42 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Carrier frequency offset estimation for orthogonal frequency division multiplexing systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is an attractive modulation scheme used in wideband communications because it essentially transforms the frequency selective channel into a flat fading channel. Furthermore, the combination of multiple-input multiple-output (MIMO) signal processing and OFDM seems to be an ideal solution for supporting reliable high data rate transmission for future wireless communication systems. However, despite the great advantages OFDM systems offer, such systems present challenges of their own. One of the most important challenges is carrier frequency offset (CFO) estimation, which is crucial in building reliable wireless communication systems. In this thesis, we consider CFO estimation for the downlink and uplink OFDM systems. For the downlink channel, we focus on blind schemes where the cost functions are designed such that they exploit implicit properties associated with the transmitted signal where no training signal is required. By taking the unconditional maximum likelihood approach, we propose a virtual subcarrier based blind scheme for MIMO-OFDM systems in the presence of spatial correlation. We conclude that the presence of spatial correlation does not impact the CFO estimation significantly. We also propose a CFO estimator for OFDM systems with constant modulus signaling and extend it to MIMO-OFDM systems employing orthogonal space-time block coding. The curve fitting method is used which gives a closed-form expression for CFO estimation. Therefore, the proposed scheme provides an excellent trade-off between complexity and performance as compared to prominent existing estimation schemes. Furthermore, we design a blind CFO estimation scheme for differentially modulated OFDM systems based on the finite alphabet constraint. It can achieve better performance at high signal-to-noise ratios (SNRs) at the expense of some additional computational complexity as compared to the schemes based on the constant modulus constraint. The constrained Cramer-Rao lower bound (CRLB) is also derived for the blind estimation scheme. As for the uplink channel, which is a more challenging problem, we propose two training aided schemes. One is based on a scalar extended Kalman filter (EKF) and the other one is on the variable projection (VP) algorithm. For both schemes, we assume that the system uses an arbitrary subcarrier assignment scheme, which is more involved than the other two schemes, namely block and interleaved subcarrier assignment scheme. In the first scheme, to apply the scalar EKF algorithm, we represent the measurement equation as a function of a scalar state, i.e., each user's CFO, in lieu of a state vector which consists of both CFO and channel coefficients by replacing the unknown channel coefficients with a nonlinear function of CFO. This proposed scheme can achieve the CRLB at high SNR for two users with a complexity lower than that of the alternating-projection method. In the second scheme, the VP algorithm is used for CFO estimation which is followed with a robust minimum mean square error (MMSE) estimator for channel estimation. In the VP algorithm, the nonlinear least square cost function is optimized numerically by updating the CFOs and channel coefficients separately at each iteration. We demonstrate that this proposed scheme is superior to the existing methods in terms of convergence speed, computational complexity and estimation performance

    Techniques d’Estimation de Canal et de Décalage de Fréquence Porteuse pour Systèmes Sans-fil Multiporteuses en Liaison Montante

    Get PDF
    Multicarrier modulation is the common feature of high-data rate mobile wireless systems. In that case, two phenomena disturb the symbol detection. Firstly, due to the relative transmitter-receiver motion and a difference between the local oscillator (LO) frequency at the transmitter and the receiver, a carrier frequency offset (CFO) affects the received signal. This leads to an intercarrier interference (ICI). Secondly, several versions of the transmitted signal are received due to the wireless propagation channel. These unwanted phenomena must be taken into account when designing a receiver. As estimating the multipath channel and the CFO is essential, this PhD deals with several CFO and channel estimation methods based on optimal filtering. Firstly, as the estimation issue is nonlinear, we suggest using the extended Kalman filter (EKF). It is based on a local linearization of the equations around the last state estimate. However, this approach requires a linearization based on calculations of Jacobians and Hessians matrices and may not be a sufficient description of the nonlinearity. For these reasons, we can consider the sigma-point Kalman filter (SPKF), namely the unscented Kalman Filter (UKF) and the central difference Kalman filter (CDKF). The UKF is based on the unscented transformation whereas the CDKF is based on the second order Sterling polynomial interpolation formula. Nevertheless, the above methods require an exact and accurate a priori system model as well as perfect knowledge of the additive measurementnoise statistics. Therefore, we propose to use the H∞ filtering, which is known to be more robust to uncertainties than Kalman filtering. As the state-space representation of the system is non-linear, we first evaluate the “extended H∞ filter”, which is based on a linearization of the state-space equations like the EKF. As an alternative, the “unscented H∞ filter”, which has been recently proposed in the literature, is implemented by embedding the unscented transformation into the “extended H∞ filter” and carrying out the filtering by using the statistical linear error propagation approach.Multicarrier modulation is the common feature of high-data rate mobile wireless systems. In that case, two phenomena disturb the symbol detection. Firstly, due to the relative transmitter-receiver motion and a difference between the local oscillator (LO) frequency at the transmitter and the receiver, a carrier frequency offset (CFO) affects the received signal. This leads to an intercarrier interference (ICI). Secondly, several versions of the transmitted signal are received due to the wireless propagation channel. These unwanted phenomena must be taken into account when designing a receiver. As estimating the multipath channel and the CFO is essential, this PhD deals with several CFO and channel estimation methods based on optimal filtering. Firstly, as the estimation issue is nonlinear, we suggest using the extended Kalman filter (EKF). It is based on a local linearization of the equations around the last state estimate. However, this approach requires a linearization based on calculations of Jacobians and Hessians matrices and may not be a sufficient description of the nonlinearity. For these reasons, we can consider the sigma-point Kalman filter (SPKF), namely the unscented Kalman Filter (UKF) and the central difference Kalman filter (CDKF). The UKF is based on the unscented transformation whereas the CDKF is based on the second order Sterling polynomial interpolation formula. Nevertheless, the above methods require an exact and accurate a priori system model as well as perfect knowledge of the additive measurementnoise statistics. Therefore, we propose to use the H∞ filtering, which is known to be more robust to uncertainties than Kalman filtering. As the state-space representation of the system is non-linear, we first evaluate the “extended H∞ filter”, which is based on a linearization of the state-space equations like the EKF. As an alternative, the “unscented H∞ filter”, which has been recently proposed in the literature, is implemented by embedding the unscented transformation into the “extended H∞ filter” and carrying out the filtering by using the statistical linear error propagation approach

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Semi-blind channel estimation for multiuser OFDM-IDMA systems.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal, Durban 2014.Over the last decade, the data rate and spectral efficiency of wireless mobile communications have been significantly enhanced. OFDM technology has been used in the development of advanced systems such as 3GPP LTE and terrestrial digital TV broadcasting. In general, bits of information in mobile communication systems are conveyed through radio links to receivers. The radio channels in mobile radio systems are usually multipath fading channels, which cause inter-symbol interference (ISI) in the received signal. The ability to know the channel impulse response (CIR) and Channel State Information (CSI) helps to remove the ISI from the signal and make coherent detection of the transmitted signal at the receiver end of the system easy and simple. The information about CIR and CSI are primarily provided by channel estimation. This thesis is focused on the development of multiple access communication technique, Multicarrier Interleave Division Multiple Access (MC-IDMA) and the corresponding estimation of the system channel. It compares various efficient channel estimation algorithms. Channel estimation of OFDM-IDMA scheme is important because the emphasis from previous studies assumed the implementation of MC-IDMA in a perfect scenario, where Channel State Information (CSI) is known. MC-IDMA technique incorporates three key features that will be common to the next generation communication systems; multiple access capability, resistance to multipath fading and high bandwidth efficiency. OFDM is almost completely immune to multipath fading effects and IDMA has a recently proposed multiuser capability scheme which employs random interleavers as the only method for user separation. MC-IDMA combines the features of OFDM and IDMA to produce a system that is Inter Symbol Interference (ISI) free and has higher data rate capabilities for multiple users simultaneously. The interleaver property of IDMA is used by MC-IDMA as the only means by which users are separated at the receiver and also its entire bandwidth expansion is devoted to low rate Forward Error Correction (FEC). This provides additional coding gain which is not present in conventional Multicarrier Multiuser systems, (MC-MU) such as Code Division Multiple Access (CDMA), Multicarrier-Code Division Multiple Access (MC-CDMA) systems, and others. The effect of channel fading and both cross-cell and intra-cell Multiple Access Interference (MAI) in MC-IDMA is suppressed efficiently by its low-cost turbo-type Chip-by-Chip (CBC) multiuser detection algorithm. We present the basic principles of OFDM-IDMA transmitter and receiver. Comparative studies between Multiple Access Scheme such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), CDMA and IDMA are carried out. A linear Minimum Mean Square Error (MMSE)-based estimation algorithm is adopted and implemented. This proposed algorithm is a non-data aided method that focuses on obtaining the CSI, remove ISI and reduce the complexity of the MMSE algorithm. However, to obtain a better and improved system performance, an improved MMSE algorithm and simplified MMSE using the structured correlation and reduced auto-covariance matrix are developed in this thesis and proposed for implementation of semi-blind channel estimation in OFDM-IDMA communication systems. The effectiveness of the adopted and proposed algorithms are implemented in a Rayleigh fading multipath channel with varying mobile speeds thus demonstrating the performance of the system in a practical scenario. Also, the implemented algorithms are compared to ascertain which of these algorithms offers a better and more efficient system performance, and with less complexity. The performance of the channel estimation algorithm is presented in terms of the mean square error (MSE) and bit error rate (BER) in both slow fading and fast fading multipath scenarios and the results are documented as well

    Timing and Frequency Synchronization and Channel Estimation in OFDM-based Systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) due to its appealing features, such as robustness against frequency selective fading and simple channel equalization, is adopted in communications systems such as WLAN, WiMAX and DVB. However, OFDM systems are sensitive to synchronization errors caused by timing and frequency offsets. Besides, the OFDM receiver has to perform channel estimation for coherent detection. The goal of this thesis is to investigate new methods for timing and frequency synchronization and channel estimation in OFDM-based systems. First, we investigate new methods for preamble-aided coarse timing estimation in OFDM systems. Two novel timing metrics using high order statistics-based correlation and differential normalization functions are proposed. The performance of the new timing metrics is evaluated using different criteria including class-separability, robustness to the carrier frequency offset, and computational complexity. It is shown that the new timing metrics can considerably increase the class-separability due to their more distinct values at correct and wrong timing instants, and thus give a significantly better detection performance than the existing timing metrics do. Furthermore, a new method for coarse estimation of the start of the frame is proposed, which remarkably reduces the probability of inter-symbol interference (ISI). The improved performances of the new schemes in multipath fading channels are shown by the probabilities of false alarm, missed-detection and ISI obtained through computer simulations. Second, a novel pilot-aided algorithm is proposed for the detection of integer frequency offset (IFO) in OFDM systems. By transforming the IFO into two new integer parameters, the proposed method can largely reduce the number of trial values for the true IFO. The two new integer parameters are detected using two different pilot sequences, a periodic pilot sequence and an aperiodic pilot sequence. It is shown that the new scheme can significantly reduce the computational complexity while achieving almost the same performance as the previous methods do. Third, we propose a method for joint timing and frequency synchronization and channel estimation for OFDM systems that operate in doubly selective channels. Basis expansion modeling (BEM) that captures the time variations of the channel is used to reduce the number of unknown channel parameters. The BEM coefficients along with the timing and frequency offsets are estimated by using a maximum likelihood (ML) approach. An efficient algorithm is then proposed for reducing the computational complexity of the joint estimation. The complexity of the new method is assessed in terms of the number of multiplications. The mean square estimation error of the proposed method is evaluated in comparison with previous methods, indicating a remarkable performance improvement by the new method. Fourth, we present a new scheme for joint estimation of CFO and doubly selective channel in orthogonal frequency division multiplexing systems. In the proposed preamble-aided method, the time-varying channel is represented using BEM. CFO and BEM coefficients are estimated using the principles of particle and Kalman filtering. The performance of the new method in multipath time-varying channels is investigated in comparison with previous schemes. The simulation results indicate a remarkable performance improvement in terms of the mean square errors of CFO and channel estimates. Fifth, a novel algorithm is proposed for timing and frequency synchronization and channel estimation in the uplink of orthogonal frequency division multiple access (OFDMA) systems by considering high-mobility situations and the generalized subcarrier assignment. By using BEM to represent a doubly selective channel, a maximum likelihood (ML) approach is proposed to jointly estimate the timing and frequency offsets of different users as well as the BEM coefficients of the time-varying channels. A space-alternating generalized expectation-maximization algorithm is then employed to transform the maximization problem for all users into several simpler maximization problems for each user. The computational complexity of the new timing and frequency offset estimator is analyzed and its performance in comparison with that of existing methods using the mean square error is evaluated . Finally, two novel approaches for joint CFO and doubly selective channel estimation in the uplink of multiple-input multiple-output orthogonal frequency division multiple access (MIMO-OFDMA) systems are presented. Considering high-mobility situations, where channels change within an OFDMA symbol interval, and the time varying nature of CFOs, BEM is employed to represent the time variations of the channel. Two new approaches are then proposed based on Schmidt Kalman filtering (SKF). The first approach utilizes Schmidt extended Kalman filtering for each user to estimate the CFO and BEM coefficients. The second approach uses Gaussian particle filter along with SKF to estimate the CFO and BEM coefficients of each user. The Bayesian Cramer Rao bound is derived, and performance of the new schemes are evaluated using mean square error. It is demonstrated that the new schemes can significantly improve the mean square error performance in comparison with that of the existing methods

    Achievable rates of iterative MIMO receivers over interference channels

    Get PDF
    In this thesis, we study the achievable rates of some interference communication schemes when iterative interference-cancellation (IC) is applied. We assume multiple-input multiple-output (MIMO) communication employing iterative receivers with linear front-ends which involves two modules concatenated serially and cooperating iteratively; a linear combiner based on minimum-mean-square-error (MMSE) detection or maximal-ratio-combining (MRC) and a SISO decoder. We investigate the achievable rates of this receiver when the transmitted signal is Gaussian-distributed with hypothetical erasure-type feedback from the decoder to the combiner and a more practical case with large-size QAM constellations with log-likelihood-ratios (LLRs) being exchanged between the receiver's modules. The achievable rate is approximated by the area below the EXIT curve of the linear FE receiver. Some properties have been observed and mathematically been proved about the iterative MIMO receivers with linear front-end

    Capacity, coding and interference cancellation in multiuser multicarrier wireless communications systems

    Get PDF
    Multicarrier modulation and multiuser systems have generated a great deal of research during the last decade. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation generated with the inverse Discrete Fourier Transform, which has been adopted for standards in wireless and wire-line communications. Multiuser wireless systems using multicarrier modulation suffer from the effects of dispersive fading channels, which create multi-access, inter-symbol, and inter-carrier interference (MAI, ISI, ICI). Nevertheless, channel dispersion also provides diversity, which can be exploited and has the potential to increase robustness against fading. Multiuser multi-carrier systems can be implemented using Orthogonal Frequency Division Multiple Access (OFDMA), a flexible orthogonal multiplexing scheme that can implement time and frequency division multiplexing, and using multicarrier code division multiple access (MC-CDMA). Coding, interference cancellation, and resource sharing schemes to improve the performance of multiuser multicarrier systems on wireless channels were addressed in this dissertation. Performance of multiple access schemes applied to a downlink multiuser wireless system was studied from an information theory perspective and from a more practical perspective. For time, frequency, and code division, implemented using OFDMA and MC-CDMA, the system outage capacity region was calculated for a correlated fading channel. It was found that receiver complexity determines which scheme offers larger capacity regions, and that OFDMA results in a better compromise between complexity and performance than MC-CDMA. From the more practical perspective of bit error rate, the effects of channel coding and interleaving were investigated. Results in terms of coding bounds as well as simulation were obtained, showing that OFDMAbased orthogonal multiple access schemes are more sensitive to the effectiveness of the code to provide diversity than non-orthogonal, MC-CDMA-based schemes. While cellular multiuser schemes suffer mainly from MAI, OFDM-based broadcasting systems suffer from ICI, in particular when operating as a single frequency network (SFN). It was found that for SFN the performance of a conventional OFDM receiver rapidly degrades when transmitters have frequency synchronization errors. Several methods based on linear and decision-feedback ICI cancellation were proposed and evaluated, showing improved robustness against ICI. System function characterization of time-variant dispersive channels is important for understanding their effects on single carrier and multicarrier modulation. Using time-frequency duality it was shown that MC-CDMA and DS-CDMA are strictly dual on dispersive channels. This property was used to derive optimal matched filter structures, and to determine a criterion for the selection of spreading sequences for both DS and MC CDMA. The analysis of multiple antenna systems provided a unified framework for the study of DS-CDMA and MC-CDMA on time and frequency dispersive channels, which can also be used to compare their performance
    corecore