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Abstract 

Carrier Frequency Offset Estimation for Orthogonal Frequency-

Division Multiplexing Systems 

Xiang Nian Zeng, Ph.D. 

Concordia University, 2008 

Orthogonal frequency division multiplexing (OFDM) is an attractive modulation 

scheme used in wideband communications because it essentially transforms the fre­

quency selective channel into a flat fading channel. Furthermore, the combination of 

multiple-input multiple-output (MIMO) signal processing and OFDM seems to be an 

ideal solution for supporting reliable high data rate transmission for future wireless 

communication systems. However, despite the great advantages OFDM systems offer, 

such systems present challenges of their own. One of the most important challenges is 

carrier frequency offset (CFO) estimation, which is crucial in building reliable wireless 

communication systems. 

In this thesis, we consider CFO estimation for the downlink and uplink OFDM sys­

tems. For the downlink channel, we focus on blind schemes where the cost functions 

are designed such that they exploit implicit properties associated with the transmit­

ted signal where no training signal is required. By taking the unconditional maximum 

likelihood approach, we propose a virtual subcarrier based blind scheme for MIMO-

OFDM systems in the presence of spatial correlation. We conclude that the presence 

of spatial correlation does not impact the CFO estimation significantly. We also 

propose a CFO estimator for OFDM systems with constant modulus signaling and 

extend it to MIMO-OFDM systems employing orthogonal space-time block coding. 

The curve fitting method is used which gives a closed-form expression for CFO es­

timation. Therefore, the proposed scheme provides an excellent trade-off between 
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complexity and performance as compared to prominent existing estimation schemes. 

Furthermore, we design a blind CFO estimation scheme for differentially modulated 

OFDM systems based on the finite alphabet constraint. It can achieve better per­

formance at high signal-to-noise ratios (SNRs) at the expense of some additional 

computational complexity as compared to the schemes based on the constant modu­

lus constraint. The constrained Cramer-Rao lower bound (CRLB) is also derived for 

the blind estimation scheme. 

As for the uplink channel, which is a more challenging problem, we propose two 

training aided schemes. One is based on a scalar extended Kalman filter (EKF) and 

the other one is on the variable projection (VP) algorithm. For both schemes, we 

assume that the system uses an arbitrary subcarrier assignment scheme, which is 

more involved than the other two schemes, namely block and interleaved subcarrier 

assignment scheme. 

In the first scheme, to apply the scalar EKF algorithm, we represent the mea­

surement equation as a function of a scalar state, i.e., each user's CFO, in lieu of a 

state vector which consists of both CFO and channel coefficients by replacing the un­

known channel coefficients with a nonlinear function of CFO. This proposed scheme 

can achieve the CRLB at high SNR for two users with a complexity lower than that 

of the alternating-projection method. In the second scheme, the VP algorithm is 

used for CFO estimation which is followed with a robust minimum mean square error 

(MMSE) estimator for channel estimation. In the VP algorithm, the nonlinear least 

square cost function is optimized numerically by updating the CFOs and channel 

coefficients separately at each iteration. We demonstrate that this proposed scheme 

is superior to the existing methods in terms of convergence speed, computational 

complexity and estimation performance. 
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Chapter 1 

Introduction 

1.1 Motivation 

Over the last decade or so, we have witnessed a drastic increase in the demand for 

providing reliable high-speed wireless communication links to support applications 

such as voice, video, e-mail, web browsing, to name a few. This is a challenging 

task, however, since transmission through a wireless link is prone to a number of 

impairments of which the most important is fading and interference. In addition, 

in wideband communications (i.e., at high data rates), the signal bandwidth is nor­

mally larger than the channel bandwidth and this gives rise to frequency selective 

fading (or multipath fading). Orthogonal frequency division multiplexing (OFDM) 

has been a very popular method for wideband transmission because it essentially 

transforms the frequency selective fading channel into a flat fading channel. This 

is accomplished by transmitting the data symbols in a parallel fashion over a set 

of orthogonal subcarriers. As such the channel is seen by each subcarrier as a flat 

fading channel. Consequently, OFDM dramatically simplifies the receiver design in 

multipath fading. Inspired by these advantages, OFDM has been adopted in several 

standards, including the European digital audio broadcasting (DAB) [1], terrestrial 

digital video broadcasting (DVB) [2], wireless local area networks (LANs) (802.11 [3], 

[4], HiperLAN [5]), and wireless metropolitan area network (MAN) (802.16 [6]). It 
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is also considered as a strong candidate for the fourth generation (4G) air interface 

technology [7]. 

When some of the subcarriers experience deep fading, the data symbols transmit­

ted on these subcarriers cannot be recovered without further protection. An effective 

approach to achieve this protection is to introduce diversity, which comes in differ­

ent forms, including time, frequency and spatial. Spatial diversity, which is the only 

scheme that requires no additional bandwidth, can be achieved by employing multi­

ple antenna elements at the transmitter and/or receiver. Such systems are normally 

referred to as multiple-input multiple-output (MIMO) systems. Multiple transmit 

antennas can be exploited to enhance the spatial diversity of the system by using 

space-time coding. Another way of exploiting these transmit antennas is to increase 

the link throughput through spatial multiplexing and this can be achieved by using 

layered space time coding. A compromise between spatial diversity and spatial rate 

can also be achieved by using multi-layered or threaded space-time coding. Using 

multiple antennas has already been adopted in several standards, including wideband 

code-division multiple access (W-CDMA) [8], 802.11 [3], [4], and 802.16 [6]. 

The combination of MIMO signal processing and OFDM seems to be an ideal 

solution for supporting high data rate transmission for future wireless communica­

tion systems where bandwidth efficiencies on the order of 10 b/s /Hz are feasible for 

LAN/MAN environments. However, despite the great advantages OFDM systems 

offer, such systems present challenges of their own. One of the most important chal­

lenges is carrier frequency offset (CFO) estimation, which is very crucial in building a 

reliable wireless communication system. CFO estimation involves finding an estimate 

of the difference in the frequencies between the transmit and receive local oscillators. 

CFO estimation is very important because any CFO results in losing the orthogonality 

between subchannels, which in turn leads to serious performance degradation. 
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1.2 Contributions 

The contributions of this thesis can be summarized as follows. 

• We propose maximum likelihood (ML) CFO estimation based on virtual sub-

carriers (VSCs) for MIMO-OFDM systems. In our ML approach, the channel 

and data are treated as random variables, unlike existing ML approaches in 

which the channel and data are treated as unknown constants. This in turn 

enables us to incorporate the spatial correlation into the analysis. In particular, 

we derive a cost function which can be used to accurately estimate the CFO. We 

also derive the Cramer-Rao lower bound (CRLB). We show that, as compared 

to the CML estimator, the UML estimator can exploit the knowledge of receive 

spatial correlation as well as the existence of VSCs to make additional contri­

bution for CFO estimation. But, this additional contribution is marginal as 

compared to the CML estimator. The implication of this result is that one need 

not take spatial correlation into account in developing VSC-based CFO estima­

tion scheme for MIMO-OFDM systems. This should simplify such development 

process. 

• We propose a new blind CFO estimation scheme for OFDM systems with con­

stant modulus (CM) signaling. Both single-input single-output (SISO) sys­

tems and MIMO systems with orthogonal space-time block coding (OSTBC) 

are considered. The proposed scheme is based on the reasonable assumption 

that the channel frequency response changes slowly in the frequency domain, 

which implies that the channel frequency response on two consecutive subcar-

riers is approximately the same. Based on this assumption, cost functions are 

derived in closed-form, which minimize the difference between the signal power 

of two neighboring subcarriers. The identifiability of the proposed scheme is 

mathematically proved, which implies that minimizing the derived cost function 

gives an approximate estimate of the CFO. We demonstrate that the proposed 

scheme provides an excellent trade-off between complexity and performance as 
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compared to prominent existing estimation schemes. 

• We propose a blind CFO estimation scheme for differentially modulated OFDM 

(DOFDM) systems. The proposed scheme estimates the fractional part of the 

CFO (FFO) with only two consecutive OFDM symbols. The proposed cost 

function exploits two implicit properties associated with the differentially mod­

ulated DOFDM systems, i.e., the channel keeps constant over two consecutive 

OFDM symbols, and the employed M-ary phase-shift keying (M-PSK) constel­

lation has a finite alphabet size. The proposed cost function can exploit more 

side information about the M-PSK constellation as compared to the cost func­

tions based on the CM constraint. As a result, it can achieve better performance 

at high signal-to-noise ratios (SNRs) at the expense of some additional compu­

tational complexity. To reduce the complexity, we employ the modified Newton 

method where the number of cost function evaluations is reduced significantly 

as compared to the case when the grid search method is used to minimize the 

proposed cost function. The constrained CRLB is also derived, which we use 

to verify the correctness of the proposed scheme. 

• We propose an extended Kalman filter (EKF)-based and training symbol aided 

CFO estimation scheme for the uplink channel of OFDM systems. Typically, 

in EKF-based estimation schemes, the measurement equation is a function of 

the CFO and channel coefficients. Therefore, a vector EKF has to be employed 

to estimate all the unknowns, which may sometime result in convergence prob­

lems. To avoid these problems, the proposed scheme uses a scalar EKF. The 

user signals are first separated by using multiple-access interference (MAI) can­

cellation. Then, the unknown channel coefficients in the measurement equation 

are replaced with a non-linear function of the CFO so that the scalar EKF can 

be employed. The observation noise power is analyzed and its approximation is 

used in the EKF algorithm. It is shown that the proposed scheme can achieve 

the CRLB when the number of users is small, whereas it degrades when the 
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number of users increases. We also compare its computational complexity with 

several existing schemes. 

• We propose a joint CFO and channel estimation method for the uplink channel 

of OFDM systems. The well known variable projection (VP) method based on 

the least-squares (LS) criterion is used for CFO estimation. In each iteration 

of the VP method, the CFOs and channel coefficients are updated separately, 

which distinguishes the VP method from an existing non-separated minimum 

mean square error (MMSE) method in which the CFOs and channel coefficients 

are treated together as a whole. We demonstrate that by performing the esti­

mation separately, we achieve significant improvement in the CFO estimation. 

However, the resulting channel estimation is not as good. To achieve better 

channel estimation, we employ the robust MMSE method, which comes after 

CFO estimation (via the VP method). We present several numerical examples 

through which we demonstrate the superiority of the proposed scheme in terms 

of convergence speed and estimation performance. The computational complex­

ity of the proposed scheme is also lower than that of the non-separated MMSE 

method for large number of users at high SNRs. We also examine the perfor­

mance of the proposed scheme in the presence of the near-far problem, which 

is what we normally encounter in real-life applications, where similar favorable 

results are obtained. 

1.3 Organization 

The rest of the thesis is organized as follows. 

In Chapter 2, we introduce the fundamentals of MIMO-OFDM systems. We begin 

by introducing MIMO systems where we briefly discuss the capacity of such systems. 

We also mention the various space-time coding schemes used in such MIMO systems. 

We then introduce the basics of OFDM systems. This is followed by describing 

analytically the impact of CFO on inter-carrier-interference (ICI) and show how this 
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degrades the bit error rate (BER) performance of such systems. 

In Chapter 3, we provide a broad review and classification of the recently proposed 

CFO estimation schemes for the downlink and uplink channels of OFDM systems. The 

CFO estimation for the downlink channel of OFDM systems has been investigated in 

the literature for many years, and thus we only review those bandwidth efficient non-

data-aided schemes. For the CFO estimation of uplink channel of OFDM systems, we 

review both the data-aided and non-data-aided schemes available in the literature. 

Chapters 4 — 6 are devoted to blind CFO estimation for the downlink channel of 

OFDM systems. 

In Chapter 4, we investigate the VSC-based CFO estimation for MIMO-OFDM 

systems with spatial correlation. We derive the unconditional ML estimator and 

unconditional CRLB. Then the impact of receive spatial correlation is studied in 

particular. Finally, we present simulation results. 

In Chapter 5, we investigate the CM-based CFO estimation for OFDM systems. 

We present the proposed scheme for SISO-OFDM systems, and relate it with the 

kurtosis-type scheme. Then we extend the proposed scheme to MIMO-OFDM systems 

with OSTBCs. Simulation results are presented after that. 

In Chapter 6, we investigate the finite alphabet (FA) based CFO estimation for 

DOFDM systems. Firstly, the FA based cost function is proposed for DOFDM sys­

tems with or without VSCs for FFO estimation. Then, the modified Newton method 

is presented to minimize the proposed cost function. The constrained CRLB for blind 

CFO estimation is also derived. Simulation results are presented finally. 

Chapters 7 and 8 are devoted to training aided CFO estimation for the uplink 

channel of OFDM systems. 

In Chapter 7, we investigate the EKF based CFO estimation. Firstly, we analyze 

each user's observed signal obtained from MAI cancellation and represent it as a func­

tion of CFO only. Then the observation noise power is derived and its approximation 

is used in the EKF algorithm. Computational complexity of the proposed scheme is 

also analyzed. Simulation results are shown to compare the proposed scheme with 
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two existing schemes after that. 

In Chapter 8, we investigate CFO estimation based on the VP algorithm. Firstly, 

we present the proposed method in which the VP algorithm is used for CFO estima­

tion and the channel estimation is obtained by using the robust MMSE method. Then 

the computational complexity is analyzed. Finally, we compare the proposed method 

with the non-separated MMSE method in terms of convergence speed, complexity 

and estimation performance by using simulations. 

In Chapter 9, we make conclusions and propose topics for future research. 
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Chapter 2 

Background 

2.1 MIMO Systems 

Channel capacity of multiple-input multiple-output (MIMO) systems has been stud­

ied in [9] and [10]. It has been shown that MIMO systems have the potential to 

provide enormous capacity compared to single-input single-output (SISO) systems. 

To elaborate, consider a MIMO system with Nt transmit antennas and Nr receive 

antennas. Let hjyi denote the flat fading coefficient between the iih transmit and jth 

receive antenna. The channel capacity in bits/sec/Hz is shown to be [10] 

C = E { log2 det 
P 

(2.1) 

where 

. H H f l , Nr < Nt 
Q = < _ _ and m = mm(Nr,Nt), 

HHU, Nr > Nt 

P is the total transmit power from all the transmit antennas, <j\ is the noise power 

seen by each receive antenna and E{-} is the expectation operation with respect to 

the channel coefficients. H is a JVr x Nt matrix with the element on its jth row and 



ith column defined as hjj. Further analysis and numerical results show that in inde­

pendent Rayleigh fading channel, when the number of the transmit antennas is the 

same or lower than the number of receive antennas, the capacity grows linearly with 

the number of transmit antennas. Otherwise the capacity grows only logarithmically 

with the number of transmit antennas. 

To approach such capacity highlighted by information theory, various space-time 

codes have been designed. By efficiently exploiting the resources of multiple antennas, 

space-time codes are designed on one hand to combat the effect of fading by providing 

spatial diversity and on the other hand to increase system throughput by using spatial 

multiplexing. Space-time block codes (STBCs) [11] are designed to achieve full spatial 

diversity with a simple decoding scheme at the receive side. Space-time trellis codes 

(STTCs) [12] are designed to achieve both diversity and coding gains. However, 

its decoding complexity grows exponentially with the number of transmit antennas. 

Both STBCs and STTCs attempt to maximize transmit diversity by introducing 

redundancy across the spatial domain. But they do not provide any flexibility in 

increasing the transmission rate when high throughputs are needed for broadband 

communications. This motivates the use of layered space-time (LST) coding. 

The idea behind the LST architecture is to multiplex the data stream into Nt sub-

streams, and then encode each substream individually by using a traditional coding 

scheme before they are transmitted simultaneously from the Nt antennas. Each en­

coded substream is called a layer. As such, one-dimensional (in space) decoding can be 

used instead of the complex A^-dimensional decoding used for STTCs. Furthermore, 

this architecture has the flexibility of providing trade-off between spatial diversity 

and spatial multiplexing. The horizontal layered space-time (HLST) architecture [13] 

is designed to assign each layer to one transmit antenna so no transmit diversity can 

be achieved. To achieve some transmit diversity, diagonal layered space-time (DLST) 

architecture [13] and threaded layered space-time (TLST) architecture [14] are de­

signed to distribute each layer among the Nt transmit antennas. Another LST is 

the multilayered space-time (MLST) architecture presented in [15]. This scheme can 
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be thought of as a combination of space-time coding and layered space-time coding, 

where Nt transmit antennas are divided into subgroups and each subgroup is assigned 

to transmit a space-time coded stream. 

2.2 OFDM Systems 

OFDM is a bandwidth efficient modulation scheme designed for high speed trans­

mission. The information bit stream is first modulated using M-ary phase shift 

keying (M-PSK) or M-order quadrature amplitude modulation (M-QAM). Then the 

constellation symbols are multiplexed into N parallel streams and transmitted si­

multaneously through N orthogonal subcarriers. Therefore, on each subcarrier, the 

transmission rate is relatively low which results in flat fading seen by each subcarrier. 

We notice that the OFDM system looks something like frequency division multiplex­

ing (FDM). However, different from FDM, the spectrum of subcarriers in OFDM 

overlaps with each other which makes it very bandwidth efficient. Furthermore, the 

subcarriers are orthogonal to each other, so no inter-carrier-interference (ICI) exists 

in the ideal situation. To achieve orthogonality, the subcarrier interval A / should be 

equal to 1/T, where T is the OFDM symbol duration. 

The OFDM transmitter and receiver is shown in Fig. 2.1. The inverse discrete 

Fourier transform (IDFT) and discrete Fourier transform (DFT) pair are used for 

OFDM modulation and demodulation in digital domain implementation. At the 

transmit side, the N output points of IDFT are actually N time domain samples of 

one OFDM symbol. They are converted into a serial stream and then concatenated 

with cyclic prefix (CP). Then these time domain samples are passed through a low 

pass filter (LPF) to reconstruct the continuous time signal and at last up converted 

to the radio frequency and transmitted from the transmit antenna. 

The OFDM receiver design is very simple due to the orthogonality in ideal situa­

tions. The received signal is first down converted to baseband, and then sampled. The 

time domain samples are passed to the DFT followed by a one-tap channel equalizer 

10 



Data 
Source — • 

M-PSK/ 
M-QAM 

Modulation -
S/P 

— • 

—» 

CP : 
— • 

IDFT 

P/S 

— • LPF 
Up 

Conversion 
J 

Li Down 
Conversion 

Digital 
Controled 
Oscillator 

a) Transmitter 

nTs 

Remove 
CP —» S/P 

— ¥ 

— • 

DFT 

—* 

One tap 
Channel 
Equalizer 

— • 

— • 

P/S —* 
M-PSK/ 
M-QAM 

Demodulation 
— • 

Data 
Sink 

b) Receiver 

Figure 2.1: OFDM transmitter and receiver. 

and a M-PSK or M-QAM detector. 

CP insertion is done by adding the tail end part of the OFDM symbol to the 

front of it. The motivation of adding CP is twofold. First, by making sure that the 

length of CP is greater than the maximum delay spread, the inter-symbol-interference 

(ISI) can be completely eliminated. Second, the cyclic extension of the transmitted 

signal transforms a linear convolution of channel impulse response and signal to a 

circular convolution which intrinsically transforms a multipath fading channel into a 

flat fading channel on each subcarrier as will be shown next. 

The baseband equivalent discrete-time channel impulse response can be repre­

sented as h{n) — Yli=o hi5(n — I), where L is the number of multipath components, 

and hi is the fading coefficient on path I. Let us define the column vectors 

d = [d0 di ... dpf-i] 
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and 

y = [Y0Y1 ... YN^f, 

where dk, k = 0,l,... ,N — 1 represents the symbol transmitted on subcarrier k, and 

Yk, k = 0 , 1 , . . . , N — 1 represents the post-DFT signal on subcarrier k. Then the 

post-DFT signal y can be expressed by 

y = W # H d r c W J v d + v, 

where Hdrc is an JV x N circulant matrix with the first column defined as h =[h0 hi 

... hL-i 0 . . . 0]T, WJV is the IDFT matrix with the element on the &th row and l\h 

column defined as W ^ ( = -7^ej27r'N and v =[v0 V\ ... vN-{\T is an iV x 1 vector of 

white Gaussian noise samples at the post-DFT stage. 

Since H ^ c is a circulant matrix, W^HcJrcW^ is a diagonal matrix with the 

channel frequency response on the diagonal, i.e., 

y = diag(v /iVW#h)d + v. 

By defining Hk, k = 0 , 1 , . . . , N — 1 as the channel frequency response on subcarrier 

k, the post-DFT signal can be represented as 

Yk = Hkdk + vk, fc = 0 , l , . . . ,N-l. (2.2) 

It is shown in the above expression that in an ideal situation, the multipath fading 

channel has been transferred to a multiplicative distortion on each subcarrier. Conse­

quently, a one-tap equalizer can be used to compensate for this distortion where the 

output of equalizer would be dk = Yk/Hk. This dramatically simplifies the channel 

equalizer design for multipath fading channels. 
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2.3 Effect of CFO 

In real life applications, CFO always exists. It can be introduced by the difference 

between the transmit and receive oscillators and/or the Doppler spread. Let /o 

denote the CFO in Hz. The normalized CFO with respect to the subcarrier interval 

A / can be decomposed into two parts, i.e., f0T = k0 + e, where k0 is the integer part 

of the normalized frequency offset (IFO), and e € [—|, | ) denotes the fractional part 

of the frequency offset (FFO). With this notation, the discrete-time receive signal in 

the presence of CFO can be expressed by 

xn = ej27T N **** Lj]Hkdke^+Zn, n = 0,1,..., N-l, (2.3) 

where zn is the zero mean white Gaussian noise sample at sampling instance n. From 

the above expression, we observe that CFO results in a phase shift evolving with time. 

Furthermore, the two parts of the normalized CFO, namely, ko and e have different 

impact on the post-DFT signals. 

Assume that fco ¥" 0) a n d e = 0. The post-DFT signals can then be represented as 

* = ^Y.™*'* 
n=0 
N-l -, JV-1 

_L y ^ # 1 y Hk,dk,e^e-^ + vk 

= iT.H^^e^^^+v, 
N-l N-l 

N 
fc'=0 n=0 

N-l 

y ^ Hkidk>5(k' + k0- k) 
fc'=0 

vk 

= Hh-kodk„ko + vk- (2.4) 

By comparing (2.2) and (2.4), we observe that if CFO is an integer multiple of the 

subcarrier interval, it results in a cyclic rotation of the post-DFT signals, i.e., symbols 

are assigned to different subcarriers while preserving the order. This implies that the 
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demodulated symbols are still orthogonal to each other without interference. The 

BER performance is 0.5 in this case. 

When k0 = 0, and £ ^ 0 , the post-DFT signals can be represented as 

N - l 

V J V n=0 

v " „ _ n v 1 v v—n n=0 v fc'=0 
N - l ^ N - l 

fc'=0 n=0 

1 N - l N - l 1 N - l 

= ^ ^ E e ^ + E^^4S e J " M V : M l i +^ 
n=0 fc'=0 n=0 

k'yik 

n . N - l N - l 

AT sin ^f ^ N t—' 
N k'=0 n=0 

k'+k 

We observe that the first term in the last line of the above expression represents the 

desired signal on the fcth subcarrier with a scale and phase shift. We denote the second 

term as Ik, which represents the interference contributed from the signal transmitted 

on the other subcarriers. By comparing (2.2) and (2.5), we observe that if CFO is a 

fraction of the subcarrier interval, the post-DFT signals are not orthogonal to each 

other, resulting in ICI. 

To elaborate more on this, the frequency spectrum of a 3-subcarrier OFDM signal 

is shown in Fig. 2.2. When e — 0, the DFT outputs on the three subcarriers are 

represented by dotted lines. It is shown that the DFT output only consists of the 

signal transmitted on the corresponding subcarrier. When £ = 0.3, the DFT outputs 

on the three subcarriers are represented by dotted lines with marks. We observe 

that the DFT output consists both of the signal transmitted on the corresponding 

subcarrier and the signals transmitted on the neighboring subcarriers. 

Fig. 2.3 illustrates the amplitude of the interference from subcarriers 1 , . . . , TV — 1 

on the 0th subcarrier for a 16-subcarrier OFDM signal in the presence of different 
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Figure 2.2: Illustration of ICI introduced by FFO e by using frequency domain signal 
of an OFDM system with 3 subcarriers. 

values of CFO. We observe that for the case of e = 0 and ko = 5, the orthogonality of 

subcarriers is maintained. But the post-DFT on the Oth subcarrier takes the value of 

the signal on the 5th subcarrier. Therefore, in this case, the post-DFT signal requires 

to be reordered and this is usually called coarse CFO estimation and synchronization. 

For ko = 0 and e = 0.1 or e = 0.4, the orthogonality between subcarriers is lost. We 

can observe that by increasing FFO, the desired signal on the Oth subcarrier gets 

more severe deterioration and the interference from neighboring subcarriers becomes 

stronger. To eliminate the ICI, the received signal needs to be compensated at the 

pre-DFT stage. This is usually called fine CFO estimation and synchronization. Some 

CFO estimation/synchronization schemes are achieved by these two steps, namely, 

coarse and fine CFO estimation/synchronization. 

In Fig. 2.4, the BER performance of a 4-PSK 64-subcarrier OFDM system in 

additive white Gaussian noise (AWGN) channel is shown. It can be observed that 

even small values of CFO can degrade the BER performance greatly. 
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Figure 2.4: BER performance of a 64-subcarrier OFDM system in AWGN in the 
presence of CFO. 
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The above analysis is for SISO-OFDM systems. The impact of CFO on MIMO-

OFDM systems has been studied in [16] and [17] for STBC and vertical LST (VLST) 

respectively. It is shown that using multiple antennas increases ICI compared to that 

of SISO-OFDM systems. Furthermore, for MIMO-OFDM systems employing VLST, 

ICI has significant impact on the error propagation across the successive interference 

cancellation process. To improve the performance, many ICI cancellation schemes 

have been proposed. However, most of them require the knowledge of the CFO. 

Thus, accurate CFO estimation is also essential for MIMO-OFDM systems. 
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Chapter 3 

Literature Review 

Prom previous discussion, we demonstrated that in order to detect symbols correctly, 

CFO needs to be estimated and compensated at the pre-DFT stage. Usually, the 

CFO estimation accuracy is required to be 1% — 2% of the subcarrier interval. Many 

CFO estimation schemes have been proposed in the literature. They can be divided 

into data-aided and non-data-aided (also known as blind estimation scheme). The 

data-aided schemes exploit the training sequence known to the receiver for CFO esti­

mation. An advantage of this type of schemes is that they can improve the estimation 

performance and/or reduce the complexity of the estimation process through train­

ing sequence design. The blind schemes estimate the CFO from the receiver input 

without using any training sequences or pilot symbols. Instead, they exploit certain 

intrinsic properties of the information bearing signal itself for estimation, e.g., the cy-

clostationarity of the receive signal, the constant modulus property of the transmitted 

symbols, etc.. The immediate advantage of blind schemes is that they are bandwidth 

efficient and the cooperation between transmitter and receiver can be relaxed. In this 

chapter, the existing CFO estimation methods are reviewed for the downlink channel 

and uplink channel of OFDM systems respectively. 
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3.1 OFDM Downlink 

CFO estimation for the downlink channel has been researched for many years. There­

fore, we only review those recently proposed blind methods. They are classified based 

on the implicit properties that are exploited for estimation. 

3.1.1 CP-Based Algorithms 

One class of CFO estimation is designed based on CP. In [18], a joint maximum likeli­

hood (ML) timing and CFO estimation is proposed for OFDM in AWGN channels by 

exploiting the correlation of the CP and the last part of the useful OFDM symbol. In 

[19], the authors improve the algorithm in [18] by deriving a new ML function which 

can globally characterize the estimation problem. The CP-based algorithms provide 

a closed form expression for CFO estimation and perform well with only one OFDM 

symbol. But they are prone to channel time spreading because these algorithms rely 

on the repetition structure in the time domain signal to extract CFO information. 

However, after undergoing the multipath fading channels, CP is contaminated by the 

preceding symbol which unfortunately destroys the repetition structure. 

3.1.2 Real-Valued Constellation Constraint Based Algorithm 

The real-valued constellation constraint can also be exploited for CFO estimation. 

The author in [20] notices that the algorithm in [18] models the OFDM signals as a 

proper complex Gaussian process and then derives a ML estimation based on the prob­

ability density function (pdf) of the multivariate proper complex Gaussian process. 

However, when data symbols belong to a real-valued constellation, the time domain 

OFDM signal is actually an improper complex Gaussian process. Therefore, the es­

timation in [18] is not a ML estimation under this constraint. In [20], a joint timing 

and CFO estimator is designed particularly for OFDM systems with real-valued con­

stellation. The algorithm exploits the conjugate-symmetry property exhibited by the 
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time domain signal and estimates the CFO based on a minimum mean square er­

ror (MMSE) criterion. It performs better than the CP-based estimation over AWGN 

channels. However, like CP-based algorithms, it is also prone to multipath fading 

which destroys the conjugate-symmetry property of the received signals. 

3.1.3 VSC-Based Algorithms 

Another class of CFO estimation is based on virtual subcarriers (VSCs). The esti­

mation can be accomplished by using only one OFDM symbol. Unlike the above two 

classes of schemes, it is robust to unknown multipath fading channels. VSCs are used 

in OFDM systems in order to avoid aliasing, help shaping the spectrum and prevent 

interfering with the adjacent OFDM channels. They are usually placed consecutively 

at both ends of the frequency spectrum. VSCs can be thought of as pilots since they 

transmit null symbols known to the receiver. However the main difference between 

VSCs and pilots is that VSCs do not waste any power. 

The novel idea of VSC-based CFO estimation was first proposed in [21]. It is a 

subspace based estimation scheme, where a low rank signal model is introduced by the 

VSCs. This algorithm exploits the orthogonality between the virtual subcarriers and 

information bearing subcarriers. The idea behind it is that in the absence of noise, the 

received OFDM signals should be orthogonal to the VSCs after CFO being completely 

compensated. Based on this, a cost function is constructed to minimize the power 

of the received signal on the VSCs by adjusting the candidate CFO. There are two 

approaches in minimizing the cost function. The first approach uses one-dimensional 

grid search along the unit circle which is known as the multiple signal classification 

(MUSIC) searching algorithm in array signal processing [21]. The second approach 

is root finding, which is proposed in [22]. In this approach, the cost function is first 

approximated by Taylor expansion using a limited number of terms. Then derivative 

of the approximated cost function is computed and set to zero to find its roots. The 

root with the smallest value of cost function then gives the estimated CFO. The 

implementation complexity of root finding is much less than that of the grid search. 
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In [23], the authors derive the ML estimator for OFDM system with VSCs, and at 

last arrive at the same cost function given in [21]. 

In [24], another VSC-based subspace estimation is proposed. It uses the estima­

tion of signal parameters by rotational invariance technique (ESPRIT) [25]. ESPRIT 

is a technique used for the problem of frequencies estimation of sinusoids embedded 

in noise. Unlike the above VSC-based subspace approach in [21], this approach gives 

a closed-form expression for CFO estimation in terms of the eigenvectors of the cor­

relation matrix of the received OFDM signal in time domain. However, to estimate 

the correlation matrix, a sequence of OFDM symbols are required. 

The difference between the subspace approaches in [21] and [24] is that in the latter 

approach the signal subspace of the observed signal is obtained from the estimated 

correlation matrix by taking the eigenvalue decomposition (EVD) and then CFO 

information is retrieved from the eigenvectors. Thus a sequence of observations is 

required. While, in the former approach, the noise subspace of the received signal in 

the absence of CFO is retrieved from the signal model. CFO is then estimated by 

adjusting the candidate CFO to minimize the projection of the compensated signal 

onto the noise subspace. Thus, it is possible to estimate the CFO by using only one 

OFDM symbol. 

The authors in [26] point out that when VSCs are placed consecutively in the 

spectrum, the two VSC-based algorithms in [21] and [24] might not be able to uniquely 

determine the CFO in the presence of a channel frequency null on the DFT grid. In 

order to identify CFO without any ambiguity, they have designed three alternative 

VSCs placement schemes. In [27], the authors generalize the scheme in [26] to MIMO-

OFDM systems and find that the estimation performance does not depend on the 

number of transmit antennas, but can be improved by increasing the number of 

symbols and receive antennas. 
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3.1.4 Oversampling-Based Algorithm 

Oversampling the time domain signal by a factor of two at the receiver side can also 

introduce a low rank signal model and actually create the same effect as that of VSCs. 

In [28], an oversampling-based ML estimation is proposed, where the oversampled 

data is utilized to exploit the intrinsic phase shift among neighboring samples caused 

by CFO. This scheme is robust to channel frequency nulls and covers the entire 

acquisition range. The estimated CFO can be obtained by grid search in minimizing 

the cost function or root finding approach. 

3.1.5 Constant Modulus Constraint Based (CM-Based) Al­

gorithms 

The constant modulus (CM) property of M-PSK modulation can also be exploited 

for CFO estimation. In [29], the authors derive a cost function by using the ML 

approach, and based on that a modified cost function is proposed to jointly exploit 

the existence of VSCs and the CM constraint. In [30], the CM property is exploited to 

decouple the squared amplitude of the channel frequency response from the received 

signal. Under the assumption that the length of the channel spread is always less than 

half of the length of one OFDM symbol duration, the vector of the squared amplitude 

of the channel frequency response is shown to be in a rank deficient subspace. Then 

a subspace approach is applied to estimate the CFO. 

3.1.6 Correlation-Based Algorithms 

The presence of the CFO impacts the correlation of the received signal, so the knowl­

edge of the correlation in turn can help with the CFO estimation. This class of 

schemes requires the channel to keep constant over a sequence of O F D M symbols so 

that this sequence of symbols can be used to estimate the correlation. 

In [31], the correlation of the pre-DFT signal is exploited. CFO is estimated 

by minimizing the Euclidean distance between the correlation estimated from the 
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observed signal and the analytical correlation obtained from the system model. It 

requires channel knowledge for CFO estimation. 

In [32], the pseudo-correlation of the post-DFT signal is exploited for real-valued 

constellation. The pseudo-correlation instead of common correlation is used because it 

vanishes for the proper complex random variable, e.g., noise, but it is retained for the 

real-valued constellation symbol. It is shown that if CFO has been completely com­

pensated, pseudo-correlation matrix becomes a diagonal matrix independent of chan­

nel. So, minimizing the total off-diagonal power of the estimated pseudo-correlation 

matrix by adjusting the candidate CFO gives the CFO estimation. Unlike the scheme 

in [31], it does not require the channel knowledge. Furthermore the cost function can 

be manipulated into a sinusoidal form such that curve fitting can be used in minimiz­

ing the cost function instead of grid search. 

3.1.7 Cyclostationarity-Based Algorithms 

Cyclostationarity of the time domain signal can also be exploited for CFO estimation. 

This class of schemes can give the CFO estimation in a closed-form expression. Like 

the above correlation-based algorithms, it also requires a sequence of symbols and 

requires the channel to be constant across this sequence of symbols. 

In [33], a joint timing and CFO estimation scheme is proposed based on the second-

order cyclostationarity of the time domain OFDM signal. The cyclostationarity of 

the OFDM signal can be introduced in different ways by CP, pulse shaping, power 

weighting or precoding. The existence of VSCs can be thought as a kind of power 

weighting scheme since the weights on VSCs are set to zeros. However, this scheme 

requires the channel knowledge. In [34], the authors modify the scheme in [33]. The 

modified scheme does not require the channel knowledge, and it performs as well as 

that in [33]. 
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3.1.8 Fourth-order Statistics of Post-DFT Signal Based Al­

gorithms 

CFO can also be estimated from the information appearing in the higher-order statis­

tic of the post-DFT signal. Compared to the second-order statistics based algorithms, 

a shortcoming of the higher-order statistic based algorithms is its high variance of the 

estimation especially at low signal-to-noise ratio (SNR). 

In [35], the oversampled post-DFT signal is exploited. Because of the second-order 

stationarity of the post-DFT signal resulted from the "sine" pulse shaping function, 

the second-order statistic does not contain any CFO information. Therefore, the 

author resorts to the fourth-order cyclostationarity which contains spectral line at 

CFO. The algorithm stems from recognizing that CFO impacts the frequency domain 

OFDM signal in the same way that timing offset impacts a M-QAM modulated signal 

in the time domain. Therefore, the authors adopt a blind clock recovery algorithm 

designed for linear modulation scheme to the CFO estimation. However, this scheme 

is prone to multipath fading channels. 

In [36], a cost function based on the forth-order accumulation is proposed based on 

the criterion to minimize ICI terms. In [37], a kurtosis-type cost function is proposed 

based on the Gaussianity of the post-DFT signals. As we know, in the presence 

of CFO, the post-DFT signal is the linear combination of the signal transmitted 

on all the subcarriers. Without the CFO, only the desired signal appears on each 

subcarrier and ICI disappears. By exploiting the fact that the distribution of the 

linear combination of independent random variables is closer to Gaussian than that of 

the original variables, the kurtosis-type cost function which measures the Gaussianity 

of the signal is proposed. Furthermore, curve fitting is used in minimizing the cost 

function instead of grid search. The authors have also applied this scheme to the 

MIMO-OFDM systems. It is shown that the estimation performance improves with 

the increasing number of receive antennas due to the receive diversity. Unfortunately, 

it degrades in the scenario with multiple transmit antennas. The reason is that in such 
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scenario the received signal is the combination of the signals from all the transmit 

antennas which brings the signal distribution closer to Gaussian even in the absence 

of CFO. 

3.1.9 Phase Rotation Based Algorithm 

CFO also impacts the phase rotation between two consecutive symbols transmitted 

on the same subcarriers. This property has been exploited by [38]. The scheme 

proposed in [38] is based on two assumptions: 1) M-PSK or amplitude-phase shift 

keying (A-PSK) modulation scheme is used; 2) the channel keeps constant over two 

consecutive OFDM symbols. Therefore, by taking the M-th power method, the phase 

difference over two consecutive symbols introduced by modulation can be removed 

and only the phase rotation introduced by CFO is retained which gives a closed-form 

expression for CFO estimation. But this scheme performs worse for large CFO than 

small CFO because large CFO results in more severe ICI. Therefore, the authors have 

also proposed a scheme by iterating the estimation and correction steps several times 

to increase the CFO estimation accuracy. 

3.2 OFDM Uplink 

For the uplink channel of OFDM systems, CFO estimation is much more complicated. 

This is because different users suffer from distinctive CFOs. As such, the CFO of each 

user has to be estimated, which increases the number of unknowns. Furthermore, the 

received signal suffers not only ICI but also multiuser interference (MUI). Synchro­

nizing one user with the base station means misalignment with the other users which 

results in MUI. Therefore, CFO compensation is usually not performed at base sta­

tion. The CFO estimated by the base station is usually fedback to the mobile unit 

through a control channel so that the oscillator at the mobile unit can be adjusted 

accordingly. 

Uplink CFO estimation schemes are designed based on how users are multiplexed 
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in the frequency domain. There are three carrier assignment schemes (CASs), namely, 

block, interleaved, and arbitrary. For the block assignment, the total subcarriers are 

divided into several blocks of adjacent subcarriers. Each user is assigned one block 

of adjacent subcarriers. A guard band is used between blocks to eliminate MUI. 

This assignment scheme is not optimum with regard to frequency diversity for each 

user, but it maximizes the spectrum distance between users which in turn decreases 

the impact of MUI. For the interleaved assignment scheme, the subcarriers assigned 

to each user are interleaved over the whole bandwidth such that a large frequency 

diversity can be achieved for each user. However, this scheme is more susceptible to 

MUI compared to the block assignment scheme. For the arbitrary assignment scheme, 

the subcarrier is allocated dynamically according to the current channel condition of 

each user. Therefore, it can provide more flexibility than the block and interleaved 

assignment schemes. 

3.2.1 Block Assignment Scheme 

In the block assignment scheme, with sufficient guard bands, CFO can be estimated 

by running for each user an individual estimator after separating their signals. Some 

of the estimators designed for the downlink channel in the previous section could be 

used as an individual estimator directly. 

In [39], a user's signal is first separated by using a bank of bandpass niters and then 

the CP-based estimator presented in [18] is applied for each user individually. Using a 

filter bank to separate the different signals is possible for the block assignment scheme. 

Furthermore this way keeps the CP which would otherwise be removed if DFT is 

used to separate these signals. However, using a filter bank can not separate user 

signals perfectly because the user spectra actually overlap with each other. Therefore, 

a sufficient guard band is required to mitigate the effects of MUI. The estimation 

performance of this scheme is shown to degrade with the increasing number of users 

or with the decreasing number of subcarriers assigned to each user. This is because 

if each user is assigned with only a small portion of the total available subcarriers, 
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their time domain samples are not uncorrected as it is modeled in [18]. In [40], the 

user signal is also separated by using a filter bank and then a VSC-based estimator 

[21] is used for each user. The guard band between users acts as VSCs to facilitate 

estimation. The simulation result shows that the estimation performance exhibits 

floor at high SNR. This reflects the imperfect user signal separation by using filter 

bank. The simulation result also shows that the CFO estimation performance is 

different from user to user. This is because each user has its distinctive CFO which 

results in different interference on the other users. In [41], a fourth-order statistic-

based CFO estimator [35] is used for each user after user signals have been separated 

by using a filter bank. 

In [37], the kurtosis-type CFO estimation has been extended to the uplink channel 

of OFDM systems. The user signal is separated by DFT operation at the receiver. 

Compared with the schemes in [40], this scheme performs better even with small 

guard bands. 

By noticing that the estimation error in [40], which separates the user signals 

with a filter bank, is still high due to the MUI on VSCs, the authors in [42] propose 

an iterative VSC-based CFO estimation. The scheme separates user signals neither 

with a filter bank nor with DFT operation. Instead, to estimate the CFO of a 

particular user at each iteration, the signals from undesired users are suppressed 

from the received signal one by one based on CFO estimation obtained from the last 

iteration. The suppression operation is intended to lower the MUI on VSCs. The 

initial CFO estimation is obtained without any MUI suppression at all so it is not 

accurate. However, the estimation accuracy could be improved with the iterations. 

The simulation results show that this scheme performs much better than the one in 

[40]. In the suppression operation, a linear approximation is used. This results in a 

small estimation bias or a floor in terms of mean-square error at high SNR. 
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3.2.2 Arbi trary Assignment Scheme 

For the interleaved and arbitrary assignment schemes, user signals cannot be sepa­

rated easily at the base station by using a filter bank. Therefore, most of the CFO 

estimation algorithms designed for the downlink channel can not be applied here. 

In [43], the cyclostationarity-based estimation in [33] is extended for the uplink 

channel of OFDM systems. It assumes that each user is assigned one subcarrier. 

In [44], the cyclostationarity-based estimation scheme is extended to the arbitrary 

assignment scheme. The cyclostationarity-based schemes require a sequence of OFDM 

symbols to obtain the estimated correlation. It is shown that the Fourier transform of 

the correlation function is in the form of the summation of complex sinusoids with the 

CFO associated with each user as parameters. Hence the CFO estimation problem 

is changed to the estimation of the parameters of sinusoids with noise which can be 

solved with the ESPRIT algorithm. The simulation results show that the estimation 

performance is more or less independent of SNR. 

In [45], a CFO estimation based on the phase shift of consecutive repeated training 

symbols is designed for the arbitrary assignment scheme. However, it is applied only 

to the situation when one new user entering the network with all the other users 

having already been synchronized with the base station. 

In [46] and [47], ML estimators are proposed to jointly estimate the CFO and 

channel for all the users simultaneously by using one OFDM training symbol. It is 

a multi-dimensional optimization problem. In [46], to solve the multi-dimensional 

optimization problem, an expectation maximization (EM) algorithm is used which 

essentially transforms a multi-dimensional maximization problem into a number of 

separate one-dimensional maximization problem. The CFO of each user is estimated 

by using grid search and the CFO estimation is then exploited to recover the channel 

response by using the least-square (LS) method. In [47], the alternating-projection 

method is used to estimate each user's CFO iteratively which also reduces the com­

plexity of the multi-dimensional maximization problem. Compared with the EM 

scheme, the alternating projection method has a faster convergence rate. 
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In [48], the extended Kalman filter (EKF) is employed in time domain for CFO 

estimation by using one training symbol. Instead of using a multi-dimensional EKF 

to jointly estimate the CFO of all the users, a one-dimensional EKF is used for each 

user. In each recursion, each user's signal is separated from the received signal by 

cancelling the signal from the other users based on the CFO estimation obtained from 

the previous recursion. However, the disadvantage of this scheme is its requirement 

for channel knowledge. 

3.2.3 Interleaved Assignment Scheme 

In [49], a novel structure-based estimation method is proposed for the interleaved 

assignment scheme. The inner periodic structure of the received signal is exploited to 

arrange the received signal into a matrix form. A low rank signal model is introduced 

by assuming that the number of active users is less than the maximum number of 

the users that could be supported or by extending the length of CP. Then a subspace 

based method is used to build the cost function. The user CFOs are estimated by 

finding the local minima of the cost function and are mapped to users according to 

the ranges of CFO distribution. The algorithm uses only one OFDM symbol. Its 

performance can be improved by using receive diversity and/or decreasing system 

load. It outperforms the cyclostationarity-based estimation in [43]. 

In [50], by noticing that the scheme in [49] has a problem with mapping the 

estimated CFOs with users at low SNR, the authors propose to combine the structure-

based estimation and the ML mapping method to solve the problem of mismatch. 

29 



Chapter 4 

CFO Estimation in Correlated 

MIMO-OFDM Systems 

4.1 Introduction 

In this chapter, we propose a virtual subcarriers (VSCs) based CFO estimation scheme 

for correlated MIMO-OFDM systems [51]. The idea of exploiting VSCs for CFO 

estimation was first proposed in [21]. This approach is based on the fact that the 

received OFDM signals in the absence of noise should be orthogonal to the VSCs after 

CFO being properly compensated. In [23], the authors take the conditional maximum 

likelihood (CML) approach, in which the likelihood function is conditioned on the 

nuisance parameters, e.g., channel and data, to derive the estimation scheme and at 

last arrive at the same cost function as the one in [21]. In [26], the authors point out 

that the cost function in [21] might not be able to uniquely determine the CFO in the 

presence of channel frequency null on the DFT grid. In order to solve the problem of 

identifiability, they propose an improved estimation scheme by using several OFDM 

symbols and hopping the virtual subcarrier location from symbol to symbol. In [27], 

the authors generalize the scheme in [26] to MIMO-OFDM systems and find that the 

estimation performance does not depend on the number of transmit antennas, but 

can be improved with an increased number of OFDM symbols and receive antennas. 
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In practical MIMO-OFDM systems, it may be the case that the transmit (and/or 

receive) antennas are placed close to each other. This gives rise to spatial correlation 

where the corresponding subchannels are no longer independent. The existing CML 

CFO estimation techniques do not take this correlation into consideration. Therefore, 

the impact of the presence of such correlation on the CFO estimation remains un­

known. This motivates us to consider ML CFO estimation in the presence of spatial 

correlation. To be able to do so, we treat the channel and data as random vari­

ables with known statistics. This approach is normally referred to as unconditional 

ML (UML), where the nuisance parameters are averaged out from the conditional 

likelihood function. We also notice that the data symbols transmitted on different 

antennas and subcarriers may also be correlated as data is normally coded by an error 

correcting coding scheme, e.g., a convolutional code, a turbo code, etc., as well as a 

space-time coding scheme. However, in our underlying analysis, we only consider un­

corrected symbols as we believe that symbol correlation introduced by coding is very 

weak and can be ignored. It should be pointed out that the authors in [52] consider 

the UML CFO estimation (with some approximations) on additive white Gaussian 

noise (AWGN) channels (with no fading or MIMO). In contrast, the analysis pre­

sented in this chapter is exact, i.e., no approximations assumed, and is developed for 

MIMO frequency selective fading channels. 

We derive the UML estimator that can be used to accurately estimate the CFO 

in the presence of spatial correlation. We also derive the unconditional Cramer-Rao 

lower bound (UCRLB). The derived UCRLB depends on the second order statistics 

of data, channel and channel noise, unlike the existing conditional Cramer-Rao lower 

bound (CCRLB) which depends on the channel and data realizations [23]. We show 

from an analytical point of view that the UML estimator can additionally exploit the 

knowledge of receive spatial correlation together with VSCs to contribute to the CFO 

estimation. However, this contribution is relatively weak. The simulation results 

show that in the presence of spatial correlation, by using UML estimator, there is not 

much performance improvement as compared to the CML estimator. The significance 
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of this result is that one may develop VSC-based CFO estimation scheme without 

considering spatial correlation which would make this task a lot easier. 

The organization of the rest of this chapter is as follows. In Section 4.2, we 

present the system model of the MIMO-OFDM system under consideration. In Sec­

tion 4.3, the UML estimator and UCRLB are derived for MIMO-OFDM systems in 

the presence of spatial correlation. In Section 4.4, we disclose how the receive spatial 

correlation can contribute to the CFO estimation by inspecting a system with only 

two receive antennas. In Section 4.5, we present simulation results. Finally, Section 

4.6 concludes this chapter. 

4.2 System Model 

Let us consider a MIMO-OFDM system with Nt transmit antennas, Nr receive an­

tennas and N orthogonal subcarriers. Without loss of generality, we assume that the 

first M subcarriers are used for information data transmission, and the last N — M 

subcarriers are reserved for VSCs. In each OFDM symbol duration, let d^k denote 

the symbol transmitted from the z'th antenna on the fcth subcarrier. At the transmit­

ter, a vector of M symbols d, = [d^o, d;,i , . . . , di,M~i]T are passed through the IDFT 

transformation. The IDFT outputs are then converted into a serial stream and added 

with CP before the signal is transmitted from the z'th antenna. 

Let us denote the discrete time channel impulse response between the zth transmit 

and j t h receive antenna as hij(n) = J2i=o hijj5(n — I), where L is the length of 

channel spread and hijtt denotes the multipath fading coefficient which is modeled as 

complex Gaussian random variable with zero mean and variance a^t. The multipath 

fading coefficients associated with different delays are assumed to be independent. 

The channel power is normalized, i.e., Yli=o a \ == *• The channel frequency response 

between the zth transmit and j t h receive antenna at the DFT grids can be represented 

as Hitj =diag([#iij,o, Hitj^,... , HidtM-i]T), where Hiijik = J2f=o hitjtie~j2n^. 

Let e denote the normalized CFO with respect to the subcarrier interval. Then, 

32 



at the j t h receive antenna, the N time domain samples of the received signal in one 

OFDM symbol duration, i.e., Xj — [xjto,Xjti,... ,XjtN^i]T, can be represented as 

x,-(n) = ^ P ^ W H ^ d * + Zj, j = 1,2,.. . , Nr, (4.1) 
i = l 

where P(e) =diag([l eP'ff . . . e>' " w" ] r) represents phase shift introduced by CFO 

and Zj- = [zj-,0, Zj,i, • • • , ZJ,JV-I]T is a vector of independent white Gaussian noise sam­

ples with variance a\. The matrix W is defined as W = W ^ J , where WN is the 

normalized N x N IDFT matrix with its element on the fcth row and Ith column 

defined as -jm^2*1* > J is an AT x M matrix which consists of the first M columns of 

I/v and I m denotes the mxm identity matrix. CFO estimation is then computed from 

the signals received across all the receive antennas in one OFDM symbol duration. 

When spatial correlation is present, it is normally assumed that the spatial cor­

relation at the transmit side is independent of that at the receive side. This means 

that the spatial correlation between the fading of two distinct antenna pairs is the 

product of the corresponding transmit spatial correlation and receive spatial correla­

tion [53]. We denote the transmit spatial correlation between the (ii)th and (i2)th 

transmit antenna as p\ui2 = Elh^jjh^jj} / alt, and the receive spatial correlation 

between the (ji)th and (j2)th receive antenna as pj -2 = E{hijltih*iJ2l}/a\0 where 

E {•} denotes expectation. We consider the case of uncorrelated symbols such that 

E {djjdf^} = EslM8(ii —12), where Es is the symbol energy per transmit antenna. 

4.3 UML CFO Estimation with Spatial Correla­

tion 

In this section, we derive the UML CFO estimation for a MIMO-OFDM system in the 

presence of spatial correlation. Let us define the observed vector x = [xf, x ^ , . . . , x ^ ] T 

As per the system model in (4.1), x is multivariate Gaussian distributed as long as 
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the number of subcarriers N is large enough, according to the central limit theorem. 

Then, the likelihood function of x conditioned on e can be represented as 

/ W e > = ^ d e t ( R ^ ) e X p ( - x H R ^ x ) ' ( 4 ' 2 ) 

where RxX = E {xx f f}. 

Let us define Define Hij = [Hi}jt0 Hitj^ ... i7 i j ]M_1]T , then we have 

= P(e)W £ f ; [E{HiuhHlh} © E {d^dg}] W " P ( e ) * + <ftN6 (ji - ia) 
i i = l t2=l 

Nt 

= P ( e ) W ] T [E{nitjinZ2} 0 EslM] WHP(ef + a2
nIN5(h - j 2 ) , 

= iV lPJ i j2fisP(£)WWffP(£)H + C^IJV* 0'i - h) (4.3) 

where © denotes element-wise Hadamard product. The last line of the above expres­

sion comes from the fact that E{H^jukH*^ ^ — pT
ix ^. 

Let R r denote the Nr x Nr receive spatial correlation matrix with the element on 

the (ji)th row and (j2)th column defined as Pjltj2- We then have 

Rxx = [Iivr © (P(e)WJV)] R\lNr © (W£P(e)H)], (4.4) 

where ® is Kronecker product, and 

R = R r ® (NtEa33H) + a2JNNr, (4.5) 

which could be computed offline if the receive spatial correlation and noise power are 

known. 

By plugging (4.4) into (4.2), and noting that det(RxX) is not a function of e, we 
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arrive at the UML CFO estimation, which is given by 

SUMLI = argmin { x H [INr ® (P(e)W„)] R- 1 [ I^ r ®(W^P(e ) i f ) ]x} . 

(4.6) 

We can use the formula of Cramer-Rao lower bound (CRLB) for the general 

Gaussian case in [54] to obtain the CRLB for the mean square error (MSE) of the 

estimated e. The formula is 

CRLB = 1/Re [tr ( R ^ ^ S L R ^ ^ E 
L V de de 

According to (4.4), we have 

= j [INr ® (P( £ )AW N ) ] R[INr ® (W£P(e)" ) ] 

(4.7) 

de 

-j [lNr ® (P(e)W iV)] R[INr ® (W^AP(e ) H ) ] , (4.8) 

where A = ^ d i a g ( [ 0 , 1 , . . . ,N - 1}T). By plugging (4.8) into (4.7), we obtain 

UCRLB = 1/Re(2a), (4.9) 

where a = t r { R r 1 [ljvr ® ( W ^ A W J V ) ] R [lNr <8» ( W ^ A W J V ) ] } - A^rtr{A2}. 

In light of the above, we make the following remarks. 

1. We note that the UML estimator in (4.6) is different from the CML estimator 

in [23]. In the UML approach, the channel and data are treated as random 

variables, hence the spatial correlations can be incorporated into the estimation 

process naturally. However, we notice that the transmit spatial correlation does 

not impact the UML estimator at all due to the assumption of uncorrelated 

symbols. 

2. The UML cost function in (4.6) degenerates to the CML cost function in [23] in 

the absence of spatial correlation. To elaborate on this, let us assume R r = Ijvr. 
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Then, we have 

R- 1 = \lNr ® (IJV - T T - J J " ) - (4-10) 
< 1 + 7 

where 7 = NtEs/a^ denotes the SNR observed at each receive antenna. There­

fore, the UML estimator in (4.6) can be simplified as 

£(/ML2 = argmm xH INr ® (IN - Y^P(e)WWHP(e)H\\ x 

- a r g m i n ^ x f ( I i V - P ( e ) W W / / P ( e ) H ) x j . (4.11) 

where, the last line comes from the fact that xĵ Xj is not a function of e. By-

comparing (4.11) and (9) in [23], we see that they are equivalent, as expected. 

3. The CCRLB can be shown as 1 

<*/2 
CCRLB = 

Efc ( IAW £ £ H^cLf - |W"AW £ * H y d ^ ) ' 

It will be shown in the simulation results that the CCRLB is tighter than 

the UCRLB. This is because the signals received in only one OFDM symbol 

duration are used for estimation. If a large number of symbols, however, are 

used for estimation, the two CRLBs would be equivalent. The advantage of the 

UCRLB is that it depends only on the channel and data statistics, while the 

CCRLB depends on the channel and data realizations. 
xThe CCRLB has been provided in [23] but only for single-input single-output OFDM 

systems using multiple OFDM symbols for CFO estimation. 
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4.4 UML CFO Estimation with Two Receive An­

tennas 

To gain more insight into the principle behind the UML estimation, let us consider 

a MIMO-OFDM system employing only two receive antennas with receive spatial 

correlation matrix denoted by 

R r 1 P 

P* 1 

As such, we have x = [x^ ,x^ ] r . Based on the expressions in (4.4) and (4.5), we have 

R-xx = On 

7 P ( e ) W W / / P ( e ) / / + IN frfP{e)WWHP(e)H 

p*jP{e)WWHP{ef ^P{e)WWHP(ef +1 N 
(4.12) 

Furthermore, by using the inversion property of block matrices, we obtain 

r > - l _ 

ot 

aP{e)WWHP(ef + IN bpP(e)WWHP(ef 

bp*P{e)WWHP{e)H aP{e)WWHP(e)H + IN 
(4.13) 

where a = - { - ^ and b = - ( 1 + 7 ) 2 ! | p | V • 

Thus the UML CFO estimation can be obtained by 

£UML3 

= argmin x f P(e) (lN - W W f f ) P (e ) "x i + x f P(e) (IN - W W " ) P(e ) i / x 2 

+c\px*P{i) (IJV - W W " ) P{efx2 + p*x?P(e) ( I * - W W " ) P ( e ) " X l ] . 

(4.14) 

where c = 
i + ( i - | p | ' h " 

By comparing the UML estimator in (4.14) and the CML 

estimator in (4.11) with Nr = 2, we notice that the first two terms in (4.14) contribute 
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to the CFO estimation by minimizing the power of the received signal on the VSCs as 

what the CML estimator does. In addition, the third term in (4.14) also contributes 

to CFO estimation by exploiting the knowledge of receive spatial correlation as well 

as the existence of VSCs as we will explain next. 

The expression x#P(e) (IJV - W W H ) P{ifxi in the third term of (4.14) actu­

ally gives an estimation of the cross-correlation of the received signal from the two 

receive antennas on those VSCs. If the CFO is completely compensated, the received 

signals on the VSCs are just noise. Thus, the estimated cross-correlation is zero. 

On the other hand, if the CFO is not completely compensated, the received signal 

on the VSCs is noise together with the signals leaked from the information bearing 

subcarriers. Consequently, the estimated cross-correlation can be represented as Cp, 

where C > 0 and its value depends on the mismatch between the true CFO and the 

CFO candidate. Therefore, we observe that minimizing the third term of expres­

sion (4.14) also contributes to the CFO estimation. So, from this analytical point of 

view, the knowledge of receive spatial correlation as well as the presence of VSCs can 

make additional contribution to CFO estimation. However, simulation results show 

that the contribution from the third term of (4.14) is marginal as compared to the 

contribution from its first two terms. 

4.5 Simulation Results 

We consider a MIMO-OFDM system with N = 64, N - M = 12, Nt = 2 and Nr = 2. 

The quaternary phase shift keying (QPSK) modulation scheme is applied and no any 

coding scheme is used at the transmit side. The length of the fading channel spread is 

set to L = 8, which is assumed to be shorter than the length of the CP. The channel 

has uniform power delay profile. The normalized frequency offset is set to e = 0.2. 

The grid search method is used to minimize the cost function where 1,000 equally 

spaced CFO candidates in the range of [—0.5,0.5] are used to achieve a precision of 

10~3. The performance of estimation schemes is measured by MSE, which is defined 

38 



0 5 10 15 20 25 30 35 
SNR (dB) 

Figure 4.1: Comaprison of the perforamnce of the CML estimator for a MIMO-OFDM 
system with or without spatial correlaion. 

a s M S E = £ { ( e - e ) 2 } . 

In Fig. 4.1, we show the performance of the CML estimator in the presence of 

spatial correlation. We compare three cases, i.e., 1) p\2 = p[>2 = 0, 2) p\2 = 0.4, 

Pi,2 — 0-6 a n d 3) p\2 = 0.4, p\2 — 1. We observe that the presence of spatial 

correlation degrades the performance of the CML estimator. 

In Fig. 4.2, we compare the performance of the UML CFO estimator and the CML 

estimator in the presence of receive spatial correlation, i.e., p\2 = 0 and p\2 — 0.6. 

We first plot the simulation results by using one OFDM symbol for the estimation 

process. We observe that the performances of the two estimators almost overlap with 

each other. It shows that although the UML estimator can exploit the knowledge 

of receive spatial correlation as well as the existence of VSCs to make additional 

contribution for CFO estimation, this contribution does not provide any noticeable 

performance improvement in comparison with the CML estimator. The CCRLB and 

UCRLB are also plotted. We notice that when only one OFDM symbol is used for 
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Figure 4.2: Comparison of UML and CML estimator for an MIMO-OFDM system 
with receive spatial correaltion. 

estimation, there is a gap between CCRLB and UCRLB. In this figure, we also plot 

the simulation results when five symbols are used for estimation. We observe that 

when the number of OFDM symbols used for estimation increases, the gap between 

CCRLB and UCRLB diminishes. 

4.6 Conclusion 

In this chapter we discussed the UML CFO estimation scheme based on VSCs for 

MIMO-OFDM systems in the presence of spatial correlation. In our derivation, we 

treated the channel and data as random variables with known second order statistics. 

We derived UML CFO estimator and UCRLB. We also disclosed from an analytical 

point of view that, as compared to the CML estimator, the UML estimator can 

exploit the knowledge of receive spatial correlation as well as the existence of VSCs 

to make additional contribution for CFO estimation. However, as this additional 
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contribution is very small, the simulation results showed that in the presence of 

spatial correlation, there is no significant difference between the performance of UML 

estimator and the CML estimator. The implication of this result is that one need 

not take spatial correlation into account in developing VSC-based CFO estimation 

scheme for MIMO-OFDM systems. This should simplify such development process. 
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Chapter 5 

A Blind CFO Estimation Scheme 

for O F D M Systems with Constant 

Modulus Signaling 

5.1 Introduction 

Blind CFO estimation for OFDM systems has been studied in [21], [26], [28], [29], 

[30], [32], [33], [35], [37], and references therein. A virtual subcarriers (VSCs)-based 

scheme is proposed in [26] for MIMO-OFDM systems. This scheme provides a large 

acquisition range, but the computational complexity is high since the grid search 

method has to be used in minimizing the cost function. In [37], the kurtosis metric, 

which measures the Gaussianity of a random sequence, is exploited to construct a 

kurtosis-type cost function for fine CFO estimation. Although this scheme has the 

advantage of giving a closed-form CFO estimation by using curve fitting, its estima­

tion accuracy requires a large number of OFDM symbols which introduces processing 

delay. A constant modulus (CM)-based subspace scheme is proposed in [30]. This 

scheme exploits the correlation of the squared amplitude spectrum of the channels 

under the reasonable assumption that the channel delay spread is always less than 

half the number of subcarriers. The squared amplitude spectrum of the channel is 
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shown to be a low rank signal such that a subspace scheme is applied to accomplish 

the CFO estimation with only one OFDM symbol. However, in minimizing the cost 

function, it requires using the gradient descent method, which makes it complex. Fur­

thermore, this scheme is developed for OFDM systems with only a single transmit 

antenna. This motivates us to find an estimation scheme which can accomplish the 

CFO estimation for MIMO systems with only a small number of OFDM symbols and 

at the same time provide estimation in an explicit form. 

In this chapter, we present a novel CFO estimation scheme for OFDM systems 

with CM signaling [55]. We consider both SISO-OFDM systems and MIMO-OFDM 

systems that employ orthogonal space-time block codes (OSTBCs). The proposed 

scheme assumes that the channel frequency response changes slowly in the frequency 

domain. The implication of this assumption is that the channel frequency response 

on two neighboring subcarriers is about the same. We exploit this assumption to 

derive cost functions in closed form that are based on minimizing the difference of 

the signal power between two neighboring subcarriers. It is mathematically shown 

that minimizing these cost functions yields an unique estimate of the CFO, as desired. 

This process is normally referred to in the literature by the identifiability. 

In terms of performance, it is shown that the proposed scheme substantially out­

performs the kurtosis-type scheme, but it is a little worse than the CM-based subspace 

scheme. On the other hand, in terms of complexity, the proposed scheme has a com­

putational complexity similar to that of the kurtosis-type scheme, but it has a much 

lower complexity as compared to the CM-based subspace scheme. This clearly sug­

gests that the proposed scheme offers an excellent trade-off between performance and 

complexity. 

The organization of the rest of this chapter is as follows. In Section 5.2, we present 

the system model for the SISO-OFDM system under consideration. In Section 5.3, 

we present the proposed scheme for SISO-OFDM systems, and relate it with the 

kurtosis-type scheme given in [37]. In Section 5.4, we extend the proposed scheme 

to MIMO-OFDM systems with OSTBCs. Simulation results are presented in Section 
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5.5. Finally, Section 5.6 concludes this chapter. 

5.2 System Model 

Let us consider a SISO-OFDM system with N orthogonal subcarriers. In the mth 

OFDM symbol duration, a vector of N symbols, namely, dm = \dm$ dm>i . . . dmtN-i]T, 

with each symbol drawn uniformly from a CM constellation, are transmitted simulta­

neously on N orthogonal subcarriers. By assuming that the multipath fading channel 

keeps constant in one OFDM symbol duration, we can denote the channel frequency 

response at the DFT grid in the mth OFDM symbol duration as H m =diag([Fm ] 0 

^ _ i ] r ) . Let /o denote the CFO, which is introduced by the mismatch 

between the local and transmit oscillators and define the normalized CFO over the 

subcarrier interval as e. We assume that the coarse CFO will be handled in the next 

stage. We also assume that CFO keeps constant while the estimation is performed, 

i.e., M OFDM symbols. Then, the N time-domain samples in the mth received 

OFDM symbol duration, namely, x m = [a;m,o Xm,\ • • • %m,N-i]T c&n be represented as 

x™ = e^m^N+mL^C(e)WHmdm + zm, (5.1) 

where m = 1, 2 , . . . , M, Lcp denotes the length of CP which is assumed to be longer 

than the maximum channel delay spread, W is the N x N normalized IDFT matrix 

with the element on the kih row and Ith. column being defined as Wfc,f = -i.eJ '27r ^ , and 

zm = [zm,o zm,i • • • zmtN-i]T is a vector of independent zero mean white Gaussian noise 

samples with variance a\. The effects of accumulated phase shift resulting from the 

CFO on the time-domain samples of OFDM signals are represented by C(e) =diag([l 

e N • • • e N Y ) and e N Hm li^+m^cp] where the latter expression represents 

the common phase shift resulting from the CFO. 

At the receive side, the CFO is first estimated and then the signal is compensated 

in the time domain by using this estimated CFO denoted by u. After compensation, 

the outputs from the DFT stage for the mth OFDM symbol, namely, y m (u) = 
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[Vmfl («) Vm,i («)••• ym,N~i (u)]T can be represented as 

ym(u) = WHC*(u)xm. (5.2) 

5.3 SISO-OFDM Systems 

5.3.1 Proposed Scheme 

In this section, we present the proposed scheme for SISO-OFDM systems; we will 

extend it to MIMO-OFDM systems in the next section. 

If CFO has been completely compensated in the pre DFT stage, i.e., u = e, the 

DFT outputs would be without ICI. So in the noise-free case, the DFT outputs would 

be ym (u\u = e) = Hmdm . As such, the squared amplitude of the DFT outputs would 

be the squared amplitude of the channel frequency response, i.e., \ym,n(u\u = e)| = 

l-ffm.nl • This is true because the square amplitude operation essentially removes the 

data symbols when CM signaling is used. 

When the channel frequency response changes slowly in the frequency domain, 

the channel frequency response on two consecutive subcarriers is approximately the 

same. Consequently, we would have 

\Vm,n(u\u = £)f ~ \ym,((n+l))N(u\u = e ) | 2 , (5 .3) 

where ((x))N denotes x modulo N. Based on this, for SISO-OFDM systems with CM 

constellations, we propose a cost function which minimizes the difference of the signal 

power for each pair of consecutive subcarriers as £ = arg min Ji(u), where 
ue[-0.5 0.5) 

M-1N-1 

• A M = Y U Z (ly™>«(U)|2 _ \yrn,((n+l))N(u)\2)2 . (5 .4) 
m=0 n=0 

Since we have Y^Zl Ent~o \ymAu)f = Em=o £^=o bm)((rl+i))N(«)|4, the above cost 
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function can be simplified as 

M-1N-1 

J l ( u ) = 2 ^ 5 3 [\V™AU)\4 - IVmMl2 \ym,((n+l))N(u)\2] . (5 .5) 
m=0 n=0 

L e m m a 1 Under the assumption in (5.3), the cost function in (5.5) can be well 

approximated as 

Ji(u)«Acos[27r(e-u)] + C, (5.6) 

where A and C are not functions of u but constants that depend on the channel and 

symbol realization with A < 0. (See Appendix 5.A for the proof.) 

Lemma 1 shows that the proposed cost function does achieve its minimum at u = 

e. Furthermore, instead of using the grid search [26] or the gradient descent method 

[30] for minimization, curve fitting [37] can be used to obtain the CFO estimation, 

which makes the proposed scheme simpler than those in [26] and [30]. We point out 

that Lemma 1 is derived based on the assumption that all the subcarriers are used 

for information carrying. In real life applications, a number of VSCs always exist in 

OFDM systems for various purposes. Let us assume that the first Q subcarriers, i.e., 

from the 0th to the (Q — l ) th subcarrier, are used for data carrying, and the last 

N — Q subcarriers are VSCs. Then the cost function in (5.4) should be modified as 

M - l Q - 2 

• M « ) = Yl 5 1 {\ym,nW)\2 ~ \ym,((n+l))N(u)\2) , (5 .7) 
771=0 71=0 

such that the estimation scheme minimizes the difference of the signal power only 

over each pair of the two consecutive data carrying subcarriers. In such cases, the 

cost function is not an exact cos function even under the noise-free assumption. So 

the estimation result obtained from curve fitting would be suboptimal as compared 

to that obtained from grid search. However, we will demonstrate later via simulations 

that curve fitting degrades the performance only by little even in the presence of a 
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large number of VSCs. 

5.3.2 Relation with the Kurtosis-type Scheme 

Among the existing CFO estimation schemes, the one that is most related to our 

proposed scheme is the one presented in [37], which is a kurtosis-type scheme. This 

scheme was shown in [37] to be superior to several schemes that were developed before. 

Motivated by this, we will next compare this estimation scheme with our proposed 

one. 

The key idea behind the kurtosis-type scheme is that if CFO has not been com­

pletely compensated, the distribution of the post DFT signals is closer to Gaussian 

than that when CFO has been completely removed. Consequently, the normalized 

kurtosis is used as the cost function to measure the non-Gaussianity of the post DFT 

signals. However, factors such as increased channel frequency selectivity and employ­

ing non-CM signaling make the distribution of the post DFT signal closer to Gaussian 

even if the CFO has been completely compensated, which can consequently degrade 

the accuracy of kurtosis-type estimation. To show the advantage of our proposed 

scheme over the kurtosis-type scheme in a frequency selective channel, we expand the 

kurtosis-type cost function and obtain the following Lemma. 

L e m m a 2 / / CM signaling is used, the kurtosis-type cost function J2(u) = X^m=o 

]Cn:=o b™>«(M)l 9™™ by [37} can be written as 

J2(u) = A'cos[2ir(e-u)] + B'sml27r(e-u)] + C 

= A"cos[2n{e-u + (i>)} + C', (5.8) 

where A', £?', C, A" and <f> are constants that depend on the channel and data real­

ization and are not functions of u. (See Appendix 5.B for the proof.) 

We observe from the above Lemma that the kurtosis-type cost function does not 

really achieve its minimum at u = e. Actually the minimum can be achieved at 
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u = £ only when M is very large such that B' in the first line of (5.8) can be 

approximated by zero as shown in the proof in [37]. Unfortunately, when M takes 

on small values, B' may be significant which shifts the minimum of the cost function 

from the true CFO. In contrast, our proposed cost function defined by (5.5) is in the 

form of the subtraction of two terms, which intrinsically can alleviate the amplitude 

of sin[27r(e — u)] so that it can be ignored from the expanded cost function in (5.6) 

for any value of M as long as the assumption in (5.3) is satisfied. 

5.4 MIMO-OFDM Systems 

In this section, we extend the proposed scheme to MIMO-OFDM systems. Consider 

a MIMO-OFDM system with Nt transmit and iVr receive antennas employing an 

OSTBC with T symbol durations in each block. We assume that subchannels keep 

constant over the duration of each block. Let us define the row vector hm>n>j = 

[Hm,nj,i #m,n,j,2 -•• Hm,n,j,Nt], w i t n m = 1,2,... ,M, n = 0 ,1 , . . . ,N - 1, and 

j = 1,2,... ,Nr, which represents the channel frequency response between the Nt 

transmit antennas and the j th receive antenna on the nth DFT grid over the mth 

block duration. Let the Nt x T matrix Dm>„ represent the space-time block coded 

sequence transmitted over the Nt transmit antennas simultaneously in the mth block 

duration on the nth subcarrier. The element on its z'th row and tih column refers to 

the symbol transmitted from the ith transmit antenna during the tth symbol slot. Due 

to the orthogonality of the OSTBC [11] and the CM signaling under consideration, we 

have Dm > nD^n = cl, where c is a positive constant. Define the row vector ym,„j (u) = 

[ym,n,j,i (u) ym,n,j,2 (u) . . . ym,n,j,T («)], as the DFT outputs on the nth DFT grid of 

the j th receive antenna over the mth block duration. If CFO has been completely 

compensated and in the noise-free case we have ym,n,j (u\u = e) = hmin,,-Dm>n. 
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By taking the norm of ym,n,j {u\u — e), we obtain 

|ym,nj (u\u = e)f = ym,nj {u\u = e) y^nJ(u\u = e) 
Aft 

ch hH , = cVl f f -I2 

t = l 

where the summation of the squared amplitude of the channel frequency response 

has been decoupled from the received signal. Consequently, the proposed estimation 

scheme for MIMO-OFDM systems employing orthogonal space-time coding is 

Nr M-1N-1 2 

i = argu€[T$fo5)^ ^2 ^ ( H y m ' n J ^ ~ \\ym,((n+l))NJ ( U ) | | 2 ) • 
j = l m=0 n=0 , . 

(5.9) 

By comparing the cost function in (5.9) with that for the SISO-OFDM in (5.4), we 

observe that the former cost function is simply the summation of the cost functions 

corresponding to each single receive antenna. Furthermore, for MIMO systems with 

multiple transmit antennas using OSTBCs, the squared amplitude of the DFT outputs 

in the duration of one block of the OSTBC are summed together, as shown in (5.9). 

5.5 Simulation Results 

In our simulations, we assume CFO e is uniformly distributed in the range [—0.5 0.5). 

The multipath fading channels and e are assumed to remain constant during M 

consecutive OFDM symbols for SISO-OFDM systems, and M consecutive space-time 

block coded OFDM blocks for MIMO-OFDM systems. Let /IPDP(-D) be a polynomial 

(in D) representing the power delay profile of the discrete-time multipath fading 

channel. Several frequency selective fading channels with different power delay profiles 

and delay spreads o\ [56] are used in the simulations to illustrate the efficacy of the 

proposed scheme. They are / J P D P , ( £ ) = 0.35 + 0.25D + 0.1&D2 + 0.13£>3 + 0.09.D4, 

/iPDP2(-D) = 0.34+0.28£>+0.23L>2+0.11£>6+0.04L>11,and/ipDP3(Z?) = 0.25+0.25D4+ 
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Figure 5.1: Comparison of curve fitting and grid search of the proposed scheme for a 
4-PSK SISO-OFDM system with the number of VSCs equal to 0 and 20 respectively. 

0.25D8 + 0.25D12, with channel delay spreads a2 = 1.74, 6.37, and 20 respectively. 

In calculating of, the path delay has been normalized with respect to the sampling 

interval. The number of subcarriers is N = 64, and the length of CP is Lcp = 16. The 

CM signaling used in the simulation is 4-phase-shift keying (4-PSK). The MSE of the 

CFO estimation is obtained by running 1000 independent Monte-Carlo simulations. 

5.5.1 SISO-OFDM Systems 

As mentioned above, in the presence of VSCs, the curve fitting approach becomes 

suboptimal, while using the grid search approach increases the complexity of the 

scheme. As such, we examine in Fig. 5.1 the degradation suffered by using curve 

fitting as opposed to grid search. For both cases, the cost function minimized is the 

one defined by (5.7) where the number of VSCs is set to 0 and 20. The frequency 

selective channel has of = 6.37. We give the estimation performance for the cases 

M = 1, and 5. We observe from the figure that curve fitting performs as well as 
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Figure 5.2: Comparison between the proposed scheme and the kurtosis-type scheme 
for 4-PSK SISO-OFDM with a2

T = 6.37; M = 1,5,10 symbols. 

grid search with a slight degradation in the presence of a large number of VSCs. 

Therefore, we use curve fitting and assume the fully loaded OFDM systems without 

the presence of the VSCs for the rest of the simulations when the proposed scheme 

is used. 

In Fig. 5.2, we compare the proposed scheme with the kurtosis-type scheme over 

a frequency selective fading channel with a\ = 6.37. The two schemes are compared 

for M = 1, 5, and 10 symbols. We observe from the figure that the proposed scheme 

significantly outperforms the kurtosis-type scheme. In terms of complexity, both 

schemes have somewhat the same complexity. 

In Fig. 5.3, we compare the performance of the proposed scheme with that of 

the kurtosis-type scheme and the CM-based subspace scheme over three types of 

frequency selective fading channels, namely, o\ = 1.74, 6.37 and 20. We use M — 5 

symbols for the estimation. We observe that the proposed scheme performs better 

than the kurtosis-type scheme even over severe frequency selective fading channels. 
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Figure 5.3: Comparison between the proposed scheme, the kurtosis-type scheme and 
the CM-based subspace scheme for 4-PSK SISO-OFDM with a2

T = 1.74, 6.37, and 20; 
M — 5 symbols. 

But it performs a little worse than the CM-based subspace scheme for large values of 

of, which is attributed to the fact that with the increased channel frequency selectivity 

the assumption in (5.3) is slightly violated. As far as complexity is concerned, by 

comparing the proposed scheme to the CM-based subspace scheme, the proposed 

estimation scheme is much simpler because the curve fitting involves evaluating the 

cost function at only three candidate CFOs, whereas the CM-based subspace scheme 

requires the gradient descent method in which the number of iterations depends on 

the channel and data realization. Furthermore, in evaluating the cost function at each 

candidate CFO, an TV x N projection matrix has to be multiplied with the squared 

amplitude of the post DFT signals for the CM-based subspace scheme. However, for 

the proposed scheme shown in (5.4), the computational complexity is obviously much 

less than that. 

In Fig. 5.4, we plot the BER performance of a SISO-OFDM system with of = 6.37 
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Figure 5.4: Comparison of bit error rate performance of 4-PSK SISO-OFDM by using 
the proposed scheme and the kurtosis-type scheme for CFO estimation respectively 
with M = 1. 

and 20 and with CFO e that is uniformly distributed in the range [—0.5 0.5). The 

received signal is first compensated with the CFO estimated by using the kurtosis-

type scheme and the proposed scheme respectively at the fine CFO estimation and 

compensation stage. For both schemes, one OFDM symbol is used for the CFO 

estimation. We assume that the integer part of the CFO (introduced by the CFO 

estimation error at the fine CFO estimation stage) can be completely compensated 

at the following coarse CFO estimation and compensation stage. We also assume 

that the receiver has perfect knowledge of the channel fading coefficients for symbol 

detection. The BER performance obtained with no CFO compensation and with the 

true CFO compensation are also included in the figure for comparison. We can see 

from the figure the superiority of the proposed scheme over the kurtosis-type scheme, 

which suggests that improvements in the CFO estimation translate to improvements 

in the BER performance. 
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Figure 5.5: Comparison between the proposed scheme and the kurtosis-type scheme 
for 4-PSK MIMO-OFDM system with Alamouti scheme, Nr = 1, a* = 6.37, M = 5 
blocks. 

5.5.2 MIMO-OFDM Systems 

In Fig. 5.5, we compare the proposed scheme with the kurtosis-type scheme for a 

MIMO-OFDM system employing Alamouti scheme with one receive antenna over a 

frequency selective fading channel with o* = 6.37. The number of space-time block 

coded OFDM blocks used in estimation is set to M = 5 blocks (i.e., 10 OFDM 

symbols). We observe from the figure that the proposed scheme performs much better 

than the kurtosis-type scheme since it has the capability of exploiting the orthogonal 

structure of the OSTBC. We remark that the performance of the kurtosis-type scheme 

can be improved by modifying it to exploit the orthogonality of the OSTBC. However, 

the resulting performance is still much inferior to that of the proposed one. 
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5.6 Conclusions 

In this chapter, we have proposed a low-complexity blind CFO estimation scheme for 

SISO- and MIMO-OFDM systems with CM signaling. We proved the identifiability 

of the proposed scheme. We have shown that the proposed scheme offers an excellent 

performance-complexity trade-off as compared to existing estimation schemes. 

5. A Proof of Lemma 1 

We shall now prove Lemma 1. In the development of this proof, we consider the noise-

free case in (5.1). We also consider the case M = 1. As such, we remove the index 

of m from the notation, i.e., dk denotes dm^- The proof for the case M > 1 follows 

immediately from the proof for the M = 1 case. We also remove the parameter u for 

simplicity, i.e., yn denotes ym,n{u). 

From (5.2), we have yn = ^ E S ^ EjL'o1 e i & e+k~np^ w h e r e ~fc A Hkdk a n d 

e = e — u. Then it is easy to show that 

n=0 I, ki,k2,h,h=0 

N-l N-l P 2 - P 1 - 1 "1 
7-27r(fcl~'2)PI - 7 2f f ( ' I 2- '2 )P2 ,-27r ( ' l - ' 2 ^ 1 

o J ' " N e J^n N pJ*n N 

P l = 0 p 2 = p i + 1 q i=0 J 

(5.10) 

where C\ is a real constant which is not a function of e. 

Now define O = {fci, fc2, h, k} , ^ i = {h,k2, h,l2 \h = k2 or h = l2} , and Q2 — 

{hi ,k2, h,l2 | fcl7^ &2 and lx ̂  Z2} , with klyk2,h, l2 G {0 ,1 , . . . , iV - 1} . We have 

fi = fii U ft2 and Oj D Q2 = 0. Then (5.10) can be represented as 

Ar_1 2 ? 

E î i4 = w*Re K ^ 7 ^ ) + w*Re {e" i 2**Bn»}+Ci> ( 5 - n ) 
ra=0 
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where B$, with \1> = fii or fi2, is defined as 

N-l N-l N-l P 2 - P 1 - I 
r(fci-'a)Pi ,-27r(fe2~'2)P2 j 2 7 r ( ' l ~ ' 2 ^ ' 

fcl,fc2,Jl,22=0 p i = 0 p 2 = p i + l 91=0 , . 
fci,fe2,Ji,«2e* ( o . l ^ ) 

Similarly, we can obtain 

E l^l2 fo«*n»* I' = ji Re K^"^} + J, Re {^'Ai,} + C2, 
n=0 

where Ci is a real constant which is not a function of e, and Dy, with \I> = fii or f22, 

is defined as 

N-l N-l N-l P2-P1-I 
. ( f c l - l 2 + l)pi jo - ( f c2 - ' 2 + l)P2 , - o - ( ' l - ' a ) g I ^ E y*fo«E E E e^—r-e-—*-v*^-

fci,fc2lii,(2=0 P l = 0 p 2 = p i + 1 <?l=0 / r i o \ 
fcl,fc2,«l,J2€* (5 .13) 

Next we will show that BQX « Z?n, under the reasonable assumption in (5.3). Let 

us define f̂  = {fci, k%, h, li \k\ ^ k^ and /i = ^ } , fi4 = {&i, k2, h,h \ki — k^ and l\ ^ 

I2}, and CI5 = {^1,^2,^1,^21^1 = &2 and Zi = £2}, where fii = f ^ U f ^ U ^ , f^nfki = 0 , 

Jl4 n J75 = 0 , and Q3 n fi5 = 0 . Then we have BQ1 = i?n3 + BQ4 + BQ& and 

A ^ = DQ3+DQ4 + DQ5, where BU3,BQ4 and i?n5 are defined in (5.12), and DQ3, DQ4 

and Z?n5 are denned in (5.13). 

Denoting V\ = ((Zj — 1))N and v-i — {{h — ]))N, we have 

A>3 
N-l 

/ J ykiy*k2y((n+i))Ny{(v2+i))N 
ki fa ,vi ,V2=0 

h,k2,((vi + l))NM^2+l))Nen3 

N-l N-l P 2 - P 1 - I 

y - y - y - ^ ( ^ - ^ i e-j2^(fc2-;2)"2 ^ ' " i ^ n 
P i = 0 p 2 = p i + 1 g i=0 

JV-1 JV-1 JV-1 P 2 - P 1 - I 

E _ _* _ _„ V " ^ V~^ V"^ 727r(fcl~"2)p ' -727r ( fe2~"2)p2 •?27r("l~"2)<?' 

fcl,fc2,«l,U2 = 0 P l = 0 p 2 = p i + 1 91=0 
fcl.fc2|l'li''2£f23 
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where the last line is obtained from the fact that if ki, &2, ((^l + l))N > {{v2 + 1))JV e ^3 

then ki,k2,Vi,V2 € Q3 and the approximation comes from the assumption in (5.3). 

So we have shown that DQ3 « BQ3. Similarly, it is easy to show that D^4 RS BQ4 

and DQS « jBjjg under the assumption in (5.3). Consequently, we have ^ |yn| — 
n=0 

E lynl2 |?/((n+i))N |2 « ^ Re { e - ^ « (5n2 - Z?n2)} + C, where C = d - C2. It is 

straight forward to show that BQ2 and DQ2 take on real values, and BQ2 — D^2 < 0. 

This proves Lemma 1. 

5.B Proof of Lemma 2 

Now we prove Lemma 2. As for the kurtosis-type cost function in (5.11), it is easy 

to show that BQ2 is a real negative value. However, BQ,X can be a complex value, 
N-l 

which makes the kurtosis-type cost function in the form ]T} \yn\ = A'cos(27re) + 
n=0 

JB'sin(27re) + C, where yl', B' and C" are constants that depend on the channel and 

data realization and are not functions of u. This proves Lemma 2. 
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Chapter 6 

A Finite Alphabet Based CFO 

Est imator for Differential OFDM 

Systems 

6.1 Introduction 

CFO estimation schemes can be classified into two groups. In the first group, the CFO 

estimation is accomplished in one stage while in the second group the CFO estimation 

is accomplished in two stages. Schemes in [21], [24], [28] and [29] belong to the first 

group. A problem associated with this group of schemes is that they have to minimize 

their cost functions over the entire CFO range. In the case when the CFO is expected 

to be in a large range, in minimizing their cost functions, the exhaustive grid search 

method could be very time consuming, or alternatively, the gradient descent method 

may end up with a local minimum instead of a global minimum as the cost functions 

are in general not convex over the entire range. To deal with the large estimation 

range at an affordable complexity, another group of CFO estimation schemes which 

consist of two stages are usually preferred. In the first stage, the fractional part of the 

CFO (FFO) is estimated and compensated [30], [37], [57], [58]. Then, in the second 

stage, the integer part of CFO (IFO) is estimated [60] —[62]. The focus of this chapter 
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is on the FFO estimation. 

Like single-carrier systems, OFDM systems can also employ differential modula­

tion, especially in situations where channel estimation becomes impossible. Conse­

quently, symbols can be detected without channel knowledge and the receiver com­

plexity can be reduced. A time domain differentially modulated OFDM (DOFDM) 

system is adopted by the European digital audio broadcasting (DAB) standard [1]. 

Like OFDM systems, DOFDM systems are also sensitive to CFO. Therefore, in [58] 

and [59], a novel blind FFO estimation scheme is proposed in particular for DOFDM 

systems by exploiting the finite alphabet (FA) property of the transmitted signal. 

We notice that in their data model the impact of the accumulated phase rotation 

introduced by CFO is excluded from consideration. However, as their proposed cost 

function relies on comparing the phase difference between the two consecutive OFDM 

symbols on the same subcarrier, the accumulated phase rotation should not be ig­

nored. With this phase rotation included into the data model, their cost function 

actually does not give a minimum at the true FFO and in turn could not give an 

accurate estimation. 

Therefore, in this chapter, like that in [58], by exploiting the two implicit prop­

erties associated with the DOFDM systems again, i.e., the channel keeps constant 

over two consecutive OFDM symbols, and the employed M-ary phase-shift keying 

(M-PSK) constellation has a finite alphabet size, we propose a blind FA based FFO 

estimator that relies on only two consecutive OFDM symbols [63]. Different from that 

in [58], we use a differentiation in the frequency domain to bypass the accumulated 

phase rotation introduced by CFO in designing the cost function. 

The proposed FA based cost function is shown to be periodic even in systems 

having VSCs. Therefore, the proposed FA based scheme can be applied to both 

systems with and without VSCs, whereas some of the existing FFO estimators, e.g., 

the CM based subspace FFO estimator in [30] can not be applied to the former 

scenario. As the proposed FA based cost function is in a somewhat complicated 

form, to find the minimum of it via the grid search method is almost prohibited. 
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Therefore, we present the modified Newton method which can obtain the minimum 

of the cost function more efficiently. In [57], a CRLB for blind CFO estimation 

problem is derived. However, this CRLB is more suitable for blind CFO estimation 

based on a large number of OFDM symbols. Therefore, we derive the constrained 

CRLB [65] and use it as a bench mark in assessing the performance of the proposed 

FA based scheme. 

The simulation results show that the modified Newton method works well with the 

FA based cost function. We compare the FA based scheme with a scheme that only 

exploits the CM constraint of the M-PSK constellation. The FA based scheme is more 

complicated but it can achieve a better performance at high SNRs by exploiting more 

side information of the M-PSK constellation. The FA based scheme also outperforms 

the CM based subspace scheme in [30] at high SNRs, which has been shown to have 

a superior performance over several other schemes. 

We also note here that the proposed FA based scheme is designed for single trans­

mit antenna systems. Its idea can not be applied to MIMO-OFDM systems employing 

differential space-time coding. It would be an interesting topic to design blind CFO 

estimation scheme for such systems in our future research work. 

The rest of the chapter is organized as follows. In Section 6.2, we describe the 

system model. In Section 6.3, we propose a FA based cost function for FFO estima­

tion. In Section 6.4, the modified Newton method is presented. In Section 6.5, the 

constrained CRLB for CFO estimation is derived. Section 6.6 shows the simulation 

results. Finally, conclusion is made in Section 6.7. 

6.2 System Model 

We consider a DOFDM system with N subcarriers. The information symbols are 

differentially modulated along the time direction on each subcarrier. The channel is 

assumed to keep constant over two consecutive OFDM symbols such that differential 

detection can be performed at the receiver with the channel information bypassed. 
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Let us denote the vector of differentially modulated symbols transmitted in the 

nth OFDM symbol as s(n) = [s0{n),si(n), ... ,sN-1{n)}T, where sk(n) denotes the 

differentially modulated symbol transmitted on the kth. subcarrier. Let d(n) = 

[d0(n),di(n),... , d/v-i(n)]T denote the vector of information symbols carried in the 

nth OFDM symbol, where dk{n) denotes the information symbol on the kth subcar­

rier. The information symbol dk{n) belongs to a M-PSK constellation, i.e., A := 

{Ab/?i> • • • IPM-I} with (3i = e^T*. Then, the differential modulation can be repre­

sented as 

s(n) = D(n)s(n — 1), 

where D(n) =diag(d(n)). In general, OFDM systems usually have a number of VSCs 

[21] to help with spectrum shaping. So, let us denote the number of VSCs as P and 

the number of information bearing subcarriers as M — N — P. The set of indices of 

the VSCs is denoted by </?. For any k in </?, we have Sk{n) = 0 and dk(n) = 0 for all n. 

At the transmitter, the differentially modulated signal is first passed through the 

IDFT, and then appended with a CP before it is propagated through the multipath 

fading channel. We denote the equivalent baseband discrete time channel impulse 

response over the nth OFDM symbol as h(n, t) = ^2^ hi(n)S(t — I), where L is the 

length of the channel impulse response in samples and hi(n) with 1 = 0,... ,L—1, are 

channel coefficients modeled as independent complex Gaussian random variables with 

zero mean and any normalized power delay profile. The channel frequency response 

on the kth. subcarrier can then be represented as H).(n) = J ^ ^ Q 1 hi{n)e~^'N. The 

length of CP which is denoted by Lcp, is always assumed to be larger than L such that 

there is no inter-symbol-interference (ISI). Therefore, the total number of samples in 

an OFDM symbol including CP is Q = LCp + N. 

The received signal vector in the time domain with the CP removed can be rep­

resented as 

r(n) = ej9ej2vCjl^r}2C{e)FHH(n)s{n) + v(n),n = 1,2,. . . (6.1) 
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where d denotes the initial phase offset of the first OFDM symbol, and e is the nor­

malized CFO with respect to the subcarrier interval. The CFO has two parts, i.e., 

e — 6i + 6f. The integer part denoted by e, is an integer value, and the fractional part 

£f is within the range [—0.5, 0.5). The diagonal matrix C(e) and H(n) are defined as 

C(e) =diag([l,e>'2**,... , e ^ £ i ^ i i ] ) , a n d H ( n ) =diag([tf0(n) J#1(n) J • • • ,#iv-i(™)]), 

respectively. The N x N DFT matrix F has its element on the mth row and nth 

column defined as -jUe_J '2ir^1. The noise vector is defined as v(n) = [v0(n),vi(n),... , 

VN-i(n)]T, where Vk(n) with k = 0 , . . . , N — 1, are modeled as independent complex 

Gaussian random variables with zero mean and variance a\. 

6.3 Proposed FFO Estimator 

The proposed scheme is inspired by the scheme in [58] but developed for the data 

model in (6.1) which has a slight difference from that in [58]. We first propose a cost 

function based on a DOFDM system without VSCs, and then show that this cost 

function can also be applied directly to systems having VSCs. 

As the proposed scheme involves only two consecutive OFDM symbols, i.e., (n — 

l) th and nth, in the rest of this chapter we denote H(n — 1) and H(n) by H for 

simplicity of notation.1 Let us assume that the received time domain signal r(n) is 

first compensated with a FFO candidate e £ [—0.5,0.5). Then, its DFT output can 

be represented as 

y(n,i) = FC(e)H r (n) 

= e^eej2lTeJli^mFC{£f)C{ei)F
HHs{n) + FC{e)Hv(n), (6.2) 

where £/ = £/ — e. 

Let us denote 2/fc(n, e) as the /cth element of y(n, e). From (6.2), we have that, for 

lWe note that requiring the channel to remain constant at least over two consecutive OFDM 
symbols is a general requirement for all systems employing differential detection. 
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e = ef, 

yk(n, ef) = e^eJ '2w£lV1SH((fc_£i))jvs((fe_£i))N(n) + wk(n), (6.3) 

where wk(n) denotes the fcth element of FC(e f)Hv(n), and ((A; — £J))JV represents 

(A; — Si) modulo N. It reveals that if £/ is accurately compensated then DFT outputs 

do not have any ICI, and the transmitted symbols together with the channel frequency 

response are cyclically shifted among the DFT outputs due to the presence of the IFO. 

We observe from (6.3) that, in the absence of noise, 

ykl{n,ef)y*k2(n,ef) = H{{kl.ei))Nsm-ei))N{n)H^_^))Ns*{{ha_ei))fl (n). 

Consequently, for fej ^ fei we have 

ykl(n,£f)y*k2(n,ef) = ykl(n - l,ef)y*k2{n - l,£ /)d((fcl_ei)) iV(n)^(fe2_£.)) jv (n). 

As both d((fcj_ei))w(n) and d*,,k2_£f^ (n) belong to the M-PSK constellation, so does 

their multiplication denoted by akltk2- Therefore, heuristically, we can have a cost 

function for joint estimation of ef and detection of akljk2, that is 

Jkuk2(e,aklM) = ^ ( n . e j y j j ^ n . e ) -aklMykl{n- 1,e)y*k2(n - l ,e) |2 . 

(6.4) 

This is because in the absence of noise, we have Jkl<k2(e, &kl,k2) = 0 at e = £/ and 

ctfcj ,fc2 = afci.fca- Or, alternatively, we can have a FFO estimation represented by 

minimizing Jkl,k2{£, akuk2(e)) over e £ [—0.5,0.5), with 

&klM{e) = argminJ fc fc2(e, a). (6.5) 

By exploiting the frequency diversity of the OFDM system, finally we propose a 
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cost function for the FFO estimation as 

J V - l J V - l 

J(e) = Y^ Yl JkiM{£>®hte{£))- (6-6) 
fcl=0fc2=fci+l 

The FFO estimation is obtained by it = arg min J(e). 
1 ee[-0.5,0.5) 

In light of the above, we make the following remarks. 

1) Above we derive a cost function based on a system without VSCs. Actually, 

the cost function in (6.6) can be applied directly to DOFDM systems having VSCs. 

This is supported by two facts. Firstly, in the absence of noise, all of the terms in the 

summation of (6.6) have a minimum at e = £/. For example, by assuming e = £/, 

let us consider those terms that have either ((ki — £J))JV or ((&2 — £*))JV as a VSC, or 

have both of them as VSCs. For such terms, we have ^ ^ ( e / , ockuk2(
ef)) ~ 0 where 

akltk2{
ef) c a n take any value in A. 

Secondly, the cost function J[e) in (6.6) is periodic with a period of 1, such that 

J(e + m) = J(e) holds for any integer m € [0, N) and e € [—0.5,0.5). This property 

also holds for DOFDM systems having VSCs and its proof is shown in Appendix 6.A. 

The reason we emphasize the application of the proposed scheme as a FFO es­

timator to DOFDM systems having VSCs is that some of the existing blind FFO 

estimation methods are developed for systems without VSCs and can not be applied 

to systems having VSCs, e.g., the CM based subspace scheme in [30]. In general, 

VSCs are always present in OFDM systems as specified in several standards. There­

fore, from this point of view, the proposed FA based FFO estimator has a wider 

application compared with those schemes. 

2) From (6.3), we can also obtain a CM based cost function for FFO estimation 

by exploiting the fact that the channel keeps constant over two consecutive OFDM 

symbols. It is given by [55] 

J V - l 

JCM(£) = ]r(|y f c(n,e~)|2 - \yk(n - l ,e) |2)2 . (6.7) 
fc=0 
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Compared to the above CM based cost function, we notice that the FA based cost 

function exploits more side information of the M-PSK constellation. Accordingly, the 

computation of the FA based cost function is more demanding than that of the CM 

based cost function due to two factors. Firstly, the FA based cost function consists 

of 0{N2) terms while the CM based cost function only has N terms. Secondly, a 

symbol detection process is actually carried out implicitly within the FA based FFO 

estimation which indicates that the complexity of the FA based scheme increases with 

the constellation size. However, we will show via simulations that, compared with 

this CM based scheme, the FA based scheme can achieve an additional performance 

improvement at high SNRs in exchange for the increased computational complexity. 

3) The proposed scheme is designed for and limited to DOFDM systems. That 

is, it can not be applied to regular OFDM systems. Also, it is limited to M-PSK 

modulation. Furthermore, the proposed scheme uses two OFDM symbols for CFO 

estimation, whereas the schemes in [21] and [28] —[30] use only one OFDM symbol. 

We note here that the channel is expected to remain somewhat constant over two 

consecutive OFDM symbols, which is also a requirement for systems employing any 

of the schemes in [21] and [28]—[30] in conjunction with differential detection. 

6.4 Newton Method 

In minimizing the cost function in (6.6), we use the Newton method as an alternative 

to the grid search to reduce the computational complexity. The gradient and Hessian 

of the cost function can be obtained as 

N-l N-l , 

fcl=0fc2=fci+l 

and 
N-l N-l d2 

J"(£)=Y1 Yl -^JkiM^i&krteie)), 
fc1=0 k2=ki+l 
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with ^Jfci,fca(e,ttfci,fc2(e)) a n d a&Jfci,fca(Mfci,fca(e)) given in the Appendix 6.B. The 

modified Newton method [64, pp. 114] is repeated over here for completeness. 

As the modified Newton method is efficient when the initial point is near the actual 

minimum, we select two points that are separated apart by 0.5, e.g., e ^ = —0.25 and 

0.25, and evaluate the cost function at these two points respectively and choose the 

point with a smaller cost value as the initial. After setting the initial, the Newton 

iteration is repeated. Let 0 < a < 1 be a given constant. In our simulation, we set 

a = 0.5. At the ith iteration, i = 0,1, 2 , . . . , compute J"(e{i)). If J"(e ( i )) > 0, proceed 

as in case I; otherwise, proceed as in case III. 

Case I: Compute £<i+1) = e « - J " ^ ) " 1 J ' ( e« ) . If £(
i+1> g [e« - 0.5, e « + 0.5) 

and/or J ( e ( m ) ) > J{e^)) — \aJ'{e^)2J"{e^)~1, then proceed as in case II; otherwise, 

check the stopping criterion. 

Case II: Define e ( i+1)(m) = £(i) — J'(£ ( i ))2~m . Find the smallest integer m(i) from 

m = 0 ,1 , ' . . . such that e{i+l\m) G [e« - 0.5, £(i) + 0.5) and J(e(i+1>(m)) - J(eW) < 

—2~mQfJ'(e(i))2. Set e ( i+1) = £( l+1)(m(i)) and check the stopping criterion. 

Case III: Set 6® == - 1 if J'(eW) > o, and <J« = +1 if J ' ( e« ) < 0. Define 

£(«+!)(m) = e(0 - 2 - mJ ' (eW) + £ « 2 - m / 2 . Find m(i), the smallest integer from m = 

0 , 1 , . . . , such that e(i+1)(m) G [e® - 0.5, £<*> 4- 0.5) and J{e^i+1\m)) - J ( e « ) < 

a [ -2~ m J ' (£ ( i ) ) 2 + 2 - m _ 1 J"(e ( i ))]. Set e<i+1> = e(<+1)(m(i)) and check the stopping 

criterion. 

We use a relative-change stopping criterion, that is if |e(*+1) — eW| < 0.001 is 

satisfied, then the iteration process is terminated and the fractional part of e(l+1) is 

accepted as a FFO estimation; otherwise, continue to the next iteration. 
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6.5 Constrained CRLB Derivation 

In our underlying estimation problem, the observation vectors are r(n — 1) and r(n) . 

By denning x(n — 1) =ejeej27re "^ Hs(n — 1), the observation vectors can be repre­

sented as 

r (n - 1) = C(e)FHx{n - 1) + v(n - 1), 

and 

r ( n ) = e i 2 4 c ( £ ) F H D ( n ) x ( n - 1) + v(n), 

where x(n — 1), d(n), and F are matrices obtained by removing those rows with the 

indices in the set <p from x(n — 1), d(n), and F, respectively, and D(n) =diag(d(n)). 

The unknown deterministic parameters are e, x(n — 1) and d(n). As each element 

of d(n) takes discrete value in a M-PSK constellation, the regular CRLB, which can 

only be applied to the estimation problem with continuous unknown parameters, does 

not make sense. So, we use the constrained CRLB formulation presented in [65]. The 

constrained CRLB with a FA constraint can be obtained by treating the symbols as 

if they were known prior [66]. Therefore, in the next, we derive the CRLB of e, by 

assuming that d(n) is known already. 

Let us define the observation vector as r = [r(n — l ) r r (n ) T ] T and the vector of 

unknown deterministic parameters as O — [ £ , x r , x r ] T , where x and x denote the 

real and imaginary part of x(n — 1), respectively. Then, the likelihood function of r 

conditioned on 0 is given by 

/ ( r l 0 ) = 7 I 3 W e x p 
(7TCT2)2 

~ ( | | r ( n - l ) - C ( e ) t f * * ( n - l ) 

|r(n) - ej2^C(£)FHI){n) x(n - 1)||2) 
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Then the Fisher information matrix (FIM) can be obtained as 

FIM = E 
a i n / ( r | 0 ) 

dO 
d m / ( r | 0 ) 

dO 

cri 

AtX* 
N 2 " 

f lm{b*} 

fRe{b*} 

2n 
N 

lm{bH} f Re{bH} 

21M ®MXM 

OMXM 2Ijvf 

where 

a = | |E! F H x(n - 1)||2 + ||E2 F
HB(n) X(n - 1)||2 , 

b = FEaF H x(n - 1) + D ( n ) H F ^ 2 F H D ( n ) x x(n - 1), 

Ei =diag([0 ,1 , . . . , N — l ] r ) , and E 2 = Q I J V + E I . By using the block matrix inversion 

lemma, we have 

CRLB(e) = (FIM"1)!,! 
N2a2 1 " - ^ n H R e ( b " b » ~ 1 -

6.6 Simulation Results 

We consider a DOFDM system with N = 64 and LCp = 16. There are P = 12 VSCs. 

One VSC is on the direct current (DC) subcarrier. The others are located at the 

two edges of the spectrum with each side having 6 and 5 VSCs, respectively. The 

multipath fading channel has an exponential power delay profile with L = 8, i.e., 

E{\hi(n)\2} n xp(- i ) 
exp(—I), I = 0,1,..., 7. The FFO is estimated by using two 

consecutive DOFDM symbols during which the fading channel is keeping constant. 

The MSE and the CRLB are obtained by averaging over 10, 000 runs of simulation. 

The SNR is defined as Esja\ where Es is the symbol energy on each information 

bearing subcarrier. 

Unless stated otherwise, the CFO is uniformly distributed in the range [—5,5]. 

Only the fractional part of the CFO is estimated by using our proposed methods. 



Due to the periodicity of the cost functions for FFO estimation, we use the modified 

MSE as a performance measurement, in which the modified squared error is defined 

as SEmodified = m m [ ( £ / - £f)2, (£f - ^/)2] , where ef is the complement of ej given by 

e / 

6f — 1, if £/ > 0 

ef, if £f = 0 

6 / + 1 , if £/ < 0 

The reason for not using regular MSE is that when CFO is in the neighborhood 

of m + 0.5, with integer m, the regular MSE may not be able to provide a correct 

measurement on the estimation performance. For example, let us assume that in one 

realization, the CFO is 0.48. The FFO estimation could be —0.49 because of noise. 

This is an acceptable FFO estimation as after the FFO compensation by using this 

estimation, not much ICI is left at the DFT outputs. However, the regular squared 

error is given by (0.97) , which indicates that it is a rather poor estimation on the 

contrary. 

For the CM based scheme (6.7) and CM based subspace scheme [30] that are used 

for comparison, the grid search method is used in minimizing their cost functions. 

In the range [—0.5,0.5), 1,000 equally spaced FFO candidates are used to achieve a 

precision of 10 - 3 

In Fig. 6.1, we compare the modified MSE performance of the FA based scheme 

with the CM based scheme (6.7) for 2-PSK, 4-PSK and 8-PSK, respectively. We 

observe that the FA based scheme performs better than the CM based scheme at 

high SNRs. This is more prominent for 4-PSK and 8-PSK, in which the SNR gain is 

about 4dB at high SNR. 

We also examine the efficiency of the Newton method for the FA based scheme. In 

Table 6.1, we show the required number of iterations and the number of cost function 

evaluations at several SNRs. It shows that the complexity decreases as the SNR 

increases. This is because the cost function is better defined at high SNR, at which 

the modified Newton method can converge at around 3 or 4 iterations on average. 
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15 20 
SNR (dB) 

Figure 6.1: Comparison of the modified MSE of the FA based FFO estimator and the 
CM based FFO estimator for a system with VSCs and e €[-5,5]. 

Table 6.1: Efficiency of the Newton method for the FA based FFO estimator over a 
system with VSCs and e €[-5,5]. 

complexity 

SNR 

2-PSK 
4-PSK 
8-PSK 

# of iterations 

lOdB 

3.7 
6.8 
8.8 

25dB 

3.0 
3.1 
4.0 

# of cost func. 
evaluations 

lOdB 

5.9 
8.8 
10.8 

25dB 

5.5 
5.1 
6.0 
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Figure 6.2: Comparison of the modified MSE of the FA based FFO estimator, the 
CM based FFO estimator and the CM based subspace FFO estimator for a 4-PSK 
DOFDM systems without VSCs and e e[-5,5]. 

In Fig. 6.2, we compare the modified MSE of the FA based scheme with the CM 

based scheme and the CM based subspace scheme[30] for a 4-PSK DOFDM system 

without VSCs. The CM based subspace scheme requires the knowledge of the channel 

length, which is usually unknown. So, the channel length is assumed to be equal to 

the length of CP in the estimation process. In [30], the CM based subspace scheme 

is shown to be superior to several other blind schemes, i.e., VSC method [24], CM 

method [29], and VSC+CM method [29]. In this figure, we show that the FA based 

scheme performs a little better than the CM based subspace scheme at high SNRs. 

However, at low SNRs, it performs a little worse than the CM based subspace scheme. 

This is because the cost function of the FA based scheme is in the form of comparing 

two noisy signals. We might say that there is twice as much noise associated with 

the FA based scheme compared with the CM based subspace scheme. 

In Table 6.2, we consider the same system setup as that of Fig. 6.2 and compare 
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Table 6.2: Comparison of computational complexity of the FA based FFO estimator, 
CM based FFO estimator, and the CM based subspace FFO estimator for a system 
without VSCs. 

Schemes 
FA based scheme 
CM based scheme 
CM based subsapce scheme 

lOdB 25dB 
1.05s 0.58s 

0.21s 
0.27s 

the computational complexity of the three schemes. The complexity is measured by 

the average time in seconds used for each estimation process performed by computer 

simulation with Matlab. The proposed scheme uses the Newton method in minimizing 

its cost function. Its complexity decreases with SNR as shown in Table 6.2. The CM 

based scheme and the CM based subspace scheme use grid search in minimizing their 

cost functions. So, their complexity is almost the same at all SNRs. We also observe 

that, although the Newton method is very efficient, the computational burden of 

the proposed scheme is still higher than that of the other two schemes due to the 

complexity of its cost function. 

In Fig. 6.3, we examine the regular MSE of the FA based scheme by setting 

e — 4.32, and compare it with the constrained CRLB. The modulation scheme is 

4-PSK. To show the robustness of the modified Newton method, in each run of the 

simulation, we randomly select two points that are separated apart by 0.5 in the range 

[—0.5,0.5) as the candidates for the initial estimate. As expected, the constrained 

CRLB is much better than the performance of the FA based scheme as it is actually 

derived by assuming that the information symbols are known. The performance of 

the FA based scheme is also compared for systems with or without VSCs. It shows 

that the presence of the VSCs only degrades the performance slightly. 

In Fig. 6.4, we examine regular MSE performance of the FA based scheme and 

the CM based scheme for a 4-PSK DOFDM system in a time variant channel with 

e — 4.32. It is assumed that the fading channel keeps constant within each OFDM 

symbol but changes slowly from one OFDM symbol to another according to the Jakes' 
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Figure 6.3: Regular MSE performance of the FA based FFO estimator for a 4-PSK 
DOFDM system with or without VSCs, and e = 4.32. 

fading model [67]. The underlying 64-carrier OFDM system operates at a central 

carrier frequency of 5GHz with a 1.25MHz total bandwidth. The corresponding time 

duration of one OFDM symbol including CP is T = 64/xs. The normalized Doppler 

frequency fdT is set to 0.003, 0.009, 0.015 and 0.03, which correspond to mobile 

speeds of 10, 30, 50, and lOOkm/h, respectively. Comparing the two plots in Fig. 

6.4, we observe that the FA based scheme is more sensitive to channel variation than 

the CM based scheme. The performance of the FA based scheme degrades a little at 

small Doppler frequencies but shows an error floor at high Doppler frequencies. We 

remark here that the CM based subspace scheme is insensitive to channel variations 

since it requires only one OFDM symbol for FFO estimation. 
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- CM based scheme, fdT=0.003 

- CM based scheme, f.T=0.009 
a 

- CM based scheme, t T=0.015 
a 

- CM based scheme, (dT=0.03 
- CM based scheme, ideal case 

10 20 30 
SNR (dB) 

Figure 6.4: Regular MSE performance of (a) the FA based FFO estimator and (b) 
CM based FFO estimator in a time variant channel for a 4-PSK DOFDM system 
having VSCs and £ = 4.32. 

6.7 Conclusions 

In this chapter, we propose a FA based FFO estimator for DOFDM systems. The 

proposed scheme relies on two consecutive OFDM symbols and can be applied to sys­

tems with or without VSCs. The modified Newton method is presented in minimizing 

the cost function and is shown to be very efficient at high SNRs. The constrained 

CRLB is also derived. The proposed FA based scheme has a higher computational 

complexity than that of the CM based scheme and the CM based subspace scheme 

but it can achieve a better performance at high SNRs. Compared with the CM based 

subspace scheme, it also provides a wider application to systems with VSCs. However, 

it is sensitive to channel variations. 
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6.A Proof of the Periodicity 

Prom (6.2), we notice that y(n, e + m) can be obtained by circularly shifting y(n,e) 

upward by m elements. Therefore, we have yk{n,i + m) — y((k+m))N{ni£)• So, we 

have 

N-l N-l 

fc1=Ofc2=fci+l 

N-l N-l 

fcj=0fe2=fel+l 

where fcj = ((fci + ra))jv and k'2 — ((fe + m))jv- Then, we have 

JV-1 JV-1 m-l m - 1 

J(e + m) = ] T ^ T ^f1,^(e.Q!fc'1,v2(e)) + 5 3 5 3 ^ m O ^ i , ^ ) ) 
k'^m k'2=k[+l fcj=0fc2=fcj+l 

m - l JV-1 

+ 5 3 5 3 Jfc2.fc'l (^ dfci.fc'i (^))" (6-8) 
fcj=0 fc2=m 

Prom (6.4), we also have that 

• ^ . k i f cak^Ce) ) = \[w1(n,e)][yk'a(n,£)]* - ^ / ^ ( ^ ^ ( n - l,e)[t/^(n - l,e)]*|2. 

(6.9) 

Furthermore, it can be easily shown that a*k, k,(e) = a ^ ^ e ) . Therefore, we have 

from (6.9) that 

Jk'^k'^^k^k'^)) = ^^(^afc'j .fc^e))-

Finally, from (6.8), we arrive at 

JV-1 N-l 

k'^0 k2=k[+l 
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6.B Gradient and Hessian 

Let us define 

and 

A(e,n) = [FC{£)Hr(n)][FC(i)Hr(n)}H, 

A ( e » = -^ImilFEMSfrinWCiefrinr} 

A ( s » = -^(Re{[FE?C(£~)^r(n)][FC(£~)^r(n)]^} 

- [ F E x C ^ ^ r ^ l t F E j C C e ) ^ ^ ) ] ^ ) . 

For the proposed FA based cost function, the gradient and Hessian of Jklik2(i, &kuk2(^)) 

at i = e:W, are given by 

de Jkltk2(^'aki,k2(^)) 
Ew 

= 2Re{akuk2a*kuk2 + KMK.M ~ ^M^ )a^Mb*kiM ~ &tuk2(^
W)afc1,*26fci1fc2}> r(0^ 

and 

d2 

-p^JkiM {£•> afci,fe2 (£)) 
r=e« 

= 2Re{afcl]fc2afc1>fc2 + akuk2
akuk2 + ^M^UM + huk2b*klM - 6ikuk2{e{l))akxMb*klM 

- ^ M ^ ^ M K M - ^kk^^MKM - &fc1,fc2(
e(i))afci,fca&fc1,ft2}» 

where a * ^ , Ofci,fc2, Ofci,fc2, &fci,fc2, &fci,fc2> &fci,fc2 are elements on the (fci)th row and 

(fc2)th column of matrices A(ew ,n), A(ew ,n) , A(ew ,n), A(e( i ),n — 1), A(e(i),n—1), 

A(eW,n — 1), respectively. 
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Chapter 7 

A CFO Estimation Scheme Based 

on a Scalar Extended Kalman 

Filter for Uplink O F D M Systems 

7.1 Introduction 

CFO estimation for the uplink channel of OFDM systems is a much more challenging 

problem than that of the downlink channel. One factor that affects what estimation 

approach to use in this case is the carrier assignment scheme (CAS) employed. There 

are three main CASs, including block, interleaved and arbitrary [47]. The arbitrary 

CAS has more flexibility and advantages over the others, but its CFO estimation is 

much more challenging. 

In [40] and [49], the authors propose CFO estimation schemes for the block and 

interleaved CASs, respectively. For arbitrary CAS, joint CFO and channel estimation 

algorithms based on one training symbol have been proposed in [46], [47], [68] and [69]. 

A common characteristic among these schemes is that they are iterative algorithms. In 

[46], the space-alternating generalized expectation-maximization (SAGE) algorithm 

is proposed. In [47], the alternating-projection frequency estimation (APFE) is pro­

posed. It has faster convergence speed than SAGE and can achieve the CRLB. In 
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spite of its good performance, the APPE algorithm has high complexity because it 

still requires to perform grid search in maximizing the several one-dimensional ob­

jective functions. A modified SAGE (MSAGE) is proposed in [68]. It is based on 

using a cyclically equal-spaced, equal-energy, interleaved pilot preamble. A frequency-

domain window is used in addition to the time-domain multiple-access interference 

(MAI) cancellation so that the interference is efficiently suppressed which leads to a 

faster convergence speed than SAGE. In [69], a line search based estimator is pro­

posed. This scheme stands out among all the others as its computational complexity 

is dramatically reduced while it maintains a good estimation performance. 

The algorithms in [46], [47], [68] and [69] approach the problem through an iter­

ative method. In [48], a sequential method is proposed. An extended Kalman filter 

(EKF)-based CFO estimation is proposed for the uplink channel as a low complex­

ity alternative to the multidimensional optimization problem. It works efficiently 

even with large values of CFO, but it is based on the assumption that the channel 

coefficients of all users are known which is a rather impractical assumption. This 

weakness motivates us to design a modified recursive method that can estimate CFO 

and channel jointly. 

In this chapter, we propose a CFO estimation scheme for the uplink OFDM sys­

tems with arbitrary CAS [70]. The proposed scheme is based on using a scalar EKF 

algorithm. One important feature of the proposed scheme is that it does not require 

any prior knowledge of the channel coefficients unlike the scheme in [48]. The pro­

posed scheme uses CFO and channel estimates obtained from a previous recursion to 

separate each user's measurement. Then the channel coefficients are replaced with a 

non-linear function of CFO. The observation noise power is analyzed and its approx­

imation is used in the EKF algorithm. We compare the performance of the proposed 

scheme to the CRLB. We observe that the proposed scheme can achieve the CRLB 

for small number of users whereas its performance degrades with the increased num­

ber of users. In terms of the computational complexity, our proposed scheme is much 

more complex than MSAGE [68] and line-search scheme [69], but is a little lower than 
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APFE and close to SAGE at high SNR. 

We also note here that the idea behind the proposed scheme is not suitable for 

OFDM systems employing multiple transmit antennas. As the performance of the 

proposed scheme degrades with the increased number of user, we would expect that 

it is prone to MIMO systems due to the increased number of unknown channel coef­

ficients. 

The rest of this chapter is organized as follows. In Section 7.2, the system model 

for the uplink channel is introduced. The proposed CFO estimation is presented in 

Section 7.3. Simulation results are shown in Section 7.4. Finally, Section 7.5 concludes 

this chapter. 

7.2 System Model 

We consider an uplink OFDM system with N subcarriers and K users. The subcar-

riers are assigned to users exclusively. Each user is assigned N/K subcarriers. Let 

sfc = [sfc,o, sfc,i> • • • > sk,N-i]T denote the symbols transmitted in the frequency-domain 

by the kth user in the training symbol duration. The element Sk,i is non-zero and 

takes its value from a constellation symbol if the ith subcarrier is assigned to user k, 

and is zero otherwise. Then the time-domain samples of the kth user's output signal 

denoted by bfc = [bk$, bk,i,... , &fc,jv-i]T can be represented as bfc = Wsfc, where W 

is the normalized IDFT matrix with the element on its rath row and nth column 

defined as -4=ej2,rB^\ 

After appended with the CP, the kth user's training signal is then propagated 

through the multipath Rayleigh fading channel. Let us denote the number of the 

sample-spaced paths between the kth user and the base station as Ljt, and denote the 

fading coefficients by hk,o, ftfc,i> • • • > fyfc,(Lfc-i)- Assume the largest value of Lk among 

all the users as Lmax. Due to different distance to the base station, each user's signal 

also experiences an individual timing offset. The timing offset is normalized with 

respect to the sampling interval with the fractional part being absorbed into the 
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channel impulse response [47]. Let us denote the kth user's timing offset by uk. It is 

modeled as a discrete random variable uniformly distributed in the range of [0, umax], 

where umax is determined by the cell radius [47]. Therefore, in order to avoid the ISI, 

the length of CP, denoted by L, is required to be equal to or larger than itmax + Lmax . 

Then the multipath fading channel between the kih user and the base station can 

be effectively modeled as having L paths with the fading coefficients denoted by 

hk = [Ouk,hk,o,hk,i,... ,hk,(Lk-i),0L-uk-Lk) • 

At the receiver, the CP is first removed. In the training symbol duration, up to the 

nth sampling point, the vector of time-domain samples y(n) = [y(0), y ( l ) , . . . , y{n)] 

can be represented as 

y(") = E jL i XfcM + v(n), with n = 0 , 1 , . . . , N - 1, (7.1) 

where Xfc(n) is the user fc's signal component. It is given by 

xfc(n) = C£fc(n)Dfc(n)hfc, (7.2) 

where ek denotes the feth user's CFO normalized with respect to the subcarrier in­

terval and has a uniform distribution in the range of [—r, r ] . The diagonal matrix 

CEk(n) =diag([l,e j 27 rA',.. . ,e j27r N ]) represents the phase shift introduced by the 

CFO. The matrix Dfc(n) consists of the first (n + 1) rows of Dfc, where Dfc is a N x L 

matrix with its element on the mth row and nth column defined as &fc,((m-n))w- The 

channel noise vector is defined as v(n) = [v(0),?/(l),... ,v(n)]T, where v(n), n = 0 ,1 , 

. . . , N — 1, are noise samples modeled as independent complex Gaussian random 

variables with zero mean and variance cr2. 

Therefore, based on (7.2), (7.1) can be represented as 

y(n) = r (n )D(n)e + v(n), (7.3) 

where T(n) = [CEl(n), C £ 2 (n) , . . . , C£K(n)] and ^ = [hf , h ^ , . . . , h£ ] . The matrix 
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D(n) is a K x K block diagonal matrix with Dfc(n), k — 1,2,... , X on its diagonal. 

7.3 Proposed CFO Estimation 

7.3.1 Development of the Proposed Estimator 

We observe from (7.1) that the received signal vector y(n) is a superposition of the 

noisy signal components from all users. The idea behind our proposed scheme is, at 

each recursion, each user's signal is first separated, and then represented as a function 

of its CFO only such that scalar EKFs can be applied to the different users. In every 

recursion, CFO estimates obtained from the last recursion are used to separate the 

received signals for each user. Although the estimated CFOs used for signal separation 

are inaccurate at the beginning, they get updated and refined recursion by recursion. 

Since the knowledge of channel coefficients is required to reconstruct the user 

signal components, let us first get their estimations. From (7.3), with the observation 

y{n), where n > KL, the maximum likelihood channel estimation is [47] 

l(n) = { [ I » D ( n ) f r W D ( n ) } - 1 [ I » D ( n ) ] H y ( n ) , (7.4) 

when r (n)D(n) has a full column rank, where | ( n ) = [hf ( n ^ h ^ n ) , . . . , h £ ( n ) ] r , 

with hfc(n) representing the estimated channel coefficients of the kth user. Let us 

assume that we have obtained the CFO estimations £k(n — 1) for k — 1,2,. . . ,K 

from the previous recursion. Since the true CFOs are unknown, we replace eu on the 

right hand side of (7.4) with £k(n — 1), and obtain the channel estimation at the nth 

recursion as 

Un) = {[^(n)D(n)] i /M/(n)D(n)}"1 [*(n)D(n)]"y(n) , (7.5) 

where *(n) = [Q l ( n _i) (n) , Q a ( n _ i ) (n ) , . . . , C^ („_1 )(n)] . 

Then, with the estimated CFOs and the channel coefficients, i.e., £k{n — 1), hfc(n), 
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we can approximately reconstruct each user's signal component Xfc(n) by 

Xfc(ra) = Ce-fc(„_i)(n)Dfc(n)hfc(n). (7.6) 

Finally, we can use MAI cancellation to decouple the received signal for each user 

y * ( i ) b y 

?*(«)= y(n)-££Wfc*(n). (7.7) 

In order to apply the EKF algorithm for CFO estimation, we need next to ex­

press the measurement yk{n) as a function of the state ek. Let us define the channel 

estimation error as Ahfc(n) = hk(n) — h^. Then (7.6) can be represented as 

xfc(n) = Qfe(Tl_1)(n)Dfc(n)hfe + Q),(n_i)(n)Dfc(n)Ahfc(n) 

= xfc(n) + [Ci^n-^n) - C£,(n)]Dfc(n)hfc + C^(n_1)(n)DA:(n)Ahfc(n). 

(7.8) 

Plugging (7.1) and (7.8) into the right hand side of (7.7), we obtain 

K 
9k(n) = - J2 Q< ( n_i)(n)D i(n)Ah i(n) + Cefc(n)Dfc(n)hfc + wfc(n), 

(7.9) 

where 

w f c ( n ) ^ - £ [ Q a n - D W - C ^ H J D ^ n J h i + vCn). (7.10) 

We observe from (7.9) that the fcth user's measurement fk{n) depends not only on ek 

but also on <fc(n) 4 [ -Ahf(n) , . . . , - A h ^ n ) , h£, - A h [ + 1 ( n ) , . . . , - A h J ( n ) f . 
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By multiplying C"k(n) on both sides of (7.9), we obtain 

C f » y f c ( n ) = - E C ^ ^ - D - ^ W D i ^ A h i C n J + DfeWhfc + C ^ H w ^ n ) 

= tfc(n)D(n)Cfc(n) + Cffc(n)wfc(n), (7.11) 

where ffc(ra) = [ C ^ ^ - : ) . ^ ^ ) , . . . , C [4_ l (n_1)_£fc](n) ) I(n + i) , C[gfc+1(n_i)_efc](n),... , 

C[eK(n-i)-£fc](n)]' a n d Im is an m x m identity matrix. By defining 

Tfe(n) = [C[e-1(„_i)_e-),(n_i)](n),... , C[efc_l(Tl_1)_e-fc(n_1)](n),I(n+i), 

C[e-fc+1(„_i)_e-fc(„_i)](n),... , C[e-K(n_1)_ffc(ri_i)](n)], 

(7.11) can be represented as 

Cfk(n)yk(n) = Tfc(n)D(n)Cfc(n) + ufc(n), (7.12) 

where 

ufc(n) = [f fc(n) - Tfc(n)]D(n)Cfc(n) + C£(n)w f c(n). (7.13) 

Therefore, from (7.12), £fc(n) c a n be represented by 

Cfc(n) = {[T f c (n)D(n)]*T*(n)D(n)} _ 1 [T fc(n)D(n)]H [ C f » y f c ( n ) - ufc(n)]. 

(7.14) 

In addition, from (7.12), the measurement jjkip) can be represented as 

yk(n) = eJ '2w^7fe (n)Cfc(n) + e ^ ^ n M . ( n ) , (7.15) 

where 7j[(n) and Ufc,„(n) denote the last row of Tfc(n)D(n) and Ufc(n), respectively. 

By replacing Cfc(n) o n the right hand side of (7.15) with the expression in (7.14), we 
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have that 

yk(n) = ^ -^g^(n )Cf f c (n )y f c (n ) + wk{n), (7.16) 

where g[(n) is a row vector defined as gf (n) = 7j[(n){[Yfe(n)D(n)] T f c(ra)D(n)} -1 

x [Tfc(n)D(n)]H, and 

wfc(n) = - e ^ ^ ( n ) u f c ( n ) + e ^ ^ u f c , n ( n ) . (7.17) 

Prom (7.16), we notice that the measurement yk{n) has been represented as a 

function of £/- only. The observation noise term is given by Wk(n). To apply the EKF 

algorithm, the variance of vok(n) is required to be known. It significantly affects the 

performance of the EKF as the Kalman gain is directly related to the observation 

noise power and indicates the confidence of the current innovation. The authors in 

[48] take an adaptive approach to estimate the observation noise power based on the 

weighted average of the sample noise powers. Here, we take another approach to 

approximate the observation noise power. 

From (7.17), we observe that 

wk{n) = -e^^gl(n)uk(n), (7.18) 

where gj[(n) = gjT(n) ~ [0> • • • > 0,1]. From (7.13), we have the approximation that 

u fc(n)wCf fc(n)w fc(n). (7.19) 

This is because the first term in (7.13) consists of the multiplications of the elements 

from Ahf(n) and the diagonal elements of [C£fc(n) — C£-fc(Tl_1)(n)]/f. The multipli­

cation could be much smaller than the remaining term. Therefore, by plugging the 
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approximation in (7.19) and (7.10) into (7.18), we have 

^K 
wk{n) « e^^gl{n)Cl{n)Y,.=l.JGeM-^)-^Xn)] 

xDiCnJh* - ^ ^ ( n ) C j ( r . ) v ( n ) . (7.20) 

Prom (7.20), we observe that the observation noise consists of two terms. The 

first term comes from the multiuser interference and the second term comes from the 

channel noise. Let w\{n) denote the first term. It can be represented as 

We notice that 2im[ii(n — 1) — e»]//V is small when n is small. Furthermore, when 

n is large, £i(n — 1) would be close to £j, which also makes 2im[ii(n — 1) — Ej\/N 

a very small value. Therefore, by using the approximation that e^^M™-^-^]^ « 

1 + j2im[ii(n — 1) — e^/N, w\{n) can be approximated by 

WIW « E l , ¥ f c ^ ( n - X) - ^]e j 2^gr(n)Cf f c(n)C£ i(n)B(n)D i(n)h i , 

where B(n) 4 i^diag([0,1,... ,n]). 

Let us treat h; and e, as unknown constants, and ii(n — 1) as a realization of a 

random variable denoted by e;(n — 1) with mean equivalent to gj and variance denoted 

by E {[ii(n — 1) — g*]2}. Then the variance of w\{n) can be approximated as 

var(^(n)) « • £ * £ { [ « ( * - 1) -e<]2} gMCf>)C £ i (n )B(n)D t (n )h ; ^i=l,i=^k 

Therefore, the observation noise power is approximated by 

(7.21) 

var(rofe(n)) « vax{w\{n)) + g£(n)g£(n)a*. (7.22) 

In calculating var(ro£(n)), the true values of hi and gj are required. We could 
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replace them with hi(n) and £i(n — 1), respectively, to obtain an approximated value 

of var(ro^(n)). In addition, the variance of the CFO estimation at the previous 

recursion, i.e., E {[e*(n — 1) — Si}2} is also required in calculating var(ro^(n)). It can 

be obtained as a by-product from the evolution of the EKF. In spite of its simplicity, 

the variance obtained in this way may not give the true variance. This is because 

the CFO is uniformly distributed and not Gaussian, which is against the Gaussian 

model required for the application of the Kalman filter. Although the variance given 

by the EKF does not represent the true variance, it does maintain the trend that 

the true variance is following, that is the true variance decreases with the recursions. 

Therefore, we could assume that the variance given by the EKF is a scaled version of 

the true variance by a constant. 

We notice from (7.22) that the observation noise power is the summation of two 

components. The first component represents the multiuser interference power and 

depends on the variance of the CFO estimation. The second component depends on 

a„. We know that the evolution of the EKF does not depend on the absolute value of 

the observation noise power. Actually, it relies much more on the relative fluctuation 

of the observation noise power from one recursion to the other. By using the variance 

given by the EKF in calculating var(roj(n)), we actually scale the first component 

by a constant, so the second component should also be scaled by the same constant. 

However, this constant is unknown. In addition, the knowledge of a\ may also be 

unavailable. Therefore, we resort to simulations to try to find the proper value for 

a\ that should be used in evaluating (7.22). We will show via simulations that by 

setting al in (7.22) to 5 x 1CT4 and the initial variance to 1000, the proposed scheme 

gives a satisfactory CFO estimation performance in the range of MSE of interest, i.e., 

from 10~3 to 10~5. 
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7.3.2 Outline of the Estimation Algorithm 

We can set the state equation and the measurement equation for the fcth user as 

£k(n) = ek{n - 1) 

and 

yk(n) « a(ek{n)) + wk(n), 

where a(ek(n)) — ej N g^(n)Cf,Jn)yk(n), and then apply the EKF algorithm 

[71] for each user. Let us summarize the CFO estimation scheme as follows. 

Initial condition: ik{n0 — 1) = 0, Pk(no — 1) = 1000, with n0 > KL. 

Computation: n — no , . . . ,N — I 

1. Estimate the channel coefficients £(n) via (7.5). 

2. Reconstruct each user's signal component itk(n) for k = 1,2,. . . , K, via (7.6). 

3. Separate each user's received signal yfc(n) for k = 1,2,.. . , K, via (7.7). 

4. Calculate the observation noise power yav(xuk(n)) for k — 1, 2 , . . . , if, via (7.22) 

and (7.21). 

5. Run the fcth user's EKF one step forward as follows, for k — 1,2,. . . , K. 

(a) Kalman Gain: 

, = Pfc(n-lK(n) 

fel ' | A ( n ) p P f e ( n - l ) + v a r ( r o f c ( n ) ) ' 

where 

<9a(efc(n)) 4 t (n) dek{n) 

. 2Trnii,(n— 1) ,—, rr 

= e J — ^ — gr(n)B(n)Cf f c (_ 1 }(n)y,(n) , 
e f c(n)=e f e(n-l) 

and B(n) = ^d iag ( [n , n - 1 , . . . , 0]). 
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(b) Correction: ik(n) = g{ik{n - 1) + Gk{n)[yk{n) - a(ik{n - 1))]}, where 

9(x) = < 

T, if X > T 

x, if — r < x < T • (7.23) 

—r, if x < — T 

(c) Variance: Pk(n) = [1 — Gk(n)Ak{n)] Pk(n — 1). 

7.3.3 Computational Complexity 

For the proposed scheme, the number of complex multiplications performed at the 

recursion when up to the nth sample is received can be approximated by C(n, K, L) = 

{K2L2 + KL2 + 3KL + 2L + AK + 2)K{n + 1) + K2L2(K + 1)(KL + 1) + 2K2 + 9K. 

It shows that the complexity at each recursion increases linearly with n. If no = KL, 

then the total number of complex multiplications of the proposed scheme is given by 

{K2L2 + KL2 + 3KL + 2L+4K + 2)K{N + KL + l){N-KL)/2 + [K2L2{K + l){KL + 

1) + 2K2 + 9K]{N - KL). 

For APFE, the number of complex multiplications at each iteration is given by 

K[2N{K-l)2L2 + (K-lfLs+N2{K-l)L+Ns{2N2L+2NL2+L3+N2+N)+NL], 

whereas it is K[2NL + 2L2N + L3 + N2L + NS{N + N2) + N] for SAGE, where Ns 

is the number of CFO candidates in the searching range of [—r, r ] . We will compare 

their computational complexity by using the simulation results. 

7.4 Simulation Results 

In this section, we examine the performance of the proposed scheme. The OFDM 

system has N = 128 subcarriers with length of CP L = 16. In each run of the 

simulation, every user is assigned N/K pilot subcarriers randomly and the pilot 

symbols are generated randomly from a 4—PSK constellation. The multipath fad­

ing channel has Lk = 8 paths and an exponential power delay profile for all users, 
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Figure 7.1: Performance comparison for system with N = 128, L = 16, K = 2. 

i.e., Ejl^fc^l2} = Y
 l .exp(-l), i = 0,1,...,7. The timing offsets are integers 

2_.;=o exP(. v 

uniformly distributed in the range of [0,8]. The CFO is assumed to be uniformly 

distributed in the range of [-0.5, 0.5]. The SNR is defined as s%sk/(Nal). 

The CFO estimation performance is measured by the MSE. The MSE of the pro­

posed scheme and the CRLB [47] are obtained by averaging 10,000 runs of simulation 

over all active users in the system. We compare the proposed scheme with APFE [47] 

and SAGE [46]. For these two schemes, in the search range of [—0.5, 0.5], 201 equally 

spaced CFO candidates are used to achieve a precision of 5 x 10~3. For SAGE, its 

MSE is also obtained by averaging over 10,000 runs of simulation whereas only 5,000 

runs are performed for APFE due to its computational complexity. 

In Fig. 7.1, we consider the system with 2 users. We observe that the proposed 

E K F performs as well as the CRLB only with a divergence at low SNRs. Furthermore, 

at high SNR, the proposed scheme performs a little better than APFE with 2 itera­

tions and SAGE with 5 iterations. We mention that the performance of APFE and 

SAGE can be further improved at high SNR by using a higher precision in the grid 
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Figure 7.2: Performance comparison for system with N — 128, L — 16, K = 4. 

search process or a few more iterations. However, this is at the cost of increased com­

putational complexity which we will discuss later. We also mention that for SAGE, 

the number of iterations required for convergence increases with SNR, i.e., at low 

SNR, only 2 iterations are required whereas 5 iterations are required for high SNR. 

As we know that the performance of the proposed scheme is somewhat dependent 

on the number of unknowns and the number of recursions. This is attributed to the 

fact that it refines the CFO estimates recursively. Consequently, when the number of 

unknowns is large, the proposed scheme may not be able to converge within a limited 

number of recursions. In Fig. 7.2, we consider a system with a relatively large number 

of unknowns, i.e., 4 users. We observe that the performance of the proposed scheme 

degrades as compared to the CRLB. From low to medium SNR, the proposed scheme 

is worse than APFE and SAGE. At high SNR, it performs a little better than APFE 

with 2 iterations and close to SAGE with 9 iterations. We also mention that SAGE 

can converge within 4 iterations at low SNR whereas 9 iterations are required for high 

SNR. 
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Table 7.1: Complexity comparison in terms of number of multiplications between the 
proposed scheme, APFE and SAGE. 

# of users 
K = 2 
K = 4 

proposed 
3. 560 8 x 107 

2.176 6 x 108 

APFE(iterations) 
4.896 8 x 108(2) 
9.8860 x 108(2) 

SAGE(iterations) 
1. 455 4 x 107(2), 3.638 4 x 107(5) 
5. 8214 x 107(4), 1.309 8 x 108(9) 

We compare the computational complexity of the proposed scheme with APFE 

[47] and SAGE [46] at a certain number of iterations in Table 7.1. The computa­

tional complexity is measured in terms of the number of complex multiplications. 

Comparing the proposed scheme with APFE, we observe that at high SNR, the pro­

posed scheme has a little lower complexity than APFE while achieving a little better 

performance. We also observe that the computational complexity of SAGE is lower 

than the proposed scheme through low to medium SNRs and becomes close to the 

proposed scheme at high SNR. 

7.5 Conclusions 

In this chapter, we have proposed an EKF-based CFO estimation scheme for the 

uplink OFDM systems. The proposed scheme can be applied to the arbitrary CAS. 

The MAI cancellation based on the estimations obtained from a previous recursion 

is used for signal separation. The measurement equation is then represented as a 

function of CFO only by replacing the channel coefficients with a non-linear function 

of CFO. Finally, the observation noise power is approximated, and the scalar EKF 

is applied for each user to estimate its CFO. The proposed scheme can achieve the 

CRLB for small number of users whereas it degrades with increased number of users. 

Its computational complexity is a little lower than that of APFE and is close to SAGE 

at high SNR. 
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Chapter 8 

Joint CFO and Channel 

Estimation for Uplink OFDM 

Systems: An Application of the 

Variable Projection Method 

8.1 Introduction 

The joint CFO and channel estimation problem based on one training symbol for 

the arbitrary CAS, which is also the concentration of this chapter, has been studied 

in [46], [47], [68], [72]. A common characteristic among these schemes is that they 

are iterative algorithms. As the SAGE [46], MS AGE [68] and APFE [47] algorithms 

require to perform grid search in the region where CFOs are known to be in minimiz­

ing or maximizing a number of one-dimensional objective functions, they have high 

computational complexity. 

Recently, in [72], an iterative minimum mean square error (MMSE) method is 

proposed which stands out among all the others. The computational complexity 

is dramatically reduced while it maintains a good estimation performance. In this 

scheme, the objective is to minimize the mean-square distance between the received 

92 



signal and the reconstructed received signal. In each iteration, parameters are up­

dated based on the MMSE criterion. We further notice that in this method, all the 

unknown parameters are treated together as a whole. Due to this characteristic, for 

the rest of this chapter, we refer to the scheme proposed in [72] as the non-separated 

MMSE method. 

Their method motivates us to resort to another objective function that is the least-

squares (LS) criterion. We notice that it results in a separable nonlinear LS (SNLLS) 

problem [73] where the unknown parameters can be separated into two sets, i.e., 

linear parameters corresponding to the channel coefficients, and nonlinear parameters 

corresponding to the CFOs. This motivates us to apply the variable-projection (VP) 

method in [73] which treats nonlinear and linear parameters separately to solve this 

SNLLS problem more efficiently. 

A comprehensive review on the history and the applications of the VP method in 

the recent 30 years can be found in [73]. Textbook [74] also covers this topic. The 

idea behind the VP method is to eliminate the linear parameters from the objective 

function, such that the modified objective function involves only the nonlinear pa­

rameters [73]. This procedure results in a reduced dimensionality of the parameter 

space and a better-conditioned problem, which leads to convergence in a fewer number 

of iterations in comparison with the numerical method in which all the parameters 

are treated together as a whole. On the other hand, this procedure also results in a 

somewhat complicated modified objective function which in turn requires additional 

computations at each iteration. To this end, in [75] and [76], a simplified VP method 

is proposed which makes the computational complexity of the VP method at each 

iteration comparable to that of the non-separated numerical method. Ever since then, 

the VP method has been applied to many fields. 

In this chapter, we propose a joint CFO and channel estimation method for uplink 

OFDM systems [77]. The proposed method consists of two steps. Motivated by the 

efficiency and wide applications of the VP method [76], the VP method is applied for 

CFO estimation in the first step. Following the VP method, the robust MMSE channel 
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estimation method is then applied in the second step. To measure the computational 

complexity of the proposed method, we analyze its required number of multiplications. 

We also examine its convergence speed in terms of CFO estimation as well as mean 

square error (MSE) performance. In our evaluation, we compare the proposed method 

to the non-separated MMSE method proposed in [72] since the latter achieves the best 

performance among existing methods. We show through several numerical examples 

that the proposed scheme is superior to the non-separated MMSE method in terms 

of convergence speed and MSE performance. The computational complexity of the 

proposed scheme is lower than that of the non-separated MMSE method at high 

signal-to-noise ratios (SNRs), and particularly so when the number of users is large. 

We also note here that one can also extend the proposed scheme in a straightforward 

manner to multiple antenna systems with similar favorable results. 

The rest of the chapter is organized as follows. In Section 8.2, we describe the sys­

tem model of the uplink OFDM channel. In Section 8.3, the iterative non-separated 

LS method is reviewed for the convenience of the introduction of the VP method. In 

Section 8.4, we propose a joint CFO and channel estimation method. Its computa­

tional complexity is analyzed in Section 8.5. In Section 8.6, we compare the proposed 

method with the non-separated MMSE method in [72] via computer simulations. 

Finally, conclusions are made in Section 8.7. 

8.2 System Model 

We consider an uplink OFDM system with N subcarriers and K users. The subcarri-

ers are randomly assigned to users exclusively. Each user is assigned N^ subcarriers. 

Let Sfc = [sfc,o>sfc,i>- •• >sk,N-i]T denote the training symbols transmitted in the fre­

quency domain by user A;. The element s^i is non-zero and takes its value from 

a constellation symbol only if the ith subcarrier is assigned to user k, and is zero 

otherwise. After the inverse discrete Fourier transform (IDFT), the N time-domain 

samples of the fcth user's output signal denoted by b^ == [bk,o, bfc.i, • • • , &fc,./v-i]r are 
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then given by bk = F^Wsj., where W is the normalized ID FT matrix with its element 

on the nth row and mth column defined as -jWe^"17- a n d Pk is the kth. user's training 

signal power per pilot subcarrier. The IDFT output is then appended with a cyclic 

prefix (CP) to avoid inter-block-interference (IBI). 

The A;th user's training signal is then propagated through the multipath Rayleigh 

fading channel. Let us denote the number of the sample-spaced propagation paths 

between the kih user and the base station as Lk, and denote the fading coefficients 

by hk,o, hk,i,. • • , hk,(Lk-\)- The fading coefficients hk/s with I = 0 ,1 , . . . ,Lk — 1, are 

modeled as complex Gaussian random variables with zero mean and variance o\kp 

where oflkl = E{\hkti\
2} is the average power of the lih propagation path of user k. 

Then the total average power of the A;th user's channel impulse response is given by 

rr2 - V ^ - 1 a2 
°h,k — 2^,1=1 °h,k,l-

Assume the largest value of Lk among all the users as Lmax. Due to different 

distances to the base station, each user's signal also experiences an individual timing 

offset. The timing offset is normalized with respect to the sampling interval with the 

fractional part being absorbed into the channel impulse response [47]. Let us denote 

the kih user's timing offset by uk. It is modeled as a discrete random variable uni­

formly distributed in the range [0, ttmax]> where umax is determined by the cell radius 

[47]. Therefore, in order to avoid the IBI, the length of CP, denoted by L, is required 

to be equal to or larger than umax + Lmax. In this sequel, the multipath fading channel 

between the kth user and the base station can be effectively modeled as having L paths 

with the fading coefficients denoted by hfc = [0£fc, hkfi, hk,i,... , hk,(Lk-i),Ol-Uk-Lk]
T-

At the receiver, the CP is first removed. In the training symbol duration, the 

vector of the time-domain samples denoted by y = [y(0), j / ( l ) , . . . , y(N — 1)]T can be 

represented as 

y=f> f c +v, (8.1) 
fc=i 
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where xfe is user fc's signal component, which is given by 

xfc 4 C(ek)Bkhk, (8.2) 

where ek denotes the fcth user's CFO normalized with respect to the subcarrier 

interval and has a uniform distribution in the range [—r, r]. The diagonal ma­

trix C{ek) =diag([l, ]) represents the phase shift introduced 

by the CFO. The N x L matrix D^ is a Toeplitz matrix with its element on the 

mth row and nth column defined as bk,{(m-n)modN]- The channel noise samples, 

v =[vo,vi,... ,VN-I], are modeled as independent complex Gaussian random vari­

ables with zero mean and variance a\. 

Based on (8.2), (8.1) can also be represented as 

y = r(e)£ + v, (8.3) 

where £ = [hf ,h£, . . . ,hT
Kf', £=[ £ l > e 2 , . . . ,eK]T and r(e) - [C(£l)BvC(e2)B2, 

...,C(ek)BK}. 

8.3 A Review of the Iterative Non-separated LS 

Method 

In this section, we review the iterative non-separated LS method for joint CFO and 

channel estimation. In this method, LS is used as the optimization criterion and all 

the parameters are treated together as a whole. Let us denote the vector of unknown 

parameters as 0 = [£T, eT]T. Then (7.3) can be represented as 

y = f(0) + v, (8.4) 
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where f (0) = T(e)£. To estimate the unknown parameters, we try to find 0 that can 

minimize the LS cost function 

J(0) = | | y - f ( 0 ) | | 2 . (8.5) 

This nonlinear LS problem can be solved iteratively. By using the first order Taylor 

expansion in the neighborhood of a given point 9^n\ f(0) can be approximated as 

f ( 0 ) ^ f ( 0 ( n ) ) + G ( n ) ( 0 - 0 ( n ) ) , 

where G<n> is the gradient of f(0) evaluated at 0 = 0 ( n ) . The gradient G = gfff(0) 

is given by 

G = [ C ( e 1 ) D 1 , C ( e 2 ) D 2 , . . . , C ( ^ ) D i 0 

A C ^ O D j h i , AC( £ 2 )D 2 h 2 , . . . , KC{£K)T>KYiK), (8.6) 

where A =j27r/A^diag([0,1,... ,N — 1\). Therefore the cost function is approximated 

by 

J ( 0 ) « | | y - f ( 0 ( n ) ) - G ( n ) ( 0 - 0 ( n ) ) | | 2 . (8.7) 

Prom (8.7), we observe that the nonlinear LS problem in (8.5) can now be solved 

iteratively by using a linear LS (LLS) approach at each iteration. Therefore, at the 

(n + l) th iteration, the unknown parameters are updated as 0^"+1) = 9^ + 6^n\ 

where 

6{n) = [ ( G W ) H G ( n ) ] - 1 ( G ^ ) i / ( y - f(©("))). (8.8) 
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8.4 Proposed Method 

In this section, we propose a joint CFO and channel estimation method. The proposed 

method consists of two steps. In the first step, CFOs are estimated by using the VP 

method. We emphasize that the VP method is not new. However, to the authors' 

best knowledge, it has not been applied to the underlying estimation problem before. 

Then, in the second step, the channel coefficients are estimated by using the robust 

MMSE method. 

8.4.1 VP Method for CFO Estimation 

Following the approach in [76], we now present the VP method for CFO estimation 

by adapting the above result of the iterative non-separated LS method to the SNLLS 

problem in (8.5). We notice from (7.3) that the unknown parameters 9 can be sep­

arated into two sets, i.e., £ and e, which consist of linear and nonlinear parameters, 

respectively. As that in [76], let us partition 5 ( n ) as 5H = [{df)T, (S^ff, where 

(5* and d^1' consist of updates on the estimation of £ and e, respectively. The idea 

of the VP method in [76] is that at the (n + l) th iteration, the nonlinear parameters 

are first updated by 

e(n+l) = £{n) + g(n)_ (g g) 

Then, for a fixed e^n+1\ the solution to the LLS problem min||y - r (e ( n + 1 ) )£ | | 2 is 

used to update £, that is 

£(n+i) = l(r{£
{n^))Hr(e{n+1))}^{T{e{n+1))fy. (8.10) 

To obtain an explicit expression for <5̂ n , let us partition G^n^ into two submatrices 

as G<n) = [Gjn) Gin )] , where G^n) and G[n ) consist of the first KL and the last K 

columns of G^n\ respectively. By using the block matrix inversion lemma [74, pp. 
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678], we have from (8.8) that 

S^= [A B - 1 ] ^ G<.n)]"(y - f(6>(n))), 

where B = ( G ^ G ^ - ( G ^ V G ^ K G ^ G ^ ] - 1 (Gf)HG{^. The submatrix 

A is not of interest as we have (G^ ) ) i / (y - f (6 ' ( n ) ) ) - (r(e{n)))H(y-T(e{n))^n)) = 0, 

where the last equality comes from the way we obtain £n' in the nth iteration, i.e., 

(8.10) with £ ( n + 1 ) and e ( n + 1 ) replaced by £ w and £ (n ) , respectively. Therefore, we 

obtain that 

8™ = {(GW) H Gt n ' - ( G ^ ^ G ^ K G ^ y G ^ - ^ G ^ ^ G ^ + T ? ^ ) ^ } - 1 

x(GW) H (y - f ( f l ( n ») ) , (8.11) 

where rj^ is a positive value employed to stabilize the algorithm, which is known as 

the Levenberg-Marquardt technique [74, pp. 625]. 

Armed with the above discussion, we may now summarize the VP method as 

follows. 

• Initially, set 7/0) to a small value, i.e., T/°) = 0.01 and e ^ = OK . 

• Obtain £(0) by (8.10). 

• At the (n + l) th iteration, with n = 0,1, . . . , 

- Calculate 5^, e^+V and £ ( n + 1 ) using (8.11), (8.9) and (8.10), respectively. 

- If 0 ( n + 1 ) reduces the cost function such that J(6>("+1))1/2 < J{6{n)fl2, then 

set ?/"+1) = rj^/10 and check the stopping criterion. 

- If within the (n + l) th iteration, #(n+1) does not reduce the cost function, 

then ?/") is progressively increased by a factor, i.e., ?/") = 10rj(n\ each time 

with <5in),e("+1> and £ ( n + 1 ) recomputed until J{6{n+1)fl2 < J(6>(n))1/2 is 

achieved. 
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There are several recommended stopping criteria, such as the relative-change and 

relative-offset criterion [74, pp. 640]. For simplicity, we use the relative-change cri­

terion proposed in [72] for this VP method. Therefore, after the (n + l) th iteration, 

if 

J(0("))V2 _ j(0(n+l))l/2 < g (g 1 2 ) 

is satisfied, then we stop the computation; otherwise, continue to the next iteration. 

This stopping criterion indicates how the algorithm is progressing and stops it when 

there is not much improvement. Therefore, 8 is set to a small positive value. 

8.4.2 Robust MMSE Channel Estimation 

The above VP method provides estimation for both CFOs and channel coefficients 

based on the LS criterion, i.e., e ^ and ^n°\ where no denotes the index of the 

last iteration of the VP method. We observed from the simulation results, however, 

that the VP method provides a good CFO estimation performance, but it does not 

provide reliable channel estimation when the number of users is relatively large. This 

is because of the LS criterions, where optimality is not guaranteed. This motivates 

us to use the MMSE channel estimation method, that is 

where R,££ = E{££H}. As the channel power delay profile (PDP) as well as the 

timing offset are usually unknown, we do not have knowledge of R^^. So, we resort 

to the robust MMSE channel estimation method [78]. 

Let us define the received SNR as 

Z-^fc=l ab,kah,k 
P= 2 ' 

where a\k = Z?{|6fci7i|
2} = ^ffi denotes the average power of the time-domain samples 
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of the kth user's training signal. We assume that the estimation of p is available at 

the receiver and is denoted by p. Let us denote the received signal power of user k as 

a\ — o\ka\k. We also assume that afs are roughly equal for all users implying that 

some power control algorithm is used. Then, the robust MMSE channel estimator is 

given by [78] 

£ = [{rie^fTie^+p-'KLAj-^rie^fy, (8.13) 

where A =diag([o£1> <T£2, . . . , a2
K}) <g> IL . 

8.5 Complexity Analysis 

In this section, we analyze the required number of multiplications of the proposed 

method and compare it with that of the non-separated MMSE method in [72]. In what 

follows, several established facts are used. To obtain an inverse of an m x m matrix, 

a multiplication of an mi x m^ matrix with an m<i x m% matrix, a multiplication of 

an m\ x m,\ diagonal matrix with an m\ x mi matrix, the numbers of multiplications 

are m3, mimimz, and mim2 , respectively. 

Let us first consider the proposed method. For the initialization of the VP method, 

the number of multiplications required in calculating £ ^ and J(O^) is given by 

cvPi0 = (K2L2N + K3L3 + KLN + K2L2) + (KLN + N). At each iteration of the VP 

method, we need to evaluate G<n\ 5^, £ ( n + 1 ) and J (0 ( n + 1 ) ) for at least one time with 

the number of required multiplications given by cVp,i = (KN) + (K2N + K2LN + 

K3L2 + K3L + K+K3 + KN+K2) + (2KLN+K2L2N+K3L3 + K2L2) + (KLN + N), 

where we have assumed that [ ( G ^ ^ G ^ ] - 1 has already been evaluated in the last 

iteration and its value is stored for use in this iteration. If, within an iteration, r]^ is 

updated, then 6^\ £ ( n + 1 ) and J(0 ( r j+1)) are required to be evaluated again with the 

number of multiplications given by cVp,2 = {K+K3+K2)+(2KLN+K2L2N+K3L3+ 

K2L2) + (KNL + N). Finally, the robust MMSE channel estimation method requires 

the number of multiplications given by CMMSE = K3L3+K2L2, where we have assumed 
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that (r(£ ( n o )))"r(e ("o )) and (r(£ ("o )))Hy have already been evaluated before by the 

VP method and are stored for use by the robust MMSE channel estimator. Therefore, 

the total number of multiplications is c = cyp.o + ^ICVP.I + ^2Cvp,2 + CMMSE where n\ 

is the number of iterations, and ri2 is the number of times that r\ is updated. 

Next, let us consider the non-separated MMSE method in [72]. In the initializa­

tion step, in calculating £ ^ and J ( 0 ^ ) , the required number of multiplications is 

c„on-Separated,o = {K(L2N+L3+LN+L2))+{KN L+N). In each iteration, G<n\ 0 ( n + 1 ) 

and J(#(n+1)) are required to be evaluated for at least one time with the number of 

multiplications given by tWseparated.1 = (KN) + {K2{L + 1 ) 2 N + Ks(L +1)3 + K(L + 

1)N + K2(L + 1)2 + K(L+1)) + (2KNL + N). If within an iteration, /3<n> is updated, 

then 0(n+1) and J(9(-n+1^) are required to be reevaluated with the number of multipli­

cations given by Cnon.separated.2 = {K{L +1)) + (2KNL + N). The total number of mul­

tiplications iS Similarly given by C = Cnon-separated.O + "lCnon-separated.l + n3Cnon_Separated,2, 

where n^ denotes the number of times when /3 is updated. We will demonstrate the 

total number of multiplications of the two methods by using simulation results in the 

next section. 

8.6 Simulation Results 

In this section, we examine the performance of the proposed method. The OFDM 

system is assumed to have N = 128 subcarriers with length of CP L — 16. In 

each run of the simulations, every user is assigned Nk = \N/K\ interleaved pilot 

subcarriers and the pilot symbols are generated randomly from a binary phase-shift 

keying (BPSK) constellation. The power of the training symbol on each subcarrier is 

Pk = 1. The multipath fading channel has Lk = 6 paths and an exponential power 

delay profile for all users , i.e., alkl = „ 5
1 _<e~t, I = 0,1, . . . ,5 . The power of each 

user's channel impulse response is normalized to unity, i.e., a\k — 1, unless stated 

otherwise. The timing offsets are integers uniformly distributed in the range [0,10]. 

The CFOs are uniformly distributed in the range [—0.5, 0.5]. The SNR is defined 
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Index of Iterations 

Figure 8.1: Comparison of the convergence speed in terms of E{"y ffi, '*'} as a 
function of iteration of the VP method and the non-separated MMSE method with 
K = 6. 

as £%. The figures shown in this section are obtained by averaging 10,000 runs of 

simulation. The MSE and CRLB [47] are obtained by averaging over all active users 

in the system unless stated otherwise. 

We compare the proposed method and the non-separated MMSE method [72] in 

terms of the convergence speed, MSE performance, computational complexity and 

near-far effect. For the non-separated MMSE method, 7 is fixed and @ is reduced 

repeatedly if required, i.e., 7 = 1 and f3 = | /3 . Unless stated otherwise, when /? < 

10~15, j5 is set to 0 to terminate the line search process. 

8.6 .1 C o n v e r g e n c e S p e e d 

With the progress of the iterative VP method, we should observe convergence in two 

sequences, e(n+1> - eW - • 0, and J(0 ( n + 1 ) ) - J(0 ( n )) -> 0. In Figs. 8.1 and 8.2, we 

show E{ny~{(°\"))]1} and MSE of CFO estimation as a function of iteration for the VP 
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14 

Figure 8.2: Comparison of the convergence speed in terms of the MSE of CFO es­
timation as a function of iteration of the VP method and the non-separated MMSE 
method with K — 6. 

method and the non-separated MMSE method with K — 6 and at several SNRs. We 

observe that the VP method converges faster than the non-separated MMSE method. 

8.6.2 MSE Performance 

In Fig. 8.3, we show the MSE of CFO estimation for K = 2,4,6 users, respectively. 

The same stopping criterion, i.e., (8.12) with 5 — O.lcr,,, is employed for the two 

methods. We observe that the VP method can achieve the CRLB while the non-

separated MMSE method [72] diverges away from the CRLB at high SNR for K = 6. 

By employing the same stopping criterion for the two methods, the better performance 

achieved by the VP method also confirms that the VP method results in a better 

defined minimization problem. We also show in the figure that the performance of 

the non-separated MMSE method can be improved to get closer to the CRLB by 

using a more stringent stopping criterion, i.e., 5 = 0.01av for K = 6 users. But this 
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Figure 8.3: Comparison of the MSE of CFO estimation of the proposed method and 
the non-separated MMSE method with K = 2, 4, and 6. 

is at the cost of an increased computational complexity. Furthermore, even with this 

additional complexity, the performance of the non-separated MMSE method is still 

inferior to that of the proposed method. 

In Fig. 8.4, we show the normalized MSE (NMSE) performance of channel esti­

mation of the two methods. The NMSE of channel estimation is defined as 

NMSE, = - i - y yllhfc ;.hfc", 
NSKL^^ l lhw l l2 

s t=i fc=i llnfc II 

where Ns is the number of simulation runs, h j / and b.^ are the estimated and the 

true effective channel, respectively. The true received SNR p is used in (8.13) by the 

proposed method. We observe that the proposed method can achieve better perfor­

mance than that of the non-separated MMSE method. We further notice that the 

performance of the proposed method is better than the CRLB in some cases. This 

is because the proposed channel estimation method is based on the MMSE criterion 
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Figure 8.4: Comparison of the NMSE of channel estimation of the proposed method 
and the non-separated MMSE method with K = 2, 4, and 6. 

where the second order statistics of the noise and channel are incorporated into the 

estimation process, whereas the CRLB is derived by treating CFO and channel co­

efficients as unknown constants. The CRLB is shown here only for the purpose of 

comparison. 

8.6.3 Computational Complexity 

In Fig. 8.5, we compare the computational complexity of the two methods in terms 

of the required average number of multiplications c. Firstly, the two methods are 

compared by using the same stopping criterion, i.e., (8.12) with 8 = 0.1av. For the 

non-separated MMSE method, by setting /3 = 0 until /3 < 10~15, we observe that 

its required average time by performing the method using Matlab is much greater 

than that of the proposed method. The reason for this is that in some cases the line 

search process only ends after updating /3 for about l o g } ^ = 164 or more times 

which is very time consuming. We also notice that by doing this, it only provides a 
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Figure 8.5: Comparison of the required number of multiplications of the proposed 
method and the non-separated MMSE method with K = 2, 4, and 6. 

marginal performance improvement. Therefore, in order to obtain a fair comparison, 

for the non-separated MMSE method, /? is set to 0 when f3 < 0.4 for K = 2 and 4; 

and /? is set to 0 when (5 < 0.04 for K = 6 in obtaining the results in Fig. 8.5 for 

5 = O.lev This does not degrade their corresponding performance at all but saves 

lots of computations. 

We observe from Fig. 8.5 that for 5 = 0.1cr„, the computational burden of the 

proposed method is lower than that of the non-separated MMSE method at high SNRs 

particularly for large number of users. For K = 6 at 35dB, the non-separated MMSE 

method requires as many as 8.3 iterations on average to achieve convergence, whereas 

the proposed method only needs 3.7 iterations on average to achieve convergence. For 

this scenario, by using the proposed method, the computational burden can be saved 

by about 25%. 

In Figs. 8.3 and 8.4, we have shown that by setting 5 = 0.01cr„, the non-separated 

MMSE method can improve its performance a little. However, this comes at the cost 
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Figure 8.6: Comparison of the MSE of CFO estimation of the proposed method and 
the non-separated MMSE method with K = 4 and 6 = 0.1cr„ in the presence of 
near-far effect. 

of an increased complexity. In Fig. 8.5, we show the required number of multipli­

cations of the non-separated MMSE method with S ~ 0.01av, where (3 is set to 0 

when /? < 0.1 to save computations. As shown in the figure, the complexity of the 

non-separated MMSE method is higher than that of the proposed method at medium 

to high SNRs. 

8.6.4 Impact of the Near-Far Problem 

In practice, we may not have ideal power control. Next, we will show the impact of 

the near-far problem on the performance of the proposed method. Let us consider 

a system with K = 4 users. The power of each user's channel impulse response is 

set at trltl = 1/4, o\2 = 1/2, o\$ = 1 and o\A — 2, respectively. In Figs. 8.6 and 

8.7, we show the CFO estimation and channel estimation performance of the two 

methods with respect to each user individually. Both methods use the same stopping 
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Figure 8.7: Comparison of the NMSE of channel estimation of the proposed method 
and the non-separated MMSE method with K — 4 and 5 — 0.1a„ in the presence of 
near-far effect. 

criterion with 5 = 0.1av. We observe that the proposed method performs better than 

the non-separated MMSE method in the presence of near-far problem in both CFO 

estimation and channel estimation. 

8.7 Conclusions 

In this chapter, we proposed a training-aided joint CFO and channel estimation 

method for the uplink channel of OFDM systems. The proposed scheme consists 

of two steps, where the VP method is used for CFO estimation and the robust 

MMSE method is used for channel estimation. We examined the proposed method 

in terms of the convergence speed, MSE performance, and computat ional complexity 

and compared it to those of the non-separated MMSE method. We demonstrated 

that the proposed method is superior to the non-separated MMSE method in terms 
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of convergence-speed and MSE performance. The computational burden of the pro­

posed scheme is lower than that of the non-separated MMSE method for a large 

number of users at high SNRs. 
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Chapter 9 

Conclusions and Future Work 

9.1 Conclusions 

We started with a literature review on the existing CFO estimation schemes. For the 

downlink channel, blind estimation schemes are classified based on the implicit prop­

erties that are exploited for estimation, e.g., CP-based, VSC-based, oversampling-

based, CM-based, cyclostationarity-based and higer-order statistic based estimation 

schemes. Based on different intrinsic properties, different cost functions have been 

designed. To minimize the cost function, grid search method, Newton method, curve 

fitting method and root finding method can be used. For the uplink channel, estima­

tion schemes are classified based on the CAS. As each user has its own CFO, CFO 

estimation for uplink channel is a more challenging problem. Some of these schemes 

directly extend the schemes for downlink channel to the uplink channel having block 

CAS. Some of these schemes exploit the characteristics introduced by the interleaved 

CAS in particular for estimation. Some other schemes take an approach to breakdown 

the multi-dimensional optimization problem into several one-dimensional optimiza­

tion problems to reduce the complexity of CFOs estimation for the arbitrary CAS. 

While MSE is a major criterion to measure the performance of all kinds of estimation 

schemes, other criteria such as identifiability and computational complexity should 

also be taken into the consideration of the estimator design. 
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9.1.1 OFDM Downlink 

For the downlink channel of OFDM systems, we designed three blind CFO estimation 

schemes. 

By taking the UML approach, we proposed a VSC-based CFO estimation scheme 

for MIMO-OFDM systems in the presence of spatial correlation. The spatial correla­

tion is introduced by closely placed antennas. The advantage of the UML approach 

is that it treats the nuisance parameters, i.e., channel and data, as random variables 

with known statistics. In this sequel, it enables us to incorporate spatial correlation 

into the CFO estimation naturally. In particular, we investigated the impact of receive 

spatial correlation on the CFO estimation. We show that, as compared to the CML 

estimator, the UML estimator can exploit the knowledge of receive spatial correlation 

as well as the existence of VSCs to make additional contribution for CFO estimation. 

But, this additional contribution is marginal as compared to the CML estimator. The 

implication of this result is that one need not take spatial correlation into account 

in developing VSC-based CFO estimation scheme for MIMO-OFDM systems. This 

should simplify such development process. 

We also proposed a novel FFO estimation scheme with low complexity for OFDM 

systems employing CM signaling. We assume that the channel frequency response 

changes slowly in the frequency domain such that the channel frequency response on 

two consecutive subcarriers is approximately the same. Based on this assumption, 

we proposed a cost function which minimizes the difference of the signal power for 

each pair of consecutive subcarriers. Then, we proved that the proposed cost func­

tion is in a form of a cosine function and achieves its minimum at the true CFO. 

Furthermore, to minimize the cost function, the curve fitting method is used which 

only requires to evaluate the cost function at three points and makes the proposed es­

timation scheme very simple. We also extent the proposed scheme to MIMO-OFDM 

systems by exploiting the orthogonal structure of the employed OSTBCs. The pro­

posed scheme significantly outperforms the kurtosis-type scheme in both SISO and 

MIMO systems at almost the same computational complexity. Compared with the 
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CM based subspace scheme, the proposed scheme has a lower computational com­

plexity but it performs a little worse than the CM based subspace scheme over severe 

frequency selective fading channels. 

Furthermore, we designed a FA based FFO estimator for DOFDM systems in 

which symbols are differentially modulated along the time direction on each subcarrier 

using an M-PSK modulation. The cost function is proposed under the assumption 

that channel keeps constant over two consecutive OFDM symbols. As the proposed 

scheme actually involves a symbol detection process implicitly within the estimation 

process, its cost function is very complicated such that it is almost prohibited to 

minimize the cost function by using the grid search method. Therefore, we modified 

the Newton method a little bit and applied it to minimize the proposed cost function 

efficiently. We also derived the constrained CRLB as a benchmark for blind CFO 

estimation method. The advantage of the proposed scheme is that it can achieve 

a better performance at high SNRs than that of the existing CM based subspace 

scheme. Furthermore, it has a wider application to systems having VSCs whereas 

the CM based subspace scheme can not. However, it requires to use two consecutive 

OFDM symbols and is sensitive to channel variations. Furthermore, it has a higher 

computational complexity than the CM based subspace scheme. 

9.1.2 OFDM Uplink 

As for the uplink channel of OFDM systems, we designed two training-aided CFO 

estimation schemes for the arbitrary CAS. One is based on a scalar EKF and the 

other one is on VP algorithm. 

In the scalar EKF based scheme, at each recursion, the MAI cancellation is used 

to separate each user's measurement based on CFO and channel estimations obtained 

from a previous recursion. After that, we observe that the kth user's measurement 

depends not only on the fcth user's CFO but also on a vector which consists of the kth 

user's channel coefficients and the other users' channel estimation errors. Therefore, 

in order to apply the scalar EKF, we replace this vector with a non-linear function 
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of CFO such that each user's measurement is now represented as a function of its 

CFO only. We also analyzed the observation noise power and use its approximation 

in the EKF algorithm. The simulation results show that the proposed scheme can 

achieve the CRLB at high SNR for two users with a complexity lower than that of 

the APFE and close to that of the SAGE. However, its performance degrades with 

increased number of users. 

In the VP-based scheme, the CFOs are estimated by minimizing the LS cost func­

tion. By observing that this is a separable nonlinear LS problem, the VP method is 

applied to solve it iteratively. The idea behind the VP method is that at each itera­

tion, the nonlinear parameters, i.e., the CFOs, are first updated, then the solution to 

the LLS problem is used to update the linear parameters, i.e., the channel coefficients. 

The advantage of the VP method is that it results in a better conditioned problem 

which indicates convergence in a fewer number of iterations in comparison with the 

non-separated method. Following the VP method, the channel estimation is obtained 

by using the robust MMSE method. We demonstrate through several numerical ex­

amples the superiority of the proposed scheme to the non-separated MMSE method 

in terms of convergence speed, computational complexity and estimation performance 

9.2 Future Work 

9.2.1 Optimum Training Sequence Design 

In Chapters 4 — 6, we propose blind CFO estimation schemes for the downlink chan­

nel of OFDM systems. The blind schemes are bandwidth efficient but rely on some 

inherent properties of the transmitted signal which implies some limits on their ap­

plications. Therefore, the pilot-aided and the training-aided estimation schemes are 

preferred in some scenarios. Many pilot-aided or training-aided estimation schemes 

have been proposed. But, most of the works in the literature focus on developing 

estimation methods and little attention has been devoted to the optimal training 

sequence design. 
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The training sequences used in the literature are usually generated randomly or 

chosen to take a particular structure in view of simplifying the estimation algorithm 

but not in aim to optimize the estimation performance. Actually, while the estimation 

methods target on how to achieve as better performance as possible, the characteristic 

of the training sequence answers what is the best estimation performance that exists 

to be achieved. Therefore, the training sequence is like a bottle neck. The only effort 

on developing efficient estimation method is far from enough. As a matter of fact, if 

the training sequence is not optimized, it may result in a poor estimation no matter 

how complex the estimation method is. 

The optimal training sequence design involves selecting the training sequences 

which can give the best estimation performance among all the possible training se­

quences. It consists of selecting the pilot tone locations, the training sequence struc­

tures and the power allocation in both frequency and time domain. It is another 

approach that we can resort to obtain a simplified yet reliable estimator. In addition, 

a training sequence which is optimal for one scenario is not necessary optimal for the 

other. This indicates that the optimal training sequence design is much needed in 

practice where more constrains are present. 

Firstly, the training sequence design for channel estimation in the presence of 

VSCs still constitutes an open problem. As a matter of fact, some optimal training 

sequences have been developed in the literature, but they are developed based on 

certain conditions, e.g., without the presence of VSCs, and not for the practical 

system configuration. However, by incorporating the presence of the VSCs into the 

development, it complicates the process in finding the solution to this optimization 

problem. Therefore, the optimal and robust training sequence design in more practical 

situations becomes an urgent issue needs to be addressed. 

Secondly, the optimal training sequence design for both CFO and channel es­

timation is a long-standing problem. Training sequence design is usually studied 

separately for CFO estimation and channel estimation. The implication of this is 

that a training sequence that is optimal for CFO estimation may not necessarily be 
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optimal for the channel estimation. This implicates that individual training sequences 

which target on channel estimation and CFO estimation respectively have to be sent 

before the data transmission. This actually degrades the system bandwidth usage. In 

light of this, we believe the training sequence that can benefit both CFO and channel 

estimation to some extent is still lacking in the literature and deserves more research. 

9.2.2 Channel Estimation and Synchronization for Coopera­

tive Transmissions 

MIMO systems and space-time coding techniques have demonstrated their advantages 

in increasing throughput and diversity gain by deploying multiple antennas. How­

ever, when the multiple antennas are collocated, there is a challenge in keeping these 

antennas far apart from each other so that they are not correlated. Furthermore, 

to keep the size small and the cost affordable, some wireless devices such as cellular 

phones can not afford having multiple antennas mounted on them. These challenges 

triggered the idea of cooperative transmissions. 

Cooperative transmission is a new technology aiming at improving diversity for 

wireless communications. The ideal behind it is that the source node and the re­

lays cooperatively accomplish the transmission to the destination such that a virtual 

multiple-transmit-antenna system is formed. The cooperative transmission has re­

ceived lots of investigations recently. Most of works are based on the assumption of 

perfect channel estimation and synchronization. Channel estimation and synchroniza­

tion for this configuration is still under investigation and can be considered as future 

work. We believe it is much harder and complicated than that for the centralized 

MIMO systems. 
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