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Abstract

Timing and Frequency Synchronization and Channel Estimation

in OFDM-based Systems

Hamed Abdzadeh Ziabari, Ph.D.

Concordia University, 2017

Orthogonal frequency division multiplexing (OFDM) due to its appealing features,

such as robustness against frequency selective fading and simple channel equalization, is

adopted in communications systems such as WLAN, WiMAX and DVB. However, OFDM

systems are sensitive to synchronization errors caused by timing and frequency offsets.

Besides, the OFDM receiver has to perform channel estimation for coherent detection. The

goal of this thesis is to investigate new methods for timing and frequency synchronization

and channel estimation in OFDM-based systems.

First, we investigate new methods for preamble-aided coarse timing estimation in

OFDM systems. Two novel timing metrics using high order statistics-based correlation

and differential normalization functions are proposed. The performance of the new timing

metrics is evaluated using different criteria including class-separability, robustness to the

carrier frequency offset, and computational complexity. It is shown that the new timing

metrics can considerably increase the class-separability due to their more distinct values

at correct and wrong timing instants, and thus give a significantly better detection per-

formance than the existing timing metrics do. Furthermore, a new method for coarse

estimation of the start of the frame is proposed, which remarkably reduces the probabil-

ity of inter-symbol interference (ISI). The improved performances of the new schemes in

multipath fading channels are shown by the probabilities of false alarm, missed-detection

and ISI obtained through computer simulations. Second, a novel pilot-aided algorithm

is proposed for the detection of integer frequency offset (IFO) in OFDM systems. By

transforming the IFO into two new integer parameters, the proposed method can largely
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reduce the number of trial values for the true IFO. The two new integer parameters are

detected using two different pilot sequences, a periodic pilot sequence and an aperiodic

pilot sequence. It is shown that the new scheme can significantly reduce the computational

complexity while achieving almost the same performance as the previous methods do.

Third, we propose a method for joint timing and frequency synchronization and channel

estimation for OFDM systems that operate in doubly selective channels. Basis expansion

modeling (BEM) that captures the time variations of the channel is used to reduce the

number of unknown channel parameters. The BEM coefficients along with the timing

and frequency offsets are estimated by using a maximum likelihood (ML) approach. An

efficient algorithm is then proposed for reducing the computational complexity of the

joint estimation. The complexity of the new method is assessed in terms of the number of

multiplications. The mean square estimation error of the proposed method is evaluated

in comparison with previous methods, indicating a remarkable performance improvement

by the new method.

Fourth, we present a new scheme for joint estimation of CFO and doubly selective chan-

nel in orthogonal frequency division multiplexing systems. In the proposed preamble-aided

method, the time-varying channel is represented using BEM. CFO and BEM coefficients

are estimated using the principles of particle and Kalman filtering. The performance of

the new method in multipath time-varying channels is investigated in comparison with

previous schemes. The simulation results indicate a remarkable performance improvement

in terms of the mean square errors of CFO and channel estimates.

Fifth, a novel algorithm is proposed for timing and frequency synchronization and chan-

nel estimation in the uplink of orthogonal frequency division multiple access (OFDMA)

systems by considering high-mobility situations and the generalized subcarrier assignment.

By using BEM to represent a doubly selective channel, a maximum likelihood (ML) ap-

proach is proposed to jointly estimate the timing and frequency offsets of different users

as well as the BEM coefficients of the time-varying channels. A space-alternating general-

ized expectation-maximization algorithm is then employed to transform the maximization

problem for all users into several simpler maximization problems for each user. The com-

putational complexity of the new timing and frequency offset estimator is analyzed and
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its performance in comparison with that of existing methods using the mean square error

is evaluated .

Finally, two novel approaches for joint CFO and doubly selective channel estimation

in the uplink of multiple-input multiple-output orthogonal frequency division multiple

access (MIMO-OFDMA) systems are presented. Considering high-mobility situations,

where channels change within an OFDMA symbol interval, and the time varying nature

of CFOs, BEM is employed to represent the time variations of the channel. Two new

approaches are then proposed based on Schmidt Kalman filtering (SKF). The first ap-

proach utilizes Schmidt extended Kalman filtering for each user to estimate the CFO and

BEM coefficients. The second approach uses Gaussian particle filter along with SKF to

estimate the CFO and BEM coefficients of each user. The Bayesian Cramer Rao bound

is derived, and performance of the new schemes are evaluated using mean square error.

It is demonstrated that the new schemes can significantly improve the mean square error

performance in comparison with that of the existing methods.

v



To my loving family!

vi



Acknowledgments

My most sincere thanks go to my supervisors Dr. Wei-Ping Zhu and Dr. M.N.S. Swamy

for their continuous support, patience and insightful guidance during different stages of

my Ph.D studies and writing of this thesis.

I would like to express my gratitude to my committee members for their precious time

evaluating this thesis.

I wish to thank my friends and colleagues at Concordia University: Reza Movahedinia,

Ali Muhammad, Omid Saatlou, Hanif Rashtiyan, Ali Mohebbi, Hossein Kourkchi, and Dr.

Xiaodong Ji who walked by my side during the ups and downs of my research, shared my

moments of distress and joy, and made the past four years one of the most memorable

periods of my life.

Finally, I would like to express my eternal appreciation to my family for their everlast-

ing support and love. My special thanks go to my sister Bahareh without whose help and

support this thesis could have not come into existence.

vii



Contents

List of Figures xii

List of Tables xv

List of Symbols xvi

List of Abbreviations xviii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Frequency Selective Slow Fading Channels . . . . . . . . . . . . . . 3

1.2.2 Doubly Selective Channels . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 OFDM-Based Systems 15

2.1 Wireless Communication Channels . . . . . . . . . . . . . . . . . . . . . . 15

2.2 OFDM-Based Signal Model in Slow Fading Frequency Selective Channels . 18

2.3 OFDM-Based Signal Model in Doubly Selective Channels . . . . . . . . . 20

2.3.1 OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 OFDMA Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Synchronization in Slow Fading Frequency Selective Channels 24

viii



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Proposed Method: Timing Synchronization . . . . . . . . . . . . . . . . . . 25

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 nth Order Timing Metric . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Coarse Timing Synchronization . . . . . . . . . . . . . . . . . . . . 38

3.2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4.1 Class-separability in Terms of Means . . . . . . . . . . . . 41

3.2.4.2 Class-separability in Terms of Means and Variances . . . . 43

3.2.4.3 Performance Limit on the Order . . . . . . . . . . . . . . 47

3.2.4.4 Robustness to CFO . . . . . . . . . . . . . . . . . . . . . . 49

3.2.4.5 Computational Complexity . . . . . . . . . . . . . . . . . 50

3.2.4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Proposed Method: IFO Detection . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 New Method for IFO Detection . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.3.1 Computational Complexity . . . . . . . . . . . . . . . . . 65

3.3.3.2 Probability of Correct Detection . . . . . . . . . . . . . . 66

3.3.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Synchronization in Doubly Selective Channels 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Proposed Method: Joint Timing, CFO and Channel Estimation in OFDM

Systems Using ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Joint Timing, Frequency Offset, and Channel Estimation . . . . . . 75

4.2.3 Complexity Reduced Implementation . . . . . . . . . . . . . . . . . 77

4.2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.4.1 Computational Complexity . . . . . . . . . . . . . . . . . 79

4.2.4.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . 81

ix



4.3 Proposed Method: Joint CFO and Channel Estimation in OFDM Systems

Using Particle and Kalman Filtering . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1.1 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1.2 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Joint CFO and Channel Estimation in OFDM Systems . . . . . . . 88

4.3.3 Initialization and Resampling . . . . . . . . . . . . . . . . . . . . . 90

4.3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Proposed Method: Joint Timing, CFO and Channel Estimation in OFDMA

Systems Using ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2 Joint Timing, Frequency Offset, and Channel Estimation . . . . . . 96

4.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.3.1 Computational Complexity . . . . . . . . . . . . . . . . . 100

4.4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Proposed Method: Joint CFO and Channel Estimation in MIMO-OFDMA

Systems Using Particle and Kalman Filtering . . . . . . . . . . . . . . . . 105

4.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1.2 System Model Using BEM . . . . . . . . . . . . . . . . . . 107

4.5.1.3 Space State Model of Channel and CFO . . . . . . . . . . 108

4.5.2 A Schimdt Extended Kalman Filtering Based Approach . . . . . . . 109

4.5.3 A Schmidt Kalman and Gaussian Particle Filtering Based Approach 113

4.5.4 Bayesian Cramer Rao Bound (BCRB) . . . . . . . . . . . . . . . . 118

4.5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Conclusion and Future Work 127

5.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 129

x



Bibliography 131

Appendix A Derivation of the Means of MDC
n (d) 153

Appendix B Derivation of the Means of M IC
n (d) 156

xi



List of Figures

1 The structure of an OFDM system. . . . . . . . . . . . . . . . . . . . . . . 19

2 The structure of an OFDMA system. . . . . . . . . . . . . . . . . . . . . . 23

3 The structure of an OFDM frame and the received vectors rd and rd+
N
2 at

timing instants d = d̃ and d = Θ. . . . . . . . . . . . . . . . . . . . . . . . 38

4 The block diagram of generation of the nth order correlation function Pn(d). 38

5 The block diagram of generation of the nth order normalization function

ΔIC
n (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 The value of the proposed timing metric M IC
n (d) along with the timing

metric in [14] averaged over 10000 realizations in SUI-1 channel. . . . . . . 40

7 The class-separability using means of the timing metric MDC
n (d) obtained

from analytical formula and Mont Carlo simulation. . . . . . . . . . . . . . 43

8 The class-separability using means of CFO independent timing metrics

(M IC
n (d) and the metric in [14]) obtained from Mont Carlo simulation. . . 44

9 The illustration of class separability using the distance D = (m2 − σ2) −
(m1 + σ1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10 The class-separability using means and variances of the timing metricMDC
n (d)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11 The class-separability using means and variances of CFO independent tim-

ing metrics (M IC
n (d) and the metric in [14]). . . . . . . . . . . . . . . . . . 46

12 The class-separability using means and variances of M IC
n (d) and the metric

in [35–37]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

13 The standard deviation for the 6th and 8th order timing metrics (MDC
n (d)

and M IC
n (d)) at correct timing point. . . . . . . . . . . . . . . . . . . . . . 48

xii



14 Probabilities of false alarm and missed detection for MDC
n (d) in SUI-1 chan-

nel at SNR = 10 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

15 Probabilities of false alarm and missed detection for M IC
n (d) in SUI-1 chan-

nel at SNR = 10 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

16 Probabilities of false alarm and missed detection for M IC
n (d) in SUI-1 chan-

nel at SNR = 6 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

17 Probabilities of false alarm and missed detection for M IC
10 (d) in SUI-1 chan-

nel at SNR = 6 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

18 Probabilities of false alarm and missed detection for M IC
2 (d) in SUI-1 chan-

nel at SNR = 10 dB in comparison with those of [35–37]. . . . . . . . . . . 57

19 Probability of ISI for different timing schemes. . . . . . . . . . . . . . . . . 58

20 Probabilities of ISI for different timing schemes using CFO independent

timing metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

21 Probability of detection of different methods using two preambles in the

absence of residual FFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

22 Probability of detection of different methods using two preambles in the

presence of residual FFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

23 Probability of detection of different methods using one preamble in the

absence of residual FFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

24 Probability of detection of different methods using one preamble in the

presence of residual FFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

25 BER for different IFO detectors. . . . . . . . . . . . . . . . . . . . . . . . . 71

26 Block diagram of the proposed scheme. . . . . . . . . . . . . . . . . . . . . 80

27 NMSE of different channel estimators. . . . . . . . . . . . . . . . . . . . . 83

28 NMSE of different CFO estimators. . . . . . . . . . . . . . . . . . . . . . . 83

29 NMSE of timing estimates of different methods. . . . . . . . . . . . . . . . 84

30 NMSE of CFO and channel estimators versus SNR for different BEM. . . . 84

31 NMSE of timing, CFO and channel estimators versus fdNTs. . . . . . . . . 85

32 MSE of different CFO estimators for OFDM systems. . . . . . . . . . . . . 93

33 MSE of different channel estimators for OFDM systems. . . . . . . . . . . 93

xiii



34 MSE of CFO estimates for the proposed estimator using different BEM. . . 94

35 MSE of channel estimates for the proposed estimator using different BEM. 94

36 MSE of different timing estimators. . . . . . . . . . . . . . . . . . . . . . . 103

37 MSE of different CFO estimators for OFDMA systems. . . . . . . . . . . . 104

38 MSE of different channel estimators for OFDMA systems. . . . . . . . . . 104

39 BER of different methods in OFDMA systems. . . . . . . . . . . . . . . . . 105

40 MSE of CFO estimates versus SNR for different particle and ML based

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

41 MSE of channel estimates versus SNR for different particle and ML based

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

42 MSE of CFO and channel estimates versus SNR for the SEKF and BSEKF

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

43 MSE of CFO and channel estimates versus mobile speed at SNR = 8 dB

for particle-based methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

44 MSE of CFO and channel estimates versus mobile speed at SNR = 8 dB

for SEKF based approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

45 MSE of CFO and channel estimates versus SNR for different number of

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

46 MSE of CFO and channel estimates for different number of preambles a)

BSEKF approach, b) BSK-GPF approach. . . . . . . . . . . . . . . . . . . 125

xiv



List of Tables

3 Computational Complexities of Different Coarse Timing Methods . . . . . 52

4 Complexity of IFO Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Complexity of Timing, Frequency and Channel Estimators in OFDM Systems 81

6 Proposed Algorithm for OFDM Systems Based on Particle and Kalman

Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Proposed SAGE-Based Algorithm for OFDMA Systems . . . . . . . . . . . 101

8 Complexity of Estimators for OFDMA Systems . . . . . . . . . . . . . . . 102

9 Proposed BSEKF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10 Proposed BSK-GPF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 119

xv



List of Symbols

xT : Transpose of x

xH : Complex Conjugate Transpose of x

x: Element-wise Complex Conjugate of x

x∗: Complex Conjugate of x

E{x}: Expectaion of x

diag{x}: Diagonal Matrix with Diagonal Elements x

blkdiag{x1, · · · ,xN}: Block Diagonal Matrix with Matrices x1, · · · ,xN on the

Diagonal

|x|: Absolute Value of the Elements of x

‖x‖: Euclidean distance of the vector of x

Re{x}: Real Parts of the Elements of x

Im{x}: Imaginary Parts of the Elements of x

IN : N ×N Identity Matrix

0N×L: N × L Zero Matrix

⊗: Kronecker Product

◦: Hadamard product

N (
x;μ, σ2

)
: Univariate Gaussian Density with Mean μ and Variance

σ2.

N (
x;μμμ,ΣΣΣ

)
: Multivariate Gaussian Density with Mean Vector μμμ and

Covariance Matrix ΣΣΣ

U(a, b): Uniform Distribution in the Range [a, b]

xvi



\x: Exclusion of the Parameters of the xth User

|x|N : x modulo N

xvii



List of Abbreviations

AWGN: Additive White Gaussian Noise

BCRB: Bayesian Cramer Rao Bound

BEM: Basis Expansion Modeling

BER : Bit Error Rate

BSEKF : BEM Based Schmidt Extended Kalman Filtering

BSK-GPF: BEM Based Schmidt Kalman and Gaussian Particle Fil-

tering

CE-BEM : Complex Exponential Basis Expansion Modeling

CFO: Carrier Frequency Offset

CP: Cyclic Prefix

DDN: Double Differential Normalization

DFT: Discrete Fourier Transform

DoM: Difference of Magnitude

DPSS-BEM: Discrete Prolate Spheroidal Sequences Basis Expansion

Modeling

DVB-T: Digital Video Broadcasting Terrestrial TV

EM: Expectation-Maximization

FFO: Fractional Frequency Offset

GCE-BEM: Generalized Complex Exponential Basis Expansion Mod-

eling

GPF: Gaussian Particle Filtering

IFO: Integer Frequency Offset

IDFT: Inverse Discrete Fourier Transform

xviii



LTE: Long-Term Evolution

MIMO: Multiple Input Multiple Output

ML : Maximum Likelihood

MMSE: Mimimum Mean Square Error

MoD: Magnitude of Difference

MSE : Mean Square Error

NC-OFDM: Non-Contiguous Orthogonal Frequency Division Multi-

plexing

NMSE : Normalized Mean Square Error

OFDM: Orthogonal Frequency Division Multiplexing

OFDMA: Orthogonal Frequency Division Multiple Access

PAPR: Peak-to-Average Power Ratio

P-BEM : Polynomial Basis Expansion Modeling

PDF: Probability Density Function

PN: Pseudo Noise

QPSK: Quadrature Phase Shift Keying

SAGE: Space-Alternating Generalized Expectation-Maximization

SEKF: Schmidt Extended Kalman Filtering

SKF: Schmidt Kalman Filtering

SNR: Signal to Noise Ratio

SUI: Stanford University Interim

WiMAX: Worldwide Interoperability for Microwave Access

WLAN: Wireless Local Area Network

xix



Chapter 1

Introduction

1.1 Background

The demand for multimedia and wireless communications is increasing at an extremely

rapid pace and this trend is expected to continue in the near future. The common feature

of many current wireless standards for high-rate multimedia transmission is the adoption

of orthogonal frequency division multiplexing (OFDM) [1]. Communication systems such

as digital video broadcasting terrestrial TV (DVB-T) [2], digital audio broadcasting [3],

and IEEE 802.11a wireless local area network (WLAN) [4] are based on OFDM. The

OFDM technique, by converting a frequency selective fading channel into a collection of

flat fading channels, offers increased robustness against multipath distortions as channel

equalization can be easily performed in the frequency domain through a bank of one-

tap multipliers [5]. It also provides larger flexibility by allowing independent selection

of the modulation parameters (like the constellation size and coding scheme) over each

subcarrier [6]. Furthermore, the discrete Fourier transform (DFT) applied in OFDM

systems can nowadays be efficiently implemented [7] using algorithms such as the fast

Fourier transform. However, OFDM systems suffer from some disadvantages including

large peak-to-average power-ratio (PAPR) as well as high sensitivity to synchronization

errors (which are caused by timing and frequency offsets). Synchronization issues are of
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great importance in digital communication systems, especially in the OFDM-based systems

[8]. Errors associated with timing synchronization which refers to correctly finding the

start of the frame, degrade the performance of an OFDM receiver and result in intercarrier

interference (ICI) and inter-symbol interference (ISI) [9]. Timing offset can also have a

severe impact on system performance due to its adverse effect on channel estimation

[10–13]. OFDM systems are also sensitive to carrier frequency offset (CFO) which is

caused by the Doppler shift and/or local oscillators’ mismatch between the transmitter

and the receiver. The fractional part of CFO introduces ICI and destroys the orthogonality

of OFDM subcarriers [8], whereas the integer part of CFO can result in appearance of

received symbols in a wrong position at the DFT output [1].

Timing estimation aims at obtaining the timing instant of start of the frame and is

usually performed in two stages, coarse timing estimation and fine timing estimation. The

former stage aims at finding an inter-symbol interference (ISI)-free part of the preamble

and preventing the destruction of orthogonality between subcarriers. When the first stage

is performed, there remains residual timing offset. As long as this residual timing offset is

less than the length of CP, the orthogonality between subcarriers is maintained. However,

this residual timing offset can considerably degrade the performance of the pilot-aided

channel estimators and tracking methods [14–16]. Moreover, if this residual timing offset

is not estimated and compensated for, each OFDM symbol needs to employ a long CP

to mitigate ISI, which would significantly reduce the data throughput [17]. Consequently,

the second stage aims at the estimation of the residual timing offset.

CFO estimation, on the other hand, is usually carried out by dividing it into two parts,

a fractional part (FFO) and an integer part (IFO). The fractional part causes destruction

of orthogonality between the subcarriers and the integer part results in the cyclic shifts of

subcarriers in the frequency domain. First, FFO is estimated and compensated for, and

next IFO is estimated. There are also methods that estimate CFO in two steps called

coarse and fine estimation. First, a coarse estimate of CFO is obtained, and next the
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residual CFO is estimated.

It is worth mentioning that coarse and fine timing or frequency synchronizations are

achieved when coarse and fine timing offset or CFO estimates are obtained and the signal

is corrected accordingly.

1.2 Literature Survey

1.2.1 Frequency Selective Slow Fading Channels

Most of the synchronization schemes in the literature are developed for OFDM-based

systems that operate in multipath slow fading channels. Timing offset estimation methods

developed for these channels can be divided into two main categories: blind methods and

preamble-aided schemes. The methods in the former category usually use the periodicity

of the cyclic prefix (CP) [18–27], whereas the schemes in the second category apply the

characteristics of OFDM training symbols for timing synchronization.

With regard to the first catagory, timing synchronization is performed in [18] by ob-

taining the estimate of channel-tap powers using the correlation characteristics of the CP.

In [21], a maximum likelihood approach is adopted under the assumption of an AWGN

channel. In [23], a metric is defined that estimates the timing offset irrespective of the

channel conditions when the signal-to-noise ratio is high. The timing estimation method

in [24] makes use of the correlation between the cyclic extension and data portion of the re-

ceived OFDM symbols. Although it can identify the ISI-free region in multipath channels,

a large number of symbols is required to obtain an accurate estimate [18]. The algo-

rithm in [25] achieves synchronization when an autocorrelation matrix constructed from

the received signal achieves a minimum rank. This method is more complex and requires

more statistics. A blind method is proposed in [28] based on invariance properties and

cyclostationarity of CP. The proposed technique in [29] estimates symbol timing offsets

by minimizing the power difference between the subcarriers with similar indices over two
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successive OFDM symbols based on the assumption that the channel slowly changes over

time. The authors in [30] investigate a CP-based synchronization method for an arbitrary

size observation window.

Regarding the second category, i.e., preamble aided timing synchronization in slow

fading channels, the authors of [31] proposed a robust timing metric to acheive coarse

timing synchronization. This metric is designed using the correlation properties of a

preamble with two identical parts in the time domain. A timing offset estimation method

equivalent to [31] was proposed in [32] and was analyzed in [33]. In [34–36], the authors

changed the sign of the identical parts of the preamble in [31] to make the timing metric

sharper. A timing metric taking advantage of the central symmetry of a preamble was

proposed in [37]. In [14], the authors presented a method to improve the false alarm

probability by applying the periodic parts of more than one preamble. The application of

differential normalization for making the values of the coarse timing metric at wrong and

correct timing instants more distinct is proposed in [38]. The authors in [39] demonstrated

that sufficient statistics for detection of a preamble composed of two identical parts do

not exist and therefore, the second order statistics used in previous methods are not

optimal in terms of utilizing sufficient statistics. They also proposed fourth order statistics

for frame detection. Fourth order differential normalization is used in [40] to improve

the synchronization performance by increasing the class-seperablity. Timing metrics that

apply the cross-correlation of the received signal and pure preamble can be found in [41–49].

The cross-correlation based methods are usually used for fine timing estimation. In [41],

for having a sharper timing metric, the identical parts of the preamble are multiplied by

a pseudo noise (PN) sequence. A timing metric that works independent of the preamble

structure is proposed in [42]. The multiplication of a correlation metric with a cross-

correlation metric was proposed in [43, 44]. The authors in [45] improved the timing

estimation performance by increasing the correlation length. The sensitivity of this method

to the carrier frequency offset (CFO) was later removed in [46]. A cross-correlation based
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method using Zadoff–Chu sequence is presented in [49] with the aim of reducing the timing

estimation sensitivity to CFO. Timing estimation based on multiple signal classification

is proposed in [50].

Frequency synchronization, which is to estimate and correct the CFO, similar to timing

synchronization, can be accomplished either blindly or with utilization of training symbols.

The authors in [51] proposed a blind method for CFO estimation based on a kurtosis-type

criterion. In [52] it was pointed out that CFO destroys the orthogonality between the

subcarriers leading to nondiagonal signal covariance matrices in the frequency domain, and

therefore, a blind method was proposed that enforces a diagonal structure by minimizing

the power of nondiagonal elements. Two methods for constant modulous signaling are

proposed in [53] and [54]. The former employs the banded structure of the covariance

matrix of the received signal with perfect CFO compensation, the latter uses a cost function

based on the assumption that in slowly time-varying channels subcarriers having the same

indexes in two consecutive OFDM symbols experience nearly the same channel effect. The

authors in [55] proposed to perform CFO estimation based on covariance fitting criterion

between two nearby OFDM symbols. For MIMO-OFDM systems with constant modulus

constellation, a rank reduction criterion is applied in [56]. A CP-based method that is

robust to the symbol timing synchronization error is introduced in [57]. Furthermore,

some blind methods taking advantage of null subcarriers are presented in [58–62].

Pilot-aided CFO estimation in multipath slow fading channels is usually performed by

dividing the CFO into a fractional part (FFO) and an integer part (IFO). With regard to

the estimation of the FFO, in [31], the authors used a preamble composed of two identical

parts in the time domain, and took advantage of the phase difference between the two parts.

In [63] and [64], FFO estimation methods were proposed that utilize the phase difference

between several identical parts of a preamble, and offer a wider estimation range than that

in [31]. A general CFO estimator using training OFDM symbols was presented in [65]

which takes advantage of the channel side information. A periodogram based approach
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is presented in [66]. The methods in [67] and [68] obtain the FFO by adopting an ML

approach, and the scheme in [69] resorts to the least-squares (LS) principle. Regarding

IFO estimation, the integer part is estimated in [31] using a differentially-modulated PN

sequence positioned between the subcarriers of two consecutive OFDM symbols. To reduce

the number of training symbols, the authors in [70] proposed to put the differentially-

modulated PN sequence between the adjacent subcarrier of one OFDM symbol. Later

in [71], a maximum likelihood approach was presented for frequency selective channels.

In [72] the adoption of cross ambiguity function was proposed to jointly estimate the

timing and integer frequency offset.

There are also methods that estimate the timing offset jointly with the frequency offset

or estimate these parameters jointly with frequency selective slow fading channel. In [15],

joint timing offset and channel estimation is performed using ML criterion. To estimate

channel jointly with CFO, an expectation-maximization (EM) based algorithm is proposed

in [73]. The authors in [16] have put forward an ML algorithm for joint CFO and timing

offset estimation. In [67, 68], joint timing and CFO estimation is performed based on an

ML principle using preambles with repeated parts in the time domain. The work in [74]

represents a method for correlation based timing estimation followed by joint timing and

FFO estimation. Further, proposed in [46,66] are methods that achieve frequency estimate

in two steps of estimation: coarse and fine.

Considering the above mentioned methods, pilot-aided schemes achieve synchroniza-

tion faster than blind methods and therefore, are more suitable for packet-based systems.

With regard to timing synchronization, it is worth mentioning that the cross-correlation

metrics are not as robust as auto-correlation metrics because they are usually sensitive to

CFO [75], and need to know the exact preamble signal which may not be always practi-

cal [67]. Furthermore, the existing autocorrelation-based methods do not fully utilize the

characteristics of a periodic preamble. The efficient utilization of these characteristics can

result in a significant reduction of the probabilities of false alarm and missed detection.
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On the other hand, methods dealing with IFO estimation such as the ML approach in [71]

has a high computational complexity which may not be appealing in practice.

Orthogonal frequency division multiple access (OFDMA) is a multiuser version of

OFDM in which subcarriers are divided into mutually exclusive clusters that are assigned

to different users [1]. Synchronization in OFDMA systems is usually performed in three

steps. In the first step, synchronization is performed during the downlink transmission

where each mobile terminal carries out synchronization with the pilots transmitted by

the base station by using schemes in simple OFDM systems. The estimated timing and

frequency offsets are used for downlink data detection and also as references for uplink

transmission. The signals received in the uplink transmission are affected by residual

timing and frequency errors. Thus, at the second step, the base station has to estimate

these residual offsets. This task is more challenging than OFDM systems because each

user has its own timing and frequency offset, and the signal received at the base station is

the superposition of the signals of all users. Finally the third step aims at the correction

of timing and frequency errors. The correction of the signals is made at the user’s side

based on instructions transmitted by the base station on a feedback control channel [76].

For estimation of timing and frequency offset in the uplink transmission in a frequency

selective slow fading channel, the schemes are usually dependent on the utilized subcarrier

assignment scheme. In general, there are three types of distributing subcarriers among

active users [76] : subband subcarrier assignment scheme, interleaved subcarrier assign-

ment scheme, and generalized subcarrier assignment scheme. In the first scheme, a group

adjacent subcarriers is assigned to each user. The main drawback of this approach is that

it does not exploit the frequency diversity offered by the multipath channel since a deep

fade might hit a substantial number of subcarriers of a given user. In the second scheme,

the subcarriers of each user are uniformly spaced over the signal bandwidth at a fixed

distance from each other. Although this method can fully exploit the channel frequency

diversity, the current trend in OFDMA favors a more flexible allocation strategy. In the
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third scheme, users can select the best available subcarriers (i.e., those with the high-

est signal-to-noise ratios (SNRs)). This scheme allows dynamic resource allocation and

provides more flexibility than the other schemes.

Synchronization methods for the subband subcarrier assignment scheme can be found

in [77, 78] and for the interleaved subcarrier assignment scheme can be found in [79–86].

For the generalized subcarrier assignment scheme which is more flexible than the other

schemes, joint estimation of CFO and/or timing and channel based on alternating projec-

tion and space-alternating generalized expectation-maximization (SAGE) algorithms are

respectively presented in [87] and [88]. To reduce the complexity, in [89] and [90], line

search and variable projection methods are utilized respectively. Some further works that

have addressed synchronization in the uplink for the generalized subcarrier assignment

scheme are found in [91–97]. In [98] and [99], channels and CFOs have been estimated

based on Rao-Blackwellization principle for MIMO-OFDMA systems. Both of these works

assume that the channels are constant within an OFDMA symbol but vary from one

OFDMA symbol to another. In addition, the authors in [99] have taken into account the

fact that CFO can be time varying for different OFDMA symbols.

1.2.2 Doubly Selective Channels

All the schemes presented in the previous subsection assume that the channel remains

constant at least within one OFDM symbol. Recent research, however, has been focused

more on the estimation of frequency offset and doubly selective (time varying frequency

selective) channels. Underwater acoustic channels, future aeronautical communication

channels [100], and the high data rate wireless communication channels in LTE-Advanced

and WiMAX are examples of doubly selective channels. OFDM systems operating in

these channels confront with channel changes within one OFDM symbol which can incur

loss of orthogonality between subcarriers and inter-carrier interference [101]. This issue

degrades the performance of the methods addressed in previous subsection, and makes
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them unsuitable for doubly selective channels.

In order to estimate the channel, the authors in [102] proposed to utilize a basis ex-

pansion modeling (BEM) for capturing the variations of doubly selective channels. This

method significantly reduces the number of unknown channel parameters to be estimated.

Using a truncated Fourier series, the complex exponential BEM (CE-BEM) was proposed

in [103]. Due to Gibbs phenomenon and spectral leakage, CE-BEM results in considerable

phase and amplitude errors at the beginning and end of data blocks [104]. To overcome this

weakness of CE-BEM, different BEMs have been proposed including Generalized CE-BEM

(GCE-BEM) in [105], polynomial BEM (P-BEM) in [106], and discrete prolate spheroidal

sequences BEM (DPSS-BEM) in [104]. Later, in [107], the authors addressed joint estima-

tion of doubly selective channel and carrier frequency offset (CFO) using basis expansion

modeling of the channel and recursive least squares, ML and maximum-a-posteriori ap-

proaches. In [108], joint CFO and channel estimation was accomplished using BEM for

a MIMO-OFDM system, and in [109] joint estimation of CFO and BEM coefficients was

performed for an OFDM system by utilizing expectation-maximization algorithm and

Kalman filtering. Note that the methods in [108] and [109] deal mainly with joint channel

and CFO tracking, and similar to [107], they did not consider timing estimation. It is

also noted that [110–113] deal with blind estimation of timing and/or frequency offset

in doubly selective channels. To my best knowledge, there have been only blind meth-

ods for joint estimation of timing and frequency offset in the case of channels changing

within an OFDM symbol [110–113]. In other words, all of the previous preamble-aided

methods have considered at most joint estimation of CFO and doubly selective channel

in OFDM systems, and have neglected the issue of timing offset estimation. Moreover,

the existing CFO estimation methods for doubly selective channels are mainly based on

ML criterion. Taking into account the fact that the ML approach for CFO estimation is

a grid search based algorithm and needs an exhaustive search over all possible values of
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CFO, the ML method appears to be impractical, and has thus been replaced with meth-

ods such as Newton-Raphson-based scheme in [107] or extended Kalman filtering in [108].

Unfortunately, these methods suffer from the drawback that they are not guaranteed to

converge to the true CFO because of the nonlinearity of the CFO estimation problem.

Synchronization in the uplink of OFDMA systems operating in doubly selective chan-

nels is recently carried out in [114–117]. In [114,115,117], the authors proposed a method

for CFO and doubly selective channel estimation using SAGE algorithm. The paper

[116] deals with frequency synchronization and time-varying channel estimation applying

oblique projection. A method for joint CFO and time-varying channel estimation for the

uplink of MIMO-OFDMA systems is presented in [99] using Kalman and particle filters.

To the author’s best knowledge, similar to OFDM systems, all of the previous preamble-

aided synchronization methods in doubly selective channels have considered only CFO

estimation, and the problem of preamble-aided timing estimation in OFDMA systems in

a doubly selective channel has not been yet tackled. Furthermore, the above mentioned

methods for OFDMA systems in doubly selective channels, assumed that CFO is constant

for all OFDMA symbols, and moreover, did not perform CFO and channel tracking. In

practice, however, CFO can be time varying due to oscillators frequency drifting or time-

varying Doppler shifts [118–120] as modeled in [99,121,122]. Besides, for CFO estimation,

there is no closed-form solution, and thus grid search is often needed.

1.3 Contribution

The work presented in this thesis represents a number of contributions in the field of

timing and frequency synchronization and channel estimation for OFDM-based systems.

The most significant contributions of this research can be summarized as follows:

1) We investigate the use of n-th order statistics for coarse timing synchronization [123].

Considering a preamble composed of two identical parts in the time domain, n-th order

timing metrics using correlation and differential normalization functions are proposed. The
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performance of the n-th order metrics and the effect of increasing the order are examined.

We show that by increasing the order of the correlation and normalization functions, the

difference between the values of the timing metrics at wrong and correct timing instants

can be considerably increased, thereby improving the performance of timing estimation.

To evaluate the performance of the new timing metrics, we consider two class-separablity

criteria: the first one is the difference between the means of the timing metrics at the

wrong and correct timing instances, and the second criterion utilizes both the means and

the variances of the timing metrics to formulate a difference function. Furthermore, the

computational complexity of the metrics, their robustness to the carrier frequency offset

(CFO) and the performance limit on the order of the metrics are also investigated. Simula-

tions are carried out in multipath fading channels, giving false alarm and missed detection

probabilities along with the probability of ISI of the proposed methods as compared with

the existing methods in the literature.

2) We propose a novel pilot-aided algorithm for the detection of IFO in OFDM systems

[124]. By transforming the IFO into two new integer parameters, the proposed method can

largely reduce the number of trial values for the true IFO, and consequently, the complexity

of the IFO detector is significantly decreased. Furthermore, it is shown that the proposed

scheme can be applied to many of existing IFO metrics. The complexity, probability of

correct detection and BER of the new scheme are compared with those of previous methods

in multipath fading channels. It is shown that the new scheme can significantly reduce

the computational complexity while achieving almost the same performance as compared

to previous methods.

3) We investigate the crucial problem of preamble-aided timing, CFO and doubly

selective channel estimation and propose a novel ML algorithm for joint estimation of these

parameters [125]. It is assumed that using correlation-based method, a coarse estimate

of timing offset is already obtained, and thus the proposed joint estimation problem aims

at estimation of residual timing offset along with CFO and doubly selective channel. To
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reduce the computational complexity, we propose a new method which first performs initial

joint estimation of timing, CFO, and channel. Consequently, CFO, timing and channel

estimates are further refined. Moreover, the new fine CFO estimation scheme that takes

advantage of fast Fourier transform (FFT) is of a remarkably reduced complexity. Finally,

we evaluate the mean square error (MSE) performance of the new method.

4) We present a new preamble-aided method for joint CFO and doubly selective channel

estimation [126]. We model the time-varying channel using BEM, and propose particle

and Kalman filtering for CFO and channel estimation. Particle filters as an importance

sampling based method provide a closed form solution, and guarantee convergence to the

true CFO [127]. We demonstrate via computer simulation that the new method achieves

significant performance improvement compared with previous methods.

5) A novel algorithm is proposed for timing and frequency synchronization and channel

estimation in the uplink of OFDMA systems under high-mobility situations and consid-

ering generalized subcarrier assignment [128]. We adopt an ML approach, use a basis

expansion model (BEM) to represent the time-variations of the channel, and apply SAGE

algorithm to separate the received signals of different users. We analyze the computa-

tional complexities of the new timing and frequency offset estimators and evaluate their

performance using MSE indicating a significant performance improvement.

6) We address the problem of joint time varying CFO and doubly selective channel

estimation in the uplink of MIMO-OFDMA systems considering a generalized subcarrier

assignment scheme [129]. We propose two novel methods using BEM of doubly selective

channels and Schmidt Kalman filtering (SKF) [99,130] that are capable of estimating and

tracking CFOs and channels. By utilization of SKF, we transform the joint estimation

problem for all users into several simpler problems corresponding to each user. The first

scheme, which is named “BSEKF”, makes use of BEM and Schmidt extended Kalman

filtering (SEKF) [99, 131] to estimate time varying CFO and channel of each user. Since

the extended Kalman filtering is susceptible to potential divergence issues [99,132,133], we
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present the second scheme based on marginalized particle filters [134, 135], called “BSK-

GPF”, in which Gaussian particle filters (GPF) [136, 137] are used to estimate CFO and

Schmidt Kalman filters [130] are employed to estimate the BEM coefficients. In comparison

with [99] in which channel is assumed constant within an OFDMA symbol, our new

schemes have the advantage of coping with channel changes within an OFDMA symbol.

Besides, the proposed method based on GPF does not need resampling compared with the

particle filtering method in [99], and thus has lower complexity [137]. Compared with the

schemes in [114–117], the two proposed schemes benefit from taking the time-variation of

CFO in different OFDMA symbol into account, and offer tracking capabilities with closed

form solutions. The Bayesian Cramer-Rao bound (BCRB) for the estimation of CFO and

doubly selective channel is also derived. It is shown that the new schemes achieve an

improved performance in terms of the MSE compared with previous methods.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, characteristics of wireless com-

munication channels along with signal models of OFDM-based systems operating in slow

fading frequency selective channels and doubly selective channels are presented. Chapter

3 first deals with the proposed timing synchronization method based on utilization of high

order statistics, and next presents a new IFO detection method based on reducing the num-

ber of trial values of IFO. Different criteria are exploited including class-separabiltiy, and

false alarm and missed detection for timing synchronization and detection probabiltiy and

BER for IFO estimation to evaluate the performance of the new methods. The proposed

scheme for joint timing, CFO and channel estimation for OFDM systems is developed for

doubly selective channels using an ML approach in chapter 4. First, a new approach based

on ML criterion along with a reduced complexity estimator is introduced. Then, a new

method for joint CFO and doubly selective channel estimation in OFDM systems using

particle and Kalman filtering is presented. Next, timing and frequency synchronization
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for the uplink of an OFDMA system using SAGE algorithm is discussed. In this chapter,

we also address joint CFO and doubly selective channel estimation for MIMO OFDMA

systems based on particle and Kalman filtering. Finally, Chapter 5 provides the conclusion

and future work.
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Chapter 2

OFDM-Based Systems

In this chapter, we explain the structure of a communication system using the OFDM

technique. First, we briefly address the characteristics of wireless communications chan-

nels, and next present the models of signal transmission and reception over different types

of wireless channels.

2.1 Wireless Communication Channels

We consider baseband representation of a wireless communication channel [138]

h(t, τ) =
∑
l

γl(t)δ(τ − τl) (1)

where γl(t) and τl are the complex amplitude and corresponding delay of the lth path.

The autocorrelation function of h(t, τ) is defined as

Rh(Δt, τ1, τ2) = E{h∗(t, τ1)h(t+Δt, τ2)} = Rh(Δt, τ1)δ(τ2 − τ1) (2)

which is obtained using the assumption that the scattering at two delays is uncorrelated.

In general, Rh(Δt, τ) gives the average power output as a function of the time delay τ

and the difference Δt in observation time. The range of values of τ over which Rh(0, τ)
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is essentially nonzero is called the multipath spread of the channel and is denoted by

Tm [139].

A completely analogous characterization of the time-variant multipath channel is ob-

tained by taking the Fourier transform of h(t, τ) as follows [139]

h(t, f) =

∫ ∞

−∞
h(t, τ)e−j2πfτdτ (3)

Under the assumption that the channel is wide-sense-stationary, we consider the autocor-

relation function

Rh(Δt, f2, f1) = E{h∗(t, f1)h(t+Δt, f2)} (4)

and we have Rh(Δt, f2, f1) = Rh(Δt,Δf) =
∫∞
−∞ Rh(Δt, τ1)e

−j2πfτ1dτ1

Supposeing Δt = 0 and Rh(0, f2, f1) = Rh(Δf), we have

Rh(Δf) =

∫ ∞

−∞
Rh(τ)e

−j2πΔfτdτ (5)

Since Rh(Δf) is an autocorrelation function in the frequency variable, it provides a mea-

sure of the frequency coherence of the channel. Because of the Fourier transform relation-

ship between Rh(Δf) and Rh(τ), the reciprocal of the multipath spread is a measure of

the coherence bandwidth of the channel. That is, Δf ≈ 1
Tm

. Thus, two sinusoids with

frequency separation greater than Δf are affected differently by the channel [139].

The time variations in the channel show a Doppler broadening. In order to relate the

Doppler effects to the time variations of the channel, we consider the Fourier transform of

Rh(Δt,Δf) with respect to the variable Δt to be the function [139]

Sh(λ,Δf) =

∫ ∞

−∞
Rh(Δt,Δf)e−j2πλΔtdΔt (6)

becomes

Sh(λ) =

∫ ∞

−∞
Rh(Δt, 0)e−j2πλΔtdΔt (7)
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gives the signal intensity as a function of the Doppler frequency λ. It is observed that if

the channel is time-invariant, Rh(Δt, 0) = Rh(Δt) = 1 and Sh(λ) becomes equal to the

delta function δ(λ). Therefore, when there are no time variations in the channel, there is

no spectral broadening observed in the transmission of a pure frequency tone. The range

of values of λ over which Sh(λ) is essentially nonzero is called the Doppler spread Bd of

the channel [139].

Since Sh(λ) is related to Rh(Δt) by the Fourier transform, the reciprocal of Bd is a

measure of the coherence time of the channel. That is, (Δt)h ≈ 1
Bd

where (Δt)h denotes

the coherence time. Clearly, a slowly changing channel has a large coherence time or,

equivalently, a small Doppler spread [139].

Based on the above discussion, wireless radio channels can be categorized as

• Flat fading: If a channel has a constant gain and linear phase response over a

bandwidth which is greater than the signal bandwidth, then the signal will undergo

flat or frequency nonselective fading. In other words, a fading channel is flat or

frequency nonselective if the channel coherence bandwidth is greater than the signal

bandwidth [140].

• Frequency selective fading: If the channel has a constant gain and a linear phase

response over a bandwidth which is smaller than the signal bandwidth, then the

signal undergoes frequency selective fading. In other words, a fading channel is

frequency selective if the channel coherence bandwidth is smaller than the signal

bandwidth [140].

• Slow fading: In a slow fading channel, the channel impulse response changes at a

much slower rate than the symbol rate. In other words, the channel coherence time

is much greater than the symbol duration, or equivalently, the Doppler spreading is

much smaller than the signal bandwidth [140].

• Fast fading: If the channel impulse response changes rapidly within a signal symbol
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duration, the channel is classified as a fast fading channel. In other words, when

the channel coherence time is smaller than the symbol duration, or equivalently,

the Doppler spreading is greater than the signal bandwidth, a signal undergoes fast

fading [140].

Taking into account the above categorization of fading channels, in the next two sub-

sections, we discuss the OFDM signal model in slow frequency selective fading channels

and fast frequency selective fading channels (doubly selective channels), respectively.

2.2 OFDM-Based Signal Model in Slow Fading Fre-

quency Selective Channels

A packet-based OFDM system is considered in which one or more preambles are transmit-

ted at the start of each frame for the task of synchronization. Fig. 1 depicts the structure

of the OFDM system which utilizes N subcarriers. Suppose Si(n), 0 ≤ n ≤ N−1, denotes

the nth element of the ith preamble vector in the frequency domain which will be trans-

mitted on the nth subcarrier, the time domain samples of the ith training symbol can be

expressed as

si(k) =
N−1∑
n=0

Si(n)e
j 2π
N

kn, 0 ≤ k ≤ N − 1 (8)

After appending the cyclic prefix (CP) of length G (which is greater than the length of

the channel impulse response), the signal is transmitted through a multipath channel with

Lc taps. The lth tap of the channel impulse response corresponding to the kth sample of

the ith OFDM symbol is denoted by hi(k, l). Here, it is assumed that the channel remains

constant within several OFDM symbols, and thus, hi(k, l) can be simplified to h(l). In

view of this, the received signal corresponding to the ith OFDM symbol can be expressed

as

ri(k) = ej
2π
N

kεyi(k − θ) + zi(k), 0 ≤ k ≤ N − 1 (9)
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Figure 1: The structure of an OFDM system.
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where

yi(k) =
Lc−1∑
l=0

h(l)s(k − l), (10)

and zi(k) is the sample of additive white Gaussian noise (AWGN) with zero mean and

variance σ2
z . Besides, θ and ε are the timing and normalized frequency offsets.

The receiver first estimates the timing and frequency offsets. After correction for these

offsets, removing the CP, and taking discrete Fourier transform (DFT), the received signal

vector can be expressed in the frequency domain as

Ri(n) = H(n)Si(n) + Zi(n), (11)

where H(n) and Zi(n) denote the N -point DFTs of h(l), 0 ≤ l ≤ Lc − 1 and zi(k), 0 ≤
k ≤ N − 1, respectively.

Note that correction of the timing offset means adjusting the received signal window

so that the window contains the ISI free OFDM symbol, and correction of CFO means

multiplying the received signal by e−j 2π
N

kε.

2.3 OFDM-Based Signal Model in Doubly Selective

Channels

2.3.1 OFDM Systems

In this section, we resort to a matrix representation for the signals. To this end, we

equivalently express (8) as

si = FHSi. (12)

where, F is the DFT matrix whose element on the nth row and kth column is [F]n,k =

1√
N
exp(−j 2π

N
kn), si = [si(0), si(1), · · · , si(N − 1)]T , and Si = [Si(0), Si(1), · · · , Si(N −

1)]T . After inserting the cyclic prefix (CP), the OFDM symbol is transmitted through an
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Lc-tap time-varying channel whose l-th tap (l = 0, 1, · · · , Lc− 1) at time k and for the ith

OFDM symbol is denoted by hi(k, l). In view of this, the samples of the received signal

in the time domain can be represented as

ri(k) = ej
2π
N

kε

Lc−1∑
l=0

hi(l, k)si(k − l − θ) + zi(k), 0 ≤ k ≤ N − 1 (13)

Let the received signal vector of length N be denoted by ri = [ri(0), ri(1), · · · , ri(N−1)]T .

Using the above channel model, the received signal vector can be expressed as

ri = Γ(ε)Ǎi(θ)hi + zi, (14)

with Γ(ε) = diag{ej 2π
N

nεk , n = G,G+1, · · · , G+N − 1}, hi = [hT
i,0,h

T
i,1, · · · ,hT

i,Lc−1]
T , and

hi,l = [hi(0, l), hi(1, l), · · · , hi(N − 1, l)]T . Besides, we have Ǎi(θ) = [sθi , s
θ+1
i , · · · , sθ+Lc−1

i ],

and sli is a diagonal matrix generated by cyclically shifting si by l, namely, sli = diag
{
si(l)

, si(l + 1), · · · , si(N − 1), si(0), si(1), · · · , si(l − 1)
}
.

2.3.2 OFDMA Systems

We consider an OFDMA system with N subcarriers and M simultaneously active users.

The block diagram of such an OFDMA system is shown in Fig. 2. The mth user transmits

information bits on Nm subcarriers where N1 + N2 + · · · + NM = N . Thus, the data

symbols of the mth user and ith OFDM symbol in the frequency domain denoted by

Si,m = [Si,m(0), Si,m(1), · · · , Si,m(N − 1)]T have only Nm non-zero elements. Taking the

IDFT of Si,m, the time-domain signal of the mth user can be expressed as

si,m = FHSi,m. (15)

An OFDMA symbol is then generated by adding cyclic prefix (CP) of length G, and

transmitted through a doubly selective channel. Thus, the kth element of the ith OFDM

21



symbol of the mth user yi,m at the receiver can be expressed as

yi,m(k) = ej
2π
N

kεm

Lc−1∑
l=0

hi,m(k, l)sm,i(n− l − θm) + zi,m(k), (16)

where εm and θm are the CFO and timing offset of the mth user, respectively, Lc is the

number of channel taps, and hi,m(k, l) denotes the lth channel tap gain at the ith OFDMA

symbol and time k for the mth user. Furthermore, zi,m(k) indicates the additive white

Gaussian noise (AWGN) with zero mean and variance σ2
zm . At the receiver front end, the

received signal is the superposition of the signals of all users, which can be written in the

vector form as

ri =
M∑

m=1

yi,m, (17)

where

yi,m = Γ(εm)Ǎi,m(θm)hi,m + zi,m, (18)

with Γ(εm) = diag{ej 2π
N

nεm , n = G,G+ 1, · · · , G+N − 1}, hi,m = [hT
i,m,0,h

T
i,m,1, · · ·

,hT
i,m,Lc−1]

T , and hi,m,l = [hi,m(0, l), hi,m(1, l), · · · , hi,m(N − 1, l)]T . Besides, we have

Ǎi,m(θm) = [Sθm
i,m,S

θm+1
i,m , · · · ,Sθm+Lc−1

i,m ], and Sl
k is a diagonal matrix generated by cyclically

shifting Si,m by l, namely, Sl
i,m = diag

{
Si,m(l), Si,m(l+1), · · · , Si,m(N−1), Si,m(0), Si,m(1),

· · · , Si,m(l − 1)
}
.

2.4 Conclusion

In this section, different types of wireless communication channels have been first discussed.

Next the signal model of an OFDM system in slow fading frequency selective channels and

doubly selective channels were briefly explained, and block diagrams of the transmitter and

receiver were depicted. In addition, the signal model of an OFDMA system operating in

a doubly selective channel was explained, and components of the transmitter and receiver

were shown in a block diagram.
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Chapter 3

Synchronization in Slow Fading

Frequency Selective Channels

3.1 Introduction

In this chapter, we present two new schemes for synchronization in slow fading frequency

selective channels. The first method is developed for coarse timing synchronization using

high order statistics. The performance of this method is evaluated using different criteria

such as class-separability, false alarm and missed-detection probabilities, and robustness

to CFO. The second method deals with a reduced complexity IFO detection scheme which

is based on reducing the number of trial values of IFO. Computational complexity, proba-

bility of correct detection, and BER of the new method is finally compared with previous

schemes.
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3.2 Proposed Method: Timing Synchronization

3.2.1 Preliminaries

Coarse timing synchronization is to determine a coarse estimate of the start of the frame [1]

or equivalently, determining the correct position of the preamble. It usually consists of two

stages: 1) frame/preamble detection and 2) coarse timing estimation. The methods that

deal with timing synchronization usually perform both of the stages using a timing metric.

When the value of the timing metric goes above a predefined threshold the preamble is

detected. Subsequently, the position of the maximum value of the timing metric is used

to obtain a coarse estimate of the start of the frame.

In [31], the authors proposed the utilization of a preamble that is composed of two

identical parts in the time domain as described by

s(k) = s(k + (N/2)), 0 ≤ k ≤ (N/2)− 1. (19)

As long as the length of each identical part of the preamble is greater than the channel

delay spread, the two identical parts of the preamble remain identical after passing through

a multipath fading channel i.e.,

y(k) = y(k +
N

2
), 0 ≤ k ≤ (N/2)− 1. (20)

Then, the received signal vector of length N at time instant d can be written as

r =
[
r(d), r(d+ 1), . . . , r(d+

N

2
− 1)︸ ︷︷ ︸

rd

, r(d+
N

2
), r(d+

N

2
+ 1), . . . , r(d+N − 1)︸ ︷︷ ︸
rd+

N
2

]T
.

(21)

By taking advantage of the correlation between the two identical parts of the preamble,
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the authors of [31] proposed a timing metric as follows

MSc(d) =
|PSc(d)|2
(RSc(d))

2 , (22)

where

PSc(d) =

(N/2)−1∑
k=0

r(d+ k)r(d+ k + (N/2)), (23)

is the correlation function, r(k) denotes the complex conjugate of r(k), and

RSc(d) =

(N/2)−1∑
k=0

|r (d+ k + (N/2)) |2, (24)

is the normalization function.

In [14], an equivalent form of the metric (22) was presented and extended to the case of

more than two identical parts and more than one preamble. It was shown that when the

periodic parts of more than one preamble are used, the probability of false alarm improves.

The idea of using differential normalization was introduced in [38]. It was shown that

when the normalization function (24) is replaced by the magnitude of difference (MoD)

or difference of magnitude (DoM) normalization functions

RMoD(d) =

(N/2)−1∑
k=0

|r (d+ k)− r (d+ k + (N/2)) |2, (25)

RDoM(d) =

(N/2)−1∑
k=0

(|r (d+ k) | − |r (d+ k + (N/2)) |)2 , (26)

as in

MMoD(d) =
|PSc(d)|
RMoD(d)

, (27)

MDoM(d) =
|PSc(d)|
RDoM(d)

, (28)

then the probabilities of false alarm and missed detection would be reduced. This improve-

ment was justified by the fact that at the correct timing points the correlation function
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reaches a peak while the normalization function has its lowest value. Therefore, the dif-

ferential timing metrics give greater peaks at the correct timing points and consequently

have values at the correct and wrong timing points that are more distinct compared with

previous methods.

It has been shown in [39] that sufficient statistics for the detection of a preamble

composed of two identical parts does not exist, and the second order statistics used in

previous methods are not optimal in terms of utilizing sufficient statistics. They also

proposed fourth order statistics for frame detection. The fourth order correlation function

was expressed as

P4(d) =
L−1∑
k=0

B
r1,d

(k)Br1,d+N
2 (k), (29)

where Br1,d is a vector composed of subvectors whose elements are second order products

expressed by

Br1,d = {Br1,d
1 ,Br1,d

2 , · · · ,Br1,d
N
2
−1
}

{r(d)r(d+ 1), r(d+ 1)r(d+ 2), · · · , r(d+ N

2
− 2)r(d+

N

2
− 1)︸ ︷︷ ︸

Br1,d
1

,

r(d)r(d+ 2), r(d+ 1)r(d+ 3), · · · , r(d+ N

2
− 3)r(d+

N

2
− 1)︸ ︷︷ ︸

Br1,d
2

,

· · · , r(d)r(d+ N

2
− 1)︸ ︷︷ ︸

Br1,d
N
2 −1

}. (30)

The normalization function for this correlation function is defined as

R4(d) =
L−1∑
k=0

|Br1,d(k)|2 +
L−1∑
k=0

|Br1,d+N
2 (k)|2, (31)
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resulting in the following timing metric

M4(d) = 2
|P4(d)|
R4(d)

. (32)

Corresponding to (29), two fourth order differential normalization functions referred

to as double differential normalization (DDN) and CFO independent double differential

normalization (CIDDN) are recently presented in [40], respectively, as

RDDN(d) =
L−1∑
k=0

(
QDDN,d (k)

)2
. (33)

RCIDDN(d) =
L−1∑
k=0

(
QCIDDN,d (k)

)2
. (34)

where

QDDN,d = {|r(d)− r(d+
N

2
)|.|r(d+ 1)− r(d+ 1 +

N

2
)|,

|r(d)− r(d+
N

2
)|.|r(d+ 2)− r(d+ 2 +

N

2
)|,

· · · , |r(d)− r(d+
N

2
)|.|r(d+ N

2
− 1)− r(d+N − 1)|,

|r(d+ 1)− r(d+ 1 +
N

2
)|.|r(d+ 2)− r(d+ 2 +

N

2
)|,

|r(d+ 1)− r(d+ 1 +
N

2
)|.|r(d+ 3)− r(d+ 3 +

N

2
)|,

· · · , |r(d+ 1)− r(d+ 1 +
N

2
)|.|r(d+ N

2
− 1)− r(d+N − 1)|,

· · · , |r(d+ N

2
− 2)− r(d+N − 2)|.|r(d+ N

2
− 1)− r(d+N − 1)|} (35)
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and

QCIDDN,d = {(|r(d)| − |r(d+ N

2
)|)(|r(d+ 1)| − |r(d+ 1 +

N

2
)|),

(|r(d)| − |r(d+ N

2
)|)(|r(d+ 2)| − |r(d+ 2 +

N

2
)|),

· · · , (|r(d)| − |r(d+ N

2
)|)(|r(d+ N

2
− 1)| − |r(d+N − 1)|),

(|r(d+ 1)| − |r(d+ 1 +
N

2
)|)(|r(d+ 2)| − |r(d+ 2 +

N

2
)|),

(|r(d+ 1)| − |r(d+ 1 +
N

2
)|)(|r(d+ 3)| − |r(d+ 3 +

N

2
)|),

· · · , (|r(d+ 1)| − |r(d+ 1 +
N

2
)|)(|r(d+ N

2
− 1)| − |r(d+N − 1)|),

· · · , (|r(d+ N

2
− 2)| − |r(d+N − 2)|)(|r(d+ N

2
− 1)| − |r(d+N − 1)|)} (36)

It is evident that elements of QDDN,d and QCIDDN,d are second order products. The

elements of QDDN,d are generated using the magnitude of difference of the samples of the

received signal, whereas the elements of QCIDDN,d are formed using difference of the mag-

nitude of the samples of the received signal. It was shown in [40] that these normalization

functions can considerably increase the difference between the values of the timing metric

at correct and wrong timing instants and therefore,can considerably reduce the probability

of missed-detection. The timing metric with the fourth order correlation and differential

normalization functions can be expressed as [40]

MDDN(d) =
|P4(d)|

RDDN(d)
, (37)

MCIDDN(d) =
|P4(d)|

RCIDDN(d)
. (38)

3.2.2 nth Order Timing Metric

Here, with the aim of making the timing metric values more distinctive at the correct and

wrong timing instants, we propose to use higher order statistics for timing synchronization.
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Consider the received signal vector of length N at time instant d

r =
[
r(d), r(d+ 1), . . . , r(d+

N

2
− 1)︸ ︷︷ ︸

rd

, r(d+
N

2
), r(d+

N

2
+ 1), . . . , r(d+N − 1)︸ ︷︷ ︸
rd+

N
2

]T
.

(39)

where r has been broken into two subvectors rd and rd+
N
2 of length N

2
. Note that r(d+ k)

is the kth element of the vector r at timing instant d, and rd and rd+
N
2 are the vectors

containing the first and second N/2 elements of the vector r, respectively. An n-th order

product (where n is even) from the received signal vector r can be generated by multipli-

cation of the complex conjugated version of an n/2-th order product from rd with another

n/2-th order product from rd+
N
2 . As an example, an n-th order product can be expressed

as

r(d)r(d+ 1) . . . r(d+
n

2
− 1)︸ ︷︷ ︸

from rd

r(d+
N

2
)r(d+

N

2
+ 1) . . . r(d+

N

2
+

n

2
− 1)︸ ︷︷ ︸

from rd+
N
2

. (40)

Note that the samples of the received preamble that are N
2

samples apart are highly

correlated. To take advantage of this correlation, for each element of rd used in the

product there should be an element from rd+
N
2 with the distance of N

2
samples, i.e., if

r(d+ k) is used, then r(d+ k + N
2
) should also be used.

Another form of n-th order product can be generated by applying the amplitude of

the difference between elements of rd and the corresponding elements of rd+
N
2 that are N

2

samples apart. For example, we can have the following product

∣∣∣r(d)− r(d+
N

2
)
∣∣∣2∣∣∣r(d+1)− r(d+1+

N

2
)
∣∣∣2 . . . ∣∣∣r(d+ n

2
− 1)− r(d+

N

2
+

n

2
− 1)

∣∣∣2. (41)

We could also generate another n-th order product by using an idea similar to that in
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(41), but based on the amplitudes of the elements of rd and rd+
N
2 such as

(∣∣r(d)∣∣− ∣∣r(d+ N

2
)
∣∣)2(∣∣r(d+ 1)

∣∣− ∣∣r(d+ 1 +
N

2
)
∣∣)2

. . .

×
(∣∣r(d+ n

2
− 1)

∣∣− ∣∣r(d+ N

2
+

n

2
− 1)

∣∣)2

. (42)

Taking into account the above three forms of n-th order products, we discuss in what

follows how these products are utilized to compute the new timing metrics.

First, we consider the n-th order correlation function. A vector whose elements are n
2
th

order products can be generated by element-wise multiplying n/2 vectors whose elements

are first order terms. Here, we generate these n/2 vectors by cyclically shifting the vector

rd with different amounts of cyclic shifts. When the n
2
th order vector thus generated is

element-wise multiplied by another n
2
th order vector that is generated in the same way but

from the vector rd+
N
2 , a vector whose elements are n-th order products is then produced.

Let rdum
be a vector obtained by cyclically shifting the elements of rd in (39) in the

base of N
2
by um samples i.e.,

rdum
=
[
r(d+um), r(d+um+1), . . . , r(d+

N

2
−1), r(d), r(d+1), . . . , r(d+um−1)

]T
(43)

Then, the following multiplication

rdu1
◦ rdu2

◦ · · · ◦ rdun
2

(44)

gives a vector whose elements are n
2
-th order products, where ◦ denotes the Hadamard

product (the element by element multiplication of the vectors), and rdu1
is the element-wise

complex conjugated version of rdu1
. It is obvious that the cyclic shifts (u1, u2, · · · , un

2
) can

have various combinations. In fact, we have a total of (N
2
)
n
2 different sets of cyclic shifts,

and each of these cyclic shifts changes the resulting vector in (44). Therefore, we also

have (N
2
)
n
2 different forms of (44). The k-th form of the vector (44) can be expressed as
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rdu1,k
◦rdu2,k

◦· · ·◦rdun
2
,k, which corresponds to the k-th set of cyclic shifts (u1,k, u2,k, · · · , un

2
,k).

For future reference, it is important to redefine (43) as

rdum,k
=
[
r(d+um,k), r(d+um,k +1), . . . , r(d+

N

2
− 1), r(d), r(d+1), . . . , r(d+um,k − 1)

]T
(45)

where according to the discussion above, um,k with 0 ≤ um,k ≤ N
2
− 1 denotes the value of

the cyclic shift, m, (1 ≤ m ≤ n
2
) indicates the index of the vector in a set of cyclic shifts,

and k, (0 ≤ k ≤ (N
2
)
n
2 − 1), denotes the set of cyclic shifts.

If we generate another vector whose elements are n
2
-th order products similar to rdu1,k

◦
rdu2,k

◦ · · · ◦ rdun
2
,k, but from the vector rd+

N
2 , and apply the Hadamard product to them,

we have the following vector whose elements are n-th order products

ΛΛΛd
k = rdu1,k

◦ rdu2,k
◦ · · · ◦ rdun

2
,k ◦ rd+

N
2

u1,k ◦ rd+
N
2

u2,k ◦ · · · ◦ rd+
N
2

un
2
,k . (46)

Note that the vector ΛΛΛd
k contains nth order products generated corresponding to the kth

set of cyclic shifts (u1,k, u2,k, · · · , un
2
,k), and as mentioned before we have a total of (N

2
)
n
2

different sets of cyclic shifts resulting in (N
2
)
n
2 different forms of ΛΛΛd

k. Out of these (N
2
)
n
2

forms, q forms of ΛΛΛd
k are put in a vecotor ΛΛΛd as follows:

ΛΛΛd =
[
(ΛΛΛd

0)
T , (ΛΛΛd

1)
T , · · · , (ΛΛΛd

q−1)
T
]T

, 1 ≤ q ≤ (
N

2
)
n
2 (47)

where (ΛΛΛd
k)

T denotes the transpose of ΛΛΛd
k, and the number of elements of ΛΛΛd is L = N

2
q.

Furthermore, q is a design parameter that determines the correlation length and is designed

based on the expected performance and affordable complexity as will be discussed later.

Then, we add elements of ΛΛΛd in order to generate the n-th order correlation function as

follows

Pn(d) =
L−1∑
m=0

Λd(m) =

N
2
−1∑

l=0

q−1∑
k=0

Λd
k(l) (48)

where Λd(m) is the m-th element of Λd, and L = N
2
q is the correlation length.
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One can look at the generation of Pn(d) from another point of view. We know from

(45) that the elements of rdum,k
can be written as

rdum,k
(l) = r

(
d+ |l + um,k|N

2

)
, 0 ≤ l ≤ N

2
− 1 (49)

where | · |N
2
denotes the modulo N/2 operation. Obviously, a similar relation for elements

of r
d+N

2
um,k can be obtained by replacing d in (49) with d + N

2
. Thus, the elements of ΛΛΛd

k in

(46) can be expressed as

Λd
k(l) = r

(
d+ |l + u1,k|N

2

)
r
(
d+ |l + u2,k|N

2

)
· · · r

(
d+ |l + un

2
,k|N

2

)
× r

(
d+

N

2
+ |l + u1,k|N

2

)
r
(
d+

N

2
+ |l + u2,k|N

2

)
· · · r

(
d+

N

2
+ |l + un

2
,k|N

2

)
. (50)

By summing all the elements Λd
k(l) resulting from different values of cyclic shifts um,k, we

can equivalently express Pn(d) as

Pn(d) =

N
2
−1∑

l=0

U1−1∑
u1,k=0

U2−1∑
u2,k=0

· · ·
Un

2
−1∑

un
2 ,k=0

r
(
d+|l+u1,k|N

2

)
r
(
d+|l+u2,k|N

2

)
· · · r

(
d+|l+un

2
,k|N

2

)
× r

(
d+ |l + u1,k|N

2
+

N

2

)
r
(
d+ |l + u2,k|N

2
+

N

2

)
· · · r

(
d+ |l + un

2
,k|N

2
+

N

2

)
(51)

where 0 ≤ U1, U2, . . . , Un
2
≤ N

2
− 1 indicate the range of the cyclic shifts. Note that the

correlation length is L = N
2
U1U2 · · ·Un

2
= N

2
q.

Similar to the n-th order correlation function, we can define the n-th order normal-

ization function. The difference is that we employ n-th order products that are similar

to (41), rather than (40), to generate the normalization function. In other words, instead

of using the multiplication of the correlated parts (as performed for the correlation func-

tion), we apply the difference of the correlated parts for the normalization function. For

example, we use elements
∣∣∣r(d+k)− r(d+k+ N

2
)
∣∣∣2, 0 ≤ k ≤ N

2
− 1, which can be written

in the vector form
∣∣∣rd − rd+

N
2

∣∣∣2 where | · |2 means the square of the absolute value of each

33



element of the vector i.e.

∣∣∣rd − rd+
N
2

∣∣∣2 = [∣∣∣r(d+ k)− r(d+ k +
N

2
)
∣∣∣2, ∣∣∣r(d+ k + 1)− r(d+ k +

N

2
+ 1)

∣∣∣2,
· · · ,

∣∣∣r(d+ k +
N

2
− 1)− r(d+ k +N − 1)

∣∣∣2]T

. (52)

Evidently, elements of (52) are second order products. To generate the nth order products,

we element-wise multiply the n/2 vectors that are cyclicly shifted versions of (52), namely,

ΨΨΨd
k =

∣∣∣rdu1,k
− r

d+N
2

u1,k

∣∣∣2 ◦ ∣∣∣rdu2,k
− r

d+N
2

u2,k

∣∣∣2 ◦ · · · ◦ ∣∣∣rdun
2 ,k

− r
d+N

2
un

2 ,k

∣∣∣2 (53)

where rdum,k
is defined in (45). As mentioned before, there are (N

2
)
n
2 possible sets of cyclic

shifts which correspond to different values of k resulting in different ΨΨΨd
k. We put q of these

different ΨΨΨd
k in the vector

ΨΨΨd =
[
(ΨΨΨd

0)
T , (ΨΨΨd

1)
T , · · · , (ΨΨΨd

q−1)
T
]T

, 1 ≤ q ≤ (
N

2
)
n
2 . (54)

The differential normalization function is then defined as the sum of the elements of Ψd,

i.e.,

ΔDC
n (d) =

L−1∑
m=0

Ψd(m) =

N
2
−1∑

l=0

q−1∑
k=0

Ψd
k(l). (55)

To gain further insight into how the new normalization function is generated, using

(49), we get the following expression for the elements of ΨΨΨd
k as

Ψd
k(l) =

∣∣∣r(d+|l+u1,k|N
2

)−r
(
d+

N

2
+|l+u1,k|N

2

)∣∣∣2∣∣∣r(d+|l+u2,k|N
2

)−r
(
d+

N

2
+|l+u2,k|N

2

)∣∣∣2
· · · ×

∣∣∣r(d+ |l + un
2
,k|N

2

)− r
(
d+

N

2
+ |l + un

2
,k|N

2

)∣∣∣2. (56)

Thus, ΔDC
n (d) in (55), summing nth order products corresponding to different values of
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cyclic shifts, can be equivalently written as

ΔDC
n (d) =

N
2
−1∑

l=0

U1−1∑
u1,k=0

U2−1∑
u2,k=0

· · ·
Un

2
−1∑

un
2 ,k=0

∣∣∣r(d+ |l + u1,k|N
2

)− r
(
d+ |l + u1,k|N

2
+

N

2

)∣∣∣2
×
∣∣∣r(d+|l+u2,k|N

2

)−r
(
d+|l+u2,k|N

2
+
N

2

)∣∣∣2 . . . ∣∣∣r(d+|l+un
2
,k|N

2

)−r
(
d+|l+un

2
,k|N

2
+
N

2

)∣∣∣2.
(57)

Finally, the proposed timing metric is defined as

MDC
n (d) =

|Pn(d)|
ΔDC

n (d)
. (58)

It is shown in Appendix A that this timing metric has the following means at the wrong

timing instant d̃ (when none of the elements of the received signal vector r belongs to the

preamble) and correct timing instant Θ (when all the samples of the received signal vector

r belong to the preamble)

E{MDC
n (d̃)} =

√
π

2n+2L
, (59)

E{MDC
n (Θ)} =

(
SNR

|1− ejπε|2SNR + 2

)n
2

. (60)

It is evident from (60) that the mean of the proposed metric at the correct timing point

depends on CFO, which is a consequence of the dependence of the normalization function

on CFO. To make the normalization function robust to CFO, instead of applying the

magnitude of the difference of each pair in (52) or (53), we propose to use the difference

of the magnitudes from each correlated pair, namely, we modify (53), (54) and (55),

respectively, as

Ψ̂ΨΨ
d

k =
(∣∣rdu1,k

∣∣− ∣∣rd+N
2

u1,k

∣∣)2

◦
(∣∣rdu2,k

∣∣− ∣∣rd+N
2

u2,k

∣∣)2

◦ · · · ◦
(∣∣rdun

2
,k

∣∣− ∣∣rd+N
2

un
2
,k

∣∣)2

(61)

Ψ̂ΨΨ
d
=
[
(Ψ̂ΨΨ

d

0)
T , (Ψ̂ΨΨ

d

1)
T , · · · , (Ψ̂ΨΨd

q−1)
T
]T

, 1 ≤ q ≤ (
N

2
)
n
2 (62)
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ΔIC
n (d) =

L−1∑
m=0

Ψ̂d(m) =

N
2
−1∑

l=0

q−1∑
k=0

Ψ̂d
k(l) (63)

where ΔIC
n (d) is the n-th order differential normalization function that is independent of

CFO. Considering

Ψ̂d
k(l) =

(∣∣∣r(d+ |l + u1,k|N
2

)∣∣∣− ∣∣∣r(d+ N

2
+ |l + u1,k|N

2

)∣∣∣)2

×
(∣∣∣r(d+ |l + u2,k|N

2

)∣∣∣− ∣∣∣r(d+ N

2
+ |l + u2,k|N

2

∣∣)2

· · · ×
(∣∣∣r(d+ |l + un

2
,k|N

2

)∣∣∣− ∣∣∣r(d+ N

2
+ |l + un

2
,k|N

2

)∣∣∣)2

, (64)

ΔIC
n (d) can be equivalently expressed as

ΔIC
n (d) =

N
2
−1∑

l=0

U1−1∑
u1,k=0

U2−1∑
u2,k=0

· · ·
Un/2−1∑
un

2 ,k=0

(∣∣∣r(d+ |l + u1,k|N
2

)∣∣∣− ∣∣∣r(d+ |l + u1,k|N
2
+

N

2

)∣∣∣)2

×
(∣∣∣r(d+ |l + u2,k|N

2

)∣∣∣− ∣∣∣r(d+ |l + u2,k|N
2
+

N

2

)∣∣∣)2

· · ·

×
(∣∣∣r(d+ |l + un

2
,k|N

2

)∣∣∣− ∣∣∣r(d+ |l + un
2
,k|N

2
+

N

2

)∣∣∣)2

. (65)

Finally, the n-th order timing metric that works independent of CFO is proposed as

M IC
n (d) =

|Pn(d)|
ΔIC

n (d)
. (66)

In the next section, we show that this metric is not affected by CFO. In Appendix B, we

have obtained the means of this timing metric at the wrong and correct timing instants

as given by

E{M IC
n (d̃)} =

1

2(2− π
2
)
n
2

√
π

L
, (67)
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E{M IC
n (Θ)} ≥

(
SNR

|1− ejπε|2SNR + 2

)n
2

. (68)

Fig. 3 illustrates the structure of an OFDM frame and the received vectors rd and rd+
N
2

corresponding to a wrong timing instant d = d̃ and a correct timing instant d = Θ. In Fig

4, we illustrate as to how the new correlation function Pn(d) can be generated. First, ΛΛΛd
k

given in (46) are formed. Next, different forms of ΛΛΛd
k are stacked in ΛΛΛd as indicated in (47).

Finally, the summation of elements of ΛΛΛd generates the proposed correlation function.

The block diagram of the new differential normalization function ΔIC
n (d) is depicted in

Fig. 5. According to this figure, Ψ̂ΨΨ
d

k in (61) is first generated. Different Ψ̂ΨΨ
d

k corresponding

to different values of k are then stacked in Ψ̂ΨΨ
d
as given in (62). Finally, summation of

elements of Ψ̂ΨΨ
d
gives the new normalization function ΔIC

n (d).

Fig. 6 shows the n-th order metric defined in (66) for different values of n together

with the reference metric in [14]. All the metrics in this figure are normalized by their

maximum values. Obviously, the proposed metric is sharper than the reference metric

in [14] (even for n = 2), and as the order increases, the peak of the proposed metric

becomes sharper. Note that when n = 2 and q = 1, the new metrics MDC
n (d) and M IC

n (d),

respectively, reduce to the MoD and DoM metrics in [38]. Besides, when n = 4, the

proposed metrics MDC
n (d) and M IC

n (d), respectively, reduce to an equivalent form of DDN

and that of CIDDN in [40].

It is worth mentioning that the proposed algorithms require only one OFDM symbol

(or one preamble) with two identical parts in the time domain as shown in (19). Such

an OFDM symbol can be easily generated by transmitting a zero sequence on the odd

subcarriers and a PN sequence on the even subcarriers. Furthermore, as our algorithms

use a training symbol with two identical parts in the time domain, and the two identical

parts of the preamble remain identical after passing through a multipath fading channel,

the proposed methods work in both frequency selective and AWGN channels.
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Figure 3: The structure of an OFDM frame and the received vectors rd and rd+
N
2 at timing

instants d = d̃ and d = Θ.
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Figure 4: The block diagram of generation of the nth order correlation function Pn(d).

3.2.3 Coarse Timing Synchronization

The synchronization procedure using the proposed metrics is described as follows. At the

first stage, the preamble is detected when the timing metric reaches a predefined threshold,
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Figure 5: The block diagram of generation of the nth order normalization function ΔIC
n (d).

and at the second stage, the coarse estimate of the start of a frame is obtained within the

next N timing instants. In what follows, we first briefly explain the second stage and then

introduce a new approach for coarse estimation of the start of a frame.

The aim of coarse timing estimation is to obtain an ISI-free region of the preamble [14].

This ISI-free region is indicated by timing instants corresponding to the plateau of the

proposed timing metrics (and also metrics presented in [31] and [14,38–40]), i.e., the timing

instants −G ≤ d ≤ 0 as shown in Fig. 6. In the existing works, the maximum of a timing

metric within the next N samples (after detection of the preamble) determines the coarse

timing estimate [14]. The disadvantage of this method is that sometimes the maximum

of the timing metric (which is supposed to be within the plateau) is not in the ISI-free
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Figure 6: The value of the proposed timing metric M IC
n (d) along with the timing metric

in [14] averaged over 10000 realizations in SUI-1 channel.

region (−G ≤ d ≤ 0).

To overcome this weakness, instead of using only the timing instant corresponding to

the maximum of the timing metric, we make use of a set of timing instants corresponding

to the largest values of the timing metric. These timing instants are then averaged to

produce a coarse estimate of the start of the frame. This way we can ensure that the

timing estimate is in the ISI-free region (−G ≤ d ≤ 0).

Accordingly, the proposed coarse timing estimation is performed as follows:

[d̂0, d̂1, · · · , d̂ψ−1] = argsmax
d

{Mnew(d)}, 1 ≤ ψ ≤ G (69)
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d̂ =
d̂0 + d̂1 + · · ·+ d̂ψ−1

ψ
(70)

where d̂0, d̂1, · · · , d̂ψ−1 are the timing instants corresponding to the ψ largest values of the

new timing metric Mnew(d) (in (58) or (66)), and ψ, (1 ≤ ψ ≤ G) denotes the number of

timing instants with the largest values (ψ is a parameter to be designed according to the

expected performance). Here, argsmaxd{Mnew(d)} finds the timing instants corresponding

to the largest values of the timing metric, and d̂ is the coarse timing estimate.

Next, as another two-stage timing synchronization method, we propose to use different

timing metrics at different stages. The first stage which is preamble detection, utilizes a

timing metric that has a good detection performance, and the second stage which is to

obtain a coarse estimate of the start of a frame, employs a timing metric with low ISI

probability. This scheme will be referred to as “combined method”.

3.2.4 Performance Evaluation

The performance of timing metrics as classifiers is often assessed using the class-separablity

criteria. As such, we investigate how distinct the values of the timing metrics at the correct

and wrong timing points become as the order increases. To this end, we first consider the

class-separablity in terms of the means of timing metrics at the wrong and correct timing

points. Then, both the means and the variances of the metrics are utilized for class-

separablity evaluation. We also investigate the performance limit of the timing metric

on the order, as well as robustness of the new metrics to CFO. Finally, we consider the

computational complexity of the proposed metrics.

3.2.4.1 Class-separability in Terms of Means

Here, the class-separability is assessed using the criterion defined in [38] that takes into

account the difference between the means of timing metrics at correct and wrong timing

instances. Thus, using the means derived in appendix A, the class-separability between
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the n1th order and n2th order metrics that are dependent on CFO can be compared as

αn1
n2

=
E{MDC

n1
(Θ)}/E{MDC

n1
(d̃)}

E{MDC
n2

(Θ)}/E{MDC
n2

(d̃)}
=

√
2n1−n2SNR

n1−n2
2

(|1− ejπε|2SNR + 2)
n1−n2

2

. (71)

Here, αn1
n2

compares the ratio of the means of the timing metric MDC
n1

(d) at correct and

wrong timing points with that of MDC
n2

(d). Obviously, for a timing metric with more

distinct means at correct and wrong timing points, the ratio of the means at the corre-

sponding points is greater. Therefore, the metric has a better class-separability. According

to this criterion, when αn1
n2

> 1, the metric MDC
n1

(d) has better performance than MDC
n2

(d).

When CFO is small, (71) reduces to αn1
n2


 SNR
n1−n2

2 . Consequently, by increasing the

order i.e., n1 > n2, the performance of MDC
n (d) improves for SNR > 0 dB.

Fig. 7 depicts αn1
n2

versus the SNR curves of MDC
n (d) for different values of n1 − n2

obtained using both the theoretical analysis and the Mont Carlo simulation in a multipath

fading channel (the parameters of the simulation are given in the next section). Clearly,

the simulation result matches very well with the theoretical analysis. Also, as n1 − n2

increases, the difference between the means significantly increases giving a better class-

separability. Furthermore, the class-separability improves as SNR increases. Note that the

methods presented in [38] and [40] are special cases of the proposed n-th order metrics.

The comparison of class-separability of CFO independent metrics for different values

of order is given by

αn1
n2

=
E{M IC

n1
(Θ)}/E{M IC

n1
(d̃)}

E{M IC
n2

(Θ)}/E{M IC
n2

(d̃)}
(72)

which is shown in Fig. 8 versus SNR for different values of n1−n2 (note that since we only

have a bound for E{M IC
n (Θ)} in (68), we cannot find an expression for αn1

n2
, and therefore,

theoretical result is not available). Again, it is noticed that the class-separability of the

proposed timing metric improves with increasing (n1 − n2), and with SNR. In this figure,
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Figure 7: The class-separability using means of the timing metric MDC
n (d) obtained from

analytical formula and Mont Carlo simulation.

we also have defined αn1
R as

αn1
R =

E{M IC
n1

(Θ)}/E{M IC
n1

(d̃)}
E{MR(Θ)}/E{MR(d̃)}

(73)

where MR(d) is the metric defined in [14], for which we have the means E{MR(Θ)} =

SNR
SNR+1

and E{MR(d̃)} =
√

π
2N

. It is evident that M IC
n1

(d) has a considerably better

performance as compared with MR(d).

3.2.4.2 Class-separability in Terms of Means and Variances

To evaluate the class-separability using both the means and the variances of a timing

metric, we adopt the distance parameter defined in [40], namely,

D = (m2 − σ2)− (m1 + σ1) (74)
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Figure 8: The class-separability using means of CFO independent timing metrics (M IC
n (d)

and the metric in [14]) obtained from Mont Carlo simulation.

where m1 and σ1 are the mean and standard deviation of the timing metric at the wrong

timing instant, respectively, andm2 and σ2 the mean and standard deviation at the correct

timing points. The class-separability using distance D in (74) is demonstrated in Fig. 9.

Since the theoretical derivation of the variances is often very difficult, one may resort to

numerical simulation for obtaining the distance D.

Fig. 10 depicts the class-seprabilty criterion in terms of both the means and the

variances for the CFO-dependent metricMDC
n (d). It is observed that the class-separability

improves in general with increasing metric order as long as SNR is larger than 5 dB. The

performance deterioration for low SNRs is due to the fact that the increase in the sum of

the standard deviations becomes greater than the increase in the difference between the

means, thus decreasing the class-separbility at low SNR.

Similarly, Fig. 11 shows the class-separbility of the CFO-independent metricM IC
n (d) in

terms of the distance D together with that of the method in [14]. For low SNRs and small

values of the correlation length, the performance becomes worse with increasing metric
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Figure 9: The illustration of class separability using the distanceD = (m2−σ2)−(m1+σ1).
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Figure 10: The class-separability using means and variances of the timing metric MDC
n (d)

.

order. For example, M IC
10 (d) with L = N has a worse performance compared with M IC

8 (d)

with L = N at SNR = 12dB. However, when the correlation lengths of all the metrics

and/or SNR increase, not only the class-separability of each metric is improved, but also

the class-separability improves with increasing order. Furthermore, the class-separability

of M IC
n (d) is significantly better than that of [14].

In Fig. 12 we have compared the class-separability using means and variances of
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Figure 11: The class-separability using means and variances of CFO independent timing
metrics (M IC

n (d) and the metric in [14]).

M IC
n (d) with those of the metrics in [35–37] which again shows that M IC

n (d) has a signif-

icantly better class-separability.

It is worth mentioning that although for some values of SNR the performance may

deteriorate with increasing the order of the timing metric, the new method is capable

of improving the performance for SNR ≥ 0 dB. For example, according to Figs. 9

and 10, M IC
6 (d), M IC

4 (d), and M IC
2 (d) all have a better performance than the metrics

in [1] and [35–37] when SNR ≥ 0 dB. Thus, the new scheme can provide a better

performance for SNR ≥ 0 dB when applied in wireless communication systems such as

WLAN, WiMAX, and LTE in comparison with previous methods.
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3.2.4.3 Performance Limit on the Order

In the previous subsection, it was observed that under low SNR and for some correlation

lengths, the class-separability does not improve with increasing the order of the metric.

This issue brings up the following question: how much can we increase the order so as

to obtain further improved performances? To give a definite answer to this question, we

need to analyze the means and the variances of the metric. Although we have obtained

general expressions for the means in (59), (60), (67) and (68), deriving the variances is

a very difficult task if not impossible. Thus, we have to rely on simulations that are to

be performed for specific and limited values of n. According to Figs. 7 and 8, as the

order increases, the difference between the means significantly increases. At the same

time, as shown in Fig. 13, the standard deviation at correct timing points also increases

with the order. The increase in the standard deviation for certain values of n, correlation

length and SNR, can be higher than the increase in the distance between the means, thus
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Figure 13: The standard deviation for the 6th and 8th order timing metrics (MDC
n (d) and

M IC
n (d)) at correct timing point.

decreasing the class-separability as demonstrated in Figs. 10 and 11. In other words, how

much we can increase the order is dependent on the variance of the metric. To achieve a

better class-separability, the order should be increased up to a value such that the sum of

the standard deviations of the metrics at the correct and wrong timing points is smaller

than the difference of the means at the corresponding points. As an example, according

to Fig. 11, for correlation length L = N and SNR = 8 dB, the maximum is n = 8. It is

worth mentioning that the standard deviation (as depicted in Fig. 13) is also a function

of the correlation length, and as the correlation length increases the variance decreases,

resulting in higher class-separability.
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3.2.4.4 Robustness to CFO

Without loss of generality, we consider the proposed timing metrics in the absence of noise

where the received signal can be written as

r(k) = ej
2π
N

kεy(k), 0 ≤ k ≤ N − 1. (75)

Assuming that ΛΛΛd has only one subvector corresponding to cyclic shifts (u1,k, u2,k, · · · , un
2
,k) =

(0, 1, · · · , n
2
− 1), as given by

ΛΛΛd = ΛΛΛd
0 = rd0 ◦ rd1 ◦ · · · ◦ rdn

2
−1 ◦ rd+

N
2

0 ◦ rd+
N
2

1 ◦ · · · ◦ rd+
N
2

n
2
−1 . (76)

Thus, according to (51), we have the following correlation function

Pn(d) =

N
2
−1∑

l=0

r(d+l)r
(
d+|l+1|N

2

)
· · · r

(
d+|l+n

2
−1|N

2

)
r
(
d+l+

N

2

)
r
(
d+|l+1|N

2
+
N

2

)

· · · r
(
d+ |l + n

2
− 1|N

2
+

N

2

)
=

N
2
−1∑

l=0

ejπε
n
2

∣∣∣y(l)∣∣∣2∣∣∣y(|l + 1|N
2

)∣∣∣2 · · · ∣∣∣y(|l + n

2
− 1|N

2

)∣∣∣2.
(77)

It can be shown that the magnitude of Pn(d) can be expressed as

∣∣Pn(d)
∣∣ = N

2
−1∑

l=0

∣∣∣y(l)∣∣∣2∣∣∣y(|l + 1|N
2

)∣∣∣2 · · · ∣∣∣y(|l + n

2
− 1|N

2

)∣∣∣2, (78)

which clearly indicates that |Pn(d)| is not affected by the frequency offset. With (75) and

(76) above, one can derive the proposed normalization functions as

ΔDC
n (d) = |1− ejπε|n

N
2
−1∑

k=0

∣∣∣y(k)∣∣∣2∣∣∣y(|k + 1|N
2

)∣∣∣2 · · · ∣∣∣y(|k +
n

2
− 1|N

2

)∣∣∣2, (79)
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ΔIC
n (d) =

N
2
−1∑

k=0

(∣∣∣y(k)∣∣∣− ∣∣∣y(k +
N

2

)∣∣∣)2(∣∣∣y(|k + 1|N
2

)∣∣∣− ∣∣∣y(|k + 1|N
2
+

N

2

)∣∣∣)2

· · ·
(∣∣∣y(|k +

n

2
− 1|N

2

)∣∣∣− ∣∣∣y(|k +
n

2
− 1|N

2
+

N

2

)∣∣∣)2

. (80)

Evidently, the first normalization function (79) depends on CFO, whereas the second

normalization function (80) does not. As a consequence, the first timing metric (58) is

sensitive to CFO, whereas the second timing metric (66) is robust to CFO since both

|Pn(d)| and ΔIC
n (d) therein are independent of CFO.

3.2.4.5 Computational Complexity

In this section, we assess the computational complexity of the proposed timing metrics.

The complexity is mainly due to the computation of the correlation function. Without

loss of generality, we consider again the case of ΛΛΛd having only one subvector as in (76).

Considering the vector Cd = rd0 ◦ rd1 ◦ · · · ◦ rdn
2
−1 at the timing instant d, it is observed that

Cd+1 can be expressed in terms of the elements of Cd as

Cd+1 =
[
r(d+1)r(d+

N

2
) · · · r(d+N

2
−n

2
+2), r(d+2)r(d+1)r(d+

N

2
) · · · r(d+N

2
−n

2
+3),

· · · , r(d+ n

2
− 1)r(d+

n

2
− 2) · · · r(d+ N

2
), Cd(

n

2
), Cd(

n

2
+ 1), · · · , Cd(

N

2
− 1),

r(d+
N

2
)r(d+

N

2
− 1) · · · r(d+ N

2
− n

2
+ 1)

]T
. (81)

Similarly, with Dd = r
d+N

2
0 ◦ rd+

N
2

1 ◦ · · · ◦ rd+
N
2

n
2
−1 , we have Dd+1 as

Dd+1 =
[
r(d+

N

2
+1)r(d+N) · · · r(d+N− n

2
+2), r(d+

N

2
+2)r(d+

N

2
+1)r(d+N) · · ·

×r(d+N−n

2
+3), · · · , r(d+N

2
+
n

2
−1)r(d+

N

2
+
n

2
−2) · · · r(d+N), Dd(

n

2
), Dd(

n

2
+1), · · · ,

Dd(
N

2
− 1), r(d+N)r(d+N − 1) · · · r(d+N − n
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. (82)
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Using (81) and (82), we get

ΛΛΛd+1
0 = Cd+1 ◦Dd+1 =

[
Cd+1(0)Dd+1(0), Cd+1(1)Dd+1(1), · · · ,

Cd+1(
n

2
−2)Dd+1(

n

2
−2),Λd

0(
n

2
),Λd

0(
n

2
+1), · · · ,Λd

0(
N

2
−1), Cd+1(

N

2
−1)Dd+1(

N

2
−1)

]T
.

(83)

Therefore, the n-th order correlation function can finally be written as

P (d+ 1) = P (d)− Λd
0(0)− Λd

0(1)− · · · − Λd
0(
n

2
− 1)

+ Λd+1
0 (0) + Λd+1

0 (1) + · · ·+ Λd+1
0 (

n

2
− 2) + Λd+1

0 (
N

2
− 1). (84)

For Λd
0(0) we need n − 1 multiplications; n − 5 of these multiplications are again used

in Λd
0(1) and only 4 new multiplications are utilized. The same behavior is observed

comparing Λd
0(1) and Λd

0(2) and so on. Therefore, with careful design of ΛΛΛd, we need

6n− 10 multiplications for each subvector of ΛΛΛd. In general, we need (6n− 10)q complex

multiplications for the n-th order (n ≥ 6) correlation function, where q is the number of

subvectors of ΛΛΛd in (47). In Table 3, we summarize the computational complexities of

different methods in terms of complex multiplications and additions. Obviously, for the

proposed n-th order metrics, the computational complexity increases with the order of

the metrics. As an example, the 6th order metric, with a correlation length of L = N

(or q = 2), needs 52 complex multiplications and 12 complex additions. In comparison

with [40], which for the same correlation length needs 24 complex multiplications and 8

complex additions, the new method increases the complexity approximately by a factor of

2. It is worth mentioning that as we demonstrated by different class-separability criteria

in this section, and as will be shown by false alarm and missed-detection probabilities in

the next section, the 6th order metrics are capable of improving the performance by a

factor greater than 2.
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Table 3: Computational Complexities of Different Coarse Timing Methods

Method Multiplication Addition

[14] 2 2

[38] 2 2

[40] 12q, 1 ≤ q ≤ N/2 4q, 1 ≤ q ≤ N/2

Proposed
n-th order
metrics

(6n− 10)q, n ≥ 6,
1 ≤ q ≤ (N/2)n/2−1

nq,
1 ≤ q ≤ (N/2)n/2−1

3.2.4.6 Simulation Results

To evaluate the performance of the new timing estimation methods by simulation, we

consider an OFDM system with 512 subcarriers and CP length of 64. The Stanford

University Interim (SUI) channel modeling, namely, SUI-1 [141] is used for modeling

a multipath frequency selective channel. The sampling rate is set to 5 MHz. Unless

otherwise stated, in the evaluation of the performance of MDC
n (d) in (58), CFO is chosen

as ε = 0.1, whereas for illustrating the performance of M IC
n (d) in (66) we choose ε = 5.5,

due to the fact that MDC
n (d) is vulnerable to ε whereas M IC

n (d) is robust against ε.

It is worth mentioning that in Figs. 14-17 both x and y axes are logarithmically shown.

Special attention should be paid to the threshold axis. For example, the distance between

the threshold points 100 and 101 appears equal to the distance between the threshold

points 101 and 102. However the latter distance is actually 9 times that of the former one.

Furthermore, note that the n-th order metrics reduce to that in [38] and [40] for n = 2

and n = 4, respectively.

Fig. 14 depicts the false alarm and missed detection probabilities of the n-th order

metric for different values of n at SNR = 10dB and correlation length L = N . For

a fair comparison, the error probability in this figure is only depicted for the metrics

that are dependent on CFO. The probability of false alarm is the probability that at the

wrong timing points (none of the samples belong to the preamble) the metric goes above

a predefined threshold. The missed detection probability is the probability that at the

52



10−3 10−2 10−1 100 101 102 103
10−4

10−3

10−2

10−1

100

Threshold

Er
ro

r P
ro

ba
bi

lit
y

M2
DC

M4
DC

M6
DC

M8
DC

M10
DC

False
Alarm

Missed
Detection

Figure 14: Probabilities of false alarm and missed detection for MDC
n (d) in SUI-1 channel

at SNR = 10 dB .

Figure 15: Probabilities of false alarm and missed detection for M IC
n (d) in SUI-1 channel

at SNR = 10 dB.
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correct timing points, the metric has a value lower than the threshold. It is observed that

as the order increases, both the false alarm and missed-detection probabilities improve and

the range of acceptable thresholds remarkably increases. For example, for the probabilities

of false alarm and missed detection equal to 10−3, the threshold can be respectively chosen

in the ranges 0.087 < th < 2.77, 0.032 < th < 7.2, 0.018 < th < 16, 0.012 < th < 32 and

0.009 < th < 57 for n = 2, 4, 6, 8, 10.

Fig. 15 illustrates the performance of M IC
n (d) in (66) in terms of the false alarm and

missed detection probabilities. All the metrics in this figure are robust to CFO. According

to this figure, as the order increases, the missed detection probability significantly decreases

and at the same time, the false alarm probability increases. However, the amount of

reduction in the missed detection probability is much greater than the increase in the false

alarm probability. As a result, the range of acceptable thresholds increases. For example,

for n = 2, 4, 6, 8 and an error probability of 10−3, we respectively have the following

threshold ranges: 0.4 < th < 8.2, 0.81 < th < 61, 2.9 < th < 350 and 13 < th < 1600. In

other words, when the order increases by two, the threshold range increases at least by a

factor of 4.

At SNR = 6 dB, the probabilities of the false alarm and missed detection for M IC
n (d)

are plotted in Fig. 16. It is observed that for having these probabilities equal to 10−3, the

threshold ranges of the method in [14], M IC
2 (d), M IC

4 (d), andM IC
6 (d) are 0.16 < th < 0.75,

0.4 < th < 3.5, 0.81 < th < 11.5, and 2.9 < th < 27, respectively. It can be concluded

that M IC
6 (d) has an acceptable threshold range that is 40.8 times larger than that of [14],

7.77 times larger than that of M IC
2 (d), and 2.25 times larger than that of M IC

4 (d).

False alarm and missed detection probabilities of the 10th order metric M IC
10 (d) are

depicted in Fig. 17 for different values of the correlation length L at SNR = 6dB. It is

noticed that for L = N and L = 2N , the false alarm and missed detection probabilities

intersect. Thus, for error probabilities lower than the error probability at the point of

intersection there is no acceptable threshold range. Comparing with Fig. 16, where the
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Figure 16: Probabilities of false alarm and missed detection for M IC
n (d) in SUI-1 channel

at SNR = 6 dB.

false alarm and missed detection probabilities of the 6th order metric have no intersec-

tion, it can be concluded that with increasing order, the performance may deteriorate (as

discussed in the previous section), or the correlation length needs to be increased. For

example, when the correlation length increases to L = 16N , no intersection is noticed.

In Fig. 18, we have compared the performance of M IC
2 (d) with metrics in [35–37]

at SNR = 10 dB. It is observed that for having error probability equal to 10−2, the

acceptable threshold ranges for metrics in [35], [36], [37], and M IC
2 (d) are 0.01 < th < 0.78,

0.11 < th < .87, 0.018 < th < 0.039, and 0.32 < th < 8.9, respectively. Therefore, the

acceptable threshold range for M IC
2 (d) is considerably larger than the metrics in [35–

37]. This is the consequence of the class-separability performance of the new metric as

illustrated in Fig. 12.

Fig. 19 depicts the ISI probabilities for different CFO-dependent timing estimators.
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Figure 17: Probabilities of false alarm and missed detection for M IC
10 (d) in SUI-1 channel

at SNR = 6 dB .

Probability of ISI is the probability that the timing estimate causes ISI, i.e., the FFT

window includes samples from two neighboring OFDM symbols. As can be observed,

when the proposed coarse timing estimation method is used along with the proposed

metric MDC
6 (d) in (58), the probability of ISI significantly improves. Furthermore, the ISI

probability improves when the value of ψ increases. In this figure, we have also depicted

the performance of the metric in [37] when timing back-off is performed i.e., the timing

estimate corresponding to the maximum of the timing metric is shifted back towards the

CP. According to this figure, the new method is capable of having similar performance

as that of an impulse-like metric [37] with timing-back off. It is worth mentioning that

although using timing-back off along with the metric in [37] can improve the probability

of ISI of [37], our metric, as depicted in Figs. 12 and 18, has a considerably better

performance than the metric in [37] in terms of class-separability and false alarm and
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Figure 18: Probabilities of false alarm and missed detection for M IC
2 (d) in SUI-1 channel

at SNR = 10 dB in comparison with those of [35–37].

missed detection probabilities.

In Fig. 20, the ISI performance of different methods that are not affected by CFO is

shown. It is evident that when the new estimation method uses the peaks of M IC
6 (d) in

(66), the performance improves for SNR > 8dB. In this figure, we have also plotted two

curves resulting from the proposed combined method. Recall that the combined method is

a two stage method where the first stage i.e. frame detection is done by the new nth order

timing metric and the second stage is performed by application of the metric [14] into

the new timing estimation method (69) as Mnew(d). As can be observed, the proposed

combined method has a significantly lower probability of ISI.
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3.3 Proposed Method: IFO Detection

3.3.1 Preliminaries

For frequency synchronization, CFO is usually divided into two parts, fractional frequency

offset (FFO) and integer frequency offset (IFO) [71]. In other words we can write CFO as

ε = q(ν + λ); (85)

where ν,
(−1

2
< ν ≤ 1

2

)
, is FFO, λ is IFO, and q is the number of periodic parts of a

preamble in the time domain. The estimation of CFO ε is usually performed in two

stages [31, 71, 72, 142]: FFO estimation in the time domain using the periodic parts of

a preamble with an estimation range of (−q/2, q/2], and IFO detection in the frequency

domain. Assuming that timing and FFO synchronization is already performed (similar to

the previous works that focus on IFO detection [31, 71, 72, 142], the received signal after

taking discrete Fourier transform (DFT) can be expressed as

Ri(n) = ej
2π
N

Gq(i−1)λH(|n− qλ|N)Si(|n− qλ|N) + Zi(n), (86)

where H(k) denotes the N -point DFT of the channel impulse response of length Lc i.e.,

h(l), l = 0, 1, · · · , Lc − 1, and the frequency domain samples of the ith OFDM symbol

(i ≥ 1) are denoted by Si(k). Furthermore, Zi(k) is additive white Gaussian noise with

zero mean and variance σ2
z , and |x|N denotes the modulus operation that reduces the value

of x to an integer value in the interval [0, N − 1].

IFO detection is usually carried out by obtaining the number of cyclic shifts of the

pilots in the frequency domain. The method in [31], takes advantage of the correlation

between the received differentially modulated PN sequence and the original PN sequence
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to detect IFO as

λ̂ = argmax
λ̃

B(λ̃) (87)

with

B(λ̃) =

∣∣∣∣∣
N/2−1∑
n=0

R∗
1(qn)R2(qn)S1(|qn− qλ̃|N)S∗

2(|qn− qλ̃|N)
∣∣∣∣∣. (88)

where the trial values of λ is represented by λ̃. Later an IFO metric was presented in [71]

using an ML approach. This metric given by

Φconv(λ̃) =
Lc−1∑
l=0

∣∣∣∣∣
N
q
−1∑

m=0

R1(mq)S∗
1

(
|mq − qλ̃|N

)
ej

2π
N

mql

∣∣∣∣∣
2

, λ̃ = 0, 1, 2, ...,
N

q
− 1. (89)

has a better detection capability at the cost of increased computational complexity. To

detect IFO in the presence of residual timing offset, the authors in [72] resorted to the

ambiguity function. Their method can detect both residual timing offset θ and IFO as

(θ̂, λ̂) = argmax
(θ̃,λ̃)

A(θ̃, λ̃) (90)

where in the frequency domain

A(θ̃, λ̃) =
θ̃+Lc−1∑
τ=θ̃

∣∣∣∣∣
N−1∑
n=0

R(|n+λ̃|N)S∗
1(n)e

j 2π
N

nτ

∣∣∣∣∣
2

, λ̃ = 0, 1, 2, ...,
N

q
−1, θ̃ = 0, 1, · · · , G−Lc

(91)

or equivalently in the time domain

A(θ̃, λ̃) =
θ̃+Lc−1∑
τ=θ̃

∣∣∣∣∣
N−1∑
k=0

r(k)s∗1(k−τ)e−j 2π
N

kqλ̃

∣∣∣∣∣
2

, λ̃ = 0, 1, 2, ...,
N

q
−1, θ̃ = 0, 1, · · · , G−Lc.

(92)

Note that θ is the residual timing offset, and θ̃ and θ̂ are respectively its trial and estimate
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values.

3.3.2 New Method for IFO Detection

In previous works, IFO is usually obtained by detection of the number of cyclic shifts

of the pilot samples in the frequency domain. The IFO detector searches among the

possible trial values of IFO, and picks the trial IFO that produces the maximum correlation

value. Therefore, to be able to detect IFO that is as large as the OFDM bandwidth i.e.,

−N
2q

< λ ≤ N
2q
, the previous detectors need to check N/q trial values of IFO [71].

Here, we propose an IFO detection method which does not need checking the entire

N/q trial values of IFO while covering the entire OFDM bandwidth. To this end, we first

express the IFO as

λ = γ × α + β (93)

where α is a parameter to be designed that takes an integer value in the range 1 < α ≤ N/q,

and β = |λ|α denotes the modulus operation that reduces the value of λ to an integer value

in the interval [0, α−1]. Since α is known, detection of λ is transformed into the detection

of γ and β. The parameter γ takes integer values in the range [0, N
qα
−1], and the parameter

β takes integer values in the range [0, α − 1]. If γ and β can be detected separately, we

only need to check N
qα

trial values for detection of γ, and α trial values for detection of β.

Therefore, the total number of trial values of IFO that are needed to be checked reduces

to

T (α) = α +
N

qα
(94)

which is much smaller than N/q trial values as required in previous methods.

First, we explain how α is designed, and next explain how β and γ are detected. To

find the value of α that results in the least number of trial values of IFO, we diffrentiate

T (α) with respect to α and put it equal to zero:∂T (α)
∂α

= 1− N
qα2 = 0. It immediately follows
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that the optimal value of α can be expressed as

αopt =

√
N

q
. (95)

In practical systems, N is chosen to be a power of 2, and the parameter q is also a power

of 2. Therefore, N
q
= 2m where m is an integer. N and/or q can be designed in the way

that m is an even integer and therefore
√

N/q is an integer. (Note that in the case where

m is an odd integer, αopt can be chosen as αopt =
√

2N/q). Substituting (95) into (94),

the least possible number of trial values of IFO can be expressed as

T (αopt) = 2
√

N/q, (96)

which is again significantly smaller than N/q trial values of previous methods.

In what follows, we propose approaches for finding β and γ. It will be demonstrated

that β is detected using a periodic pilot sequence in the frequency domain, and γ is

detected using an aperiodic pilot sequence in the frequency domain.

We indicate the trial values of β and γ by β̃ and γ̃, respectively, and use the conventional

IFO metric Φconv(λ̃) that is based on the correlation of the received pilot samples in the

frequency domain with the cyclically shifted original pilot samples. Such a metric is

presented in [71] as

Φconv(λ̃) =
Lc−1∑
l=0

∣∣∣∣∣
N
q
−1∑

m=0

R1(mq)S∗
1

(
|mq − qλ̃|N

)
ej

2π
N

mql

∣∣∣∣∣
2

, λ̃ = 0, 1, 2, ...,
N

q
− 1. (97)

To be able to detect β separately from γ, the metric used for detection of β, denoted

by Λ1(β̃), should not be affected by γ̃. In other words, we need to have a metric which

transforms the value of the cyclic shift λ̃ into β̃, i.e. when the signal is cyclically shifted

62



by λ̃, it appears as if it is cyclically shifted by β̃:

Λ1(β̃) = Λ1(λ̃) = Λ1(β̃ + γ̃ × α). (98)

Condition (98) is satisfied if the metric Λ1(β̃) is periodic with period α. To make the metric

in (97) periodic with period α, we use a preamble whose pilot samples in the frequency

domain are periodic, i.e.,

S1(mq) = S1

(
|mq − qα|N

)
, m = 0, 1, ..., N/q − 1. (99)

Thus, the new detector is proposed as

Λ1(β̃) =
Lc−1∑
l=0

∣∣∣∣∣∣
N
q
−1∑

m=0

R1(mq)S∗
1

(
|mq − qβ̃|N

)
ej

2π
N

mql

∣∣∣∣∣∣
2

, β̃ = 0, 1, ..., α − 1. (100)

It is straightforward to check that when (99) holds, (100) satisfies (98). The detected

value of β can then be expressed as

β̂ = argmax
β̃

{Λ1(β̃)}. (101)

Now that β is detected, we are left with the detection of γ. We replace β in (93) with β̂,

and next maximize the metric (97) over the values of γ̃. Since the values of γ̃ can result in

trial values of λ i.e., λ̃ = γ̃×α+ β̂ that can be as large as the OFDM bandwidth, the pilot

sequence used for detection of γ should be aperiodic. A periodic pilot sequence limits the

IFO detection range to the value of periodicity. For example, the periodic pilot sequence

in (99) results in the detection range [0, α − 1]. Thus, for detection of γ, we make use

of a second OFDM preamble generated from an aperiodic pilot sequence in the frequency
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domain. The detector of γ is proposed as

γ̂ = argmax
γ̃

{Λ2(γ̃)}, (102)

where

Λ2(γ̃) =
Lc−1∑
l=0

∣∣∣∣∣
N
q
−1∑

m=0

R2(mq) × S∗
2

(
|mq − q × (γ̃α + β̂)|N

)
ej

2π
N

mql

∣∣∣∣∣
2

, γ̃ = 0, 1, ...,
N

qα
− 1.

(103)

Finally, IFO is detected as

λ̂ = γ̂ × α + β̂. (104)

The following comments are worth mentioning:

1) In the discussion above, for simplicity we have assumed that the two pilot sequences

for detection of β and γ were placed in separate preambles. If we want to place both of

the pilot sequences in the same preamble, and the total number of pilot samples be equal

to that in previous methods, we simply should replace S1(n), S2(n) and R2(n), in (100)

and (103), respectively, with S̆1(n), S̆2(n) and R1(n), where

S̆1(n) =

⎧⎪⎪⎨⎪⎪⎩
S1(m) n = 2mq, m = 0, 1, ..., N

2q
− 1

0 otherwise

(105)

S̆2(n) =

⎧⎪⎪⎨⎪⎪⎩
S1(m) n = (2m+ 1)q, m = 0, 1, ..., N

2q
− 1

0 otherwise

. (106)

In this case, it is easy to show that if we have S1(2mq) = S1

(
|2mq − qα|N

)
, then Λ1(β̃)

in (100) becomes periodic with period α.

2) Although we designed new IFO metrics based on the metric in [71], our algorithm

can be applied to a wide range of metrics. In this respect, the general procedure is as
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follows: i) model the IFO as (93), ii) obtain the optimum value of α according to (95)

(note that α can also take other values as long as the condition (98) is satisfied.), iii)

detect β by maximizing an IFO metric that satisfies the condition (98), and iv) detect γ

by using the maximum value of an IFO metric that utilizes an aperiodic pilot sequence in

the frequency domain.

3) In deriving (94) and (95), we considered the general case of −N
2q

< λ ≤ N
2q

being

the range of IFO and N
q
being the total number of trial values of IFO. If in particular

applications we have a range limit for IFO, for example −λ1

2
< λ ≤ λ1

2
, then N

q
is simply

replaced with λ1, and (94) and (95) are changed accordingly.

3.3.3 Performance Evaluation

3.3.3.1 Computational Complexity

Now, we evaluate the computational complexity of the new method. According to [71],

the metric in (97) needs 4N
q
(Lc − 1) real multiplications for each trial value, and it has

to check N
q
trial values. Thus, it needs N

q

(
4N

q
(Lc − 1)

)
real multiplications in total for

IFO detection. In contrast, when the proposed method using two preambles is applied

to the metric in [71], the number of trial values can be reduced to 2
√

N
q
. Therefore, the

new method reduces the total number of real multiplications to 2
√

N
q

(
4N

q
(Lc − 1)

)
. In

case of the proposed scheme utilizing only one preamble, the number of pilot samples for

both of the new metrics is one-half of the conventional metric, and therefore, for each trial

value of IFO, our method needs 2N
q
(Lc−1) real multiplications. Hence, our method needs(

2
√

N
q

)
2N

q
(Lc − 1) real multiplications in total. Following the same reasoning, it is also

found that the number of additions for our method in cases of using two preambles and

one preamble are respectively 1
2

√
N
q
and

√
N
q
lower than that of [71]. The complexity of

the new method when applied to other metrics can also be obtained following a similar

manner.

In Table 4, we list the complexity of different IFO detection methods. In this table,
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for [31], [71] and the proposed methods using the metrics in [31] and [71], we have given

numerical examples for N = 512, Lc = 5, and q = 2. For [72] and the proposed methods

using the metric in [72], we have used the parameters N = 256, Lc = 5, q = 1, and G = 16.

It is obvious that the complexity of the new approach is significantly reduced .

3.3.3.2 Probability of Correct Detection

In this subsection, we analyze the performance of the new method in terms of the probabil-

ity of correct detection and BER. First, we investigate the probability of correct detection

of the proposed method that is given by

Pc

(
λ̂ = λ

)
= P

(
β̂ = β, γ̂ = γ

)
=

P

(
Λ1(β̃0) < Λ1(β), . . . ,Λ1(β̃α−2) < Λ1(β),Λ2(γ̃0) < Λ2(γ), . . . ,Λ2(γ̃ N

qα
−2) < Λ2(γ)

)
(107)

where β̃n, 0 ≤ n ≤ α − 2 and γ̃n, 0 ≤ n ≤ N
qα

− 2 are the nth wrong trial values of β and

γ, respectively. For the conventional IFO detectors, for example [71], the probability of

correct detection can be expressed as

PM

(
λ̂ = λ

)
= P

(
Λconv(λ̃0) < Λconv(λ), . . . ,Λconv(λ̃N

q
−2) < Λconv(λ)

)
(108)

where λ̃n, 0 ≤ n ≤ N
q
−2 is the nth wrong trial value of λ. We consider an AWGN channel,

and assume that Λconv(λ̃), Λ1(β̃), and Λ2(γ̃) have the same number of pilot samples.

Adopting an approach similar to [142], it is found that the three detectors at cor-

rect detected values, i.e., Λconv(λ), Λ1(β), and Λ2(γ) have an identical non-central Chi-

squared distribution with the mean (N
q
)2σ4

s +
N
q
σ2
sσ

2
z and variance 2(N

q
)2σ4

sσ
4
z +4(N

q
)3σ6

sσ
2
z .

It is assumed that E{Si(n)} = 0 and E
[
Re{Si(n)}2

]
= E

[
Im{Si(n)}2

]
= σ2

s

2
, where

E{Si(n)}, Re{Si(n)} and Im{Si(n)} are the expectation, real and imaginary parts of

Si(n), respectively, and σ2
s denotes the variance of Si(n) at pilot positions. On the other
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Table 4: Complexity of IFO Detectors

Method Real Multiplications Example

[31] N
q
(4N

q
) 262144

Proposed using [31]
(two preambles)

2
√

N
q
(4N

q
) 32768

Proposed using [31]
(one preamble)

2
√

N
q
(2N

q
) 16384

[71] N
q

(
4N

q
(Lc − 1)

)
1048576

Proposed using [71]
(two preambles)

2
√

N
q

(
4N

q
(Lc − 1)

)
131072

Proposed using [71]
(one preamble)

2
√

N
q

(
2N

q
(Lc − 1)

)
65536

[72] 4G(N + N
2
log2 N) 81920

Proposed using [72]
(two preambles)

4G
√
N + 8LcN+

(2G+ 2Lc)
√
N log2

√
N

13952

Proposed using [72]
(one preamble)

4G(5
√
N +

√
N
2

log2
√
N
2
)+

4L(2
√
N +

√
N
2

log2
√
N)

7936

hand, at false detected values, Λconv(λ̃n), 0 ≤ n ≤ N
q
− 2, and Λ2(γ̃n), 0 ≤ n ≤ N

qα
− 2

have an identical Chi-squared distribution with the mean N
q
σ4
s + N

q
σ2
sσ

2
z and variance

(N
q
)2σ8

s + (N
q
)2σ4

sσ
4
z + 2(N

q
)2σ6

sσ
2
z , and Λ1(β̃n), 0 ≤ n ≤ α − 2, has a Chi-squared distribu-

tion with the mean N
qα

N
q
σ4
s +

N
q
σ2
sσ

2
z and variance ( N

qα
)2(N

q
)2σ8

s +(N
q
)2σ4

sσ
4
z +2 N

qα
(N
q
)2σ6

sσ
2
z .

According to the above analysis, the probability of correct detection of the new method

is dependent on fewer events than that of [71], in view of α + N
qα

− 2 < N
q
− 1. Thus,

reducing the number of trial values of IFO has a favourable effect on the probability of

correct detection. In other words, each wrong trial IFO, with some probability, has the

potential to be detected as the true IFO. Consequently, decreasing the number of wrong

trial values increases the probability of correct detection of IFO. On the other hand, using

periodic pilot samples has the unfavourable effect of increasing the mean and variance of

Λ1(β̃) at wrong trial IFOs.
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3.3.3.3 Simulation Results

We use the Stanford University Interim (SUI) channel modeling, namely, SUI-1 [141] for

modeling a multipath fading channel. The considered OFDM system has a sampling rate

of 5 MHz. In the first scenario, we assume that the two pilot sequences are placed in

different preambles, and compare the method in [31], the proposed method using the

metric in [31], the scheme in [71] and the proposed method using the metric in [71], by

using N = 128, G = 16, q = 2 and α = 8. For [72] and the new method using the metric

in [72], we utilize N = 64, G = 8 and q = 1. Furthermore, we have α = 8 and, IFO has a

uniform distribution in (−N
2q
, N
2q
].

In Fig. 21, we show the probability of correct detection for different detectors in

the absence of FFO. According to this figure, when the new method is applied to the

previous IFO detectors the probability of correct detection slightly improves. As mentioned

previously, this improvement is mainly due to reducing the number of wrong trial IFOs

that have the potential to be wrongly detected as the correct value of IFO.

To assess the performance of the new method in the case of imperfect FFO synchro-

nization, we consider the presence of residual FFO with a uniform distribution in (− q
10
, q
10
].

Fig. 22 depicts the probability of correct detection of different detectors in such a case.

Once again, the new method slightly improves the performance as shown by the improved

probability of correct detection. It is worth mentioning that, as discussed in the previous

section, the new method also offers a remarkable reduction in the complexity.

In the second scenario, we consider the case of the new method utilizing only one

preamble and the total number of pilots being equal to that of previous methods. In this

respect, for the method in [31], the proposed method using the metric in [31], the scheme

in [71] and the proposed method using the metric in [71], we have N = 512, G = 64, q = 2

and α = 16. Furthermore, for [72] and the new method using the metric in [72], we utilize

N = 256, G = 32 and q = 1.

Figs. 23 and 24 illustrate the probability of correct detection for different detectors in
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Figure 21: Probability of detection of different methods using two preambles in the absence
of residual FFO.

the absence and presence of residual FFO, respectively. It is observed that the performance

for SNR ≥ −4dB is the same as that of previous methods, and the performance slightly

deteriorates for SNR < −4dB. Note that in a reasonable and practical SNR range, say

SNR > 0dB, our method has the same performance but with a significant reduction of

complexity.

The BER performance for quadrature phase-shift keying (QPSK) signals for the same

total number of pilots is illustrated in Fig. 25. It is observed that the utilization of the

new method results in the same BER as that of the previous methods for SNR ≥ 0dB.

We indeed have expected the same BER performance because as depicted in Figs. 21,

22, 23 24, the new IFO metrics have the same performance in terms of the probability of

correct detection for SNR ≥ −4dB.
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Figure 22: Probability of detection of different methods using two preambles in the pres-
ence of residual FFO.
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Figure 23: Probability of detection of different methods using one preamble in the absence
of residual FFO.
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Figure 24: Probability of detection of different methods using one preamble in the presence
of residual FFO.
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Figure 25: BER for different IFO detectors.
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3.4 Conclusion

In this chpater, two novel timing metrics using n-th order statistics have been proposed

and their performances have been assessed using different criteria such as class-separability,

robustness to CFO, and computational complexity. The effect of increasing the order of

the timing metric has also been investigated. A new method for coarse estimation of

the start of the frame has been presented. The performances of the new timing schemes

in multipath frequency selective fading channels have been evaluated through computer

simulations. By evaluating the false alarm and missed-detection probabilities, it has been

demonstrated that the new methods remarkably improve the detection performance as

compared with previous methods. Finally, it has been shown that the new methods also

offer a significant reduction in the ISI probability.

Moreover, we have presented a new IFO detection method for OFDM systems that

significantly reduces the number of trial values of IFO. The new method transforms IFO

detection into the detection of two new integer parameters. It was also indicated that

the new scheme can be applied to many of previously presented IFO metrics. The com-

putational complexity, detection probability and BER of the new scheme was studied in

comparison with previous methods. It has been shown that the new method can signifi-

cantly reduce the computational complexity while maintaining almost the same detection

performance as compared to previous schemes.
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Chapter 4

Synchronization in Doubly Selective

Channels

4.1 Introduction

This chapter presents some new schemes for synchronization and channel estimation in

OFDM based systems that operate in doubly selective channels. First, joint timing, CFO

and channel estimation in OFDM system is performed adopting an ML approach. Second,

a novel method is proposed for joint CFO and channel estimation using Kalman and

particle filtering. Third, timing and frequency synchronization is addressed in OFDMA

system based on ML criterion. Finally, joint CFO and channel estimation in MIMO

OFDMA systems is performed using particle and Kalman filtering. It is shown that the

new schemes can considerably improve the performance compared with previous methods.
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4.2 Proposed Method: Joint Timing, CFO and Chan-

nel Estimation in OFDM Systems Using ML

4.2.1 Preliminaries

We consider the time-domain samples s(k) of an OFDM symbol generated by taking the

inverse discrete Fourier transform (IDFT) of the frequency domain samples S(n), expressed

in the matrix form as

s = FHS. (109)

Here, F is the discrete Fourier transform (DFT) matrix whose element on the nth row

and kth column is [F]n,k = 1√
N
exp(−j 2π

N
kn), s = [s(0), s(1), · · · , s(N − 1)]T , and S =

[S(0), S(1), · · · , S(N − 1)]T . Furthermore, (·)T and (·)H respectively denote the transpose

and the Hermitian transpose operations. After inserting the cyclic prefix (CP) of length

G, the OFDM symbol is transmitted through an Lc-tap time-varying channel. The l-th

channel tap (l = 0, 1, · · · , Lc − 1) at time k, denoted by h(k, l), can be expressed using

BEM as [102]

h(k, l) =

Q−1∑
q=0

bk,qcq,l = bT
k cl, (110)

where bk,q is the qth basis function at time k, cq,l is the qth BEM coefficient correspond-

ing to the lth channel tap, and Q is the number of basis functions. Furthermore, bk =

[bk,0, bk,1, · · · , bk,Q−1]
T and cl = [c0,l, c1,l, · · · , cQ−1,l]

T . Defining hl = [h(0, l), h(1, l), · · · , h(N−
1, l)]T , B = ILc ⊗ [b0,b1, · · · ,bN−1]

T (where ILc indicates an Lc ×Lc identity matrix, and

⊗ denotes Kronecker product), and c = [cT0 , c
T
1 , · · · , cTLc−1]

T , we have

h = [hT
0 ,h

T
1 , · · · ,hT

Lc−1]
T = Bc. (111)

Let the received signal vector of length N at time instant d be denoted by rd =

[r(d), r(d + 1), · · · , r(d + N − 1)]T . Using the above channel model, the received signal
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vector at the timing instant of reception of the preamble i.e. d = θ , can be expressed as

rθ = ej
2π
N

GεΓ(ε)Ac+ z (112)

where θ and ε are respectively timing and frequency offsets, Γ(ε) = diag{ej 2π
N

kε, k =

0, 1, · · · , N − 1}, A = [s(0)B̆, s(1)B̆, · · · , s(Lc−1)B̆], and s(l) is a diagonal matrix whose ele-

ments are obtained by cyclically shifting the vector s, i.e., s(l) = diag{[s(N − l), s(N − l+

1), · · · , s(N−1), s(0), s(1), · · · , s(N−l−1)]}. Furthermore, we have B̆ = [b0,b1, · · · ,bN−1]
T

and z is the additive white Gaussian noise vector with zero mean and covariance matrix

σ2
zIN .

4.2.2 Joint Timing, Frequency Offset, and Channel Estimation

As mentioned previously, existing preamble-aided methods such as [107] have not tackled

the timing estimation problem in doubly selective channels. Here, we propose a joint

estimation method for obtaining the timing, frequency offset and doubly selective channel.

To this end, we consider the signal model (112), and assume that s is a preamble, and

therefore A is known at the receiver. We denote θ̃, ε̃, and c̃ as the trial values of θ, ε, and

c, respectively. The probability density function of rθ̃ given θ̃, ε̃, and c̃ is given by

f(rθ̃|θ̃, ε̃, c̃) = 1

(πσ2
z)

N
exp

{
−

∥∥∥rθ̃ − ej
2π
N

Gε̃Γ(ε̃)Ac̃
∥∥∥2

σ2
z

}
. (113)

Thus, the log-likelihood function of θ̃, ε̃, and c̃ after discarding the terms independent of

θ̃, ε̃, and c̃ can be expressed as

Λ(θ̃, ε̃, c̃) = −
∥∥∥rθ̃ − ej

2π
N

Gε̃Γ(ε̃)Ac̃
∥∥∥2. (114)
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From (114), the estimates of θ, ε, and c denoted by θ̂, ε̂, and ĉ, can be expressed as

(θ̂, ε̂, ĉ) = argmax
θ̃,ε̃,c̃

Λ(θ̃, ε̃, c̃). (115)

Unfortunately, obtaining (θ̂, ε̂, ĉ) above needs an exhaustive search over θ̃, ε̃, and c̃ which

is not practical. Thus, we adopt the following approach. First, we keep θ̃ and ε̃ fixed

and maximize Λ(θ̃, ε̃, c̃) with respect to c̃, yielding the following estimate of c which is

dependent on θ̃ and ε̃

ĉ(θ̃, ε̃) = e−j 2π
N

Gε̃(AHA)−1AHΓH(ε̃)rθ̃. (116)

By replacing c̃ in (114) with ĉ(θ̃, ε̃), we have

Λ(θ̃, ε̃) = −
∥∥∥rθ̃ − ej

2π
N

Gε̃Γ(ε̃)Aĉ(θ̃, ε̃)
∥∥∥2. (117)

At the next step, we keep θ̃ fixed and search for ε. Discarding the terms in Λ(θ̃, ε̃) that

are indepndent of ε̃ results in

Υ(θ̃, ε̃) = rθ̃
H
Γ(ε̃)TΓH(ε̃)rθ̃ (118)

where T = A(AHA)−1AH . Adopting an approach similar to [73], (118) can be rewritten

as

Υ(θ̃, ε̃) =
N−1∑
m=0

(
rθ̃(m)

)∗
T (m,m)rθ̃(m) +

N−2∑
m=0

N−1∑
n=m+1

ej
2π
N

(m−n)ε̃
(
rθ̃(m)

)∗
T (m,n)rθ̃(n)

+
N−2∑
m=0

N−1∑
n=m+1

ej
2π
N

(n−m)ε̃rθ̃(m)T (m,n)
(
rθ̃(n)

)∗
(119)

where a∗ denotes the complex conjugate of a, and T (k, n) denotes the element of matrix

T on the kth row and nth column. The first term on the right hand side of (119) is not
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dependent on ε̃ and can be dropped. Consequently, we have

Υ(θ̃, ε̃) = Re

{
N−2∑
m=0

N−1∑
n=m+1

ej
2π
N

(m−n)ε̃ × (
rθ̃(m)

)∗
T (m,n)rθ̃(n)

}
(120)

where Re{a} denotes the real part of a. We can express (120) equivalently as

Υ(θ̃, ε̃) = Re

{
N−1∑
k=0

χθ̃(k)e−j 2π
N

kε̃

}
(121)

where χθ̃(k) =
∑N−1−k

m=0

(
rθ̃(m)

)∗
T (m, k +m)rθ̃(k +m). Therefore, the estimate of ε can

be written as

ε̂(θ̃) = argmax
ε̃

Υ(θ̃, ε̃) (122)

which can be implemented using the FFT as seen from (121). The next step is replacing

ε̃ with ε̂(θ̃) in (117) and omitting the terms of (117) that are independent of θ̃, leading to

the following timing metric

Λ(θ̃) =
(
rθ̃
)H

Γ
(
ε̂(θ̃)

)
TΓH

(
ε̂(θ̃)

)
rθ̃ − ∥∥rθ̃∥∥2. (123)

Finally, the timing estimate is obtained as

θ̂ = argmax
θ̃

Λ(θ̃). (124)

Putting back θ̂ at (122), the estimate of CFO is obtained, and using θ̂ and CFO estimates

in (116), the BEM coefficients and consequently channel (using (3)) is estimated.

4.2.3 Complexity Reduced Implementation

The CFO metric in (121) can be computed using FFT, which significantly reduces the

computational complexity in comparison with that in [107]. However, to increase the

accuracy of the estimator, we have to increase the size of FFT which may considerably
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increase the computational complexity of the CFO estimator. For example, for having a

resolution of 1
M

where M is a power of 2, we have to conduct MN log2(MN) multiplica-

tions for FFT calculation at each timing instant. The increase in the complexity of CFO

estimator will naturally increase the overall complexity of joint timing, frequency offset

and channel estimation. Taking into account this fact, in this subsection, we first propose

a multi-level grid search algorithm for reduction of the complexity of CFO estimation. As

a result, the computational complexity of CFO estimation with resolution of 1
M

reduces

from MN log2(MN) to N log2N . Next, we explain how this method can be incorporated

in joint timing, frequency and channel estimation.

We know from [143] that the new CFO estimator gives a reliable estimate using an

FFT length of multiples of N i.e. LFFT = 2n−1N, n = 1, 2, · · · , where LFFT is the FFT

length. For having a resolution of 1
M
, instead of directly computing all the coefficients of

an MN -point FFT, we first compute the coefficients of an N point FFT, and the bin of

the coefficient with maximum real part is selected. We denote this CFO estimate by ε̂1,

which has the resolution of 1 i.e., ε̂1 − 1
2
≤ ε ≤ ε̂1 +

1
2
. Next, we increase the resolution

by a factor of 2 by computing a 2N point FFT. Since we know from the previous CFO

estimation that CFO is in the region ε̂1− 1
2
≤ ε ≤ ε̂1+

1
2
, we only need to check coefficients

of the 2N point FFT corresponding to frequencies in the set i.e. ε̃ = ε̂1− 1
2
, ε̂1, ε̂1+

1
2
. The

bin of the coefficient with maximum real value indicates the CFO estimate at the second

step which we denote by ε̂2. The CFO estimation region will now be ε̂2 − 1
4
≤ ε ≤ ε̂2 +

1
4
.

Then, again we increase the length of the FFT by a factor of 2 i.e. LFFT = 4N , and only

compute the FFT coefficients corresponding to frequencies in the region ε̂2− 1
4
≤ ε ≤ ε̂2+

1
4
,

i.e., ε̃ = ε̂2 − 1
4
, ε̂2, ε̂2 +

1
4
, and the coefficient whose real value is maximum indicates the

new CFO estimate ε̂3 resulting in the new estimation region ε̂3 − 1
8
≤ ε ≤ ε̂3 +

1
8
. By

continuing this procedure, at the n = mth step, we have ε̂n with the resolution 1
M

= 1
2m

,

where m = log2M .

We now compute the computational complexity of the new method. At the first step,
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we need to compute all N coefficients of an N -point FFT which has the complexity of

N log2N . From the second step and so on, (i.e. for nth step where 1 < n ≤ m), we only

need to compute 2 new coefficients of an 2n−1N point FFT, which needs 2log2(2
n−1N)

multiplications. Therefore, in total we need to compute N log2N+2log2(2N)+2log2(4N)+

· · · + 2log2(2
m−1N)=N log2N + m(m − 1) + 2(m − 1)log2N multiplications where m =

log2M . Thus, as compared to the number of multiplications of the previous methods

MN log2(MN), the new method significantly reduces the computational complexity.

Now to reduce the overall complexity of joint timing, CFO and channel estimation,

we propose to perform the estimation process in two steps. In the first step, initial joint

estimates of timing, channel and CFO are obtained in which only ε1 as mentioned above

is estimated along with timing and BEM coefficients. After this stage is accomplished,

refined estimates of CFO (εn for n > 1 using the above algorithm), channel and timing

are obtained utilizing the timing, CFO, and BEM coefficients estimates of the previous

step.

It is worth mentioning that in the proposed reduced complexity method, for simplicity,

we proposed that εn, n = 1 be calculated as coarse CFO estimate. Evidently, if we want

to have more accurate estimation in initial joint timing, CFO and channel estimation step,

we can simply use εn, 1 < n < m for coarse CFO estimation.

4.2.4 Performance Evaluation

4.2.4.1 Computational Complexity

In Table 5, we have shown the computational complexities of different estimators in terms

of the number of multiplications for each timing instant, where ζg and ζi respectively denote

the number of grid searches in coarse CFO estimation and the number of iterations for fine

CFO estimation in [107]. It is assumed that in [107] and our method, we have precomputed

A(AHA)−1AH . In the third column of the table, we have provided a numerical example

where N = 128, Q = 3, and Lc = 5. For [107], we have considered the optimistic case that
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Figure 26: Block diagram of the proposed scheme.
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Table 5: Complexity of Timing, Frequency and Channel Estimators in OFDM Systems

Method Number of Multiplications Example

CFO estimation
[107]

ζg(3N
2 +N) + ζi(9N

2 + 3N) 6603520

Proposed
CFO estimation

N(N + 1) + (log2M)(log2M − 1)
+2(N + log2M − 1)log2N

18108

Channel estimation
[107]

2QN + L2
cNQ 10368

Proposed
channel estimation

2QN + L2
cNQ 10368

Proposed timing
estimation

3N2 + 2N 49408

ζg = N and ζi = 2. For our method, we have set the resolution to M = N3 resulting in

approximate frequency spacing of 5 × 10−7. Evidently, the new CFO estimation method

significantly reduces the computational complexity.

4.2.4.2 Simulation Result

In this section, we evaluate the MSE performance of the new method. As mentioned

in [109], the hybrid CRB (HCRB) matrix for CFO and channel is given by

HCRB =

[
HCRBh HCRB12

HCRB21 HCRBε

]

where HCRBh and HCRBε are the bounds on the MSE of h and ε , respectively, and

HCRB12 and HCRB21 are the cross terms. In [109], HCRB is derived as, HCRB =(
blkdiag

(
1
σ2
z
ΩHΩ, 2

σ2
z
Tr
{
R−1

h Ω′HΩ′}), blkdiag(R−1
h , 0

))−1

, where blkdiag{x,y} is a block

diagonal matrix with the matrices x and y on its main diagonal, Tr(·) denotes the trace

operation, Ω = Γ(ε)Ă and Ω′ = ∂
∂ε
(Ω). Furthermore, we have Ă = [s0, s1, · · · , sLc−1]

and Rh is the correlation matrix of h. Thus, the lower bound for MSE of ε and h are

respectively HCRBε and HCRBh = 1
LcN

Tr{HCRBh}.
An OFDM system with N = 128 and G = 16 is considered. The carrier frequency
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and sampling time are fc = 1.2 GHz and Ts = 1.87 × 10−6 seconds, respectively. CFO

is set to ε = 1.3, and the considered mobile velocity is 260 km/hr. Therefore, we have

fdNTs = 0.25 where fd is the Doppler frequency defined as fd =
vfc
c

with c being the light

speed. We have generated a multipath Rayleigh fading channel using Jake’s model [144].

The channel has four taps (Lc = 4) with time spacings of 1.87μs. The average path gain

of the lth tap is e−
l
10 , and Q = 2.

In Figs. 27 and 28, we have respectively depicted the normalized MSE (NMSE) of the

new channel and CFO estimation in comparison with those obtained by the conventional

method [107] for different values of timing offset (TO) using GCE-BEM. In this figure, the

label ”Conv, SC” indicates the NMSE when coarse synchronization for [107] is achieved

using [31]. It is evident that the CFO and channel estimator in [107] is sensitive to timing

offset. On the other hand, the CFO and channel estimate of the new method is not

affected by the timing offset, and their NMSE is considerably lower than that of [107] in

the presence of TO. In this figure, we have also shown the HCRB. Note that the HCRB

for CFO is not necessarily tight as the result of taking the expectation of hybrid Fisher

information matrix with respect to the channel statistics in deriving HCRB [109].

In order to evaluate the performance of the timing estimator, in Fig. 29, we have

demonstrated the MSE of the proposed timing estimation scheme using different BEMs

in comparison with the ML method [16] and the threshold-based methods [48] and [49]

which are presented for slow fading channels. Evidently, the new method developed for fast

fading channels, has a remarkably lower MSE. Furthermore, the MSE of the methods in [48]

and [49] increases with SNR, which can be explained by the increase in the unreliability

of the thresholds for first channel tap detection in [48] and [49].

We have demonstrated NMSE of CFO and channel estimates of the new method for

different values of SNR in Fig. 30. According to this figure, the indicated BEMs have

approximately the same performance. Fig. 31 depicts the timing, CFO and channel

estimates for the proposed method in different high mobility situations using DPSS-BEM.
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Figure 27: NMSE of different channel estimators.
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Figure 28: NMSE of different CFO estimators.

It is observed that as fdNTs increases the NMSE improves. This is due to the fact that

for lower mobility situations there are more errors because of over parametrization by

BEM [145].
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Figure 29: NMSE of timing estimates of different methods.
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Figure 30: NMSE of CFO and channel estimators versus SNR for different BEM.
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Figure 31: NMSE of timing, CFO and channel estimators versus fdNTs.

4.3 Proposed Method: Joint CFO and Channel Es-

timation in OFDM Systems Using Particle and

Kalman Filtering

4.3.1 Preliminaries

4.3.1.1 Kalman Filtering

To concisely present the Kalman filter, we refer to [146]. The Kalman filter model assumes

that the state of a system at a time t is evolved from the prior state at time t−1 according

to

xt = Ftxt−1 +Btut +wt (125)
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where xt denotes the state vector containing the parameters of interest at time t, ut is

the vector containing any control inputs, Ft indicates the state transition matrix which

applies the effect of each system state parameter at time t − 1 on the system state at

time t, Bt denotes the control input matrix which applies the effect of each control input

parameter in the vector ut on the state vector, and wt is the vector containing the process

noise terms for each parameter in the state vector. The process noise is considered to be

drawn from a zero mean multivariate normal distribution with the covariance matrix Qt.

Measurements of the system can also be expressed, according to the model

yt = Htxt + vt (126)

where yt is the vector of measurements, Ht denotes the transformation matrix that maps

the state vector parameters into the measurement domain, and vt is the measurement

noise vector for each observation in the measurement vector. The measurement noise is

considered to be zero mean Gaussian white noise with covariance Rt.

The Kalman filter provides an algorithm to determine an estimate of xt by combining

models of the system and noisy measurements of certain parameters or linear functions of

parameters. The estimates of the parameters of interest in the state vector are provided

by pdfs. The Kalman filter is based on Gaussian pdfs. To fully describe the Gaussian

functions, we need to know their variances and covariances and these are stored in the

covariance matrix Pt. The Kalman filter algorithm involves two stages: prediction and

measurement update. The standard Kalman filter equations for the prediction stage are

x̂t|t−1 = Ftx̂t−1|t−1 +Btut (127)

Pt|t−1 = FtPt−1|t−1F
H
t +Qt, (128)

86



and the measurement update equations are given by

x̂t|t = x̂t|t−1 +Kt(yt −Htx̂t|t−1) (129)

Pt|t = Pt|t−1 −KtHtPt|t−1 (130)

where

Kt = Pt|t−1H
H
t (HtPt|t−1H

H
t +Rt)

−1. (131)

It is worth mentioning that if the signal and noise are jointly Gaussian, it is shown that

the Kalman filter is an optimal mimimum mean square error (MMSE) estimator [147].

4.3.1.2 Particle Filtering

In particle filtering, the pdf p(ε|r1:i) is approximated by random measures defined by

particles and weights associated to each particle [148]. Let the ηth particle corresponding

to the ith OFDM symbol and its weight, respectively, be denoted by ε
(η)
i and w

(η)
i . The

particles are generated from a distribution π(·) called importance function, and their

weights are obtained as

w
(η)
i =

p(ε
(η)
1:i |r1:i)

π(ε
(η)
1:i |r1:i)

. (132)

where ε
(η)
i = {ε(η)1 , ε

(η)
2 , · · · , ε(η)i } and w

(η)
1:i = {w(η)

1 , w
(η)
2 , · · · , w(η)

i }. The optimal impor-

tance function conditioned on both ε
(η)
1:i−1 and r1:i is given by [148]

π(ε
(η)
1:i |r1:i) = p(εi|ε(η)1:i−1, r1:i) (133)

and the corresponding weights can be obtained sequentially as [148]

w
(η)
i = w

(η)
i−1p(ri|ε(η)i−1). (134)
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Thus, p(ε|r1:i) is approximated as

p(ε
(η)
1:i |r1:i) =

Nη−1∑
η=0

w
(η)
i δ(ε1:i − ε

(η)
1:i ). (135)

where Nη is the number of particles.

Using Kalman filtering and the above-mentioned particle filtering, in what follows, we

describe the proposed method for joint estimation of CFO and doubly selective channel

in details.

4.3.2 Joint CFO and Channel Estimation in OFDM Systems

To estimate CFO and BEM coefficients, we estimate the posterior distribution function

(PDF) p(ci, ε|r1:i) which can be expressed as

p(c1:i, ε|r1:i) = p(ci|r1:i, ε)p(ε|r1:i) (136)

where c1:i = {c1, c2, · · · , ci} and r1:i = {r1, r2, · · · , ri}. Thus, estimation of p(c1:i, ε|r1:i)
can be carried out by obtaining p(c1:i|r1:i, ε) and p(ε|r1:i). The PDF p(ε|r1:i) is esti-

mated using particle filtering, and p(c1:i|r1:i, ε) is obtained using Kalman filtering. This

approach which aims at marginalizing out the linear dynamics and estimating the non-

linear parameters using particle filtering is called marginalized particle filtering [134] or

Rao-Blackwellized particle filtering [98].

First, we aim at generating particles with the PDF given in (133). Adopting an

approach similar to [149, 150], we approximate this PDF by a beta distribution. Since

the random values generated from a beta distribution are in the range [0, 1], and CFO is

assumed to be in the range [−0.5, 0.5], a new variable ξ
(η)
i is used whose relationship with

ε is ξ
(η)
i = ε

(η)
i +0.5, and we show the random variables generated by the beta distribution
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by ξ
(η)
i . The parameters of the PDF β(ξ, Ui, Vi) are defined as

Ui = ξ̄i

( ξ̄i(1− ξ̄i)

σ2
ξi

− 1
)

(137)

Vi = (1− ξ̄i)
( ξ̄i(1− ξ̄i)

σ2
ξi

− 1
)

(138)

where ξ̄i =
∑Nη

η=1 w
(η)
i−1ξ

(η)
i−1 and σ2

ξi
=
∑Nη

η=1 w
(η)
i−1

(
ξ
(η)
i−1 − ξ̄i

)2
.

Next, for each particle, the mean and covariance of the BEM coefficients are predicted

utilizing the prediction step of Kalman filtering as follows

• Prediction Step of Kalman Filtering:

ĉ
(η)
i|i−1 = Acĉ

(η)
i−1|i−1 (139)

P
(η)
i|i−1 = AcP

(η)
i−1|i−1A

H
c +U (140)

where ĉ
(η)
i|i−1 = E{ci|r1:i−1, ε̂

(η)
1:i−1}, P(η)

i|i−1 = cov{ci|r1:i−1, ε̂
(η)
1:i−1} with E{·} and cov{·} de-

noting the expectation and covariance operations, respectively.

Now that we have an estimate for the BEM coefficients, the weights are updated for

each particles using (134) as follows

w
(η)
i = w

(η)
i−1N (ri,m

(η)
i , f

(η)
i ) (141)

where m
(η)
i and f

(η)
i are the estimates of the mean and variance of the received signal using

particles and the BEM coefficients predicted using Kalman filtering, and we have

m
(η)
i = Γ(ε

(η)
i )Aiĉ

(η)
i|i−1 (142)

f
(η)
i = Γ(ε

(η)
i )Aiĉ

(η)
i|i−1P

(η)
i|i−1

(
Γ(ε

(η)
i )Aiĉ

(η)
i|i−1

)H

+ σ2
zI. (143)

Now that the prediction step of Kalman filtering is carried out, it is time to perform the
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correction step of Kalman filtering to obtain an estimate for BEM coefficients as follows

• Correction Step of Kalman Filtering:

K
(η)
i = P

(η)
i|i−1

(
Γ(ε

(η)
i )Aiĉ

(η)
i|i−1

)H

f
(η)
i

−1
(144)

ĉ
(η)
i|i = ĉ

(η)
i|i−1 +K

(η)
i (ri − Γ(ε

(η)
i )Aiĉ

(η)
i|i−1) (145)

P
(η)
i|i = P

(η)
i|i−1

(
I−K

(η)
i ĉ

(η)
i|i−1

)
(146)

After performing the above procedure for all particles, CFO and BEM coefficients are

estimated as

ĉi =

Nη∑
p=1

w
(η)
i ĉ

(η)
i|i , (147)

ε̂i =

Nη∑
p=1

w
(η)
i ε

(η)
i . (148)

The proposed algorithm is summarized in Table 6.

4.3.3 Initialization and Resampling

The proposed algorithm is initialized as follows. The particles ξ
(η)
0 , p = 1, 2, · · · , Nη are

generated from a uniform distribution U(0, 1) which has values in the range [0, 1], and

w
(η)
0 = 1

Nη
, p = 1, 2, · · · , Nη. It is also assumed that the first OFDM symbol is known at

the receiver.

It is well known that particle filters suffer from degeneracy. It means that after a few

iterations, the values of a large portion of the weights are very close to zero. Thus, a large

computational complexity is devoted to updating the weights that almost have no contri-

butions [151]. If it is desired to apply the proposed method over several OFDM symbols,

resampling can be used to eliminate the particles with small weights and replicates parti-

cles with large weights [148]. Note that effective particle size Neff = 1∑Nη
p=1(w

(η)
i )2

< Nη

2
can
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Table 6: Proposed Algorithm for OFDM Systems Based on Particle and Kalman Filtering

Proposed Algorithm

Draw ξ
(η)
i ∼ U(0, 1) for η = 1, 2, · · · , Nη

Set w
(η)
i = 1

Nη
for η = 1, 2, · · · , Nη

Set ĉ
(η)
0|0 = 0Q×1, P

(η)
0|0 = Rcl [0] for η = 1, 2, · · · , Nη

For i=1:Ni

Compute ξ̄i, σ
2
ξi
, Ui, and Vi

For p=1:Nη

Perform Kalman prediction: ĉ
(η)
i|i−1, P

(η)
i|i−1

Draw ξ
(η)
i ∼ β(ξ;Ui, Vi),

Update weights w
(η)
i = w

(η)
i−1N (ri,m

(η)
i , f

(η)
i )

Conduct Kalman correction: ĉ
(η)
i|i , P

(η)
i|i

End

Normalize weights w
(η)
i =

w
(η)
i∑Nη

η=1 w
(η)
i

Resample if Neff = 1∑Nη
p=1(w

(η)
i )2

< Nη

2

BEM coefficients estimate: ĉi =
∑Nη

η=1 w
(η)
i ĉ

(η)
i|i

Channel estimate: ĥi = Bĉi

CFO estimate: ε̂i =
∑Nη

η=1 w
(η)
i ξ

(η)
i − 0.5

End

be used as a measure of degeneracy of particles [152]. The interested readers are referred

to [148,149,151,152] for further details.

4.3.4 Simulation Results

To evaluate the performance of the new method, we have considered an OFDM system

with N = 128, G = 16 and sampling time Ts = 10−6. The carrier frequency and mobile

velocity are fc = 2 GHz and 586 km/hr, respectively, corresponding to fdNTs = 0.5 where

fd is Doppler frequency. The channel is created using Jake’s model [153] and has 3 taps

with delays τ(l) = 3lTs, l = 0, 1, 2 and corresponding average path gains e−
τ(l)
10 . In the

first two figures, we have chosen Q = 4, and in the next two figures we have set Q = 3.
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In Fig. 32, we have depicted MSE of different CFO estimators for different values of

signal to noise ratio (SNR). It is evident that the new scheme has a considerably better

performance than the ML accompanied with Newton-Raphson scheme in [107] and the

particle filter based algorithm in [150]. The superior performance of our new method

compared with [107] is due to the fact that the Newton-Raphson-based scheme in [107]

does not necessarily converge to the true CFO. Moreover, the new method has better

performance than the method in [150], because the latter did not take into account channel

variations within an OFDM symbol.

Fig. 33 illustrates the channel estimation performance of the proposed method in

comparison with the methods in [107] and [150]. Again it is obvious that the new scheme

has a significantly lower MSE as compared to previous methods.

The CFO MSEs of the proposed method are demonstrated in Fig. 34 for different

BEMs. Clearly, the Pol-BEM results in lower MSE compared with other BEMs, and CE-

BEM has the largest MSE. This issue is due to the fact that, as is evident from Fig. 35,

Pol-BEM has the lowest MSE and CE-BEM has the largest MSE for modeling the doubly

selective channel.

92



0 5 10 15 20
SNR (dB)

10-3

10-2

10-1

100

101

C
FO

 M
SE

[107]
[150]
Proposed

Figure 32: MSE of different CFO estimators for OFDM systems.
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Figure 33: MSE of different channel estimators for OFDM systems.
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Figure 34: MSE of CFO estimates for the proposed estimator using different BEM.

0 5 10 15 20
SNR (dB)

10-2

10-1

100

C
ha

nn
el

 M
SE

DPS-BEM
CE-BEM
GCE-BEM
Pol-BEM

Figure 35: MSE of channel estimates for the proposed estimator using different BEM.
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4.4 Proposed Method: Joint Timing, CFO and Chan-

nel Estimation in OFDMA Systems Using ML

4.4.1 Preliminaries

The doubly selective channel for each user denoted by hm,i, has NL unknown parameters,

whereas each OFDM symbol has N samples. To reduce the number of unknown channel

parameters, hm,i(k, l) can be represented using BEM as follows

hm,i(k, l) =

Q−1∑
q=0

bk,qcm,i,q,l = bT
k cm,i,l, (149)

where bk,q denotes the qth basis function at time k, cm,i,q,l shows the qth BEM coefficient

corresponding to the lth channel tap of ith OFDM symbol of mth user. Furthermore,

we have bk = [bk,0, bk,1, · · · , bk,Q−1]
T , cm,i,l = [cm,i,0,l, cm,i,1,l, · · · , cm,i,Q−1,l]

T , and Q is the

number of basis functions. Defining hl,m,i = [hm,i(0, l), hm,i(1, l), · · · , hm,i(N − 1, l)]T ,

B = ILc ⊗ [b0,b1, · · · ,bN−1]
T (where ILc indicates an Lc × Lc identity matrix, and ⊗

denotes Kronecker product), and cm,i = [cTm,i,0, c
T
m,i,1, · · · , cTm,i,Lc−1]

T , then the channel

vector for mth user and ith OFDM symbol can be represented as

hm,i = Bcm,i. (150)

Using the above channel model, we can write (17) as

ri =
M∑

m=1

Γ(εk)Am,i(θm)cm,i + zi, (151)

where Am,i(θm) = [s
(θm)
m,i B̆, s

(θm+1)
m,i B̆, · · · , s(θm+Lc−1)

m,i B̆], B̆ = [b0,b1, · · · ,bN−1]
T , and zi =∑M

m=1 zm,i.
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4.4.2 Joint Timing, Frequency Offset, and Channel Estimation

We assume that each user’s frame is preceded by a preamble, and concentrating on the

received signal corresponding to the preamble, for simplicity, we drop the subscript i in

the signal model in the rest of this section. Thus, from (151), the probability distri-

bution function of the received signal given given the trial values of θθθ = [θ1, · · · , θK ],
εεε = [ε1, · · · , εK ], c = [cT1 , · · · , cTK ]T can be expressed as

f(r|θ̃, ε̃, c̃) = 1

(πσ2
z)

N
exp

{
− 1

σ2
z

∥∥∥∥∥r−
M∑

m=1

Γ(ε̃m)Am(θ̃m)c̃m

∥∥∥∥∥
2}

, (152)

where θ̃k, ε̃k, c̃k, θ̃θθ, ε̃εε, and c̃ are the trial values of θk, εk, ck, θθθ, εεε, and c, respectively. After

discarding the irrelevant terms of (152), the ML estimates of θ, ε, and c can be obtained

by maximizing the function

Λ(θ̃θθ, ε̃εε, c̃) = −
∥∥∥∥∥r−

M∑
m=1

Γ(ε̃m)Am(θ̃m)c̃m

∥∥∥∥∥
2

. (153)

Direct maximization of the above equation needs an exhaustive search over the multi-

dimensional space spanned by θ̃m, ε̃m, and c̃m for m = 1, 2, · · · ,M , which is prohibitively

complex in practice.

Instead of direct maximization of the likelihood function, one can utilize the EM algo-

rithm which provides the same final result in an iterative way with reduced complexity.

The EM algorithm is performed at two steps iteratively: the first step is expectation

step, at which the log-likelihood of the complete data is obtained, and the second step is

maximization step which maximizes the expectation with respect to unknown data [88].

However, the EM algorithm suffers from a slow convergence rate, and existence of some

free parameters whose inappropriate choice can result not only in slower convergence rate

but also in convergence to local stationary points. To remedy these weaknesses, SAGE

algorithm is applied which has faster convergence rate with better stability [154]. SAGE
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algorithm is an extension of EM algorithm in which at each iteration only one subset of

unknown parameters are estimated and the rest are kept fixed [155]. For further informa-

tion about the EM and SAGE algorithm, the reader is referred to [154, 156, 157]. Here,

we resort to the SAGE algorithm which starts from an initial guess for θm, εm, and cm

denoted by θ̂0m, ε̂
0
m, and ĉ0m, respectively. We will later elaborate on how θ̂0m, ε̂

0
m, and ĉ0m

are obtained. Using these initial guesses, û0
m for m = 1, 2, · · · ,M is obtained as

û0
m = Γ(ε̂0m)Am(θ̂

0
m)ĉ

0
m. (154)

Next, the algorithm is performed iteratively, where each iteration consists of M cycles

(one cycle per user), and at the end of each cycle the timing, CFO and BEM coefficient

estimates of the corresponding user is updated. At the pth cycle of the ith iteration, we

compute

-E-step (Expectation step):

ŷi
p = r−

p−1∑
m=1

ûi
m −

K∑
m=p+1

ûi
m (155)

-M-step (Maximization step):

(θ̂ip, ε̂
i
p, ĉ

i
p) = arg max

θ̃ip,ε̃
i
p,c̃

i
p

Φ(θ̃ip, ε̃
i
p, c̃

i
p) (156)

where

Φ(θ̃ip, ε̃
i
p, c̃

i
p) = −

∥∥∥ŷi
p − Γ(ε̃ip)Ap(θ̃

i
p)c̃

i
p

∥∥∥2 (157)

After obtaining (θ̂ip, ε̂
i
p, ĉ

i
p), we update ûi

p as follows

ûi
p = Γ(ε̂ip)Ap(θ̂

i
p)ĉ

i
p. (158)

The algorithm is continued until there is no significant change in the estimates.
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Evidently, using the SAGE algorithm, maximization of (153) is transformed into M

simpler maximization (157). Despite this fact, estimation of θip, ε
i
p and cip using (157)

needs an exhaustive search for values of θ̃ip, ε̃
i
p, and c̃ip which suffers from high computa-

tional complexity and is thus not practical. Now, we propose the following procedure for

obtaining θ̂ip, ε̂
i
p and ĉip). First, we keep θ̃ip and ε̃ip fixed, and maximize (157) over the values

of c̃ip. Thus, the estimate of cip, which is dependent on θ̃ip and ε̃ip, can be written as

ĉip(θ̃
i
p, ε̃

i
p) =

(
AH

p (θ̃
i
p)Ap(θ̃

i
p)
)−1

AH
p (θ̃

i
p)Γ

H(ε̃ip)ŷ
i
p. (159)

Next, we replace c̃ip with ĉip(θ̃
i
p, ε̃

i
p) in (157), and discard the terms that are irrelevant

of ε̃ip and θ̃ip. Thus, for estimation of εip and θip, we maximize

Φ(θ̃ip, ε̃
i
p) = (ŷi

p)
HΓ(ε̃ip)V

i
pΓ

H(ε̃ip)ŷ
i
p (160)

where Vi
p = Ap(θ̃

i
p)
(
AH

p (θ̃
i
p)Ap(θ̃

i
p)
)−1

AH
p (θ̃

i
p).

In order to estimate εip, we keep θ̃ip fixed, and maximize (160) with respect to ε̃ip. Notice

that (160) can be written as

Φ(θ̃ip, ε̃
i
p) =

N−1∑
m=0

(
ŷip(m)

)∗
V i
p (m,m)ŷip(m)+

N−2∑
m=0

N−1∑
n=m+1

ej
2π
N

(n−m)ε̃ip
(
ŷip(m)

)∗
V i
p (m,n)ŷip(n)+

N−2∑
m=0

N−1∑
n=m+1

ej
2π
N

(m−n)ε̃ip ŷip(m)V i
p (m,n)

(
ŷip(n)

)∗
(161)

where V i
p (m,n) indicates the element of Vi

p on the mth row and nth column. Considering

that
∑N−1

m=0

(
ŷip(m)

)∗
V i
p (m,m)ŷip(m) is independent of ε̃ip, this term can be eliminated.

Also, noting that the elements of Vi
p are real, and the second and third terms on the right

hand side of (161) are complex conjugate of each other, CFO can be estimated as

ε̂ip(θ̃
i
p) = argmax

ε̃ip

Φ(ε̃ip), (162)
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where

Φ(ε̃ip) = Re

{
N−2∑
m=0

N−1∑
n=m+1

ej
2π
N

(n−m)ε̃ip
(
ŷip(m)

)∗
V i
p (m,n)ŷip(n)

}
. (163)

To implement (163) using FFT, we can equivalently express (163) as

Φ(ε̃ip) = Re

{
N−1∑
n=0

Ξ(n)ej
2π
N

nε̃ip

}
, (164)

where

Ξ(n) =
N−1−n∑
m=0

(
ŷip(m)

)∗
V i
p (m,n+m)ŷip(n+m). (165)

Now that we have an estimate for CFO, we are left with estimation of timing offset.

Replacing ε̃ip in (160) with ε̂ip(θ̃
i
p), the timing estimator is obtained as

θ̂ip = argmax
θ̃ip

Φ(θ̃ip), (166)

where

Φ(θ̃ip) = (ŷi
p)

HΓ
(
ε̂ip(θ̃

i
p)
)
Vi

pΓ
H
(
ε̂ip(θ̃

i
p)
)
ŷi
p. (167)

Now, by using this timing estimate in (162), the final estimate of CFO is obtained. The

BEM coefficients can also be obtained by putting the timing and CFO estimates back

into (159). Finally, using the BEM coefficients along with the expression ĥp,i = Bĉp,i, we

obtain the doubly selective channel estimate of the pth user.

The following comments are of interest: 1) For initialization of the sage algorithm, the

following approach is adopted. We set the initial CFO estimates for all users to zero. The

initial timing and channel estimates for each user are obtained as if the received signal

only belongs to that particular user and there is no interference from signal of other users.

In other words, for the mth user we have ε̂0m = 0,

θ̂0m = argmax
θ̃0m

{
rHΓ

(
ε̂0m
)
V0

m(θ̃
0
m)Γ

H
(
ε̂0m
)
r
}

(168)
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ĉ0m(θ̂
0
m, ε̂

0
m) =

(
AH

m(θ̂
0
m)Am(θ̂

0
m)
)−1

AH
m(θ̂

0
m)Γ(ε̂

0
m)r̂. (169)

We have summarized the proposed method in Tabel 7, where NS denotes the number of

iterations of the SAGE algorithm.

2) According to (164), to increase the resolution of the CFO estimation, we should

increase the length of the FFT which increases the complexity. As a solution to this

problem, we can obtain a coarse estimate of CFO jointly with timing offset. When the

timing issue is resolved, and remaining CFO is small, we can apply iterative algorithms

such as the one based on Newton Raphson method presented in [114].

4.4.3 Performance Evaluation

4.4.3.1 Computational Complexity

We first evaluate the computational complexity considering that for the multiplication of

an N1×N2 matrix with an N2×N3 matrix, we need N1N2N3 complex multiplications and

N1N3(N2 − 1) complex additions. For multiplication of a diagonal N1 × N1 matrix with

an N1 × N2 matrix, we need N1N2 complex multiplications. Further, the inversion of an

N1 ×N1 matrix needs N3
1 complex multiplications.

At each cycle of an iteration, for each trial value of the timing offset of each user, the

computational complexity is as follows: Computing (167) needs 3N2 +N complex multi-

plications and N2−1 complex additions. Performing (164) needs N(N−1)+LF log2 LF +

LcQN2 complex multiplications and N(N−1)
2

+LF log2 LF+(LcQ−1)N2 complex additions,

where LF is the FFT length. Calculation of (159) needs 2LcQN complex multiplications

and LcQ(N − 1) complex additions. Computation of (155) needs K(NLcQ+N) complex

multiplications andKN(LcQ−1)+(K−1)N complex additions. For initialization, we also

needK(3N2+N+2LcQN) complex multiplications andK(N2−1+KLcQ(N−1)) complex

additions. Furthermore, it is assumed that the matrix Vi
p and

(
AH

p (θ̃
i
p)Ap(θ̃

i
p)
)−1

AH
p (θ̃

i
p)
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Table 7: Proposed SAGE-Based Algorithm for OFDMA Systems

Inputs: r, Ap(θ̃p), p = 1, · · · , K.

Initilaization: - Set ε̂0p = 0, and obtain θ̂0p and ĉ0p using (168) and

(169), respectively, p = 1, · · · , K.

- Compute û0
p = Γ(ε̂0p)Ap(θ̂

0
p)ĉ

0
p, p = 1, · · · , K.

For i = 0 : NS − 1

For p = 1 : K

- E-step: Compute ŷi
p = r−∑p−1

k=1 û
i
k −

∑K
k=p+1 û

i
k.

- M-step:

- Estimate the CFO for each trial value of timing offset

using (164) and ε̂ip(θ̃
i
p) = argmaxε̃ip Φ(ε̃

i
p).

- Estimate the timing offset using the estimated CFOs,

(167), and θ̂ip = argmaxθ̃ip Φ(θ̃
i
p).

- Estimate the CFO using the estimated timing offset

ε̂ip = ε̂ip(θ̂
i
p).

- Estimate the BEM coefficients as

ĉip =
(
AH

p (θ̂
i
p)Ap(θ̂

i
p)
)−1

AH
p (θ̂

i
p)Γ

H(ε̂ip)ŷ
i
p.

- Compute ûi
p = Γ(ε̂ip)Ap(θ̂

i
p)ĉ

i
p.

End

Set ûi+1
p = ûi

p, p = 1, · · · , K.

End

Outputs: Estimate the timing offsets, CFOs, and BEM coefficients

θ̂p = θ̂NS−1
p , ε̂p = ε̂NS−1

p , ĥp = BĉNS−1
p , p = 1, · · · , K.

are precalculated.

In Table 8, we have demonstrated the complexity of different estimators where Nθ

denotes the number of trial values of the timing offsets, and Ng denotes the number of

grid searches needed in [114]. Since each multiplication counts for several additions, and

consequently the computational complexity is mainly due to multiplications, in this table

we have only compared the number of multiplications. Roughly speaking, the overall

complexity of the new scheme is Nθ and NS times that of [114] and [125], respectively,

where Nθ ≤ G and NS is typically 5.
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Table 8: Complexity of Estimators for OFDMA Systems

Estimator Number of Multiplications

CFO [114] NgNi(N
2 + 3N)

Channel [114] 2NSKLcQN

Timing [125] NθK(N2 + 3N)

CFO [125] NθK(N(N − 1) + LcQN2 + LF log2 LF )

Channel [125] 2NθKLcQN

Proposed Timing NSNθK(3N2 +N)

Proposed CFO NSNθK(N(N − 1) + LcQN2 + LF log2 LF )

Proposed Channel 2NSNθKLcQN

4.4.3.2 Simulation Results

We have utilized computer simulation to evaluate the performance of the new estimators.

An OFDMA system with N = 256 subcarriers, CP length of G = 32 and 4 users with

generalized subcarrier assignment is considered. The simulated doubly selective channel

has 4 taps with delay spacings of 0.81μs where the power delay profile of the lth tap

is given by exp(− l
Lc
), and Jake’s model is used. The carrier frequency and the mobile

velocity are respectively 1.9 GHz and 240 km/hr resulting in fdT = 0.25, where fd is the

Doppler frequency, and T is the OFDM useful symbol duration. Furthermore, we have

made use of the generalized complex exponential BEM [105] with Q = 2.

Fig. 36 , 37, and 38, respectively, illustrate the MSEs of the proposed timing, CFO and

channel estimators compared with previous methods. Here, the SLML method indicates

an ML method developed for slow fading channels, i.e., without using the BEM such as

the one in [87]. In this figure, OML refers to an estimator that treats an OFDMA symbol

similar to an OFDM symbol. Obviously, the new method has a significantly lower timing,

CFO and channel MSEs than the SLML and OML schemes. This is because the SLML

method does not consider the time variations of the channel. Furthermore, the OML

method assumes that the OFDMA symbol is from only one user. However, in reality, the

received OFDMA symbol is the superposition of the signals of all users, and the signals of
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Figure 36: MSE of different timing estimators.

other users act as interference for a specific user. This issue significantly deteriorates the

performance of the OML method. Also our method is better than [114] where the timing

offset is not estimated.

Now, we evaluate the performance from inter carrier interference (ICI) point of view.

The ICI is caused by two factors: CFO and time selectivity of the channel [158]. To show

the effectiveness of the new estimation method in suppression of the ICI, we have compared

the bit error rate (BER) for different methods utilizing zero-forcing equalization in Fig.

39. In this figure, the ideal curve indicates the case of perfectly knowing the timing offset,

CFO, and channel. Evidently, the new scheme significantly improves the performance.
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Figure 37: MSE of different CFO estimators for OFDMA systems.
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Figure 38: MSE of different channel estimators for OFDMA systems.
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Figure 39: BER of different methods in OFDMA systems.

4.5 Proposed Method: Joint CFO and Channel Esti-

mation in MIMO-OFDMA Systems Using Parti-

cle and Kalman Filtering

4.5.1 Preliminaries

4.5.1.1 System Model

We consider the uplink of a MIMO-OFDMA system consisting of a base station with

NR receive antennas and M active users where each user is equipped with NT transmit

antennas. The total number of subcarriers is N which are shared by all users according

to a generalized subcarrier assignment scheme where the number of subcarriers assigned

to the mth user is denoted by Nm. We let the ith OFDMA symbol of the mth user in
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the frequency domain to be sent from the tth, t = 1, 2, · · · , NT , transmit antenna be

represented by St
i,m = [St

i,m(0), S
t
i,m(1), · · · , St

i,m(N − 1)]T where St
i,m(n) denotes the nth

element of St
i,m, and is equal to zero if the nth subcarrier is not assigned to the mth

user. The time domain vector corresponding to St
i,m is denoted by sti,m. The lth tap of

the time-varying channel between the tth transmit antenna of the mth user and the pth

receive antenna of the base station for the ith OFDM symbol at time k is indicated by

ht,p
i,m(l, k). Using a vector form representation of the doubly selective channel, we have

ht,p
i,m =

[
(ht,p

i,m,0)
T , (ht,p

i,m,1)
T , · · · , (ht,p

i,m,Lc−1)
T
]T
, (170)

where ht,p
i,m,l = [ht,p

i,m(l, 0), h
t,p
i,m(l, 1), · · · , ht,p

i,m(l, N − 1)]T . The transmitted signal will be

also affected by CFO. We denote the normalized CFO affecting the ith OFDM symbol of

the mth user transmitted from the tth antenna and received at the pth antenna of base

station by εt,pi,m. Since the distances between the transmit antennas of the users are much

smaller than the distance between the receive antennas of the base station, it is reasonable

to assume that the CFOs between all transmit antennas of a user and a specific receive

antenna at the base station are the same [99]. Thus, we drop the superscript t, and

indicate the CFO by εpi,m. The received signal corresponding to the mth user at the pth

receive antenna, after removing the CP, can be written as

rpi,m(k) = ej
2π
N

(G+k)εpi,m

NT∑
t=1

Lc−1∑
l=0

ht,p
i,m(l, k)s

t
i,m(k − l) + zpi,m(k), (171)

where zt,pi,m(k) is additive white Gaussian noise (AWGN) with zero mean and variance σ2
zpi,m

.

Resorting to matrix representation, we can express the received signal at the pth antenna

which is the superposition of the signals from all users as

rpi =
M∑

m=1

Γ(εpi,m)Ǎi,mh
p
i,m + zpi (172)
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where

rpi,m = [rpi,m(0), r
p
i,m(1), · · · , rpi,m(N − 1)]T (173)

Γ(εpi,m) = diag{ej 2π
N

kεpi,m , k = G,G+ 1, · · · , G+N − 1} (174)

Ǎi,m = [Ǎ
1

i,m, Ǎ
2

i,m, · · · , ǍNT

i,m] (175)

Ǎ
t

i,m = [s
t,(0)
i,m , s

t,(1)
i,m , · · · , st,(Lc−1)

i,m ] (176)

hp
i,m =

[(
h1,p
i,m

)T
,
(
h2,p
i,m

)T
, · · · , (hNT ,p

i,m

)T ]T
(177)

s
t,(l)
i,m = diag

{
sti,m(l), s

t
i,m(l + 1), · · · , sti,m(N − 1), sti,m(0), s

t
i,m(1), · · · , sti,m(l − 1)

}
(178)

Moreover, s
t,(l)
i,m is a diagonal matrix formed by cyclically shifting sti,m by l samples, and zpi

is an AWGN matrix with zero mean and covariance σ2
zIN .

4.5.1.2 System Model Using BEM

We express ht,p
i,m(l, k) using BEM as

ht,p
i,m(l, k) =

Q−1∑
q=0

bk,qc
t,p
i,m,l,q (179)

where Q is the number of BEM coefficients, bk,q is the qth basis function at time k, and

ci,m,l,q is the qth BEM coefficient for the lth channel tap and ith OFDM symbol of the

mth user. Employing (179), a doubly selective channel can be rewritten using BEM in

the matrix form as

ht,p
i,m = Bct,pi,m, (180)

where

B = ILc ⊗ [b0,b1, · · · ,bN−1]
T (181)

ct,pi,m =
[(
ct,pi,m,0

)T
,
(
ct,pi,m,1

)T
, · · · , (ct,pi,m,Lc−1

)T ]T
(182)

bk = [bk,0, bk,1, · · · , bk,Q−1]
T (183)
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ct,pi,m,l = [ct,pi,m,l,0, c
t,p
i,m,l,1, · · · , ct,pi,m,l,Q−1]

T . (184)

Using (180), we can rewrite the received signal at the pth receive antenna as

rpi =
M∑

m=1

Γ(εpi,m)Ai,mc
p
i,m + zpi , (185)

where

Ai,m = [A1
i,m,A

2
i,m, · · · ,ANT

i,m] (186)

cpi,m =
[(
c1,pi,m

)T
,
(
c2,pi,m

)T
, · · · , (cNT ,p

i,m

)T ]T
(187)

At
i,m = [s

t,(0)
i,m B̆, s

t,(1)
i,m B̆, · · · , st,(Lc−1)

i,m B̆] (188)

B̆ = [b0,b1, · · · ,bN−1]
T (189)

4.5.1.3 Space State Model of Channel and CFO

In this subsection, we present the widely used autoregressive models for time variations of

channel and CFO [99,101,108,109]. With regard to the doubly selective channel, it should

be mentioned that although the channel changes within an OFDMA symbol interval, the

BEM coefficients are constant for an OFDMA symbol and change from one OFDMA

symbol to another, according to the following first order autoregressive model [108]

cpi,m = ΞΞΞp
mc

p
i−1,m + vp

i,m, (190)

where ΞΞΞp
m = blkdiag{Ξ̆ΞΞp

m, Ξ̆ΞΞ
p

m, · · · , Ξ̆ΞΞ
p

m} is an NTLcQ×NTLcQ block diagonal matrix with

the NTLc submatrices Ξ̆ΞΞ
p

m on the diagonal, and vp
i,m is a Gaussian noise vector with zero

mean and covariance Um = blkdiag{U1,p
0,m,U

1,p
1,m, · · · ,UNT ,p

Lc−1,m}. Furthermore, Ξ̆p
m and

Ut,p
l,m are determined by computing the following set of Yule-waker equations [108], Ξ̆ΞΞ

p

m =

Rt,p
l,m[1]

(
Rt,p

l,m[0]
)−1

, Ut,p
l,m = Rt,p

l,m[0] + Ξ̆ΞΞ
p

mR
t,p
l,m[−1] where Rt,p

l,m[s] = E[ct,pi,m,l(c
t,p
i−s,m,l)

H ] =

(BHB)−1BHRt,p
h,m,lB(BHB)−1 with Rt,p

h,m,l[s] = E[ht,p
i,m,l(h

t,p
i−s,m,l)

H ].
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It is also assumed that CFO of a user changes from one OFDMA symbol to another

according to the model [99, 108,122]

εpi,m = Ωmε
p
i−1,m + wp

i , (191)

where wp
i is a sample of AWGN with zero mean and variance σ2

w, and Ωm is typically

chosen between 0.99 and 0.9999 [108].

4.5.2 A Schimdt Extended Kalman Filtering Based Approach

In this section, we propose a joint CFO and channel estimation approach based on BEM

and SEKF, called BSEKF scheme. We follow the presentation of SEKF in [99] by first,

expressing rpi , Γ(ε
p
i,m)Ai,m, and cpi,m in terms of their real and imaginary parts, namely,

yp
i =

⎡⎢⎣Re{rpi }
Im{rpi }

⎤⎥⎦ (192)

ΛΛΛi,m(ε
p
i,m) =

⎡⎢⎣Re{Γ(εpi,m)Ai,m} −Im{Γ(εpi,m)Ai,m}
Im{Γ(εpi,m)Ai,m} Re{Γ(εpi,m)Ai,m}

⎤⎥⎦ (193)

ζζζpi,m =

⎡⎢⎣Re{cpi,m}
Im{cpi,m}

⎤⎥⎦ (194)

where Re{x} and Im{x} denote the matrices whose elements are the real and imaginary

parts of the elements of x, respectively. Using the notation \m for exclusion of the pa-

rameters of the mth user, and in turn, denoting εpi,\m and ζζζpi,\m, respectively, as the CFO

and BEM coefficients of all users except the mth user, we have

ΛΛΛi,\m(ε
p
i,\m) = [ΛΛΛi,1(ε

p
i,1), · · · ,ΛΛΛi,m−1, (ε

p
i,m−1),ΛΛΛi,m+1(ε

p
i,m+1), · · · ,ΛΛΛi,M(εpi,M)] (195)
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ζζζpi,\m =
[
(ζζζpi,1)

T , · · · , (ζζζpi,m−1)
T , (ζζζpi,m+1)

T , · · · , (ζζζpi,M)T
]T
. (196)

Then, we can rewrite the dynamic and observation models, respectively, as

ζζζpi,m = ΠΠΠmζζζ
p
i−1,m + VVV p

i,m (197)

εpi,m = Ωmε
p
i−1,m + wp

i,m, (198)

yp
i = ΛΛΛi,m(ε

p
i,m)ζζζ

p
i,m +ΛΛΛi,\m(ε

p
i,\m)ζζζ

p
i,\m +ZZZp

i (199)

where

ΠΠΠm =

⎡⎢⎣Re{ΞΞΞp
m} −Im{ΞΞΞp

m}
Im{ΞΞΞp

m} Re{ΞΞΞp
m}

⎤⎥⎦ (200)

and VVV p
i,m =

[
(Re{vp

i,m})T (Im{vp
i,m})T

]T
and ZZZp

i =
[
(Re{zpi })T (Im{zpi })T

]T
. Note that

in (199) the term ΛΛΛi,m(ε
p
i,m)ζζζ

p
i,m is related to the signal of the mth user and the term

ΛΛΛi,\m(ε
p
i,\m)ζζζ

p
i,\m is the interference caused by other users.

Let the entire parameters of all users be represented by χχχp
i = [(χχχp

i,m)
T , (χχχp

i,\m)
T ]T , where

χχχp
i,m is the vector containing the parameters of the mth user

χχχp
i,m =

[
εpi,m, (ζζζpi,m)

T
]T
, (201)

and χχχp
i,\m corresponds to the parameters of other users

χχχp
i,\m =

[
εpi,\m, (ζζζpi,\m)

T
]T
. (202)

Then, considering the dynamic and observation models in (197), (198), and (199), one

may estimate χχχp
i,m by the extended Kalman filtering. However, the direct computation

of the extended Kalman gain for all users is inefficient [99, 130]. Instead, we propose to

make use of SEKF [99,132] that offers reduced computational complexity by transforming

the problem of estimation of the parameters of all users into several simpler problems of
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parameter estimation for each user. To this end, the unknown parameters are divided

into two groups: essential parameters that are the unknown parameters of a specific user,

and nuisance parameters that are the unknown parameters of other users. As shown

in [99, 130], SEKF can reduce the complexity by omitting the computation for nuisance

variables.

We now employ BSEKF for each user, and regard χχχp
i,m and χχχp

i,\m respectively as the

essential and nuisance variables for the mth user. Furthermore, we indicate the estimates

of χχχp
i,m and χχχp

i,\m by χ̂χχp
i|i,m and χ̂χχp

i|i,\m, respectively, given the observation yp
1,y

p
2, · · · ,yp

i , and

by χ̂χχp
i|i−1,m and χ̂χχp

i|i−1,\m given the observations yp
1,y

p
2, · · · ,yp

i−1, respectively. By linearizing

(199) using the first order taylor series expansion around χ̂χχp
i|i−1, we have

yp
i ≈ ΛΛΛi,m(ε̂

p
i|i−1,m)ζ̂ζζ

p

i|i−1,m+ΛΛΛi,\m(ε̂
p
i|i−1,\m)ζ̂ζζ

p

i|i−1,\m+[Ji,m, Ji,\m]

⎡⎢⎣ χχχp
i,m − χ̂χχp

i|i−1,m

χχχp
i,\m − χ̂χχp

i|i−1,\m

⎤⎥⎦+ZZZp
i .

(203)

Note that Ji,m and Ji,\m are the Jacobian matrices defined as

Ji,m =
∂

∂χχχp
i,m

(
ΛΛΛi,m(ε

p
i,m)ζζζ

p
i,m

)∣∣
χ̂χχp
i|i−1,m

= [J1,J2] (204)

Ji,\m = [Ji,1, · · · ,Ji,m−1,Ji,m+1, · · · ,Ji,m] (205)

where

J1 =

⎡⎢⎣−Im{ΔΔΔΓΓΓ(ε̂pi|i−1,m)Ai,m} −Re{ΔΔΔΓΓΓ(ε̂pi|i−1,m)Ai,m}
Re{ΔΔΔΓΓΓ(ε̂pi|i−1,m)Ai,m} −Im{ΔΔΔΓΓΓ(ε̂pi|i−1,m)Ai,m}

⎤⎥⎦ × ζ̂ζζ
p

i|i−1,m (206)

J2 = ΛΛΛi,m(ε̂
p
i|i−1,m) (207)

with ΔΔΔ = 2π
N
diag{G,G+ 1, · · · , G+N − 1}.

We can also rewrite the dynamic models as

χχχp
i,m = ρρρmχχχ

p
i−1,m +ZZZp

i,m, (208)
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χχχp
i,\m = ρρρ\mχχχ

p
i−1,\m +ZZZp

i,\m, (209)

where ρρρm = blkdiag{Ωm,ΠΠΠm} andZZZp
i,m is an AWGNmatrix with zero mean and covariance

matrix Q = blkdiag{σ2
w,Qu} where

Qu =
1

2

⎡⎢⎣Re{Um} −Im{Um}
Im{Um} Re{Um}

⎤⎥⎦ .

Moreover, ρρρ\m = blkdiag{Ω1,ΠΠΠ1, · · · ,Ωm−1,ΠΠΠm−1,Ωm+1,ΠΠΠm+1, · · · ,ΩM ,ΠΠΠM}, and ZZZp
i,\m

is an AWGN matrix with zero mean and covariance corresponding to the noise of the state

of all users except the mth user.

Consider the linearized observation and dynamic models in (203), (208) and (209),

and the covariance matrix of χχχp
i i.e., Pi|i−1 = E

{(
χχχp
i − χ̂χχp

i|i−1

)(
χχχp
i − χ̂χχp

i|i−1

)T}
which can be

expressed as

Pi|i−1 =

⎡⎢⎣Pi|i−1,m,m Pi|i−1,m,\m

Pi|i−1,\m,m Pi|i−1,\m,\m

⎤⎥⎦ , (210)

where Pi|i−1,m,m = E
{(
χχχp
i,m−χ̂χχp

i|i−1,m

)(
χχχp
i,m−χ̂χχp

i|i−1,m

)T}
, Pi|i−1,m,\m = E

{(
χχχp
i,m−χ̂χχp

i|i−1,m

)
(
χχχp
i,\m−χ̂χχp

i|i−1,\m
)T}

, Pi|i−1,\m,m = E
{(
χχχp
i,\m−χ̂χχp

i|i−1,\m
)(
χχχp
i,m−χ̂χχp

i|i−1,m

)T}
, andPi|i−1,\m,\m =

E
{(
χχχp
i,\m− χ̂χχp

i|i−1,\m
)(
χχχp
i,\m− χ̂χχp

i|i−1,\m
)T}

. Then, for the mth user, the prediction and cor-

rection steps of the BSEKF can be described as [99, 130]

• Prediction Step of the BSEKF:

χ̂χχp
i|i−1,m = ρρρmχ̂χχ

p
i−1|i−1,m (211)

Pi|i−1,m,m = ρρρmPi−1|i−1,m,mρρρ
T
m +Q (212)
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• Correction Step of the BSEKF:

GGG =
(
Ji,mPi|i−1,m,m(Ji,m)

T + Ji,mPi|i−1,m,\m(Ji,\m)T

+ Ji,\mPi|i−1,\m,m(Ji,m)
T + Ji,\mPi|i−1,\m,\m(Ji,\m)T +

σ2
z

2
I2N

)−1

(213)

Ki,m =
(
Pi|i−1,m,m(Ji,m)

T +Pi|i−1,m,\m(Ji,\m)T
)
GGG (214)

χ̂χχp
i|i,m = χ̂χχp

i|i−1,m +Kp
i,m

(
yp
i −ΛΛΛi,m(ε̂

p
i|i−1,m)ζ̂ζζ

p

i|i−1,m +ΛΛΛi,\m(ε̂
p
i|i−1,\m)ζ̂ζζ

p

i|i−1,\m
)

(215)

Pi|i,m,m = EEEPi|i−1,m,m(EEE)T −EEEPi|i,m,\m(FFF)T−

FFFPi|i,\m,m(EEE)T +FFFPi|i−1,\m,\m(FFF)T +
σ2
z

2
Ki,m(Ki,m)

T (216)

Pi|i,m,\m = EEEPi|i−1,m,\m −FFFPi|i−1,\m,\m (217)

Pi|i,\m,m = (Pi|i,m,\m)T (218)

Pi|i,\m,\m = Pi|i−1,\m,\m (219)

where EEE = I2NTQLc+1 −Ki,mJi,m and FFF = Ki,mJi,\m, and Ki,m is the BSEKF gain. Thus,

at the prediction step, χχχp
i,m and its covariance are predicted, and at the correction step,

the estimate and covariance of χχχp
i,m are calculated. In Table 9, we have summarized the

proposed BSEKF method.

4.5.3 A Schmidt Kalman and Gaussian Particle Filtering Based

Approach

Here, we propose a new estimation method called BSK-GPF that uses BEM in conjunction

with Schmidt Kalman and Gaussian particle filtering. The basic idea is to divide the

parameters of each user that are to be estimated into two groups: a nonlinear parameter

CFO and linear parameters i.e., BEM coefficients. Using the probability density function
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Table 9: Proposed BSEKF Algorithm

Initialization:

Set χ̂χχp
0|0,m = 0(LcNTQ+1)×1 and P0|0 = IMLcNTQ+M .

Prediction Step of the BSEKF:

Compute χ̂χχp
i|i−1,m = ρρρmχ̂χχ

p
i−1|i−1,m.

Compute Pi|i−1,m,m = ρρρmPi−1|i−1,m,mρρρ
T
m +Q.

Correction Step of the BSEKF:

Compute Ki,m using (214).

Compute χ̂χχp
i|i,m = χ̂χχp

i|i−1,m +Kp
i,m

(
yp
i−

ΛΛΛi,m(ε̂
p
i|i−1,m)ζ̂ζζ

p

i|i−1,m +ΛΛΛi,\m(ε̂
p
i|i−1,\m)ζ̂ζζ

p

i|i−1,\m
)
.

Compute Pi|i,m,m, Pi|i,m,\m, Pi|i,m,\m, Pi|i,\m,\m
using (216), (217), (218), and (219).

(pdf) p(εpi,m, ζζζ
p
i,m|yp

i ), and Baye’s theorem

p(εpi,m, ζζζ
p
i,m|yp

i ) = p(ζζζpi,m|yp
i , ε

p
i,m)p(ε

p
i,m|yp

i ), (220)

the linear parameters are marginalized out and estimated using Kalman filtering, whereas

the non-linear parameter is obtained using particle filtering. This approach is called

Marginalized particle filtering [134]. In what follows, we explain the new algorithm in

detail, with a particular focus on the CFO estimation utilizing GPF and the BEM coeffi-

cient estimation using SKF (BSKF).

In particle filtering, the PDF p(εpi,m|yp
i ) is estimated by discrete random measures

defined by particles and the weights assigned to the particles as [148]

p(εpi,m|yp
i ) =

Nη∑
η=1

w
(η)
i δ(εpi,m − ε

p,(η)
i,m ) (221)

where ε
p,(η)
i,m and w

(η)
i denote the ηth particle and its weight, respectively, Nη the number

of particles and δ(·) Dirac delta function. The particles are generated randomly from a
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distribution π(εpi,m) called importance function, and the weights are chosen as [148]

w
(η)
i =

p
(
ε
p,(η)
i,m |yp

i

)
π
(
ε
p,(η)
i,m |yp

i

) . (222)

A well known problem in particle filtering is sample degeneration that leads to perfor-

mance deterioration [148]. It means that only a few particles representing the distribution

have considerable weights [136]. To solve this problem, resampling can be used. However,

resampling results in particle impoverishment [137]. A class of particle filters that does

not undergo sample degeneration and consequently is immune to particle impoverishment,

is GPF [136]. GPF also benefits from significant complexity reduction owing to avoiding

resampling [137], and hence, GPF is adopted in the following. The details of the GPF can

be found in [136].

According to the marginalized particle filtering, first, particles ε
p,(η)
i,m are generated from

the distribution π
(
εpi,m|yp

i

)
, and next the weights are selected as

w
(η)
i =

p
(
yp
i |εp,(η)i,m

)N (
ε
p,(η)
i,m ; μ̄

(η)
i , (σ̄

(η)
i )2

)
π
(
ε
p,(η)
i,m |yp

i

) , (223)

where

p
(
yp
i |εp,(η)i,m

)
= N (

yp
i ; μ̄μμ

(η)
i , Σ̄ΣΣ

(η)
i

)
. (224)

In (223), N (
x;μ, σ2

)
is the univariate Gaussian density with mean μ and variance σ2.

Similarly in (224), N (
x;μμμ,ΣΣΣ

)
indicates the multivariate Gaussian density with mean

vector μμμ and covariance matrix ΣΣΣ. Here, μ̄μμ
(η)
i and Σ̄ΣΣ

(η)
i are the mean vector and covariance

matrix of yp
i and are obtained using the prediction step of BSKF as follows. Considering

the mth user, by linearizing (199) with respect to nuisance parameters, we have

yp
i ≈ ΛΛΛi,m(ε

p
i,m)ζζζ

p
m +ΛΛΛi,\m(ε̂

p
i|i−1,\m)ζ̂ζζ

p

i|i−1,\m + Ji,\m
(
χχχp
i,\m − χ̂χχp

i|i−1,\m
)
+ZZZ ′p

i . (225)
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Then,

μ̄μμ
(η)
i = ΛΛΛi,m(ε

p,(η)
i,m )ζ̂ζζ

p,(η)

i|i−1,m +ΛΛΛi,\m(ε̂
p
i|i−1,\m)ζ̂ζζ

p

i|i−1,\m (226)

Σ̄ΣΣ
(η)
i = ΛΛΛi,m(ε

p,(η)
i,m )P

(η)
i|i−1,m,m

(
ΛΛΛi,m(ε

p,(η)
i,m )

)T

+ Ji,\mPi|i−1,\m,\m
(
Ji,\m

)T
+

σ2
z

2
I2N (227)

where ζ̂ζζ
p,(η)

i|i−1,m, P
p,(η)
i|i−1,m,m, and Pi|i−1,\m,\m are obtained in the prediction step of BSKF.

Representing the covariance matrix of ϑϑϑp
i = [(ζζζpi,m)

T , (χχχp
i,\m)

T ]T i.e., P
(η)
i|i−1 = E

{(
ϑϑϑp
i −

ϑ̂iϑiϑi

p,(η)

i|i−1

)(
ϑϑϑp
i − ϑ̂iϑiϑi

p,(η)

i|i−1

)T}
as

P
(η)
i|i−1 =

⎡⎢⎣P
(η)
i|i−1,m,m P

(η)
i|i−1,m,\m

P
(η)
i|i−1,\m,m Pi|i−1,\m,\m

⎤⎥⎦ (228)

where P
(η)
i|i−1,m,m = E

{(
ζζζpi,m − ζ̂ζζ

p,(η)

i|i−1,m

)(
ζζζpi,m − ζ̂ζζ

p,(η)

i|i−1,m

)T}
, P

(η)
i|i−1,m,\m = E

{(
ζζζpi,m − ζ̂ζζ

p,(η)

i|i−1,m

)
(
χχχp
i,\m − χ̂χχp

i|i−1,\m
)T}

, P
(η)
i|i−1,\m,m = E

{(
χχχp
i,\m − χ̂χχp

i|i−1,\m
)(
ζζζpi,m − ζ̂ζζ

p,(η)

i|i−1,m

)T}
, Pi|i−1,\m,\m =

E
{(
χχχp
i,\m − χ̂χχp

i|i−1,\m
)(
χχχp
i,\m − χ̂χχp

i|i−1,\m
)T}

, the prediction step of BSKF can be described

as

• Prediction Step of the BSKF:

ζ̂ζζ
p,(η)

i|i−1,m = ΠΠΠmζ̂ζζ
p,(η)

i−1|i−1,m (229)

P
(η)
i|i−1,m,m = ΠΠΠmP

(η)
i−1|i−1,m,mΠΠΠ

T
m +Qu (230)

Following the prediction step of BSKF and having obtained the wights of particle filters,

one can perform the correction step of BSKF as follows.
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• Correction Step of the BSKF:

GGG(η) =
(
J
(η)
i,mP

(η)
i|i−1,m,m(J

(η)
i,m)

T + J
(η)
i,mP

(η)
i|i−1,m,\m(Ji,\m)T

+ Ji,\mP
(η)
i|i−1,\m,m(J

(η)
i,m)

T + Ji,\mPi|i−1,\m,\m(Ji,\m)T +
σ2
z

2
I2N

)−1

(231)

K
(η)
i,m =

(
P

(η)
i|i−1,m,m(J

(η)
i,m)

T +P
(η)
i|i−1,m,\m(Ji,\m)T

)
GGG(η) (232)

ζ̂ζζ
p,(η)

i|i,m = ζ̂ζζ
p,(η)

i|i−1,m +Kp
i,m

(
yp
i −ΛΛΛi,m(ε

p,(η)
i,m )ζ̂ζζ

p,(η)

i|i−1,m −ΛΛΛi,\m(ε̂
p
i|i−1,\m)ζ̂ζζ

p

i|i−1,\m
)

(233)

P
(η)
i|i,m,m = EEE (η)P

(η)
i|i−1,m,m(EEE (η))T −EEE (η)P

(η)
i|i,m,\m(FFF (η))T

−FFF (η)P
(η)
i|i,\m,m(EEE (η))T +FFF (η)Pi|i−1,\m,\m(FFF (η))T +

σ2
z

2
K

(η)
i,m(K

(η)
i,m)

T (234)

Pi|i,m,\m = EEE (η)Pi|i−1,m,\m −FFF (η)Pi|i−1,\m,\m (235)

Pi|i,\m,m = (Pi|i,m,\m)T (236)

Pi|i,\m,\m = Pi|i−1,\m,\m (237)

where J
(η)
i,m = ΛΛΛi,m(ε̂

p,(η)
i,m ) is the Jacobian matrix corresponding to the ηth particle, EEE (η) =

I2NTQLc −K
(η)
i,mJ

(η)
i,m, and FFF (η) = K

(η)
i,mJi,\m.

Now, using the generated particles, BEM and CFO coefficients can be, respectively,

estimated as

ζ̂ζζ
p

i,m =

Nη∑
η=1

w
(η)
i ζ̂ζζ

p,(η)

i|i,m, (238)

ε̂pi,m = μi =

Nη∑
η=1

w
(η)
i ε

p,(η)
i,m . (239)

Furthermore, we have

Pi|i,m,m =

Nη∑
η=1

w
(η)
i

(
P

(η)
i|i,m,m +

(
ζ̂ζζ
p,(η)

i|i,m − ζζζpi,m
)(
ζ̂ζζ
p,(η)

i|i,m − ζζζpi,m
)T)

. (240)
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σ2
i =

Nη∑
η=1

w
(η)
i

(
ε
p,(η)
i,m − μi

)2

. (241)

Finally, the time update step of GPF is performed to generate particles for the next

OFDM symbol as given by

ε
p,(η)
i,m ∼ N (

εpi,m;μi, σ
2
i

)
, (242)

ε
p,(η)
i+1,m ∼ p

(
εpi+1,m|εp,(η)i,m

)
, (243)

μ̄i+1 =
1

Nη

Nη∑
η=1

ε
p,(η)
i+1,m, (244)

σ̄2
i+1 =

1

Nη

Nη∑
η=1

(
ε
p,(η)
i+1,m − μ̄i+1

)2

. (245)

In Table 10, we have summarized the proposed algorithm, where U(−0.5, 0.5) denotes

the uniform distribution in the range [−0.5, 0.5], and 0LcNTQ×1 is an LcNTQ × 1 zero

vector.

4.5.4 Bayesian Cramer Rao Bound (BCRB)

Cramer-Rao bound provides a lower bound on the MSE of any unbiased estimator for un-

known parameters [159]. In situations, where the parameters to be estimated are random

and the prior information is available, BCRB is applied [160]. Here, we derive the BCRB

for joint estimation of CFO and channel.

To derive the BCRB, we define ��� = [εpi,1,Re{hp
i,1}T , Im{hp

i,1}T , · · · , εpi,M ,Re{hp
i,M}T ,

Im{hp
i,M}T ]T , and consider the Baysian information matrix (BIM) as given by [107]

JJJ B = JJJ D +JJJ P . (246)

where JJJ D = E���

{
[JJJ ]i,j

}
, with JJJ being the Fisher information matrix (FIM), [JJJ P ]i,j =

−E���

{
∂2lnp(���)
∂���∂���T

}
, and E���{·} denoting the expectation operation with respect to ���. The
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Table 10: Proposed BSK-GPF Algorithm

Initialization:

Draw ε
p,(η)
0,m ∼ U(−0.5, 0.5) for η = 1, 2, · · · , Nη

Compute μ̄0 =
1
Nη

∑Nη

η=1 ε
p,(η)
0,m and σ̄2

0 = 1
Nη

∑Nη

η=1

(
ε
p,(η)
0,m − μ̄0

)2

Set ζ̂ζζ
p,(η)

0|0,m = 0LcNTQ×1 and P
(η)
0|0 = IMLcNTQ+M−1 for η = 1, · · · , Nη

GPF Measurement update :

For η = 1 : Nη

Generate ε
p,(η)
i,m ∼ π

(
εpi,m|yp

i

)
Compute the prediction step of the BSKF: ζ̂ζζ

p,(η)

i|i−1,m, P
(η)
i|i−1,m,m

Compute μ̄μμ
(η)
i and Σ̄ΣΣ

(η)
i using (226) and (227)

Compute p
(
yp
i |εp,(η)i,m

)
= N (

yp
i ; μ̄μμ

(η)
i , Σ̄ΣΣ

(η)
i

)
Compute w

(η)
i =

p
(
yp
i |εp,(η)i,m

)
N
(
ε
p,(η)
i,m ;μ̄

(η)
i ,(σ̄

(η)
i )2

)
π
(
ε
p,(η)
i,m |yp

i

) ,

Compute Correction Step of the BSKF: K
(η)
i,m,

ζ̂ζζ
p,(η)

i|i,m, P
(η)
i|i,m,m, P

(η)
i|i,m,\m, P

(η)
i|i,\m,m, Pi|i,\m,\m,

End

Normalize weights w
(η)
i =

w
(η)
i∑Nη

η=1 w
(η)
i

Estimate BEM coefficients: ζ̂ζζ
p

i,m =
∑Nη

η=1 w
(η)
i ζ̂ζζ

p,(η)

i|i,m
Estimate CFO: μi = ε̂pi,m =

∑Nη

η=1 w
(η)
i ε

p,(η)
i,m

Compute σ2
i =

∑Nη

η=1 w
(η)
i

(
ε
p,(η)
i,m − μi

)2

Compute Pi|i,m,m according to (240)

GPF Time update :

Generate ε
p,(η)
i,m ∼ N (

εpi,m;μi, σ
2
i

)
Generate ε

p,(η)
i+1,m ∼ p

(
εpi+1,m|εp,(η)i,m

)
Compute μ̄i+1 =

1
Nη

∑Nη

η=1 ε
p,(η)
i+1,m

Compute σ̄2
i+1 =

1
Nη

∑Nη

η=1

(
ε
p,(η)
i+1,m − μ̄i+1

)2

FIM can be expressed in terms of its submatrices JJJm,m′ as

JJJm,m′ =
2

σ2
z

Re

⎡⎢⎢⎢⎢⎣
TTT

H
mTTTm′ −jTTTH

mȦi,m′ TTT
H
mȦi,m′

jȦ
H

i,mTTTm′ Ȧ
H

i,mȦi,m′ jȦ
H

i,mȦi,m′

Ȧ
H

i,mTTTm′ −jȦ
H

i,mȦi,m′ Ȧ
H

i,mȦi,m′

⎤⎥⎥⎥⎥⎦ (247)
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where TTTm = ΔΔΔΓΓΓ(εpi,m)Ǎi,mh
p
i,m and Ȧi,m = Γ(εpi,m)Ǎi,m. Thus, we can obtain the subma-

trices of JJJ D for m �= m′ as

JJJ D,m,m′ =
2

σ2
z

Re

⎡⎢⎢⎢⎢⎣
0 0001×NTNLc 0001×NTNLc

000NTNLc×1 Ǎ
H

i,mΓ̌ΓΓǍi,m′ jǍ
H

i,mΓ̌ΓΓǍi,m′

000NTNLc×1 −jǍ
H

i,mΓ̌ΓΓǍi,m′ Ǎ
H

i,mΓ̌ΓΓǍi,m′

⎤⎥⎥⎥⎥⎦ (248)

where Γ̌ΓΓ is a diagonal matrix with diagonal elements [Γ̌ΓΓ]i,i =
sin2(2πna/N)
(2πna/N)2

, and it is assumed

that CFO is uniformly distributed in the range [−a, a]. For m = m′, we have

JJJ D,m,m′ =
2

σ2
z

× Re

⎡⎢⎢⎢⎢⎣
tr(ΔΔΔǍi,mR

p
i,mǍ

H

i,mΔΔΔ
H) 0001×NTNLc 0001×NTNLc

000NTNLc×1 Ǎ
H

i,mǍi,m jǍ
H

i,mǍi,m

000NTNLc×1 −jǍ
H

i,mǍi,m Ǎ
H

i,mǍi,m

⎤⎥⎥⎥⎥⎦ . (249)

To obtain JJJ P , we consider p(���) =
∏M

m=1 p(���h,m)p(ε
p
i,m) where ���h,m = [Re{hp

i,m}T ,
Im{hp

i,m}T ]T , p(εpi,m) = 1
2a

and p(���h,m) = (π)−
NTNLc

2 |R�h,m
|− 1

2 exp
( − 1

2
���T

h,mR
−1
�h,m

���h,m

)
with R�h,m

= E{���h,m���
T
h,m}. Therefore, JJJ P can be represented as

JJJ P = blkdiag(JJJ P,1, · · · ,JJJ P,M) (250)

where JJJ P,m = blkdiag(0,R−1
�h,m

). Finally, the BCRB for the joint CFO and channel

estimation can be obtained as

BCRB = (JJJ B)
−1. (251)

4.5.5 Performance Evaluation

In this section, we evaluate the performance of the new methods using computer simu-

lation. We consider a MIMO OFDMA system with N = 128 subcarriers, CP length of

G = 16, and 4 users. The users and base station are respectively equipped with 3 transmit
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and receive antennas. Each user transmits its data using 32 subcarriers where the sam-

pling time and carrier frequency are Ts = 10−6 seconds and fc = 2 GHz, respectively. The

channel for each antenna of each user is a multipath Rayleigh fading channel generated

using Jake’s model [153]. The channel has Lc = 3 taps with time spacings of 1 μs and

exponential power delay profile with the average power of e−
l

Lc , l = 0, 1, 2. We use the

generalized complex exponential BEM [105] with Q = 2, and unless otherwise stated, the

normalized Doppler frequency is fdNTs = 0.5 which corresponds to mobile velocity of

586 km/h. For performance comparison of BSK-GPF with other schemes, the CFOs of

user 1 to user 4 are set to 0.4,−0.3, 0.4,−0.3, and for performance comparison of BSEKF

approach CFOs are 0.2,−0.2, 0.2,−0.2. Furthermore, the importance function is chosen

to be π
(
εpi,m|yp

i

)
= N (

εpi,m; μ̄
(η)
i , (σ̄

(η)
i )2

)
.

In Figs. 40 and 41, we have depicted, respectively, the MSE plots of CFO and channel

estimates of the proposed BSK-GPF method in comparison with previous schemes using

one preamble and 200 particles. The ML grid search approach followed by Newton-Rapson

method in [114,117] is indicated by ”ML-NR”, and a particle based method similar to SK-

APF in [99] that does not take into account the channel time variations during an OFDM

symbol is shown by ”SK-APF”. We have also depicted the BCRB as a lower bound.

Evidently, the new BSK-GPF method has a significantly lower MSE than other schemes

considering that the Newton-Rapson scheme does not neccessarily converge to the true

CFO [161], and the SK-APF cannot cope with the channel changes within one OFDMA

symbol interval.

Fig. 42 demonstrates the MSE of CFO and channel estimates obtained using BSEKF

approach as compared with the SEKF method in [99] using two preambles. It is oberved

that the new method, by modeling channel variations within an OFDMA symbol using

BEM, offers a considerably better performance.

The performances of the proposed estimators versus mobile speed at SNR = 8 dB

are illustrated in Figs. 43 and 44. It is worth mentioning that the number of particles
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Figure 40: MSE of CFO estimates versus SNR for different particle and ML based methods
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Figure 41: MSE of channel estimates versus SNR for different particle and ML based
methods.

utilized for BSK-GPF and SK-APF schemes are 50. It is noticed that both of the new

schemes have significantly better performance in terms of MSE in comparison with their

corresponding methods in [99].

Fig. 45 shows the CFO and channel estimates of the proposed BSK-GPF algorithm
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Figure 42: MSE of CFO and channel estimates versus SNR for the SEKF and BSEKF
methods.
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Figure 43: MSE of CFO and channel estimates versus mobile speed at SNR = 8 dB for
particle-based methods.

versus SNR for different number of particles. It is observed that as the number of particle

increases the performance improves, which is due to the fact that increasing the number

of particles results in better estimation of the PDF.
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Figure 44: MSE of CFO and channel estimates versus mobile speed at SNR = 8 dB for
SEKF based approaches.
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Figure 45: MSE of CFO and channel estimates versus SNR for different number of parti-
cles.

In Figs. 46 a and b, the tracking performances of the proposed approaches are depicted

where SNR = 15 dB and 200 particles are used. As expected, the MSE decreases as the

number of preambles increases.
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Figure 46: MSE of CFO and channel estimates for different number of preambles a)
BSEKF approach, b) BSK-GPF approach.

4.6 Conclusion

In this section, first, a novel method for joint estimation of timing, frequency offset and

multipath fast fading channel has been proposed for OFDM systems. The new scheme

has been developed using the ML criterion, transmission of a preamble and BEM of the

channel. A new scheme for complexity reduction of the joint estimation has been also in-

troduced based on a low complexity CFO estimation algorithm. It has been demonstrated

using MSE criterion that the new method significantly improves the timing, frequency

offset and channel estimation performance in comparison with previous methods in the

literature.

Second, we have proposed a preamble-aided method based on particle and Kalman

filtering along with BEM for joint CFO and doubly selective channel estimation in OFDM
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systems. The performance of the new method has been evaluated in a frequency selective

fast fading channel using MSE of CFO and channel estimates. It has been shown that

the new scheme can significantly improve the estimation performance in comparison with

previous schemes in the literature.

Third, this section presents a new scheme for timing and frequency synchronization

and channel estimation in the uplink transmission of OFDMA systems in doubly selective

channels. For joint estimation of timing, frequency offsets and a doubly selective channel,

a new preamble-aided estimator is derived using the ML criterion along with the BEM of

channel and SAGE algorithm. Performance evaluation revealed considerable improvement

by the new estimation method compared with previous schemes in terms of MSE.

Fourth, two new preamble-aided joint estimators of CFO and time varying channel

have been proposed for the uplink of MIMO OFDMA systems. It is assumed that CFOs

of users vary from one OFDMA symbol to another, and also the channel changes within

one OFDMA symbol. The doubly selective channel is modeled using BEM to reduce the

number of unknown parameters. The first estimator is based on SEKF, and the second one

takes advantages of GPF and SKF by adopting a marginalized Kalman filtering approach.

The BCRB has also been derived for the estimation of CFO and doubly selective channel.

The performances of the new schemes for different SNRs, mobile velocities and number

of preambles are evaluated. The results indicate that the new schemes have considerably

lower MSEs compared with previous methods.
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Chapter 5

Conclusion and Future Work

5.1 Concluding Remarks

In this dissertation, timing and frequency synchronization and channel estimation in

OFDM-based systems have been investigated and several approaches for estimation of

timing and frequency offsets and channel have been proposed. First, we addressed timing

synchronization in an OFDM system in a frequency selective slow fading channel using

a preamble composed of two identical parts in the time domain [123]. Two novel timing

metrics based on n-th order correlation and differential normalization functions have been

proposed and their performances have been assessed using different criteria such as class-

separability, robustness to CFO, computational complexity, and false alarm and missed

detection probabilities. The effect of increasing the order of the timing metric has also

been investigated. A new method for coarse estimation of the start of the frame has been

presented which, instead of using only the timing instant corresponding to the maximum

of the timing metric (as performed in previous works), makes use of a set of timing in-

stants corresponding to the largest values of the timing metric. The performances of the

new timing schemes in multipath frequency selective fading channels have been evaluated

through computer simulations. By evaluating the false alarm and missed-detection proba-

bilities, it has been demonstrated that the new methods remarkably improve the detection
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performance as compared with previous methods. Finally, it has been shown that the new

methods also offer a significant reduction in the ISI probability.

Second, we have presented a new IFO detection method for OFDM systems in multi-

path slow fading channels [124]. The new method, by transforming IFO detection into the

detection of two new integer parameters, significantly reduces the number of trial values of

IFO. A general procedure for application of the new method to previously proposed IFO

metrics in the literature has been presented. Different criteria including computational

complexity, detection probability and BER have been used to evaluate the performance

of the new method. It has been shown that the new method can significantly reduce the

computational complexity while maintaining almost the same detection performance as

compared to previous schemes.

Third, a novel method for joint estimation of timing, frequency offset and doubly

selective channel has been proposed [125]. The new scheme is based on ML criterion,

transmission of a preamble and BEM of the channel. Since the direct maximization of

the ML function is not practical, first a timing and frequency offsets dependent estimate

of the channel is obtained and put back in the ML function. Next, maximization is per-

formed with respect to timing offset and CFO. Furthermore, a new scheme for complexity

reduction of the joint estimation has been proposed based on a low complexity CFO es-

timation algorithm. It has been demonstrated using MSE criterion that the new method

significantly improves the timing, frequency offset and channel estimation performance in

comparison with previous methods.

Fourth, we have introduced a preamble-aided method based on particle and Kalman

filtering along with BEM for joint CFO and multipath time varying channel estimation in

OFDM systems [126]. The performance of the new method has been evaluated using MSE

of CFO and channel estimates. It has been shown that the new scheme can considerably

improve the estimation performance compared with previous schemes in the literature.

Fifth, a new scheme for timing and frequency synchronization and channel estimation
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in the uplink transmission of OFDMA systems in doubly selective channels has been

proposed [128]. For joint estimation of timing, frequency offsets and a doubly selective

channel, a new preamble-aided ML estimator is derived based on the SAGE algorithm

that transforms an M dimensional maximization problem into M simpler one dimensional

maximization problems. Performance evaluation revealed considerable improvement by

the new estimation method compared with previous schemes in terms of MSE.

Finally, we have presented two new preamble-aided joint estimators of CFO and time

varying channel for the uplink of MIMO OFDMA systems [129]. It is assumed that CFOs

of users vary from one OFDMA symbol to another, and also the channel changes within

an OFDMA symbol. The doubly selective channel is modeled using BEM to reduce the

number of unknown parameters. The first estimator is based on SEKF, and the second

estimator makes use of GPF and SKF by adopting a marginalized Kalman filtering ap-

proach. The BCRB for the estimation of CFO and doubly selective channel has been

presented, and the performances of the new methods have been evaluated using MSE cri-

terion. It has been shown that the new schemes have an improved performance compared

with previous methods.

5.2 Suggestions for Future Work

There are a number of interesting topics related to timing and frequency synchronization

in OFDM-based systems that can be subjects of further research. In particular, some of

the recommendations for future work are as follows.

• Synchronization in OFDM-based cooperative systems: The basic principle in co-

operative systems is to construct a virtual multiple-antenna system by sharing an-

tennas of neighboring users in a distributed manner. Thus, the same benefits of

multiple-antenna systems can be achieved with proper cooperative strategies [17].

The concept of cooperative relaying is based on the fact that a transmitted signal
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can be received by multiple relays which retransmit a processed version of the re-

ceived signal to the destination [162]. Multiple nodes in these cooperative systems

are distributed in space and have their own oscillators, which results in multiple

timing offsets and CFO in cooperative transmission. These offsets can drastically

undermine the potential of cooperative networks. Therefore, accurate timing and

frequency synchronization is critical in OFDM-based cooperative systems [17,163].

• Synchronization in massive multiuser MIMO OFDM systems: Large-scale MIMO or

“massive MIMO” systems is potentially one of the key technologies to achieve high

capacity performance in the fifth generation of mobile cellular systems [164–166].

Massive MIMO can provide high data throughput and high power efficiency along

with improvement in communication reliability with fairly simple signal processing

[167,168]. However, these potential benefits of massive MIMO systems are dependent

heavily on synchronization. Achieving perfect synchronization in massive multiuser

MIMO OFDM can be more challenging owing to the existence of multiple timing

and frequency offsets between multiple users and the BS [169].

• Synchronization in NC-OFDM systems: Non-Contiguous OFDM (NC-OFDM) plays

an important role in cognitive radio communications [170, 171]. In an NC-OFDM

transmitter, only the subcarriers that do not coincide with the primary users’ band

are modulated with data symbols, and the other ones are modulated by zeros in

order to limit the interference power observed at the primary users receiver [172].

In these systems, receivers have to be protected from the interference introduced by

cognitive radio transmission. Thus, an important design issue in these systems is an

interference-robust synchronization algorithm [171].
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Appendix A

Derivation of the Means of MDC
n (d)

In this appendix, the mean of the proposed timing metric MDC
n (d) in (58) at a wrong

timing point and that at a correct timing point are calculated. Consider the correlation

function (48) first. At a wrong timing instant, we have E{|r(d̃+k)|2} = σ2
z , and according

to the central limit theorem for an M-dependent sequence [18], the real and imaginary

parts of Pn(d̃) as the summation of an M-dependent sequence (for n 
 N
2
) have an

approximately Gaussian distribution with zero mean and variance Lσ2n
z /2. Therefore,

|Pn(d̃)| has a Rayleigh distribution with mean

E{|Pn(d̃)|} =

√
πL

2
σn
z . (252)

For the normalization function (57), one can easily calculate

E
{∣∣r(d̃+ k)− r(d̃+ k +

N

2
)
∣∣2} = E

{∣∣z(k)− z(k +
N

2
)
∣∣2} = 2σ2

z . (253)

Taking the expectation of (57) and using (253), we obtain

E{ΔDC
n (d̃)} = L(2σ2

z)
n
2 . (254)
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Next, similar to [9], by considering (252) and (254), it can be shown that at a wrong

timing point, we have

E{MDC
n (d̃)} 
 E{|Pn(d̃)|}

E{ΔDC
n (d̃)}

=

√
π

2n+2L
. (255)

At the correct timing point, considering (51) and [3], it is straightforward to show that

Pn(Θ) =

N
2
−1∑

l=0

U1−1∑
u1,k=0

U2−1∑
u2,k=0

· · ·
Un

2
−1∑

un
2 ,k=0

ej
2π
N

(N
2
)n
2
ε

×
∣∣∣y(|l + u1,k|N

2

)∣∣∣2∣∣∣y(|l + u2,k|N
2

)∣∣∣2 · · · ∣∣∣y(|l + un
2
,k|N

2

)∣∣∣2 + Z1(l), (256)

where Z1(l) with zero mean is the noisy term including sums of products of different

samples of noise and signal. Therefore, the mean of |Pn(Θ)| can be expressed as

E{|Pn(Θ)|} 
 Lσn
y . (257)

Furthermore, by taking the expectation of (57), and using the following equation

E
{∣∣r(Θ+k)−r(Θ+k+

N

2
)
∣∣2} = E

{∣∣ej 2π
N

kεy(k)+z(k)−ej
2π
N

(k+N/2)εy(k)−z(k+
N

2
)
∣∣2} =

E
{∣∣(1− ejπε)y(k) + z(k)− z(k +

N

2
)
∣∣2} = |1− ejπε|2σ2

y + 2σ2
z , (258)

it immediately follows that

E{ΔDC
n (Θ)} = L

(|1− ejπε|2σ2
y + 2σ2

z

)n/2
. (259)

Note that in deriving (258), we have used the fact that the multiplication of z(k) by ej
2π
N

kε

does not change the characteristics of the noise z(k) [10]. Finally, the mean of the timing
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metric MDC
n (d) at the correct timing point Θ is derived as

E{MDC
n (Θ)} 
 E{|Pn(Θ)|}

E{ΔDC
n (Θ)} =

σn
y(|1− ejπε|2σ2
y + 2σ2

z

)n/2 =

(
SNR

|1− ejπε|2SNR + 2

)n
2

.

(260)
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Appendix B

Derivation of the Means of MIC
n (d)

We now derive the means of the metric M IC
n (d) at wrong and correct timing instants. By

taking the expectation of (65) and utilizing the equation

E

{(∣∣r(d̃+ k)
∣∣− ∣∣r(d̃+ k+

N

2
)
∣∣)2
}

= E

{(∣∣z(k)∣∣− ∣∣z(k+ N

2
)
∣∣)2
}

= (2− π

2
)σ2

z , (261)

the mean of the normalization function ΔIC
n (d̃) can be derived as

E{ΔIC
n (d̃)} = L

(
(2− π

2
)σ2

z

)n
2
. (262)

Now, we treat ΔIC
n (d) as a factor and consider |Pn(d̃)| to be a Rayleigh random variable

with mean (252) (as derived in Appendix A). Thus, at a wrong timing point, the timing

metric has the following mean

E{M IC
n (d̃)} =

1

2(2− π
2
)
n
2

√
π

L
. (263)

At a correct timing instant, by using the inequality

(∣∣r(d+ k)
∣∣− ∣∣r(d+ k +

N

2
)
∣∣)2

≤ ∣∣r(d+ k)− r(d+ k +
N

2
)
∣∣2, (264)
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we have

ΔIC
n (Θ) ≤ ΔDC

n (Θ). (265)

Taking the expectation of both sides in (265) and using (259), we have

E{ΔIC
n (Θ)} ≤ L

(|1− ejπε|2σ2
y + 2σ2

z

)n/2
. (266)

Thus, by using (257) and (266), we can obtain a lower bound of the mean of the timing

metric M IC
n (d) at the correct timing point Θ,

E{M IC
n (Θ)} 
 E{|Pn(Θ)|}

E{ΔIC
n (Θ)} ≥ σn

y(|1− ejπε|2σ2
y + 2σ2

z

)n/2 =

(
SNR

|1− ejπε|2SNR + 2

)n
2

.

(267)
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