374 research outputs found

    Joint detection and channel estimation for MIMO systems with SC-FDE modulations

    Get PDF
    SC modulation (Single-Carrier) with FDE (Frequency-Domain Equalization) allows excellent performance in severely time-dispersive channels, provided that accurate channel estimates are available at the receiver. For this purpose, pilot symbols and/or training sequences are usually multiplexed with data symbols, which lead to spectral degradation. As an alternative, we can use implicit pilots (i.e., pilots superimposed to data). In this paper we consider MIMO SC-FDE systems where the channel estimation is based on either explicit or implicit pilots, for comparison purposes. An iterative receiver with joint equalization, turbo decoding and channel estimation was employed for optimum results, and to reduce the high interference levels between data and pilots (for the implicit pilots). The main differences between the different schemes are discussed and the performance results show that the use of the proposed techniques for channel estimation yield excellent results.info:eu-repo/semantics/acceptedVersio

    Joint Decision-Directed Channel and Noise-Variance Estimation for MIMO OFDM/SDMA Systems Based on Expectation-Conditional Maximization

    No full text
    A joint channel impulse response (CIR) and noise-variance estimation scheme is proposed for multiuser multiple-input–multiple-output (MIMO) orthogonal frequency-division multiplexing/space-division multiple access (OFDM/SDMA) systems, which is based on the expectation-conditional maximization (ECM) algorithm. Multiple users communicating over fading channels exhibiting a range of different characteristics are considered in this paper. Channel estimation becomes quite challenging in this scenario since an increased number of independent transmitter–receiver links having different statistical characteristics have to be simultaneously estimated for each subcarrier. To cope with this scenario, we design an ECM-based joint CIR and noise-variance estimator for multiuser MIMO OFDM/SDMA systems, which is capable of simultaneously estimating diverse CIRs and noise variance. Furthermore, we propose a forward error code (FEC)-aided decision-directed channel estimation scheme based on the ECM algorithm, which further improves the ECM algorithm by exploiting the error correction capability of an FEC decoder for iteratively exchanging information between the decoder and the ECM algorithm

    Iterative channel estimation techniques for multiple input multiple output orthogonal frequency division multiplexing systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2007Includes bibliographical references (leaves: 77-78)Text in English; Abstract: Turkish and Englishxii, 78 leavesOrthogonal frequency division multiplexing (OFDM) is well-known for its efficient high speed transmission and robustness to frequency-selective fading channels. On the other hand, multiple-input multiple-output (MIMO) antenna systems have the ability to increase capacity and reliability of a wireless communication system compared to single-input single-output (SISO) systems. Hence, the integration of the two technologies has the potential to meet the ever growing demands of future communication systems. In these systems, channel estimation is very crucial to demodulate the data coherently. For a good channel estimation, spectral efficiency and lower computational complexity are two important points to be considered. In this thesis, we explore different channel estimation techniques in order to improve estimation performance by increasing the bandwidth efficiency and reducing the computational complexity for both SISO-OFDM and MIMO-OFDM systems. We first investigate pilot and Expectation-Maximization (EM)-based channel estimation techniques and compare their performances. Next, we explore different pilot arrangements by reducing the number of pilot symbols in one OFDM frame to improve bandwidth efficiency. We obtain the bit error rate and the channel estimation performance for these pilot arrangements. Then, in order to decrase the computational complexity, we propose an iterative channel estimation technique, which establishes a link between the decision block and channel estimation block using virtual subcarriers. We compare this proposed technique with EM-based channel estimation in terms of performance and complexity. These channel estimation techniques are also applied to STBC-OFDM and V-BLAST structured MIMO-OFDM systems. Finally, we investigate a joint EM-based channel estimation and signal detection technique for V-BLAST OFDM system

    Superimposed Pilots are Superior for Mitigating Pilot Contamination in Massive MIMO

    Get PDF
    In this paper, superimposed pilots are introduced as an alternative to time-multiplexed pilot and data symbols for mitigating pilot contamination in massive multiple-input multiple-output (MIMO) systems. We propose a non-iterative scheme for uplink channel estimation based on superimposed pilots and derive an expression for the uplink signal-to-interference-plus-noise ratio (SINR) at the output of a matched filter employing this channel estimate. Based on this expression, we observe that power control is essential when superimposed pilots are employed. Moreover, the quality of the channel estimate can be improved by reducing the interference that results from transmitting data alongside the pilots, and an intuitive iterative data-aided scheme that reduces this component of interference is also proposed. Approximate expressions for the uplink SINR are provided for the iterative data-aided method as well. In addition, we show that a hybrid system with users utilizing both time-multiplexed and superimposed pilots is superior to an optimally designed system that employs only time-multiplexed pilots, even when the non-iterative channel estimate is used to build the detector and precoder. We also describe a simple approach to implement this hybrid system by minimizing the overall inter and intra-cell interference. Numerical simulations demonstrating the performance of the proposed channel estimation schemes and the superiority of the hybrid system are also provided

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Channel estimation, data detection and carrier frequency offset estimation in OFDM systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) plays an important role in the implementation of high data rate communication. In this thesis, the problems of data detection and channel and carrier frequency offset estimation in OFDM systems are studied. Multi-symbol non-coherent data detection is studied which performs data detection by processing multiple symbols without the knowledge of the channel impulse response (CIR). For coherent data detection, the CIR needs to be estimated. Our objective in this thesis is to work on blind channel estimators which can extract the CIR using just one block of received OFDM data. A blind channel estimator for (Single Input Multi Output) SIMO OFDM systems is derived. The conditions under which the estimator is identifiable is studied and solutions to resolve the phase ambiguity of the proposed estimator are given.A channel estimator for superimposed OFDM systems is proposed and its CRB is derived. The idea of simultaneous transmission of pilot and data symbols on each subcarrier, the so called superimposed technique, introduces the efficient use of bandwidth in OFDM context. Pilot symbols can be added to data symbols to enable CIR estimation without sacrificing the data rate. Despite the many advantages of OFDM, it suffers from sensitivity to carrier frequency offset (CFO). CFO destroys the orthogonality between the subcarriers. Thus, it is necessary for the receiver to estimate and compensate for the frequency offset. Several high accuracy estimators are derived. These include CFO estimators, as well as a joint iterative channel/CFO estimator/data detector for superimposed OFDM. The objective is to achieve CFO estimation with using just one OFDM block of received data and without the knowledge of CIR

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed
    corecore