65 research outputs found

    Classical and Bayesian Linear Data Estimators for Unique Word OFDM

    Full text link
    Unique word - orthogonal frequency division multiplexing (UW-OFDM) is a novel OFDM signaling concept, where the guard interval is built of a deterministic sequence - the so-called unique word - instead of the conventional random cyclic prefix. In contrast to previous attempts with deterministic sequences in the guard interval the addressed UW-OFDM signaling approach introduces correlations between the subcarrier symbols, which can be exploited by the receiver in order to improve the bit error ratio performance. In this paper we develop several linear data estimators specifically designed for UW-OFDM, some based on classical and some based on Bayesian estimation theory. Furthermore, we derive complexity optimized versions of these estimators, and we study their individual complex multiplication count in detail. Finally, we evaluate the estimators' performance for the additive white Gaussian noise channel as well as for selected indoor multipath channel scenarios.Comment: Preprint, 13 page

    Study and implementation of a low complexity receiver using TCH codes

    Get PDF
    The use of coding in telecommunications systems reveals to be a technique with an essential contribution to the improvement of the recovery of transmitted signals. Depending on the circumstances to which a signal is subjected at transmission, by recurring to coding, it is possible to attenuate the unfavorable effects that result from this process, obtaining a signal with superior quality in comparison with a scenario where the presence of coding is absent. This study aims to test the feasibility of a high-rate wireless communications system using TCH codes being applied to an OFDM signal, subjected to noise components introduced by a wireless AWGN channel, considering a free path propagation model. Due to their correlation properties, the use of TCH codes reveals to be adequate since they allow the same codewords to be used to realize both error correction and channel estimation, mitigating the channels effects, leading to the realization of a receiver with lower complexity. With the intent of performing a qualitative analysis to this system, a simple simulation is executed in MATLAB where an OFDM signal is generated, being therefore applied various TCH codes and, through channel estimation, obtain the BER for their respective code lengths and, consequently, coding gains. The results were obtained for the modulation indexes of 16, 64 and 256-QAM. These demonstrate that the implementation of TCH codes is a viable option to reduce the rate of recovered errors, enabling the reception of a signal with better reliability, especially for higher code lengths and modulation indexes.O uso de codificação em sistemas de telecomunicações revela-se uma técnica com um contributo essencial na melhoria da recuperação de sinais transmitidos. Dependendo das circunstâncias às quais um sinal é submetido aquando a sua transmissão, com recurso à codificação, é possível atenuar os efeitos adversos resultantes deste processo, obtendo uma qualidade no sinal recebido superior face a um cenário com ausência da mesma. Este estudo tem como objetivo testar a exequibilidade de um sistema de comunicações sem fios para alto débito usando códigos TCH e aplicando-os a um sinal OFDM, sujeito a componentes de ruído introduzidos por um canal sem fios AWGN, considerando um modelo de propagação em espaço livre. Devido às propriedades de correlação destes códigos, a sua utilização revela-se adequada pois permite que as mesmas palavras de código sejam utilizadas para efetuar correção de erros, minimizando os efeitos do canal, possibilitando o desenvolvimento de um recetor com menor complexidade. Visando efetuar uma análise qualitativa do sistema, é realizada uma simulação simples em MATLAB onde é gerado um sinal OFDM ao qual são aplicados diversos códigos TCH, realizando estimação de canal com a finalidade de obter o BER para os diferentes comprimentos dos códigos e, consequentemente, ganhos de codificação relativos aos mesmos. Os resultados obtidos foram realizados para os índices de modulação 16, 64 e 256-QAM. Estes demonstram que o uso destes códigos é uma opção viável para reduzir os erros detetados, permitindo recuperar o sinal com maior fiabilidade, especialmente para comprimentos de código e índices de modulação elevados

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Design and implementation of a downlink MC-CDMA receiver

    Get PDF
    Cette thèse présente une étude d'un système complet de transmission en liaison descendante utilisant la technologie multi-porteuse avec l'accès multiple par division de code (Multi-Carrier Code Division Multiple Access, MC-CDMA). L'étude inclut la synchronisation et l'estimation du canal pour un système MC-CDMA en liaison descendante ainsi que l'implémentation sur puce FPGA d'un récepteur MC-CDMA en liaison descendante en bande de base. Le MC-CDMA est une combinaison de la technique de multiplexage par fréquence orthogonale (Orthogonal Frequency Division Multiplexing, OFDM) et de l'accès multiple par répartition de code (CDMA), et ce dans le but d'intégrer les deux technologies. Le système MC-CDMA est conçu pour fonctionner à l'intérieur de la contrainte d'une bande de fréquence de 5 MHz pour les modèles de canaux intérieur/extérieur pédestre et véhiculaire tel que décrit par le "Third Genaration Partnership Project" (3GPP). La composante OFDM du système MC-CDMA a été simulée en utilisant le logiciel MATLAB dans le but d'obtenir des paramètres de base. Des codes orthogonaux à facteur d'étalement variable (OVSF) de longueur 8 ont été choisis comme codes d'étalement pour notre système MC-CDMA. Ceci permet de supporter des taux de transmission maximum jusquà 20.6 Mbps et 22.875 Mbps (données non codées, pleine charge de 8 utilisateurs) pour les canaux intérieur/extérieur pédestre et véhiculaire, respectivement. Une étude analytique des expressions de taux d'erreur binaire pour le MC-CDMA dans un canal multivoies de Rayleigh a été réalisée dans le but d'évaluer rapidement et de façon précise les performances. Des techniques d'estimation de canal basées sur les décisions antérieures ont été étudiées afin d'améliorer encore plus les performances de taux d'erreur binaire du système MC-CDMA en liaison descendante. L'estimateur de canal basé sur les décisions antérieures et utilisant le critère de l'erreur quadratique minimale linéaire avec une matrice' de corrélation du canal de taille 64 x 64 a été choisi comme étant un bon compromis entre la performance et la complexité pour une implementation sur puce FPGA. Une nouvelle séquence d'apprentissage a été conçue pour le récepteur dans la configuration intérieur/extérieur pédestre dans le but d'estimer de façon grossière le temps de synchronisation et le décalage fréquentiel fractionnaire de la porteuse dans le domaine du temps. Les estimations fines du temps de synchronisation et du décalage fréquentiel de la porteuse ont été effectués dans le domaine des fréquences à l'aide de sous-porteuses pilotes. Un récepteur en liaison descendante MC-CDMA complet pour le canal intérieur /extérieur pédestre avec les synchronisations en temps et en fréquence en boucle fermée a été simulé avant de procéder à l'implémentation matérielle. Le récepteur en liaison descendante en bande de base pour le canal intérieur/extérieur pédestre a été implémenté sur un système de développement fabriqué par la compagnie Nallatech et utilisant le circuit XtremeDSP de Xilinx. Un transmetteur compatible avec le système de réception a également été réalisé. Des tests fonctionnels du récepteur ont été effectués dans un environnement sans fil statique de laboratoire. Un environnement de test plus dynamique, incluant la mobilité du transmetteur, du récepteur ou des éléments dispersifs, aurait été souhaitable, mais n'a pu être réalisé étant donné les difficultés logistiques inhérentes. Les taux d'erreur binaire mesurés avec différents nombres d'usagers actifs et différentes modulations sont proches des simulations sur ordinateurs pour un canal avec bruit blanc gaussien additif

    Unified Framework for Multicarrier and Multiple Access based on Generalized Frequency Division Multiplexing

    Get PDF
    The advancements in wireless communications are the key-enablers of new applications with stringent requirements in low-latency, ultra-reliability, high data rate, high mobility, and massive connectivity. Diverse types of devices, ranging from tiny sensors to vehicles, with different capabilities need to be connected under various channel conditions. Thus, modern connectivity and network techniques at all layers are essential to overcome these challenges. In particular, the physical layer (PHY) transmission is required to achieve certain link reliability, data rate, and latency. In modern digital communications systems, the transmission is performed by means of a digital signal processing module that derives analog hardware. The performance of the analog part is influenced by the quality of the hardware and the baseband signal denoted as waveform. In most of the modern systems such as fifth generation (5G) and WiFi, orthogonal frequency division multiplexing (OFDM) is adopted as a favorite waveform due to its low-complexity advantages in terms of signal processing. However, OFDM requires strict requirements on hardware quality. Many devices are equipped with simplified analog hardware to reduce the cost. In this case, OFDM does not work properly as a result of its high peak-to-average power ratio (PAPR) and sensitivity to synchronization errors. To tackle these problems, many waveforms design have been recently proposed in the literature. Some of these designs are modified versions of OFDM or based on conventional single subcarrier. Moreover, multicarrier frameworks, such as generalized frequency division multiplexing (GFDM), have been proposed to realize varieties of conventional waveforms. Furthermore, recent studies show the potential of using non-conventional waveforms for increasing the link reliability with affordable complexity. Based on that, flexible waveforms and transmission techniques are necessary to adapt the system for different hardware and channel constraints in order to fulfill the applications requirements while optimizing the resources. The objective of this thesis is to provide a holistic view of waveforms and the related multiple access (MA) techniques to enable efficient study and evaluation of different approaches. First, the wireless communications system is reviewed with specific focus on the impact of hardware impairments and the wireless channel on the waveform design. Then, generalized model of waveforms and MA are presented highlighting various special cases. Finally, this work introduces low-complexity architectures for hardware implementation of flexible waveforms. Integrating such designs with software-defined radio (SDR) contributes to the development of practical real-time flexible PHY.:1 Introduction 1.1 Baseband transmission model 1.2 History of multicarrier systems 1.3 The state-of-the-art waveforms 1.4 Prior works related to GFDM 1.5 Objective and contributions 2 Fundamentals of Wireless Communications 2.1 Wireless communications system 2.2 RF transceiver 2.2.1 Digital-analogue conversion 2.2.2 QAM modulation 2.2.3 Effective channel 2.2.4 Hardware impairments 2.3 Waveform aspects 2.3.1 Single-carrier waveform 2.3.2 Multicarrier waveform 2.3.3 MIMO-Waveforms 2.3.4 Waveform performance metrics 2.4 Wireless Channel 2.4.1 Line-of-sight propagation 2.4.2 Multi path and fading process 2.4.3 General baseband statistical channel model 2.4.4 MIMO channel 2.5 Summary 3 Generic Block-based Waveforms 3.1 Block-based waveform formulation 3.1.1 Variable-rate multicarrier 3.1.2 General block-based multicarrier model 3.2 Waveform processing techniques 3.2.1 Linear and circular filtering 3.2.2 Windowing 3.3 Structured representation 3.3.1 Modulator 3.3.2 Demodulator 3.3.3 MIMO Waveform processing 3.4 Detection 3.4.1 Maximum-likelihood detection 3.4.2 Linear detection 3.4.3 Iterative Detection 3.4.4 Numerical example and insights 3.5 Summary 4 Generic Multiple Access Schemes 57 4.1 Basic multiple access and multiplexing schemes 4.1.1 Infrastructure network system model 4.1.2 Duplex schemes 4.1.3 Common multiplexing and multiple access schemes 4.2 General multicarrier-based multiple access 4.2.1 Design with fixed set of pulses 4.2.2 Computational model 4.2.3 Asynchronous multiple access 4.3 Summary 5 Time-Frequency Analyses of Multicarrier 5.1 General time-frequency representation 5.1.1 Block representation 5.1.2 Relation to Zak transform 5.2 Time-frequency spreading 5.3 Time-frequency block in LTV channel 5.3.1 Subcarrier and subsymbol numerology 5.3.2 Processing based on the time-domain signal 5.3.3 Processing based on the frequency-domain signal 5.3.4 Unified signal model 5.4 summary 6 Generalized waveforms based on time-frequency shifts 6.1 General time-frequency shift 6.1.1 Time-frequency shift design 6.1.2 Relation between the shifted pulses 6.2 Time-frequency shift in Gabor frame 6.2.1 Conventional GFDM 6.3 GFDM modulation 6.3.1 Filter bank representation 6.3.2 Block representation 6.3.3 GFDM matrix structure 6.3.4 GFDM demodulator 6.3.5 Alternative interpretation of GFDM 6.3.6 Orthogonal modulation and GFDM spreading 6.4 Summary 7 Modulation Framework: Architectures and Applications 7.1 Modem architectures 7.1.1 General modulation matrix structure 7.1.2 Run-time flexibility 7.1.3 Generic GFDM-based architecture 7.1.4 Flexible parallel multiplications architecture 7.1.5 MIMO waveform architecture 7.2 Extended GFDM framework 7.2.1 Architectures complexity and flexibility analysis 7.2.2 Number of multiplications 7.2.3 Hardware analysis 7.3 Applications of the extended GFDM framework 7.3.1 Generalized FDMA 7.3.2 Enchantment of OFDM system 7.4 Summary 7 Conclusions and Future work

    Turbo equalization for multiple-input multiple-output (MIMO) wireless communication systems

    Get PDF
    This dissertation investigates both of the frequency domain and time domain turbo equalization with multiple-input multiple-output (MIMO) fading channels for radio frequency and underwater acoustic communications. First, a low complexity frequency domain turbo equalization (FDTE) is proposed for the MIMO systems with zero padding (ZP) or cyclic prefix (CP) inserted between the transmitted data blocks and its performance is tested on the real-world UWA communications experiments. Second, as high speed communication system requires efficient bandwidth usage and power consumption, CP or ZP is not transmitted as auxiliary information. An inter-block interference cancelation and CP reconstruction algorithm is developed to re-arrange the channel matrix into a block diagonal one. This improvement makes the FDTE effectively detects the continuous data stream from the high speed UWA communications and its performance has been verified by processing data collected from the UWA communications experiment. Finally, a low complexity soft interference cancelation (SIC) time domain turbo equalizer for MIMO systems with high level modulation is proposed. Compared with the conventional linear or nonlinear turbo equalizers, the proposed SIC turbo equalizer can theoretically reach the bound set up by the ideal match filter and its bit error rate (BER) performance from Monte Carlo simulation achieves a lower error floor as well as a more rapid convergence speed. --Abstract, page iv

    Fiber-based orthogonal frequency division multiplexing transmission systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is the underlying modulation and transmission technology behind the success of modern wireless standards for both cellular, digital television and digital radio communications and also for Digital Subscriber Line wired access. Higher data rates to handle and the special nature of electronic-optic conversions and of optical wave propagation, can hold the key as to why it is only now that OFDM signal transmission over fiber is starting to take off. In this Master Thesis Project we aim at establishing the basis of OFDM transmission over optical fiber for both direct-detection as well as coherent systems, for different optical modulation formats at the emitter; and to characterize their performance as a function of key parameters such as fiber chromatic dispersion, the amount of Cyclic Prefix, Peak to Average Power Ratio, etc. through the use of optical transmission simulation packages such as Virtual Photonics Inc
    corecore