories. This has urged the development of sophisticated information retrieval and information extraction technologies. A fundamental requirement for the automatic processing of biomedical text is the identification of information carrying units such as the concepts or named entities. In this context, this work focuses on the identification of medical disorders (such as diseases and adverse effects) which denote an important category of concepts in the medical text. Two methodologies were investigated in this regard and they are dictionary-based and machine learning-based approaches. Futhermore, the capabilities of the concept recognition techniques were systematically exploited to build a semantic search platform for the retrieval of e-health records and patents. The system facilitates conventional text search as well as semantic and ontological searches. Performance of the adapted retrieval platform for e-health records and patents was evaluated within open assessment challenges (i.e. TRECMED and TRECCHEM respectively) wherein the system was best rated in comparison to several other competing information retrieval platforms. Finally, from the medico-pharma perspective, a strategy for the identification of adverse drug events from medical case reports was developed. Qualitative evaluation as well as an expert validation of the developed system's performance showed robust results. In conclusion, this thesis presents approaches for efficient information retrieval and information extraction from various biomedical literature sources in the support of healthcare and pharmacovigilance. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. This can promote the literature-based knowledge discovery, improve the safety and effectiveness of medical practices, and drive the research and development in medical and healthcare arena

    Towards Orthographic and Grammatical Clinical Text Correction: a First Approach

    Get PDF
    Akats Gramatikalen Zuzenketa (GEC, ingelesetik, Grammatical Error Analysis) Hizkuntza Naturalaren Prozesamenduaren azpieremu bat da, ortogra a, puntuazio edo gramatika akatsak dituzten testuak automatikoki zuzentzea helburu duena. Orain arte, bigarren hizkuntzako ikasleek ekoitzitako testuetara bideratu da gehien bat, ingelesez idatzitako testuetara batez ere. Master-Tesi honetan gaztelaniaz idatzitako mediku-txostenetarako Akats Gramatikalen Zuzenketa lantzen da. Arlo espezi ko hau ez da asko esploratu orain arte, ez gaztelaniarako zentzu orokorrean, ezta domeinu klinikorako konkretuki ere. Hasteko, IMEC (gaztelaniatik, Informes Médicos en Español Corregidos) corpusa aurkezten da, eskuz zuzendutako mediku-txosten elektronikoen bilduma paralelo berria. Corpusa automatikoki etiketatu da zeregin honetarako egokitutako ERRANT tresna erabiliz. Horrez gain, hainbat esperimentu deskribatzen dira, zeintzuetan sare neuronaletan oinarritutako sistemak ataza honetarako diseinatutako baseline sistema batekin alderatzen diren.Grammatical Error Correction (GEC) is a sub field of Natural Language Processing that aims to automatically correct texts that include errors related to spelling, punctuation or grammar. So far, it has mainly focused on texts produced by second language learners, mostly in English. This Master's Thesis describes a first approach to Grammatical Error Correction for Spanish health records. This specific field has not been explored much until now, nor in Spanish in a general sense nor for the clinical domain specifically. For this purpose, the corpus IMEC (Informes Médicos en Español Corregidos) ---a manually-corrected parallel collection of Electronic Health Records--- is introduced. This corpus has been automatically annotated using the toolkit ERRANT, specialized in the automatic annotation of GEC parallel corpora, which was adapted to Spanish for this task. Furthermore, some experiments using neural networks and data augmentation are shown and compared with a baseline system also created specifically for this task

    Table-to-Text: Generating Descriptive Text for Scientific Tables from Randomized Controlled Trials

    Get PDF
    Unprecedented amounts of data have been generated in the biomedical domain, and the bottleneck for biomedical research has shifted from data generation to data management, interpretation, and communication. Therefore, it is highly desirable to develop systems to assist in text generation from biomedical data, which will greatly improve the dissemination of scientific findings. However, very few studies have investigated issues of data-to-text generation in the biomedical domain. Here I present a systematic study for generating descriptive text from tables in randomized clinical trials (RCT) articles, which includes: (1) an information model for representing RCT tables; (2) annotated corpora containing pairs of RCT table and descriptive text, and labeled structural and semantic information of RCT tables; (3) methods for recognizing structural and semantic information of RCT tables; (4) methods for generating text from RCT tables, evaluated by a user study on three aspects: relevance, grammatical quality, and matching. The proposed hybrid text generation method achieved a low bilingual evaluation understudy (BLEU) score of 5.69; but human review achieved scores of 9.3, 9.9 and 9.3 for relevance, grammatical quality and matching, respectively, which are comparable to review of original human-written text. To the best of our knowledge, this is the first study to generate text from scientific tables in the biomedical domain. The proposed information model, labeled corpora and developed methods for recognizing tables and generating descriptive text could also facilitate other biomedical and informatics research and applications

    Data-Centric Foundation Models in Computational Healthcare: A Survey

    Full text link
    The advent of foundation models (FMs) as an emerging suite of AI techniques has struck a wave of opportunities in computational healthcare. The interactive nature of these models, guided by pre-training data and human instructions, has ignited a data-centric AI paradigm that emphasizes better data characterization, quality, and scale. In healthcare AI, obtaining and processing high-quality clinical data records has been a longstanding challenge, ranging from data quantity, annotation, patient privacy, and ethics. In this survey, we investigate a wide range of data-centric approaches in the FM era (from model pre-training to inference) towards improving the healthcare workflow. We discuss key perspectives in AI security, assessment, and alignment with human values. Finally, we offer a promising outlook of FM-based analytics to enhance the performance of patient outcome and clinical workflow in the evolving landscape of healthcare and medicine. We provide an up-to-date list of healthcare-related foundation models and datasets at https://github.com/Yunkun-Zhang/Data-Centric-FM-Healthcare

    Automatic Population of Structured Reports from Narrative Pathology Reports

    Get PDF
    There are a number of advantages for the use of structured pathology reports: they can ensure the accuracy and completeness of pathology reporting; it is easier for the referring doctors to glean pertinent information from them. The goal of this thesis is to extract pertinent information from free-text pathology reports and automatically populate structured reports for cancer diseases and identify the commonalities and differences in processing principles to obtain maximum accuracy. Three pathology corpora were annotated with entities and relationships between the entities in this study, namely the melanoma corpus, the colorectal cancer corpus and the lymphoma corpus. A supervised machine-learning based-approach, utilising conditional random fields learners, was developed to recognise medical entities from the corpora. By feature engineering, the best feature configurations were attained, which boosted the F-scores significantly from 4.2% to 6.8% on the training sets. Without proper negation and uncertainty detection, the quality of the structured reports will be diminished. The negation and uncertainty detection modules were built to handle this problem. The modules obtained overall F-scores ranging from 76.6% to 91.0% on the test sets. A relation extraction system was presented to extract four relations from the lymphoma corpus. The system achieved very good performance on the training set, with 100% F-score obtained by the rule-based module and 97.2% F-score attained by the support vector machines classifier. Rule-based approaches were used to generate the structured outputs and populate them to predefined templates. The rule-based system attained over 97% F-scores on the training sets. A pipeline system was implemented with an assembly of all the components described above. It achieved promising results in the end-to-end evaluations, with 86.5%, 84.2% and 78.9% F-scores on the melanoma, colorectal cancer and lymphoma test sets respectively
    corecore