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ABSTRACT 

 
 
Unprecedented amounts of data have been generated in the biomedical domain, and the 

bottleneck for biomedical research has shifted from data generation to data management, 

interpretation, and communication. Therefore, it is highly desirable to develop systems to assist 

in text generation from biomedical data, which will greatly improve the dissemination of 

scientific findings. However, very few studies have investigated issues of data-to-text generation 

in the biomedical domain.  Here I present a systematic study for generating descriptive text from 

tables in randomized clinical trials (RCT) articles, which includes: (1) an information model for 

representing RCT tables; (2) annotated corpora containing pairs of RCT table and descriptive 

text, and labeled structural and semantic information of RCT tables; (3) methods for recognizing 

structural and semantic information of RCT tables; (4) methods for generating text from RCT 

tables, evaluated by a user study on three aspects: relevance, grammatical quality, and matching. 

The proposed hybrid text generation method achieved a low bilingual evaluation understudy 

(BLEU) score of 5.69; but human review achieved scores of 9.3, 9.9 and 9.3 for relevance, 

grammatical quality and matching, respectively, which are comparable to review of original 

human-written text. To the best of our knowledge, this is the first study to generate text from 

scientific tables in the biomedical domain. The proposed information model, labeled corpora and 

developed methods for recognizing tables and generating descriptive text could also facilitate 

other biomedical and informatics research and applications. 
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CHAPTER I 

Introduction 

 

With the advances of new information technologies, we have entered the Big Data era, where 

roughly 2.5 Exabytes (1018 bytes) of data are being generated every day[1]. Information science, 

which is primarily concerned with “the analysis, collection, classification, manipulation, storage, 

retrieval, movement, dissemination, and protection of information”[2], plays an important role in 

making big data useful (e.g., for decision making). The well-known Data, Information, 

Knowledge, Wisdom (DIKW) framework[3] presents a typical workflow from raw data to 

intelligent behavior. During this process, technologies that can automatically generate human-

readable textual description from normalized and analyzed data (also known as data-to-text 

generation) have received great attention, as natural language is the primary communication 

channel for human beings. Success stories applying natural language generation (NLG) 

techniques to produce meaningful textual description of real world events have been reported 

widely, including news articles, weather forecast reports, sport casting commentaries etc.[4–9] 

These systems can generate documents from data in seconds, thus disseminating findings learned 

from massive data in a timely fashion. 

Similarly, unprecedented amounts of data have been generated in the biomedical domain, due to 

high-throughput technologies such as Next Generation Sequencing. The bottleneck for 

biomedical research has shifted from data generation to data management, interpretation, and 
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communication[10]. Therefore, multiple large-scale efforts have been launched to address this 

problem. For example, the NIH Big Data to Knowledge (BD2K) Program[11], launched in 2013, 

aims to support approaches and tools facilitating large-scale data management and analysis in 

addition to making biomedical data Findable, Accessible, Interoperable, and Reusable 

(“FAIR”)[12]. In the biomedical domain (perhaps in all scientific disciplines), the most common 

and accessible venue for scientific communication is publications. The number of biomedical 

publications indexed in MEDLINE has been growing exponentially each year: 410,197 papers 

were published in 1990, 531,578 in 2000, and 1,259,513 in 2016[13]. Therefore, it is highly 

desirable to develop systems to assist in article generation from biomedical data, which will 

greatly improve the dissemination of scientific findings. However, very few studies have 

investigated issues of data-to-text generation in the biomedical domain.   

Here, we propose to study data-to-text generation methods in the biomedical domain. Our long-

term goal is to develop methods and systems that can understand biomedical data, both 

syntactically and semantically, and automatically generate text descriptions that summarize 

significant findings of the data in natural language. As an initial step, we propose to investigate 

methods to transform biomedical tabular data into text description in this dissertation work. 

Tables contain important information of biomedical studies, and articles often contain textual 

description of significant findings from tables, which makes a great use case for developing data-

to-text generation methods in the biomedical domain. Given the complexity of biomedical 

research and to make the study more feasible, the biomedical articles were limited to those 

describing Randomized Clinical Trial (RCT) studies. Our hypothesis is that we can develop 

various informatics approaches to accurately extract information from tables and automatically 
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generate text to describe main findings from tabular data for RCT studies with a reasonable 

performance. To achieve this goal, the following specific aims were proposed: 

x Aim 1 -- Conduct a manual analysis of tables and corresponding text in RCT literature and 

develop annotated datasets.  

x Aim 2 -- Develop automated methods to extract and normalize table information (e.g., 

column/row names and values). 

x Aim 3 -- Develop text generation methods to summarize major findings from tables in RCT 

literature. 

2. Background 

The proposed study primarily consists of two tasks: 1) extracting information from tables and 2) 

generating descriptive text based on extracted information, which is a kind of NLG problem. In 

this section, we review relevant work on table information extraction and text generation.  

2.1 Relevant work on information extraction from tables 

In scientific publications, a significant amount of information is presented in the form of tables. 

Tables are often used to describe study related data (e.g., experimental results) in a precise and 

structured format, which makes it easy for readers to capture the information. Although tables 

might exist in documents of various formats (PDF, text/ASCII, XML/HTML or image), we will 

focus on mining tables in XML and HTML corpora in this study. In the following sections, we 

describe relevant work on table detection in documents, table presentation, and information 

extraction from detected tables in both the general domain and the biomedical domain.  
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2.1.1 Detection of tables in documents  

The first step in automated table processing is to detect tables in documents, recognize functional 

areas and understand the structural relationships between data in table cells. Recognition of 

tables in documents in XML and HTML formats may not be straightforward, since the table tags 

(<TABLE></TABLE>) in markup languages are used to create both ‘genuine’ (or ‘meaningful’) 

tables or ‘non-genuine’ (or ‘decorative’) tables that are simply a multi-column layout of a 

webpage. Various domain-specific heuristic rules[14–16], decision trees[17] and Support Vector 

Machines (SVM) with composite kernels[18] have been shown to be successful in tackling the 

table recognition  problem. Previous efforts have also been devoted to recognizing basic 

functional areas (headers, stubs and data cells) in a meaningful table. Wei et al. achieved 93.5% 

accuracy in detecting the table header and table lines from 276,880 lines of web content from 

www.FedStats.gov using Conditional Random Fields (CRF) and features like percentage of 

white space, header features, and different types of characters[19]. Chavan and Shirgave 

achieved genuine table detection and header recognition by combining a rule-based filter and a 

C4.5 decision tree with appearance and consistency features, with an overall F-measure of 95.12 

on 2697 genuine and non-genuine tables[20]. In terms of other functional areas, Nagy achieved 

an accuracy of 98.6% for the identification of stub header cells and the start and end positions of 

value cells on 20 tables, using a linear Bayesian classifier and features representing both 

character types and cell location[21]. Wang et al. presented a framework that extended structural 

processing of a table by using an entity detector after header detection. They achieved 90.7% 

accuracy in detecting headers for 127 tables and 87.3% accuracy in detecting the entity column 

of 189 tables[22].  
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2.1.2 Representation of tables  

One fundamental step for semantic table analyses is to find a suitable representation of tables of 

interest. Because of the diversity of table content and the lack of standards in table data 

representation, various representations have been developed: Hurst introduced an ontological 

model of a table which captures graphical, physical, structural, functional and semantic 

aspects[23], which was later modified and adopted by the table information interpretation tool 

TARTAR[24]. Wang et al. developed a document hierarchy model to represent table 

structure[25]. Liu et al. proposed a table metadata representation that includes table structure, 

and layout as well as document backgrounds[26]. Wu et al. represented a web table with a DOM 

tree and defined DOM tree similarity for tree clustering and information extraction[27]. However, 

most of these representations are domain-specific and are tailored to various semantic analyses.  

Two previous publications have focused on structural representation of tables. Doush and 

Pontelli defined an ontology of table using Microsoft Excel spreadsheet components and their 

relationships[28]. The data model of table contains three layers (article, table and cell) and 

largely extends the spreadsheet ontology[28]. This ontology includes title, header, row, column 

and several cell types, which differentiate between header and data cells but lack cell types such 

as super-row cells and stubs. Milosevic et al. presented a table model for computational 

processing, which consists of table types and a data model[29]. They defined types of table by 

their dimensionality and, for multi-dimensional tables, whether it is composed of multiple similar 

tables or not.  
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2.1.3 Information extraction from tables in the general domain  

The ultimate goal for table mining is to understand the semantic structure of a table. The 

majority of existing studies on table information extraction focus on relational tables on public 

websites. One fundamental task in understanding relations between table cells is the extraction of 

attribute-value pairs: Chen et al. presented a rule-based table mining workflow that involves 

hypertext processing, table filtering, table recognition, table interpretation, and presentation of 

results. They achieved the extraction of data-value pairs from tables containing airline tour 

package information, but did not provide any evaluation results[14]. With the help of external 

databases, further semantic information can be extracted from relations between table cells: 

Dalvi et al. presented the WebSets tool to extract entity sets and clustered similar entities based 

on the hypothesis that entities appearing in one table column likely belong to the same concept. 

They then mapped each entity cluster to a hyponym using a Hyponym-Concept Dataset built 

from heuristic rules using several other corpora[30]. Muñoz et al. extracted RDF triples from 

tables on Wikipedia and derived relational semantics[31] by mapping to the reference knowledge 

base DBpedia[32]. In contrast, Wang et al. achieved knowledge extraction without a reference 

knowledge base, by defining similarity scores for DOM tree-represented HTML tables and 

clustering tables based on their similarity[27]. 

2.1.4 Information extraction from tables in the biomedical domain  

There is relatively limited research that focuses on information from tables in the biomedical 

domain, most of which are for specific sub-domains of biomedicine. Wong et al. used several 

machine learning classifiers to extract information related to gene mutation (e.g. gene, exon, 

mutation, codon, and statistic)[33]. Peng et al. mapped information from tables from papers 
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about genetic quantitative trait locus (QTL) to a pre-defined dictionary or a deep dependency tree, 

and extracted information to build a soybean QTL database[34]. Luo et al. proposed a model to 

represent structure of the tables in biomedical literature, and proposed a concept called 

Connected Value for recognizing a table in PDF documents[35]. Milosevic et al. presented an 

ontological table model[29] and developed a method to extract patient number, BMI, weight and 

patient group name from a set of clinical trial tables, with F-measures 83.3%, 83.7%, 57.75% 

and 71.32% respectively[36], and he then extended the method to recognize adverse reactions 

from the tables[37].  Shimanina et al. presented a corpus of 500 tables with semantic annotation 

of table cells from biomedical research papers about human/mouse cancers[38]. 

2.2 Relevant work on text generation 

The task of NLG is to map information from non-linguistic sources into linguistic form (text 

written in the form of human language)[39]. It requires solving two problems, what to say and 

how to say[40]. The first question is about understanding the information in the computerized 

representation and determining what content should be included in the generated text, which 

often requires some domain knowledge. The second question deals with how to generate current 

(e.g., following English grammar) and coherent/logical human language. NLG has been studied 

on various tasks in the real world. For example, successful stories have been reported on 

generating summary text for sports[5,6,41] and weather news from weather model 

predictions[7,8]. Recently, more complicated tasks have been looked into, such as generation of 

poem[42], biography[43], cooking recipes[44] and product reviews[45]. These studies spent 

significant efforts on improving generated text by considering specific content, structures, orders, 

coherence and sentiment. 
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2.2.1 Rule-based text generation approaches  

In NLG, the most straightforward way is to use rule and template based methods. Reiter et al. 

specified a sub-problem of NLG, concept-to-text, which aims to generate language from 

knowledge sources like databases, expert systems and other forms of knowledge bases[46]. In 

order to solve the data-to-text problem, Reiter developed an architecture containing three stages: 

document planning, microplanning, and surface realization, which has been used in many 

studies[7,8,47,48]. Document planning chooses the content and structure of a document; 

microplanning decides the lexical choice for content from document planning; and surface 

realization converts the abstract representation into text and organizes the structure of the text. 

Sripada et al. developed the SUMTIME-MOUSAM system using this architecture to produce 

textual marine weather forecasts from numerical weather prediction models, which has been 

used by their industrial collaborators[7]. The input data for SUMTIME-MOUSAM was a table 

including wind direction and speed at time points of every three hours. All data were represented 

as tuples by rows. In document planning, all time points when the wind direction or speed 

changed from the previous time point were selected as important data to be presented in the 

output. Then, in the microplanning stage, some lexical templates were generated to describe each 

item in data tuples and the changes of wind direction and speed. Finally, realization filled all data 

into templates to generate phrases and decided the order of the phrases. Although this 

architecture has been widely used in many NLG tasks, it has some limitations, e.g., it cannot be 

applied to tasks whose inputs are un-processed raw data. The architecture above for concept-to-

text was later extended by Reiter et al. in order to solve the data-to-text problem[49]. Compared 

with concept-to-text, the input of data-to-text usually is un-processed raw data, which requires 

signal analysis and data interpretation before the document planning stage[49]. Signal analysis 



 9 

would recognize patterns in the inputs of numerical data, and output discrete patterns and events. 

Data interpretation would map summarized patterns and events from signal analysis into 

messages with knowledge from the related domain. The generated messages in this phrase would 

be sent to document planning for text generation using the above architecture. The architecture 

has been used in many tasks including those in the biomedical domain, e.g., generating text from 

raw data obtained from medical devices[50–54].  

2.2.2 Machine learning-based text generation approaches 

Although rule based methods have been widely used in various tasks of NLG, they are limited by 

the pre-defined templates and are not scalable to the diverse patterns in human language, 

especially for large-scale corpora. Besides, it is also difficult for them to dynamically incorporate 

domain knowledge for text generation. Therefore, different types of machine learning based 

methods have been proposed to automatically learn the language patterns for NLG tasks, 

including generative probabilistic models, and neural network based methods. 

Usually, records in the table are treated as tuples, including data type, variable and its value. For 

example, in the task of weather forecast generation, a record could be presented as a tuple of 

(wind, direction, east)[9]. Use of generative probabilistic models for text generation included 

three steps: 1) select a series of records to be included in the generated text; 2) for each record, 

select a series of variables; and 3). select proper words from task-specific vocabularies to 

integrate the tuples into text.  

Due to its success in the image processing area, neural network based methods have also been 

applied to NLG[6,42–45,55,56]. Kiddon et al. developed a model to generate cooking recipes 

given the ingredients in the recipes[44]. Specifically, the task was to generate an ordered text 
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based on a pre-defined agenda. They used a checklist in the model to record whether an 

ingredient was used or not and adjusted the probability of its occurrence in the generated text. 

Lebret et al. developed a method to generate biographic sentences given the information of a 

person in form of a table [43]. They use the n-grams of words and positions of words in the table 

as input features for the neural network to train a language model. The language model then 

predicts the probability of the next word given its context words, based on which a sentence is 

generated. And the released dataset, WikiBio, has been widely used to develop various NLG 

methods in many studies [57–60]. Yu et al. applied the generative adversarial network (GAN) to 

NLG[55]. GAN usually has a generator and discriminator with a competitive mechanism 

between them: the goal of the generator is to generate text that can’t be distinguished from 

human-written text and the goal of the discriminator is to distinguish the generated text from 

human-written text accurately. The discriminator and the generator are trained together and 

leading ultimately, to a generator that can generate natural text. Since GAN was originally used 

for image generation, this method cannot be applied directly for discrete sequence generation. 

Therefore, this work used rewards functions to replace the loss function to adapt GAN to NLG. 

Recently, the Transformer based methods have improved the performance in many NLP 

tasks[61–63]. Transformer made use of self-attention, which can learn long-range dependencies 

better and be easily parallelized in computation, compared with recurrent neural network[64]. 

GPT-2 is a pretrained language model that used the decoder architecture of Transformer and it is 

trained on WebText, a dataset of 40 GB of text. Experiments show that it achieved the state-of-

the-art performance in a zero-shot setting[65]. 
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2.2.3 Text generation from image  

Another interesting data-to-text work that has been investigated recently is to automatically 

generate description text for images. Using machine learning (specifically deep neural networks) 

and large datasets, a number of studies have focused on the generation of image captions. 

Vinyals et al. presented the Neural Image Caption (GIC) model where images are first encoded 

to a 512-dimension vector by a deep convolutional neural network (CNN) and decoded to a 

sentence by Long-Short Term Memory (LSTM) nets[66]. Xu et al. improved the model by 

replacing the fully connected layer with a lower convolutional layer in the CNN encoder, and 

incorporated two attention methods (i.e. the stochastic ‘hard’ attention and the deterministic ‘soft’ 

attention) in the LSTM decoder. This model was evaluated on Flickr8k, Flickr30k and COCO 

dataset using Bilingual Evaluation Understudy (BLEU) and Metric for Evaluation of Translation 

with Explicit Ordering (METEOR) metrics, and both attention methods outperformed the GIC 

model in all three test sets[67]. Similar methods have been applied to images in the biomedical 

domain. Kisilev et al. used a semi-automatic lesion boundary detection method to extract a set of 

semantic descriptors (e.g. lesion shape, margin, orientation, etc.) from breast sonography images. 

Using these semantic descriptors and SVM, they were capable of generating radiological lexicon 

descriptors that constitute a medical report[68]. Shin et al. achieved automated Chest X-rays 

annotation by employing the CNN-GRU (Gated recurrent unit) workflow of image label 

generation[69]. Instead of using image labels to train the CNN, they employed joint image/text 

vectors in the training that utilized information from clustered context labels with domain 

knowledge.  
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2.2.4 Text generation in the biomedical domain  

In the biomedical domain, there is limited work on data-to-text generation; but researchers have 

started looking into this area, including studies on generating patients’ medical history from 

structured representation of an Electronic Patient Record, in the form of a semantic network 

[54,70], nursing shift summaries[50,52,53] and medical reports of cardiological findings[71]. 

One core component of NLG in the biomedical domain is how to translate input data to semantic 

representations that incorporate domain knowledge, which can be used for document planning, 

microplanning and realization. Scott et al. developed a system that could generate a patients’ 

history from chronicles that are data-encoded views of patient histories[70]. They defined six 

events and 14 relations between events and constructed semantic graphs made from spines, 

which were focused and related events. Then, similar events in spines were aggregated and 

described. Hunter et al. developed a system called BT-Nurse[52,53], which could generate 

nursing shift summaries from the Badger system that records several channels of continuous 

physiological data. They created an ontology containing medical entities, events and relations 

between events. Then, they translated data from Badger into their ontology and detected 

important events with values in the normal range. Medical knowledge was used to enrich the 

information recorded in the ontology. Finally, classical data-to-text methods were applied to all 

the information in the ontology to generate text. Recently, the many studies focused on 

synthesizing electronic health records[72–74], so that medical data could be shared for scientific 

research (e.g. developing clinical NLP methods) without violating patients’ privacy. Some 

studies focused on conditioned generation, for example, Liu proposed a model that can generate 

EHRs conditioned on patients’ structured medical records, which may also assist physicians  in 

writing [73].  
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A task related to data-to-text is text summarization. It summarizes the gist from documents and 

generates extractive or abstractive summaries[75]. Extractive summaries are created by using 

original words from inputs and abstractive summaries have new text summarizing the original 

inputs. Output of text summarization can be textual or graphical. Hirsch et al. developed a 

summarization system that can summarize and visualize the most frequently documented 

problems of patients[76].  

2.2.5 Evaluation of text generation  

How to evaluate text generated from automated systems is also an interesting research question. 

Automatic metrics (e.g. BLEU[77], METEOR[78], Recall-Oriented Understudy for Gisting 

Evaluation (ROUGE)[79], etc.) and human ranks are two common ways to evaluate the 

performance of an NLG system. Novikova et al. did a systematic review on evaluation metrics 

for NLG[80]. They found up to 60% of NLG research used BLEU as evaluation metrics. They 

also tested various automatic metrics and human ranks on three NLG systems with two datasets. 

They found that 1) metric performance is specific to the system and data; and 2) none of the 

automatic metrics always correlate to the human ranks on all aspects. Reiter also discussed 

evaluation using controls, to compare generated text with human-written text[81]. In most cases, 

generated text could not outperform human-written text. Furthermore, some studies evaluate 

NLG systems in real world applications. The generated texts are used in real-world tasks and 

their validity is evaluated by representative real-world users. For example, BT-Nurse was 

deployed and used in the hospital for care planning, and the majority of its text generation was 

found to be understandable, accurate and helpful by nurses[52]. 
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CHAPTER II 

Corpus Construction for Tables in RCT Articles 

 

1. Introduction 

Generating text from data has received great attention and data-to-text technologies have been 

developed to produce meaningful textual description for several real-world use cases. One of the 

first steps for developing data-to-text systems is to build corpora for this task (e.g., pairs of 

tabular data and corresponding text), as many approaches are based on recent machine learning 

methods. However, there are few publicly available gold-standard datasets for data-to-text 

generation in the biomedical domain, which limits applications of data-to-text in this domain. 

This chapter describes our effort in building corpora for generating text from tables in RCT 

articles.  

1.1 Datasets in the open domain 

In the open domain, several public datasets are made available for developing data-to-text 

techniques, such as the WEATHERGOV[9], ROBOCUP[82], WIKIBIO[43], E2E[83], 

boxscore-data[84], etc. These datasets usually include pairs of raw data files and corresponding 

texts. Most of these data are relatively simple, often provided as attribute-value pairs. For 

example, Figure 1(a) shows a sample of data from E2E dataset[83], which includes five pairs of 

attributes and values: name, eatType, food, priceRange and familyFriendly.  
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Figure 1 Examples of tables in different domains.  (a) Data table from the E2E dataset (b) Table 
from the paper PMC6682759. (c) Table from the paper PMC6583706. 

 

1.2 Observation on RCT tables 

In this project, our goal is to generate a dataset containing pairs of tables and corresponding 

description text in RCT articles. Figure 1(b) and (c) show two examples of RCT cohort statistics 

tables, which typically include demographic and clinical characteristics that are relevant to the 

study (e.g., specific diseases or drugs). It is relatively easy to identify sentences that describe the 

corresponding table, so that we can link tables to description text. However, our manual review 

of RCT tables reveals several challenges of parsing RCT tabular data from biomedical articles.  

First, compared with tabular data in open domain, RCT tables are not available as structured 

attribute-value pairs. We primarily rely on PubMed Central to retrieve tabular data and we found 

tables in RCT articles in PubMed Central are often in the format of HTML or XML, with very 

(c) 
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complex structures, such as nested tables, transposed rows and columns, sub-headers of rows or 

columns.  For example, in Figure 1(c), the “mean (SD)” is located behind the concepts in the 

cases of “Age” and “Education”, yet organized into a row as a sub-header of the concept header 

in the case of “Back Depression Inventory score”. Therefore, we need methods to accurately 

identify table structures, e.g., row headers, column headers, and data cells.  

Secondly, column and row headers of RCT tables often cover much broader types of concepts, 

e.g., diseases, symptoms, drugs, lab tests, and statistic measures. Unlike many datasets in open 

domain, which have limited attributes (e.g. the E2E dataset includes five types of fields only, 

(Figure 1a), column or row headers in RCT tables contain concepts with semantic types due to 

the diversity of biomedical research. As shown in Figure 1(b) and 1(c), the two example tables 

include different demographic, clinical, and social behavior concepts. Moreover, as these tables 

are generated by different researchers, different expressions (surface forms) could be entered to 

express the same meaning, which is known as a lexicon variation issue. 

Furthermore, it is also not straightforward to extract values in data cells in RCT Tables. As 

shown in Figure 1 (b), data cells refer to cells that contain values for a specific row and a specific 

column. Although data cells may contain single values, most of time a data cell may contain 

several values and we have to develop programs to parse individual values from one data cell. 

For example, the data cell “259/445(58%)” in Figure 1(b) contains three values for 259, 445, 58% 

respectively. We should accurately parse these values from such complex data cells.  

There are existing studies that aim to represent and extract structure information from tables, 

including those in biomedical literature[29,35]. For example, Milosevic et al. proposed a model 

to represent tables in scientific literature[29].  However, none of the previous work has 



 18 

developed information models to represent both structure and semantic information of tables in 

biomedical literature.    

1.3 Proposed annotation tasks 

Our goal here is to construct annotated corpora for both the information extraction and the text 

generation tasks described in the following chapters. According to our observation on RCT 

tables, we propose the following four anntation tasks: 

x Extracting table-text pairs by identifying sentences in the full-text articles that describe 

the corresponding table 

x Annotating table structures such as row headers, column headers, and data cells 

x Annotating entities in row/column headers with appropriate semantic types  

x Annotating values in data cells  

We believe such annotated corpora are critical for the proposed data-to-text study in the 

biomedical domain. This work will also contribute to biomedical informatics by developing a 

new information model that syntactically and semantically represents tables in RCT publications, 

with the potential to generalize to other sub-domains of medicine. Moreover, the annotated 

corpora will be released in the future, which will allow the community to build on our work to 

extend this important research topic. 

2. Methods 

Figure 2 shows an overview of the corpus construction workflow, which includes three steps: (1) 

collecting RCT papers, corresponding tables and texts from the PMC database; (2) developing an 

information model to represent structural and semantic information of a RCT table through an 
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iterative process, and creating an annotation guideline; (3) annotating the dataset following the 

developed guideline. The details of each step will be described in the following sections.  

 
Figure 2 Workflow for constructing corpus. 

 
2.1 Data collection 

Figure 3 shows an overview of the data collection process in this study. In order to obtain RCT 

articles, we queried PubMed using the following criteria: 1) “Publication type” has to be 

“randomized controlled trial”; 2) limit to four important journals in clinical domain: BMJ, JAMA, 

Lancet and NEJM, all of which follow the CONSORT guideline [85,86]; 3) limit the publication 

time from 2011/01 to 2019/01, as CONSORT was released in 2010; and 4) full text articles 

should be available.  

As mentioned in the introduction, unlike tabular data that are used in the data-to-text studies in 

open domain, tables in RCT literature could be complex, both in structures and semantics. After 

careful review of different types of tables in RCT articles, we decided to limit our work to 

baseline tables in RCT papers, which often describe basic demographic and clinical 

characteristics of different groups in a study. Per recommendation of CONSORT, most of RCT 

papers included at least one baseline table. Additional inclusion criteria for baseline tables are: a 

table only has two study arms. 

Data 
collection 

Information 
model and 
guideline 

Annotation 
Corpus 

Iterations 
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The query to PubMed led to 1,847 papers, and most of them were NEJM (1,032) (Figure 3). 

Within the 1,847 papers, only 1,048 papers are available on PMC. We randomly selected half of 

them (518 papers, 1,655 tables) and manually reviewed each article to select baseline tables. 

Finally, a collection of 279 baseline tables from 277 papers met our inclusion criteria and were 

used in this study. Most tables are available as XML from PMC Open Access Subset [87]. For 

papers that don’t belong to PMC Open Access Subset, we manually collected the papers and the 

tables in the format of HTML from the PMC website.  

 



 21 

 
Figure 3 Workflow of data collection. 

 
2.2 Information model and annotation guideline development 

Box 1 shows the details of developing the information model for RCT tables. At the beginning 

we manually analyzed the collected tables to summarize structures of tables, semantic types of 

concepts in header cells, and values occurring in data cells to propose a raw model. At each 
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iteration, we first developed a draft guideline based on the information model and conducted a 

few rounds of trial annotations. Then we analyzed the annotations, discussed discrepancies, and 

updated the current model and guideline. We repeated these steps and then finalized our table 

information model and the annotation guideline. 

Box 1. Workflow of iterative development of the table model. 

 
 
2.3 Annotation 

As mentioned in the introduction, we conducted four annotation tasks: (1) linking pairs of RCT 

table and descriptive text; (2) structure annotation of tables; (3) semantic annotation of header 

cells; (4) semantic annotation of data cells.  

2.3.1 Linking pairs of table and text 

Although it would be great to automatically link tables and description text by recognizing table 

names in the text, there exist challenges, e.g., one sentence may describe multiple tables and 

figures. To accurately link tables with texts, we manually reviewed the 279 articles and extracted 

corresponding descriptive text for each baseline table. As reference text should describe the table 

1. Propose a raw model M0 based on manual analysis on a small 

samples. 

2. Iteration: 

           2.1 Annotate a small sample with guideline based on Mi. 

           2.2 Analyze the annotated samples on: 

x Exceptions that can’t be covered by the model 

x Grains of definition of categories in the model 

2.3 Update Mi based on the analysis on 2.2  

3. Use Mi as the final model 



 23 

faithfully and accurately without redundant information, we used the following rules to extract 

descriptive text. 

x If a sentence includes text that describe tables and figures other than the target baseline 

table (e.g. a workflow figure of a clinical study), we remove the text from the sentence. 

For example, in Figure 4 the texts (“60 patients from 78…”, “Patients were …” and “The 

planned method …”) with strikethrough describes Figure 1 and another table (Table 2), 

so they are removed.  

x If a sentence includes a value that is not listed on the table, but it can be inferred by some 

knowledge (i.e., sum of several values in the table), we keep the sentence. For example, 

in Figure 4, the percentage number “50%” in green rectangle can be obtained by 

summing numbers of 23% and 27% under Glasgow Coma Score total, and it’s the same 

for 49%, therefore we keep them in the descriptive text. 

x If a sentence includes values that cannot be inferred through information listed in the 

table (i.e., inference from external knowledge), we remove them from the sentence. For 

example, in Figure 4, although median ages for two arms are listed in table, the median 

age for participants overall can’t be calculated from them. Therefore, the text in yellow 

color is removed from the descriptive text. 
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Figure 4 Example of a pair of table and descriptive text (table and text from PMC3906609). 
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2.3.2 Annotation of structure, header cell and data cell 

We followed the developed annotation guideline to annotate table structures and cells. For table 

structures and data cells, 50 tables were randomly selected for annotation. For header cells, all 

279 tables were reviewed and entities with different semantic types were annotated using the 

annotation tool in CLAMP [88].  

3. Results 

3. 1 Information model for RCT tables 

The information model is composed of two parts: one to represent structure of RCT tables and 

the other to represent semantic information. 

3.1.1 Information model for structure of RCT tables 

Figure 5 shows the model that represents the structure of RCT tables. The model includes five 

elements: caption, row header, column header, data and footer (Figure 5), and their detailed 

description is shown in Table 1. In an RCT table, some row/column headers have several sub-

headers, and modifiers that are located on the parent headers also apply to their sub-headers. To 

solve this, we defined a relation type hasParent, which represents hierarchical relation between 

headers, header and footer, or data and header (Figure 5), where modifiers, statistics and other 

attributes of parent header can be inherited by its sub-headers. Some elements will have multiple 

parents. For example, data element usually locates on an intersection of a row header and 

column header, so a data element will have two parents.  Figure 6 shows an example of elements 

(red color) and relations between elements in an RCT table (PMC5533216, Table 1), in which 

row header “Age at randomization” is parent of both row headers “Median (IQR)” and “Range” . 
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Figure 5 Structural model for RCT table. Solid rectangles represent elements of table, and empty 
rectangles represent an instance of elements. 

 
Table 1 Element role in the structural model. 

Role Description 

caption 
Caption is at the top of a table, and includes the table id, table title 

and description of table.  

row header 

Row header is usually in the first column of each row and includes 

the attributes of participants in a RCT study and corresponding 

modifiers and statistical concepts. 

column header 
Column header is usually in the first rows, and includes arms, 

statistical analysis for arms. 

data 
Data is usually an intersection between a row header and a column 

header, and includes statistical value for some attribute.  

footer 
Footer is under the table and includes explanation for abbreviations, 

meaning of values in table or other additional information. 
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Figure 6 Example of structure and semantics for a RCT table. The table is from the paper 
PMC5533216. 

 
3.1.2 Information model for semantics in RCT tables  

Figure 7 shows the proposed information model for representing semantic information in RCT 

tables. Table 4 shows the definition for each class. In this model, an RCT (pink circle) table can 
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have multiple attributes (grey circle) and study arms (cyan circle, e.g. “ADT alone” in Figure 6), 

and values (blue circle) belong to some study arm and is possessed by some attribute. Value can 

be classified into single value and paired value.  For example, in data “67 ( 62 to 72) ”, 67 is a 

single value (median), and (“62” , “72”) is a paired value (IQR). Attribute has sub-classes 

including demographics (e.g. “Age” in Figure 6), clinical characteristics and other, in which 

clinical characteristics includes drug, procedure (e.g. “Planed or long-term ADT” in Figure 6), 

lab test (e.g. “Gleason score” in Figure 6), medical problem (e.g. sub headers under “Disease 

group” in Figure 6) and medical event. Class other (purple circle) includes some attributes that 

can’t be classified into demographics and clinical characteristics, such as behavior, education, 

etc.  

 
Figure 7 Semantic model for RCT table. Solid circle represents class (concept), solid line 
represents hierarchical relation between two classes (a class and its sub-class), dashed line 
represents relation (non-hierarchical) between two classes, and colors are used for distinguishing 
different classes. 
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3.2 Annotation results 

3.2.1 Pairs of tables and text 

Table 2 shows some statistics of the descriptive text in the dataset. There are 450 sentences in the 

corpus in total, and one table has 1.61 sentences on average. One sentence includes about 21 

words on average.  

 
Table 2 Statistics for descriptive text. 

Statistics Value 

Total number of sentences 450 

Average number of sentences per table 1.61 

Average length of sentence (words) 21.0 

 

3.2.2 Results of structure annotation 

Table 3 shows the results of structure annotation for 50 tables. There are 5,459 elements in total, 

and most of them are row headers and data cells. There are 35.26 row headers, 2.86 column 

headers, and 65.96 data cells for each table on average. There are 1,154 relations for row headers 

(0.65 relations / row header), which means most of row headers are in a hierarchical relation.   
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Table 3 Statistics for structure in 50 annotated tables. 

Element Number Average number 

caption 50 1 

row header 1763 35.26 

column header 143 2.86 

data cells 3298 65.96 

footer 205 4.1 

relations for row header 1154 0.65 

relations for column header 10 0.07 

 

3.2.3 Header cell annotation 

Table 4 shows the statistics of annotated entities with different semantic types in the dataset. In 

total, 19 different types of entities were labeled, with 16,700 entities in total. There are more 

statistics, result, problem, test and unit entities than other categories. 

Table 4 Statistics for annotated dataset. 

Category Sub-category Description Count 

attribute 

demographics 

age - 543 

gender - 453 

race - 687 

clinical 

characteristics 

drug - 551 

medical_event 
It refers to some medical events like 

randomization, admission, etc. 
276 

medical 

problem 
- 1,518 

procedure - 434 
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lab test - 1,374 

other 

education - 209 

marital_status - 168 

behavior - 115 

other 

Attributes that are not clinical 

characteristics and demographics such 

as education, behavior, etc. 

581 

value 

single value - 

It refers to statistical value that only has 

one single number like “median”, 

“mean”, etc. 

- 

paired value - 
It refers to statistical value that has a 

pair of numbers like “range”. 
- 

study 

arm 
- - 

A group of participants that receive a 

kind of intervention. 
853 

modifier 

body location - It refers to some anatomical site. 335 

temporal - 
It refers to a temporal expression that 

modifies some medical concept above. 
131 

measurement -  180 

unit - - 
Unit of some concept like “mg”, 

“year”, etc. 
1,079 

result - - 

Result of attributes like label test,  

clinical characteristics or other. It 

could be range (e.g. “8 to 10” in Figure 

6),  “Yes”, “No”,  “other” and so on. 

2,777 

statistics - - It refers to statistical concepts. 4,436 

Total - - - 16,700 
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3.2.4 Data cell annotation 

Table 5 shows the results of annotation of data cells in 50 tables. There were 6,845 values in total 

(2.08 values/data cell on average).  About 89% of data cells contain single values. Most of the 

values are number (2,259) and percentage (2,148), and fewer pvalue (35), which indicates that 

limited studies used a significance test in baseline description. Although mean and sd are not 

paired value, the numbers of their occurrence are the same, probably because researchers always 

report them together. 

Table 5 Statistics for values in annotated 50 tables. 

Item Count 

paired value 

iqr_q1 315 

760 
iqr_q3 315 

range_lower 65 

range_upper 65 

single value 

mean 570 

6085 

median 331 

number 2259 

percentage 2148 

pvalue 35 

sd 570 

total 172 

Total number 6845 

Average number of values per element  2.08 

 

4. Discussion 

In this chapter, we proposed an information model that can represent structural and semantic 

information of RCT tables and developed an annotation guideline based on the model. We then 
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built a labeled dataset that can be used for information extraction and text generation, which 

includes: 1) 279 RCT baseline tables and their corresponding descriptive text; 2) 50 annotated 

RCT tables with structural information; 3) 279 RCT baseline tables with all row and column 

headers annotated; and 4) 50 RCT baseline tables with annotated data cells. These annotated 

datasets will be made publicly available, so that they are valuable not only for this study, but also 

for other related research projects.  

It is worth mentioning that the information model developed for RCT tables could be 

generalizable to other types of studies in the biomedical domain. As shown in Figure 8, a table 

for a comparative effectiveness study has two columns of row headers, which was not seen in 

our dataset. However, it still can be represented by our model, where the first column of row 

header is the parent of the second of row header, indicating the model’s usefulness for other 

types of studies.  

Figure 8 An example of a table that has two columns of row headers. (Adapted from 
PMC4428324). 

 
It is challenging to fully represent the semantics of row/column headers. Figure 9 shows some 

complex examples – instead of being simple or multiple concepts, headers could be complex 

measures at a given context. We try specifying frequently occurred semantic types and adding 

them into the model as individual attribute types; meanwhile, we also keep a type of “other” to 
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refer to all other infrequent types. The decision about the granularity of sematic types in the 

model is made based on the observation of the data, as well as the specific applications (text 

generation in this case). Our observation is that description text for baseline tables in RCT 

articles often mentions statistics about patient demographics and clinical characteristics relevant 

to the study objectives. Therefore, it is not our intension to fully represent semantic information 

in header cells. In the future, we plan to leverage other work on this problem, e.g., the Common 

Data Elements work proposed by biomedical researchers [89].   

     

 
Figure 9 Examples of annotation problems. 
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Chapter III 

Extracting Structural and Semantic Information from RCT Tables 

 

1. Introduction 

In this chapter, our goal is to develop methods to extract structural and semantic information 

from RCT tables, using the annotated datasets built previously. The specific tasks include: 1) 

recognize structure of tables; 2) recognize entities in header cells; and 3) recognize values in data 

cells. 

As not all the full text articles in PMC are available in the Open Access Subset, we have to 

develop programs to parse table structures in PMC articles in HTML. Diverse tags and attributes 

are used in HTML files of RCT articles in PMC, due to different publishers. For example, 

different patterns of attribute id are used to indicate footer element in HTML files such as “<div 

id="joi180135t1n1" / >” (id starting with “joi”, from PMC6583083),  “<div id="tbl1fn1" />” (id 

starting with “tbl”, from PMC3898962) and “<div id="TFN1" />”  (id starting with “TFN”, from 

PMC3386296).  Moreover, various styles are used to represent hierarchical relations between 

headers, which brings additional challenges to parse hierarchical relation. Figure 10 a – d shows 

examples of four styles for hierarchical relations. Some RCT tables use multiple styles to 

indicate hierarchical relations like (e) in Figure 10, where super row (a super row is a header that 

takes up a whole row) is used to indicate the hierarchical relation between “Patients’ 

characteristics” and “No (%) of men”, and indentions are used to indicate the hierarchical 

relation between “No (%) by type of stroke” and “Ischaemic”. The mixed use of multiple styles 
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brings difficulty to identify relations between headers, for example, in (d) “Age, years” is at the 

same level as the super row “Sex”; but in (e) “No (%) by type of stroke” is the sub-header of 

“Patients’ characteristics”. 

 

Figure 10 Examples of styles for hierarchical relation between headers in RCT table. (a) Uses 
super row to indicate parent header (PMC6167608). (b) Indentions are used to indicate sub-
headers (PMC4886508). (c) Uses bold font to indicate parent headers (PMC3971471). (d) Uses 
super row and indentions to indicate relation between parent header and sub-headers in one pair 
of hierarchical relation between for example “Sex” and “Female” (PMC6633921). (e) Multiple 
styles used to indicate hierarchical relations between headers (PMC3349299). 
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Entity recognition in table headers is also slightly different from NER in biomedical literature.  

Table headers are usually short phrases rather than complete sentences in biomedical articles. 

Therefore, it has limited context around the entities. Although a few previous studies have 

worked on recognition of concepts from table headers [33,36,37,90] only limited types of 

concepts such as age, gender, weight, and gene, were extracted in these studies. Moreover, these 

methods just classify headers to specific semantic types, rather than extracting individual 

concepts from headers.  

Data cells contain values for specific row and column headers. Manuscript authors often use 

various mathematical symbols and different notations of values, which makes parsing data cells 

challenging. One particular challenge is having multiple values in one single cell, which is often 

represented in different formats (for example “6.3(0.3);27” from Figure 10c).  

To address these diverse scenarios, we have developed different methods to extract information 

from RCT tables:  rule-based methods are used to recognize table structures and values in data 

cells and machine learning-based methods are developed to extract biomedical concepts in 

row/column headers. We believe that our methods developed for recognizing table structures, 

headers and data cells will be useful not only for text generation from RCT tables in this project, 

but also for other informatics tasks such as information retrieval from tables.  

2. Methods 

2.1 Datasets 

Here we used the datasets built in the previous chapter, which included 279 pairs of table and 

text. For structure parsing and value extraction from data cells, we developed rules based on 
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reviewing tables in a development set and evaluated them on the 50 tables with structure and 

data cell annotations. For entity recognition in header cells, we used all 279 annotated tables and 

conducted a 5-fold cross validation.  

2.2 Recognizing table structure 

 
Figure 11 An example of an RCT table in HTML format . Green rectangles show some basic 
patterns for identifying table elements. 

 

Since rule-based methods for recognition of table structure have achieved good performance in 

previous studies[29,36,90], we took a similar approach to recognize structures of RCT tables in 
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HTML format (Figure 11) into elements and relations defined in the information model. Figure 

12 shows the workflow of the method developed, which includes three steps. In the first step, 

elements were identified based on some basic patterns (see Table 6 and Figure 12). For example, 

the text in the HTML tag “<thead>” is identified as column header, and the text in the first cell 

of a row in “<tbody>” is identified as row header.  Additional rules were applied to fix incorrect 

recognition (Figure 12).  The second step is to recognize indention level of headers, as well as 

footer text, which can be used for inferring hierarchical relations in the next step. As a table may 

use different ways to represent indention levels (e.g., super row and indention characters, 

described in the introduction section, Figure 10 e), some logical indention characters were added 

before each row headers below super row (highlighted in a red rectangle in Figure 12, and Table 

6). Indention characters of each row header are composed of a logical indention character and its 

original indention character (the short red rectangle in Figure 12). Finally, the indention 

characters of row headers and footer notion were used to infer its parent. 
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Figure 12 Workflow for parsing structure of an RCT table, which included three steps. Red 
rectangle represents indention characters, purple rectangle represents footer notion, and purple 
dot lines represent hasParent relations. 
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Table 6 Rules for parsing structure of RCT table. 

Step Description of rules 

Recognize elements 
by patterns 

Recognize element by basic html patterns: 
caption: <div class="caption">…</div> 
column header: <thead>…</thead> 
row header: <tbody><tr><td>…</td> <td/></tr></tbody>, the first td in 
each row. 
data: <tbody><tr><td>…</td> <td/> … </tr></tbody>, tds from the 
second in each row. 
footer: <div> that is under <div class="tblwrap-foot” />  and has an id 
starting with “joi”, “tbl” and “TFN”. 
Record position (x,y) of column header, row header  and data during 
parsing. 
Fix incorrectly recognized row header: if a row header is an empty <td/>, 
set the first non-empty element in the row as row header. 

Identify indentions 
and footer 

1. Pre-define a set of indention characters (white space characters in 
Unicode and empty <td/>). 

2. If there’s a super row in table and there’s not any indention character 
in the row header right below the super row, add a logical indention 
character to all non-super row headers. 

3. Indention characters of a row header equal logical indention and 
physical indention characters. 

Use the tag <sup> to extract footer notion. 

Infer parents 

column header:  given 2 column headers, c1 (x1, y1) and c2 (x2, y2), if y1=y2 
and y1+1=y2, then c1 is the parent of c2. 
row header: Use the indention characters to infer parents.  
data: given a data element, its parents are the closet row and column 
headers that have the same row and column position respectively. 
footer: given a footer element, if a header has the same footnote as the 
footer, then it is the parent of the footer element.  

 
Evaluation of parsing of table structure: The rule-based method was applied to 50 annotated 

tables for evaluation. Accuracy was used for evaluation, where an element is correctly 

recognized only if both its element role and parent relations are correctly recognized. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

#𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  
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2.3 Recognizing entities in headers in RCT tables 

We treat the entity recognition in headers as a sequence labeling task, by converting header text 

into a sequence using the BIO format (Figure 13), where B- represented beginning of an entity, I- 

represented inside of an entity, and O represented outside of an entity. The CLAMP system was 

used for pre-processing steps such as tokenization. Then different machine learning algorithms 

were implemented and evaluated for this task. To address the issue of lack of context, we also 

developed a new strategy that integrates information from other cells parsed from table structures.  

 

 
Figure 13 Conception representation in BIO format. The first row was a row header, and the 
second row was its BIO representation. 

 
 

Machine learning models:  We first included a baseline method for entity recognition using the 

Conditional Random Field algorithm [91], which has demonstrated good performance prior to 

deep learning methods [92–95]. Then we also implemented a BERT-based deep learning 

approach. BERT is a pre-trained context language model that has achieved good performance on 

many NLP tasks [61,96–98]. BERT is further extended and retrained on biomedical literature 

(called BioBERT [99]) and we used BioBERT embeddings in this study.  Here we adapted 

BERT to solve the problem of recognition of entities from short table headers. Figure 14 shows 

the architecture of the model. The input was tokens in headers, which were represented as 

contextual word embeddings from the BERT model. BIO labels were outputted through a linear 

and software layer. 
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Figure 14 Architecture of model for recognition of concepts in RCT table. 

 

As mentioned in the introduction, headers are usually short text that provide limited context for 

entity recognition. To address this issue, we developed a new strategy that makes use of other 

information in a structured table. For example, a row header and its sub-headers could be 

combined as one long sentence which includes more context about core entities and their related 

unit, statistics, measurement, modifier and result, thus benefiting the entity recognition model. 

Figure 15 shows an example of such conversions. We applied BERT to data generated by this 

strategy and named this approach BERTstrcture.. 

 

 

 
Figure 15 Conversion of input by using of structure information. 
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Evaluation Three methods: CRF, BERT and BERTstructure were developed and evaluated using 

the 279 annotated RCT tables following a 5-fold cross validation experiment. Standard precision, 

recall, and F1 score were reported for each method. 

2.4 Recognizing values in data cells 

A rule-based method was developed to recognize values in data cells of RCT table. Figure 16 

shows the workflow of the method developed. Since one data cell may include multiple values, 

we first split text into values using regular expression. Then certain patterns were identified and 

rules were developed to determine the types of values, e.g., rule to recognize  number type (float 

or integer),  concatenating character for pair value (e.g. ±, /, –, etc.) and other marker strings (e.g. 

P=, N=, % , etc.). Finally, we used the information in parent headers of data cells to update value 

types: 1) recognize value types in row header/column header/footer/caption; 2) link values with 

value types found in headers or footers. Box 2 provides more details of the rule-based method. 
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Figure 16 An example that shows the rule based method for recognition of values in an RCT 
table. It first splits text into values “48” and “36 – 62”. Then set a default type median and range 
for them based on some patterns like integer and “-”. At last update their types to median and 
IQR using information from headers. 

 
 
 

Box 2. Rule-based method for recognition of values from data cells. 

Step 1: determination of boundary of values from text 

1. Define a list of regular expression patterns P for paired value and single value. 

2. Search text using patterns in P recursively, here is the pseudo-code.  

Search (text): 

for pattern p in P: 

        value Å match(𝒕𝒆𝒙𝒕 , p) 

        if value is not None: 

            break 

return value � search (text – value) 
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Step 2: type determination based on pre-defined patterns 

1. Given recognized values in step 1, define a list of pairs of pattern and corresponding 

value type P= {(pi, ti) , …}, and sort them with a predefined priority. 

2. for value in values: 

for pattern p and type t in P: 

    if value matches p: 

        set valuetype Å t 

        break 

Step 3: update value type 

1. Use keywords to find value concepts VCs in row header, column header, footer and 

caption. 

2. Link value concepts in footer to row header and column header 

3. for VCs in {row header, column header, caption}  in order: 

if values match VCs: 

    update valuetype Å VCs 

    break 

 
 
 
Evaluation. 50 annotated tables were used for evaluation, and accuracy, precision, recall, and F1 

score were reported. At the element level (i.e., a data cell), an element was scored as correctly 

recognized only if all values in the element were correctly recognized. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 =  
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

#𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  

precision =
true positive

true positive � false positive  

recall =
true positive

true positive � false negative 

F1 =
2 u precision u recall

precision � recall  
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3 Results 

3.1 Results of recognizing table structure 

Table 7 shows the result of parsing RCT table structures. The overall accuracy was 0.9844. 

Caption and column were correctly parsed with a 100% accuracy and high performance for data 

cells and row headers was also observed. The performance for recognizing footer was lower 

(0.8153), probably due to complex tags used for footer in HTML and incorrect recognition of 

footnote, which led to missing of parent relations. 

Table 7 Result for parsing of table structure. 

element Accuracy Correct Predict Gold 

data 0.999 3295 3298 3298 
row header 0.9773 1723 1763 1763 

column header 1 143 143 143 
caption 1 50 50 50 
footer 0.8153 170 205 212 

Overall 0.9844 5381 5466 5466 
 

3.2 Results of recognizing entities in headers 

Table 8 shows the precision, recall and F-measure (both exact and inexact matching criteria) for 

three entity recognition methods: CRF, BERT, and BERTstructure. BERTstructure achieved the best 

F1 scores on both exact and inexact match (0.8749 and 0.9260), improving the F1 score around 

1.8% for both exact match and inexact match (from 0.8566 to 0.8749 and from 0.9081 to 0.926) 

compared to BERT, indicating the value of incorporating other structures of from RCT tables.  
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Table 8 Overall performance of methods for recognizing concepts from RCT tables. 

 Exact match Inexact match 

 precision recall f1 score precision recall F1 score 

CRF 0.8323 0.8232 0.8277 0.8866 0.8769 0.8817 

BERT 0.854 0.8591 0.8566 0.903 0.9133 0.9081 

BERTstrcture 0.876 0.8738 0.8749 0.9263 0.9256 0.926 

 

Table 9 shows the detailed performance of these methods on each type of concept. BERT 

outperformed others on 4 types of concepts (inexact match), and BERTstructure was the best on 13 

types of concepts (inexact match). The results for each concept varied widely. Overall ML 

models performed better on concepts such as “age”, “arm”, “gender”, “race”, “statistics” and 

“unit”, which usually have less diversity. Model performance on “behavior”, “body_location”, 

“drug”, “education”, “measurement”, “medical_event”, “other”, “problem”, “procedure” and 

“test” were lower. For most of them inexact match performance was much higher than exact 

match performance, indicating that boundary recognition of these entities is challenging.  
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Table 9 F1 scores for each concept for each method for recognizing concepts from RCT tables. 

Concept 
Exact match Inexact match 

CRF BERT BERTstructure CRF BERT BERTstructure 

age 0.8585 0.8671 0.9201 0.8851 0.9128 0.9693 

arm 0.905 0.9292 0.9532 0.9215 0.9444 0.9721 

behavior 0.741 0.7988 0.7859 0.7672 0.8498 0.8446 

body_location 0.6337 0.693 0.7538 0.7096 0.7887 0.819 

drug 0.7085 0.7704 0.7908 0.8086 0.8759 0.8873 

education 0.6862 0.8056 0.7886 0.8511 0.9252 0.9239 

gender 0.9604 0.9574 0.9618 0.9824 0.9878 0.99 

marital_status 0.8402 0.8889 0.8534 0.9406 0.9485 0.9698 

measurement 0.753 0.7293 0.7252 0.8133 0.7721 0.7705 

medical_event 0.7545 0.7523 0.7518 0.7824 0.7915 0.792 

other 0.4494 0.4931 0.5532 0.5586 0.6257 0.681 

problem 0.7526 0.8062 0.8255 0.8513 0.8928 0.9108 

procedure 0.652 0.6881 0.724 0.7424 0.7867 0.8234 

race 0.9065 0.9401 0.9591 0.9763 0.981 0.9897 

result 0.7825 0.8229 0.8821 0.827 0.8669 0.9148 

statistic 0.9575 0.9581 0.9527 0.9769 0.9754 0.9776 

temporal 0.7124 0.7131 0.6534 0.824 0.8689 0.8446 

test 0.7605 0.8214 0.8324 0.8663 0.9165 0.9272 

unit 0.8757 0.9198 0.9165 0.9221 0.9462 0.9393 

Overall 0.8277 0.8566 0.8749 0.8817 0.9081 0.926 
 

 

3.3 Results of recognizing values in data cells 

The overall accuracy for recognizing values in data cells was 0.9044 at the element level (Table 

10). The overall F1 score was 0.9098, which was similar to accuracy at element level. The 

performance for “CI” was 0 because “CI” was not present in the evaluation set of 50 tables; but it 
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appeared in the prediction of our method. High performance (>0.9) was achieved on most of 

value types except for “mean” and “range”. 

Table 10 Result for recognition of values from RCT tables at the value level. 

value type precision recall F1 score 

ci_lower 0 0 0 

ci_upper 0 0 0 

iqr_q1 0.9433 0.8418 0.8896 

iqr_q3 0.9326 0.8245 0.8752 

mean 0.8296 0.786 0.8072 

median 0.9384 0.8278 0.8796 

number 0.9283 0.9628 0.9452 

percentage 0.9168 0.9646 0.9401 

pvalue 1 1 1 

range_lower 0.6438 0.7231 0.6812 

range_upper 0.6267 0.7231 0.6714 

sd 0.9957 0.8175 0.8979 

total 1 0.8081 0.8939 

Overall 0.9099 0.9098 0.9098 

 

4 Discussion 

In this study, we developed multiple methods that can effectively extract information from RCT 

tables. The rule-based method to parse table structure achieved an accuracy of 0.9844 and the 

rule-based method to extract values from data cells achieved an accuracy of 0.9044 at the 

element level and an F1 score of 0.9099 at the value level. Deep learning based methods were 

developed to recognize entities in headers and the best-performing method achieved an F1 score 
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of 0.9260. All these results indicate that it is feasible to extract both structural and semantic 

information from RCT tables with reasonable performance.  

There are mainly two types of errors in recognizing table structures. The first one was missing 

parents of footer. Sometimes the footnotes of headers were not surrounded by HTML tag <sup>, 

which caused failure in recognition. For example, in the footer “<p id="__p28">*Minimisation 

variable and predefined subgroup.</p>” (PMC4370502), footnote is not in “<sup>”. Another 

reason for missing parents was that a footer may have multiple parents, which was not 

considered by our current method. The second type of errors was wrong recognition of parents of 

row header. Some tables used both super row and indentions to indicate relations between 

headers, which made the proposed method fail to recognize the relations. For example, row 

header “SF-36 Quality of life” in PMC4447192 does not have a parent, but it wrongly 

recognized “Demographics” as its parent.  

One main error in recognizing data cells is confusion between paired value (e.g. CI and IQR, 

range and IQR, and range and CI in Table 9). For example the value “9-27” (full text: “15 (9–

27)”, row header: “Marks Asthma Quality of Life Questionnaire (range, 0–80)c,”) in 

PMC5443623, was wrongly recognized as range, because it considered “range” as an 

explanation for type of data. Confusion also appeared between single value (e.g. mean vs. 

number vs. median in Table 11). For example, value “61” (text: “61 (13)”) and row header: 

“Weight (kg)”)  in PMC3442223 was incorrectly recognized as number rather than mean, whose 

parent did not give any explanation for its value type. The explanation for value type was given 

in footer (“Data are n (%), median (IQR), n/N (%), or mean (SD). ART=antiretroviral therapy.”); 

but it didn’t specify which data cells it applied to, respectively, which was impossible for 

recognizing values. In this example the mean “61” was an integer, which causes that type 
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number can’t be excluded by number type (float or integer), and it requires additional knowledge 

to know “61 (13)” were mean and SD rather than number and percentage. 

Table 11 Confusion matrix for recognition of values from RCT tables. 

 

For entity recognition, sometimes drugs were wrongly annotated as procedures (Table 12). Most 

of the errors had a form of “non-drug + therapy” such as “antithrombotic therapy” in 

PMC3971471, “previous hydroxyurea therapy” in PMC4358820, “other therapies” in 

PMC3942158, etc. On the contrary, some drugs in the “drug + therapy” pattern were predicted as 

procedures (e.g. “warfarin therapy” in PMC3942158).  

There was also confusion among concepts of result, medical_event, problem and test , as well as 

between result and other. Category other included all attributes that are not problem, test, etc., 
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and category result included results of all attributes, so entities in both of them were very diverse, 

which makes it difficult to differentiate them. From the viewpoint of table structure, other 

usually had some sub-headers that are its result, and as a comparison result usually did not have 

any sub-headers.  

Table 12 Confusion matrix for recognition of concepts (BERTstructure, inexact match). 
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Chapter IV 

Text Generation from RCT Tables 

 

1. Introduction 

In this chapter we will develop methods to generate descriptive text from recognized RCT table 

data, which can be viewed as a data-to-text task in NLG domain. As summarized in related work 

for the data-to-text task in the first chapter, both classical rule-based methods and more recent 

deep learning-based methods have been used for the task in many studies. Nevertheless, the 

specific task here is different from previous open-domain data-to-text tasks in the following 

aspects.  

First of all, RCT tables are more complicated than the datasets used in previous open-domain 

studies. As discussed in the Introduction section of Chapter 2, RCT tables often have complex 

structures and cover broad types of biomedical concepts, which makes it is more difficult to 

summarize/learn patters for both rule-based methods and DL-based methods.  

Furthermore, one RCT table usually has tens of concepts and not all of them need to be described 

in the descriptive text. Therefore, more sophisticated approaches for selecting content to describe 

are required.   

The framework proposed by Reiter et al.[49,100] has been widely used for rule-based NLG 

systems. However, it requires developing document planning and microplanning components 
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based on the goal and data of each study. So there are no existing unified approaches and tools to 

help develop rule-based systems for a new domain such as biomedicine.  

Recently DL methods have been used widely for data-to-text tasks and have shown good 

performance with less engineering effort [43,57–60,83,101]. However, these methods usually 

require large datasets (i.e., WikiBIO has 728,321 articles). Given that we have only 279 samples 

in our dataset, it is not clear if DL method alone would work as expected. Lastly, although 

automatic evaluation metrics such as BLEU and ROUGE have been widely used in NLG tasks 

[102], they alone are not sufficient to assess the quality of generated text, and human evaluation 

could be more appropriate if the end goal is use these methods for real world applications 

[81,103,104]. 

To address the above challenges, we propose to develop a hybrid approach for RCT table to text 

generation. We first developed a rule-based system following the classic data-to-text framework 

proposed by Reiter et al. [100], with customized components built for the biomedical domain. By 

leveraging some components in the rule-based system (e.g., content selection), we further 

investigated DL-based approaches for text generation. To reduce the requirement of large data by 

the DL method, we implemented the following strategies: 1) leverage the content selection 

component from the rule-based system, and 2) use a pre-trained language model in the DL-based 

method. In addition to automatic metrics for text generation (e.g., BLEU), we proposed three 

human-based evaluation metrics. Then a user study was conducted to evaluate the performance 

of the developed RCT table-to-text systems. 
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2. Methods 

2.1 Dataset 

The dataset (279 pairs of table and text) was divided into three sub-sets: training set, 

development set and test set (3:1:1, 169, 55 and 55 tables for each set, respectively), of which 

training and development sets were used for training the DL model in the hybrid method (i.e., 

choosing hyper-parameters of the model), and the test set was used for evaluating both rule-

based and DL-based methods.   

2.2 Overview 

Here we developed two methods to generate descriptive text given recognized concepts and 

values from RCT tables, a rule-based method and a hybrid method (Figure 17).  First, we 

converted concepts and values extracted from the previous study into messages. The message is 

a unit of attributes and values to be described in generated text, which can be easily mapped to 

linguistic forms later. Usually a message corresponds to a sentence or a phrase [105]. The inputs 

for the rule-based method are the converted messages in a table, and then messages were filtered 

by a content selection component to decide which messages will be kept in the generated 

description text. In the hybrid approach, the filtered messages are the inputs to the DL-based 

language generation model. The architectures and components of both systems are described as 

follows.  
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Figure 17 Architecture of the text generation system for RCT table. The recognized tables were 
converted into messages as input for the rule-based method. The rule-based method included 
three components (blue solid blocks): document planning component, microplanning component 
and surface realization component, and the grey blocks represent outputs of the components. In 
the hybrid method, the filtered messages from the content selection component from the rule-
based method were used as input for the DL model. 
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2.3 Message 

Through manually reviewing descriptive text of RCT tables, we found the following frequent 

patterns of topics: 1) comparing the differences between two arms, e.g., the number of 

participants for a given condition in each arm; 2) discussing statistical values of some concepts. 

The message here takes concept as the core and also includes all its related information such as 

values, arms, unit, etc. In this study we defined two types of messages: simple message and 

multiple-result message.    

Simple message is used for representing a concept that does not have extra results (a row header 

without any sub-headers). Figure 18 shows an example of simple messages. Besides the concept, 

it also includes other attributes related to the concept such as semantic type of the concept, unit, 

measurement, arms, and values for arms. 

Multiple result message is used for representing concepts (e.g. lab test) that have multiple results. 

It has the same attributes as simple message except that it has an additional attribute result, 

which stands for the results of the concept, and it includes values for arms (Figure 18).  

We also named a group of messages a Message Set, whose concepts are under the same header in 

a table.  
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Figure 18 Details of message object. The simple message and multiple result message shares 
attributes of name, semantic type, arms. The multiple result message can represent multiple 
results. 

 

2.4 The rule-based NLG system 

We followed the data-to-text framework by Reiter et al. to develop the rule-based NLG system. 

Figure 17 shows the architecture of the system, which includes three components: 1) the 

Document Planning component is to determine which concepts in tables should be described and 

the structure of generated text; 2) Microplanning component is to choose lexicons and syntactic 

structures for information selected by document planning, and to represent the text as an abstract 

structure; 3) Realization component is to convert the abstract representation into real sentences. 

The details of each component are described as follows.    
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2.4.1 Document planning 

The inputs to document planning component are messages, and its output is a document plan. 

The content selection component is used to determine whether a concept should be described. 

Document plan includes abstract structures of descriptive text 

2.4.1.1 Content selection component 

A typical RCT table usually includes tens of concepts in headers; but only a few of them are 

described in text. We developed both a rule-based method and a ML-based method to filter 

concepts to be described. In order to develop the Ranking-SVM model, we manually annotated 

which headers in the tables are described. 

Rule-based method: Simple heuristic rules are developed, e.g., “if the difference between two 

arms for a concept is larger than 10%, consider the concept as important”. 

ML-based method: The concept selection task could also be converted into a ranking problem. 

The concepts that ranked high will then be chosen for inclusion in the description. In the study, 

the Ranking Support Vector Machine (Ranking SVM)  [106] was used to rank concepts in a table. 

Ranking SVM is a pair-wise ranking method that ranks candidates for a query by comparing all 

possible pairs of the candidates. Semantic type of concepts, values of concepts, p value of 

concepts, position of concepts and a dictionary look-up feature were used as features for the 

ranking algorithm (Table 13). The categorical feature (semantic type, p value, dictionary look-up) 

was converted to a continuous value with binary encoding [107]. The categorical variable was 

first encoded as ordinal and then converted to a binary number, and each digit in the number was 

viewed as a feature. The package SVMrank  [108] was used in the experiment.  

Evaluation: A 5-folds cross validation was used to evaluate the performance of the Ranking-

SVM. F1-score was reported for different methods. The prediction of the ranking-SVM gave a 
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rank of all concepts in a table, but it did not decide which concepts should be described. In our 

experiment, the top k concepts in the ranked list were considered as being described (k was the 

hyper-parameter). Additional rules could be added into the ranked list to improve the 

performance.  

 

Table 13 Features for the ranking-SVM 

Feature Description 

Semantic type of concept semantic type of concept such as age, medical problem, etc. 

Values of concept corresponding values of concept for two arms 

Position of concept position of concept in a table 

P value for concept 

if p value is not provided, the feature will be set to 

“UNKNOWN”, otherwise the value of the feature will be 

“TRUE” (p value < 0.05) or “FALSE” (p value  >= 0.05). 

Dictionary look-up 

Because concepts that are related to the study that the table 

comes from are more likely to be described, the mesh terms and 

title of the study are viewed as a dictionary. It checks whether a 

concept is in the dictionary. 

 

2.4.1.2 Structure of the document 

Figure 19 shows the document plan for generating descriptive text for RCT tables. The document 

plan is composed of four parts. The first part is a sentence to describe the caption of an RCT 

table (e.g. “Table 1 shows the demographic and clinical characteristics of participants.”). In the 

second part, a summary of overall results of comparisons between arms in an RCT table will be 

described. More specifically, it will state whether the participants between arms are well 

balanced among the concepts listed in table (e.g., gender, age). It will also state the messages 
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(concepts), for which participants differed between arms, if applicable. After that, authors 

usually describe the statistics of a concept (e.g., number of participants or mean of age in an arm).  

In the last part, we add some description about ‘majority’ information of concepts. Given a 

message set, the concept that has the greatest number of participants or has a highest 

mean/median value for some measurements is defined as the majority one. 

 

 

Figure 19 document plan for descriptive text 

 

2.4.2 Microplanning 

The goal of the microplanning component is to choose lexicons and produce abstract structures 

of the text to be generated [105,109]. The output of the microplanning component is text 

specification, which is a data object that clearly specifies the lexicon and structure of the text to 

be generated. The specification could be canned text, abstract syntactic structure and  lexicalized 

case frame [105]. The canned text is strings where all lexicons and structures have been already 



 63 

determined (e.g. the left three examples in Arm Phrase Specification in Figure 20). In abstract 

syntactic structure, syntactic structure of a sentence is specified by a hierarchical structure, 

whose nodes are syntactic elements (e.g. subject, predicate, object, complement, modifier, etc.) 

and corresponding lexicons. Additional linguistic features such as tense and voice are also 

specified here. For example, the second specification in Balance Phrase Specification, is about a 

sentence “[the characteristics] were well balanced between [study groups].”, where the phrases in 

the brace are variables that can be replaced by other phrases with the same meaning. Because it 

can use variables and features in specification, abstract syntactic specification is more flexible 

than canned text. In lexicalized case frame, phrase constitutes are specified by semantic roles 

rather than syntactic roles, as in abstract syntactic structure.  

In the study we used both canned text and abstract syntactic structure to represent the text 

specification (see details of the specifications in Table 14 and Figure 20). Seven types of 

specifications were defined in total. In order to make the generated text more diverse, each type 

of specification included multiple specifications, and Figure 20 shows the details of the 

specifications in each type. Two of them (arm phrase specification and characteristics 

specification) were used for generating phrases needed by the other five types of specifications.  
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Table 14 Types of specification used in the study. The example shows sentences/phrases that are 
generated by corresponding type of specification respectively. 

Name of  type of 

specification  
Description Example  

Arm phrase 
a specification of noun phrase to 

represent arms/groups 
“two groups”,  “study groups”… 

Characteristics 

phrase 

a specification of noun phrase, used as 

a subject in overall sentence. 
“baseline characteristics” … 

Title sentence 
a specification of description sentence 

to describe the table. 

“table shows the baseline 

characteristics” 

Balance sentence 
a specification of sentence to describe 

that all characteristics are balanced  

“no differences were detected between 

study groups” 

Overall sentence 

a specification of sentence to describe 

whether all characteristics are 

balanced, and if not, which concepts 

are not balanced. 

“the baseline characteristics of the 

patients were similar in the two groups 

except the gender” 

Description 

sentence 

a specification of sentence to describe 

value of some concept 
“the median age was 64 years” 

Majority sentence 

a specification of sentence to describe 

what the majority is in a group of 

concepts.  

“the majority of … was …” 

 

In the microplanning component, messages and message sets in the document plan were 

converted into corresponding specifications (Figure 17). The second part of the document plan, 

“overall sentence”, included multiple messages that were not balanced. It is longwinded to 

describe the unbalanced messages separately (e.g. “The age is not balanced. The gender is not 

balanced. …”). Therefore, the sentences that have the same structure and information (e.g. “The 

age and the gender are not balanced”) need to be aggregated. 
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Figure 20 The specifications used in the study. An abstract syntactic specification specified 
predicate, subject, object, modifiers and features of a sentence. The realizer can choose the 
correct forms of verbs (e.g. present participle form vs. past particle form) based on the features 
specified in a specification. Words in a curly brace represent variables that can be replaced by 
concepts or values in messages. 

 
2.4.3 Surface realization 

All abstract representations from the microplanning component will be transformed into 

sentences according to grammars, called realization. It will first construct a syntactic structure 

using the abstract representation and then output a sentence based on the syntactic structure. To 

construct a syntactic structure, the constructor needs to follow English grammar to complete 

accurate lexicon and structure choices. For example, it should decide the order of multiple 

adjectives (e.g., “heavy” should be after “large”). Then punctuation and orthography will be 

further processed to generate a sentence. Some tools have been developed for realization such as 

KPML [110], OpenCCG [111] and SimpleNLG [112]. SimpleNLG was used in our study, which 

is a simple and robust realization tool and has been widely used in many NLG tasks. SimpleNLG 
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allows the use of customized lexicons. In this study, we used the UMLS SPECIALIST lexicon, 

which is a large biomedical syntactic lexicon and covers general English and biomedical 

vocabularies from sources such as MEDLINE, medical dictionary, medical books, etc. [113]. 

2.5 Hybrid method by integrating deep learning 

Our hybrid method includes a content selection component from the rule-based system and a DL 

model for text generation. One advantage of neural network-based text generation methods is 

that they do not need to explicitly select and organize content and lexicons step by step. In 

addition, recent advanced deep learning models often can generate more fluent and diverse text 

sequences.  

Essentially, a neural network builds a language model that represents a probability distribution 

over a sequence of words (denoted as P(w1 w2 … wn)). Given the words in the 1st to (n-1)th 

position (w1, w2 … wn-1), the probability of the nth word is denoted as P(wn | w1w2…wn-1). Then 

the probability over the sequence of words can be calculated by multiplying a series of 

distribution: 𝑃(𝑤1𝑤2 … 𝑤𝑛) = ∏ 𝑃(𝑤𝑖|𝑤1 … 𝑤𝑖−1)𝑛
𝑖=1 = ∏ 𝑃(𝑤𝑖|𝑐𝑖)𝑛

𝑖=1 , where ci = w1,w2,…wi-1. 

In the language model, the probability of the ith word is determined only by its context, ci. In a 

data-to-text scenario, the probability of a sequence of words depends on both the context and the 

input data, and the joint probability of the word sequence could be written as 𝑃(𝑤1𝑤2 … 𝑤𝑛|𝑪), 

where C represents concepts. Neural network models can learn probability distribution from 

large training data and generate synthetic texts.  

Many studies have developed neural network-based methods for data-to-text tasks [43,57–

60,83,101]. Most of these studies train their models from scratch, which often requires a large 

labeled dataset, such as the E2E dataset [83], WIKIBIO [43], etc. Therefore, it is challenging to 

develop a good neural network based model to generate text using the small dataset that we have 
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assembled. Some studies have shown better performance on different NLP tasks by fine-tuning 

pre-trained language models on an unlabeled corpus of interest [62,63,99], which may provide a 

potential solution for the  data-to-text task in the setting of using smaller datasets.  A recent study 

by Chen et al. followed this idea and proposed the few-shot natural language generation 

approach, which achieved reasonable performance by employing the pre-trained language model 

of GPT-2 [114].  GPT-2 [115] is a pretrained language model that used the decoder architecture 

of Transformer and it is trained on WebText, a dataset of 40 GB of text. Experiments show that it 

achieved the state-of-the-art performance in a zero-shot setting.  

In this study, we adapted Chen’s model [114] into the biomedical domain to generate descriptive 

text from RCT tables. To address the challenges that many concepts are not described in the 

description text (many negative samples) and the size of our dataset is small, we used the outputs 

of content selection from our rule-based method as the inputs to the DL model. The messages in 

a table were represented as a group of pairs of attribute and value (Figure 21), and then were 

converted into embeddings. In Chen et al.’s method, the model used the table embedding method 

by Lebret et al. [43], which includes embeddings of attributes, words in value, and positions of 

the words in value (Figure 21). Figure 22 shows the architecture of the model. The outputs of the 

pre-trained language model was used for calculating attention weights and copy switch pcopy, 

which was used for determining if a word should be sampled from a table or vocabulary. The 

initial inputs of the pre-trained language model were the encoded table as a context. The encoder 

encoded the table, whose outputs were used for calculating copy switch and sampling word.  

.  
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Figure 21 Table embeddings for the model. The left is a table represented as a group of pairs of 
attribute and value, and the right is corresponding embeddings. The arm^a and arm^b represent 
the names of two arms; the arm^a^total and arm^b^total represent the number of participants in 
two arms; 1^row^concept is the first concept in the table, and 1^a^value and 1^b^value are the 
values for two arms. A pair of attribute and value is converted into n embeddings, where n is the 
number of the words in the value. Each embedding includes embeddings of the attribute, a word 
in the value and the positions of the word in the value. Position includes left position and right 
position, and, for example, the word ‘ultrasound’ is the first word in the value, and the third word 
in the value from right to left, so the left position and the right position for the word ‘ultrasound’ 
are 1 and 3, respectively. 

 

 
Figure 22 Architecture of the DL model for text generation, adapted from Chen et al. [114].  
Pre-trained LM model with biomedical text. 
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The original pre-trained language model GPT-2 by OpenAI was trained with datasets from open 

domain. To improve its performance, we fine-tuned the GPT-2 model using texts that describe 

RCT tables from biomedical literature. We used the following steps to extract texts that describe 

RCT baseline tables: 

x The list of papers with a publication type “randomized controlled trial” from 2011 to 

2019 was obtained from PubMed, which resulted in 80,193 papers. 

x The full text of these papers were obtained from PMC Open Access Subset, resulting in 

33,882 papers. 

x For each full text paper, the keywords ‘baseline’ and ‘characteristics’ were used to 

identify baseline table. Then the pattern ‘Table ID’ (e.g. Table 2, ID is the ID of the 

identified table) was used to locate corresponding text in the full text articles. The first 

sentence that included the Table ID was the start point for text collection. The collected 

text stopped when a different table or figure ID was mentioned.  

The above process led to a set of 7,816 paragraphs describing baseline RCT tables. This corpus 

was then used for fine-tuning the GPT-2 model (124M).  

 

2.6 Experiment and evaluation 

In this study, we primarily investigated rule-based vs. DL-based text generation approaches. 

Within each approach, we also evaluated different content selection methods: 1) for rule-based 

text generation, we tested rule-based and RankingSVM-based content selection methods (Rulerule 

and Rulerank), as well as the performance when gold-standard content was used (Rulegold); and 2) 

for DL-based text generation, we tested both gold standard and RankingSVM-based content 
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selection (DLgold and DLrank). Table 15 provides detailed descriptions of these different 

experimental settings. 

 

Table 15 Description of different methods evaluated in the study. 

Methods Abbreviation Description 

Rule-based 

methods 

𝑅𝑢𝑙𝑒𝑟𝑢𝑙𝑒  
The rule-based method was used for content selection, and the 

rule-based method was used for text generation. 

𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘  
Rank-SVM method was used for content selection, and the rule-

based method was used for text generation. 

𝑅𝑢𝑙𝑒𝑔𝑜𝑙𝑑  
The gold standard data of content selection was used, and the 

rule-based method was used for text generation. 

Deep 

learning-

based 

methods 

𝐷𝐿𝑟𝑎𝑛𝑘  
Rank-SVM method was used for content selection, and the DL-

based method was used for text generation. 

𝐷𝐿𝑔𝑜𝑙𝑑 
The gold standard data of content selection was used, and the 

DL-based method was used for text generation. 

 

Two widely used automatic metrics BLEU [77] and ROUGE [79] were used for evaluation. 

BLEU and ROUGE measure the precision and F-1 score of n-grams in generated text 

respectively. The NLTK [116]and the library rouge [117] packages were used to calculate the 

two metrics respectively. Nevertheless, both BLEU and ROUGE have limitations in evaluating 

text generation, especially for data-to-text tasks, because there could be many correct ways to 

describe the data with different lexicons and syntactic structures. Furthermore, it is always 

important to evaluate generated text for real-world tasks and by actual users. Therefore, we also 

proposed the following user study to evaluate NLG systems’ performance. 

Novikova et al. reported a study on human based evaluation for NLG tasks and found that the 

continuous scale and relative assessments could improve the reliability and consistency of human 
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ratings [103]. Based on their findings, we defined three metrics: relevance, quality, and matching 

to measure text generated for RCT tables. The threes metrics are continuous variables with a 

scale from 0 to 10, and measure whether text describes all relevant information in an RCT table 

(relevance), the description in text matches the facts in the table (matching), and the grammatical 

quality of the text (quality). The descriptions, examples and scoring criterion of the metrics are 

shown in Table 16. 

 

Table 16 Metrics for measuring generated text from RCT table. 

Metric Description and example 

Relevance 

Description: Does the text provide all the useful information from the table? A 

randomized clinical trial table may have tens of row headers and more than one 

hundred data cells, and it’s unnecessary to describe all the headers and values 

in the text. Descriptive text only needs to describe cells that contain useful 

information in the table, such as the demographic or clinical characteristics that 

are 

1) different for the study groups;  

2) related to the aims of the RCT study/outcome; 

3) other 

Example: the mean age of the participants was 57 years.   

Explanation: some characteristics that are more likely to be described, so this 

characteristic is considered as being useful  

Scoring: For each missed informative point, subtract 0.5 score from total 

relevance score 10. 

Quality 

Description: The overall quality of the text  related to grammatical correctness. 

Example: the two groups were similar with respect to age, sex, race or ethnic 

group, baseline number of patients, and baseline number of patients. 

Explanation: item appears multiple times. 
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Scoring: For each gramma error, subtract 0.5 score from total quality score 

(10).   

Matching 

Description: Is the text accurate and true to the information from the table? 

1) Does the text include too much unnecessary information? 

2) Is the description not inconsistent with the facts in the table? 

3) Does text include numbers or concepts that are not in the table? 

Example: the control group had more participants 

Explanation: based on the table the control group has fewer participants. 

Scoring: if the text mentions too much unrelated information, subtract 0-1 

score for 1). Each inconsistent point will be subtracted 0.5 score for 2) and 3).   

 

Four users who have medical background were recruited to participate in the human evaluation 

study. Each user was required to score descriptions from different text generation methods for 20 

RCT tables. In total, texts of 40 tables were scored, and texts of each table were scored by two 

users. For each text, he/she needed to give three scores (relevance, quality, and matching) based 

on the criterion in the guideline. For each RCT table, we included three texts that were generated 

by the rule-based method or the DL method, or copied from the original articles (gold standard), 

respectively, for review. Users did not know the source of the texts. In addition, the display order 

of the three texts for each table was shuffled, so that the users could not differentiate them by the 

order.  The workflow of the user study is described as follows. 

1) There was a half hour training for users to learn the criterion of scoring, and to 

practice scoring sample texts to be familiar with the criterion. 

2) Before scoring a text, users need to read the corresponding table as well as the 

abstract and title of the paper, together with a summarized list of important 

characteristics that should be described.  
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3) Review the three texts, and give scores of relevance, quality and matching for each 

text. 

3. Results 

3.1 Descriptive statistics of the dataset 

Table 17 shows descriptive statistics of the gold standard dataset and the generated texts from the 

proposed methods. First, validation and test sets were similar in terms of the number of sentences 

per text, words per text, and words per sentences on average. Although the number of words per 

text for generated text by the rule-based method was similar to that in the gold standard set, its 

sentences were much shorter than that in gold standard set (12.41 vs 21.73 words/sentence in the 

test set) and each text contained more sentences (2.80 vs 1.71 sentences/text). The text generated 

by the hybrid method was longer than that generated by the rule-based method.   

Table 17 Descriptive statistics of the gold standard texts and the generated texts. The #text, #sent, 
#word and #word represent number of texts, sentences, words, respectively. The 
avg_sent_per_text, avg_word_per_text, avg_word_per_sent represent number of sentences per 
text, words per text and words per sentences on average. 

dataset method #text #sent #word avg_sent_
per_text 

avg_word_
per_text 

avg_word
_per_sent 

training Gold 169 256 5227 1.51 30.93 20.42 

valid 

Gold 55 100 2173 1.82 39.51 21.73 

𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 55 146 1896 2.65 34.47 12.99 

𝐷𝐿𝑟𝑎𝑛𝑘-origin 55 78 1361 1.42 24.75 17.45 

test 

Gold 55 94 2043 1.71 37.15 21.73 

𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 55 154 1911 2.8 34.75 12.41 

𝐷𝐿𝑟𝑎𝑛𝑘-origin 55 91 1563 1.65 28.42 17.18 

full Gold 279 450 9443 1.61 33.85 20.98 
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3.2 Results of content selection 

Table 18 shows the results of the content selection methods. It shows that the Ranking-SVM 

method achieved better performance than the rule-based method. It reached the best performance 

when semantic types and pvalue were used as features. For the Ranking-SVM method, when the 

cutoff k was changed to higher numbers (more concepts were labeled as “important”), recall 

increased greatly; but the precision decreased. The hyper-parameter k=5 was chosen for further 

text generation because it had a higher recall and F1 score. The post-processing improved the 

performance from 19.29 to 20.32. 

 

Table 18 Results of the content selection methods. P, R, F means the precision, recall and f1 
score. It shows the performance of rank-SVM that used different features. 

Method Features k=3 k=5 k=7 

P R F P R F P R F 

RankSVM 

semantic 14.22 24.19 17.91 12.76 36.18 18.87 10.97 43.29 17.50 

semantic 

pvalue 15.41 26.22 19.41 13.05 36.99 19.29 11.28 44.51 18.00 
values 13.26 22.56 16.70 11.04 31.30 16.32 9.58 37.80 15.28 

position 11.83 20.12 14.90 10.11 28.66 14.94 8.96 35.37 14.30 
dictionary 12.90 21.95 16.25 10.82 30.69 16.00 9.53 37.60 15.20 
pvalue + 

post_proce

ssing 
   15.09 31.10 20.32    

Rule   P=6.79, R=41.26, F=11.66 
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3.3 Results of different text generation methods 

Table 19 shows the results of the rule-based and hybrid text generation methods. All the hybrid 

methods outperformed the rule-based methods for BLEU-4 and ROUGE-4. For the hybrid 

methods, DLrank -pmc achieved the best performance (BLEU-4 5.69 and rouge-4 2.44). For the 

rule-based methods, the performance of 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 was higher than 𝑅𝑢𝑙𝑒𝑟𝑢𝑙𝑒 , indicating Ranking-

SVM is useful for content selection.  

The rule-based method that used gold standard data in content selection (𝑅𝑢𝑙𝑒𝑔𝑜𝑙𝑑) did not lead 

to a significant higher performance than the 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 (3.60 vs. 3.07). Similarly, in the hybrid 

methods the gold standard data did not show a significant improved performance (6.18 for  

𝐷𝐿𝑔𝑜𝑙𝑑vs. 4.91 for 𝐷𝐿𝑟𝑎𝑛𝑘), which indicates that the content selection does not affect the scores 

of BLEU and ROUGE for text generation very much.  

The pre-trained language model with PMC text did improve the performance (from 4.91 to 5.69 

for 𝐷𝐿𝑟𝑎𝑛𝑘).  
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Table 19 BLEU and ROUGE scores for different text-generation methods. 

 Rule-based methods DL-based methods 

 𝑹𝒖𝒍𝒆𝒓𝒖𝒍𝒆 𝑹𝒖𝒍𝒆𝒓𝒂𝒏𝒌 𝑹𝒖𝒍𝒆𝒈𝒐𝒍𝒅 𝑫𝑳𝒓𝒂𝒏𝒌 𝑫𝑳𝒈𝒐𝒍𝒅 
𝑫𝑳𝒓𝒂𝒏𝒌-

pmc 

BLUE-2 11.38 10.64 13.97 12.04 15.33 13.54 
BLUE-3 5.41 5.50 7.33 7.34 9.45 8.50 
BLUE-4 2.72 3.07 3.60 4.91 6.18 5.69 

ROUGE-1: 23.96 23.09 30.28 26.24 36.06 26.98 
ROUGE-2: 5.76 5.74 8.56 9.17 14.05 10.27 
ROUGE-3: 1.53 1.83 2.56 3.95 6.81 4.78 
ROUGE-4: 0.45 0.69 0.52 2.16 3.49 2.44 
ROUGE-l: 24.56 22.94 29.28 26.72 35.6 28.06 
ROUGE-w: 11.13 10.24 13.74 13.05 17.9 13.60 

 

As shown in Table 20, the DL methods had the ability to output words from input data including 

concepts and values (words in red color); but sometimes they generated irrelevant text to the 

input data, such as “124 patients (47 %)”, in which the numbers didn’t appear in the input data at 

all. Moreover, because the input data for the DL method did not include semantic types of values, 

the text generated by the DL method mistook the pre-modifier “mean” as “median” for “age”. 

On the contrary, the text by the rule-based method correctly chose the pre-modifier “mean” for 

“age”, because the semantic type was given in its input data. The DL method also mistook the 

unit for BMI. 
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Table 20 Example of the generated texts and gold standard text, and corresponding input data by 
content selection (ranking-SVM). The table used was Table 1 in the paper PMC4267197. The 
semantic types were only given in the rule-based methods. 

Input data by content selection 

arm^a: vitamin d 

arm^b: placebo 

arm^a^total: 161 

arm^b^total: 161 

arm^all^total: 322 

1^row^concept: age 

1^a^value: 47 (mean) 

1^b^value: 48 (mean) 

2^row^concept: bmi 

2^a^value: 27 (mean) 

2^b^value: 28 (mean) 

3^row^concept: women 

3^a^value: 75 (number) 

3^b^value: 75 (number) 

4^row^concept: māori/pacific ethnicity 

4^a^value: 4 (percentage) 

4^b^value: 5 (percentage) 

5^row^concept: baseline serum 25-ohd 

5^a^value: 73 

5^b^value: 71 

Method Example 

Gold table shows their baseline characteristics. 

the Rule-based 

method 

the baseline characteristics were well balanced between two 

groups vitamin d and placebo except age, woman and 

māori/pacific ethnicity. the mean age was 47.0 year. 
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the DL 

method 

the baseline characteristics of the patients were similar in the two 

groups. the median age was 47 years. 124 patients ( 47 % ) were 

women. the median bmi level was 27 years. 

 

3.4 Results of human evaluation  

Table 21 shows the average scores for human evaluation. Paired t-test was performed to compare 

these methods on each score (Table 22). The gold standard texts received the best scores by 

reviewers on two of three measures on average, and overall there is not too much difference 

between the three groups of texts. The 𝐷𝐿𝑟𝑎𝑛𝑘  significantly outperformed 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 on scores of 

grammatical quality. Although both of them used the same content selection component, 𝐷𝐿𝑟𝑎𝑛𝑘  

had a worse relevance score, probably because the DL model missed some concepts and values 

in the inputs. Compared with the gold text, 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 and 𝐷𝐿𝑟𝑎𝑛𝑘 have significant lower scores 

(Tables 21 and 22). The lower score of 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 on match may be because it included more 

“useless” information in generated text (describing everything from the input data). The lower 

score of 𝐷𝐿𝑟𝑎𝑛𝑘 may be because it included some concepts and values not in the table.  
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Table 21 Average scores of human evaluation. 

Method 
Relevance Quality Match 

Mean SD Mean SD Mean SD 

Gold 9.6 0.7 9.8 1.1 9.8 0.3 

𝐷𝐿𝑟𝑎𝑛𝑘 9.3 0.9 9.9 0.3 9.3 0.9 

𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 9.5 0.7 9.5 0.6 9.0 0.6 

 

Table 22 Results of paired t-test between methods for three scores. The bold font represents 
significant p-value (α level is 0.05, with Bonferroni correction). 

 Relevance Quality Match 

 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 𝐷𝐿𝑟𝑎𝑛𝑘 Gold 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 𝐷𝐿𝑟𝑎𝑛𝑘 Gold 𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 𝐷𝐿𝑟𝑎𝑛𝑘 Gold 

𝑅𝑢𝑙𝑒𝑟𝑎𝑛𝑘 - - - - - - - - - 

𝐷𝐿𝑟𝑎𝑛𝑘 0.0236 - - <.0001 - - 0.0352 - - 

Gold 0.3502 0.0279 - 0.0774 0.546 - <.0001 0.0002 - 

 

4. Discussion 

In this chapter, we proposed two methods to generate descriptive text for RCT tables. The rule-

based method achieved a BLEU score of 3.07, and the hybrid method achieved a BLEU score of 

5.69. In order to evaluate the validity of the two methods in the real world, a user study was 

conducted and it showed that two text generation methods could achieve acceptable scores to 

that of gold standard texts on relevance, grammatical quality and content matching measures. 

Content selection remains challenging. Randomness exists even when human (i.e., authors) 

selects what to describe in the text – different authors may have different choices. For example, 
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the “Cognitive impairment” in the Table 1 in PMC5710364 is significantly different between 

two arms, but it is not described in the paper. More in-depth studies are needed to learn how 

humans interpret tabular data in the biomedical domain.  

In the dataset that we developed, each table is associated with only one gold standard descriptive 

text. In reality, many different ways of describing the tabular data could be valid, as different 

forms could be used to express the same meaning. However, this makes it difficult to achieve 

high BLEU or ROUGE scores for the proposed methods. The current rule-based approaches aim 

to generate diverse text using the modularized specifications. Therefore, it is not its optimization 

goal to generate “exactly the same text” as the gold standard text.  

One problem in the hybrid method that implements the DL model is that they may describe 

values/concepts that are not in the original table (the hallucination issue) or missed 

values/concepts that actually appear in the table. For example, in the following text (a generated 

text), both the concept “women” and the value “65%” were not in the table.  One possible reason 

for the hallucination is that there are only a few values in the gold standard text so that it is 

difficult for the model to learn. 

Example: “… In both groups, approximately 65 % of the patients were women. …” 

As shown in the results section, the DL model could not correctly choose pre-modifiers because 

there is no semantic information for values. Therefore, we examined it and explored different 

table representations as the inputs of the DL model, including: 1) both semantic types of 

concepts and values; 2) semantic types of concepts only; 3) semantic types of values only; 4) 

neither semantic types of concepts or values (Figure 23).  Table 22 shows that no obvious 

improvement was achieved by incorporating the information of semantic types into inputs, 
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except a slight increase when both semantic types of concepts and values were used. Thus, more 

investigation is needed into this problem.  

 

Figure 23 Different approaches to represent a table as input to the DL model. Four approaches 

are shown. The differences between them are whether to use semantic types of concept and value 

in attribute of input data (colored in figure). 
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Table 23 Results of different approaches to represent table. The “concept-value” is used in the 
study. 

 DL methods 

approach 
name 

Concept_type-
Value_type 

Concept_type 
-Value 

Concept -
Value_type 

Concept-
Value 

BLUE-2 16.50 16.24 15.35 15.33 

BLUE-3 9.72 9.48 9.02 9.45 

BLUE-4 6.33 5.79 5.55 6.18 

ROUGE-1: 37.09 35.94 37.72 36.06 

ROUGE-2: 13.79 13.63 14.2 14.05 

ROUGE-3: 6.55 6.08 5.97 6.81 

ROUGE-4: 3.73 3.15 2.97 3.49 

ROUGE-l: 35.72 35.15 36.21 35.6 

ROUGE-w: 18.11 17.76 18.02 17.9 

 

Table 24 shows the intra-class correlation scores[118] (calculated using the package pingouin, 

https://pingouin-stats.org/index.html) for the evaluation. The inter-observer reliability between 

two users varies a lot on aspects of models, metrics and users. It may be because important 

characteristics (to be described) defined by user varied a lot, which may cause a lower 

correlation score especially for the relevance score. Another possible reason is that the users 

were not well trained. In the future, in order to improve the consistency, the scoring guideline 

needs to be improved, and workflow optimized to better train users before scoring.  
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Table 24 Intra-class correlation scores for human evaluation. 

 User 1 vs. User 2 User 3 vs. User 4 

 relevance quality match relevance quality match 

Gold 0.311 0.117 0.455 0.182 0 -0.603 

𝑫𝑳𝒓𝒂𝒏𝒌 0.684 0 0.593 0.611 0.495 0.773 

𝑹𝒖𝒍𝒆𝒓𝒂𝒏𝒌 0.398 0.107 0.415 0.386 0.301 0.287 
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Chapter V 

Conclusion 

 
1. Summary of key findings 

This is an initial study to investigate methods to generate text from scientific tables in the 

biomedical literature, using RCT tables as a use case. In this study, I proposed an information 

model to represent both structural and semantic information in RCT tables, built annotated 

corpora for table structures, semantics, and linked text, and then developed both rule-based and 

deep learning-based methods for text generation from RCT tables. The key findings for each 

chapter are summarized as follows.  

In chapter 2, I first developed an information model to represent RCT tables. The model consists 

of semantic classes and their relations to represent both the structure and semantic information in 

an RCT table. Then we developed a guideline to annotate RCT tables based on the developed 

information model. A set of 279 RCT tables were collected from the PMC and we annotated the 

following corpora: 1) linked pairs of 279 tables and corresponding description text in the articles; 

2) 50 tables with structural annotation; 3) all 279 tables with annotated entities in header cells 

(16, 700 labeled entities in total); and 4) 50 tables with annotated values for each data cell.  

These corpora were later used for developing the methods for text generation. 

Chapter 3 describes our approaches to extract structural and semantic information from RCT 

tables using annotated corpora. Based on our observation, different methods were developed for 

different types of information: rule-based methods were proposed to parse the structures of RCT 
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tables, as well as values in data cells; and machine learning and deep learning-based methods 

were used to recognize entities in table headers. Our evaluation shows good performance for all 

three tasks, with an accuracy of 0.9844 for structural parsing, an F1 score of 0.9260 for entity 

recognition in headers, and an accuracy of 0.9098 for value extraction from data cells. To 

address the issue of limited context of entities in headers, we proposed a new method to integrate 

other structurally related cells with the target headers and our method improved the entity 

recognition performance by 1.8% (0.9081 vs. 0.9260).  

The methods to generate text from parsed RCT tables were described in Chapter 4. We first 

developed a rule-based system to summarize the major findings of RCT tables and generated 

corresponding texts by following the classic framework for data-to-text task [100], which we 

believe is the first application to the biomedical table-to-text generation. We then investigated 

the use of deep learning for this task and we realized the limitation of the small dataset that we 

have. To address this issue, we proposed two strategies: 1) leverage the rule-based content 

selection component, and 2) implement a new NLG algorithm that is designed for text generation 

using smaller datasets. Our evaluation using automatic metrics of BLEU and ROUGE shows that 

rule-based system achieved low performance (BLEU 3.07 and ROUGE 0.69) and DL-based 

hybrid system achieved improved performance (BLEU 5.69 and ROUGE 2.44), indicating the 

effectiveness of the DL-based strategies. Furthermore, to address the limitations of the automatic 

metrics, we further developed human-based evaluation metrics which judge the generated text in 

terms of its relevance, grammatical quality and matching by human reviewer. A user study by 

four reviewers was conducted and it showed that the texts generated by the developed methods 

received lower but close scores to that for the original text in articles, demonstrating the 

feasibility of our approaches.  
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2. Innovations and contributions 

2.1 Innovations 

To the best of our knowledge, this is the first study that attempts to generate descriptive text from 

scientific tables in biomedical articles (i.e., RCT tables). A number of unique challenges were 

identified through the study and a series of innovative methods and strategies were developed to 

address these challenges, including: 

x A new information model was developed to represent both structural and semantic 

information in RCT tables. Although there are a few studies that proposed models to 

represent the structure of scientific tables in biomedical domain, none of them could 

represent semantic information of tables. Our proposed model can represent both 

structural and semantic information of RCT tables, which provides a solid foundation for 

further text generation.  

x An innovative method that can effectively extract biomedical entities from RCT tables 

was developed. Although numerous studies had been conducted to extract named entities 

from biomedical text, very few studies worked on extracting entities from biomedical 

tables, which often lack context information. To address this issue, we proposed a novel 

strategy to merge relevant table structures (e.g., headers and sub-headers) into one 

sequence for entity recognition and this shows improved performance. This method could 

be generalizable to entity recognition from tables in other domains.  

x Although a general framework exists for rule-based text generation from concepts, it does 

not provide specific approaches, tools, or implementations for a specific NLG task. Our 

rule-based text generation system from RCT tables is one of the first implementations on 
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generating text for scientific tables in the biomedical domain, which provides guidance 

for other similar biomedical text generation applications.   

x Our hybrid text generation approach that integrates the rule-based content selection and 

the DL-based few-shot algorithm provides a novel and effective solution for biomedical 

text generation tasks with limited annotated data, which has not been done in any 

previous study.  

x We also developed new metrics for human-based evaluation for text generation. 

2.2 Contributions 

This work contributes to the areas of biomedical informatics in the following aspects. 

x An information model for RCT tables was developed. It represents both structural and 

semantic information of scientific tables in biomedical articles and it could be used and 

extended for representing scientific tables in other biomedical sub-domains (e.g., specific 

disease areas).  

x Annotated tables and linked texts in the biomedical domain were created and will be 

made available for public use. It serves as a great resource not only for the specific task 

here, but also for other table-to-text tasks in the biomedical domain, thus accelerating 

research activities in this area.   

x New methods, such as entity recognition for RCT tables and hybrid text generation for 

smaller datasets, have been developed in this study. They will advance not only table-to-

text methods in the biomedical domain, but also similar tasks in other domains.  
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3. Limitations and future work 

As an initial attempt, this study has several limitations. First of all, we limited the scope to 

baseline tables in RCT studies. Other scientific tables in biomedical literature may have different 

structures and semantic complexity. Therefore, models developed here may not be directly 

applied to other scientific tables and additional tuning of the methods is needed when we extend 

to other types of tables in the biomedical domain. In the future we will expand our studies to 

other types of scientific tables (e.g. outcome tables of RCT studies), by refining the information 

model, content selection methods, and text generation methods. Moreover, as discussed 

previously, the descriptive text in the corpus was collected from original articles, which are 

subjectively written by individual authors. Text generation models may produce correct 

description but will not be evaluated favorably using that gold standard data. Therefore, these 

texts need to be refined by human experts in the future. Furthermore, although the DL model in 

the hybrid system achieved better performance than the rule-based system, it sometimes 

generated texts containing concepts and values that are not shown in the source table. This could 

be a critical issue in cases where accurate information is important. We should develop 

additional solutions to solve this problem in the future. Lastly, in the study, human based 

evaluation was conducted, however, the user study was time-consuming and required a large 

amount of human resources. In the future we will focus on developing automated metrics that 

can effectively measure the relevance, quality and matching, which can save more resources and 

be more useful in practice.   
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4. Conclusion 

In this work, I built valuable resources and developed novel methods for information extraction 

and text generation from RCT tables. The results show that synthetic text generated by our 

system is comparable to human-written text, indicating the feasibility of this approach. To the 

best of my knowledge, this is the first study to generate text from scientific tables in the 

biomedical domain. We believe that the resources (e.g., the information model and annotated 

corpora) and methods (e.g., the entity recognition from tables and the hybrid text generation 

approach) developed in this study would be valuable to other biomedical or open domain NLP 

research and applications.
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