196 research outputs found

    Control algorithms for aerobraking in the Martian atmosphere

    Get PDF
    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC

    Orbit Estimation of Non-Cooperative Maneuvering Spacecraft

    Get PDF
    Due to the ever increasing congestion of the space environment, there is an increased demand for real-time situation awareness of all objects in space. An unknown spacecraft maneuver changes the predicted orbit, complicates tracking, and degrades estimate accuracies. Traditional orbit estimation routines are implemented, tested, and compared to a multiple model format that adaptively handles unknown maneuvers. Multiple Model Adaptive Estimation is implemented in an original way to track a non-cooperative satellite by covariance inflation and filtering-through a maneuver. Parameters for successful instantaneous maneuver reconstruction are analyzed. Variable State Dimension estimation of a continuously maneuvering spacecraft is investigated. A requirements based analysis is performed on short arc orbital solutions. Large covariance propagation of potential maneuvers is explored. Using ground-based radars, several thousand simulations are run to develop new techniques to estimate orbits during and after both instantaneous and continuous maneuvers. The new methods discovered are more accurate by a factor of 700 after only a single pass when compared to non-adaptive methods. The algorithms, tactics, and analysis complement on-going efforts to improve Space Situational Awareness and dynamic modeling

    Conceptual definition of a high voltage power supply test facility

    Get PDF
    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented

    Orbit design and estimation for surveillance missions using genetic algorithms

    Get PDF
    The problem of observing a given set of Earth target sites within an assigned time frame is examined. Attention is given mainly to visiting these sites as sub-satellite nadir points. Solutions to this problem in the literature require thrusters to continuously maneuver the satellite from one site to another. A natural solution is proposed. A natural solution is a gravitational orbit that enables the spacecraft to satisfy the mission requirements without maneuvering. Optimization of a penalty function is performed to find natural solutions for satellite orbit configurations. This penalty function depends on the mission objectives. Two mission objectives are considered: maximum observation time and maximum resolution. The penalty function poses multi minima and a genetic algorithm technique is used to solve this problem. In the case that there is no one orbit satisfying the mission requirements, a multi-orbit solution is proposed. In a multi-orbit solution, the set of target sites is split into two groups. Then the developed algorithm is used to search for a natural solution for each group. The satellite has to be maneuvered between the two solution orbits. Genetic algorithms are used to find the optimal orbit transfer between the two orbits using impulsive thrusters. A new formulation for solving the orbit maneuver problem using genetic algorithms is developed. The developed formulation searches for a mini mum fuel consumption maneuver and guarantees that the satellite will be transferred exactly to the final orbit even if the solution is non-optimal. The results obtained demonstrate the feasibility of finding natural solutions for many case studies. The problem of the design of suitable satellite constellation for Earth observing applications is addressed. Two cases are considered. The first is the remote sensing missions for a particular region with high frequency and small swath width. The second is the interferometry radar Earth observation missions. In satellite constellations orbit's design, a new set of compatible orbits, called the "Two-way orbits",whose ground track path is a closed-loop trajectory that intersects itself, in some points, with tangent intersections is introduced. Conditions are derived on the orbital elements such that these Two-way Orbits exist and satellites flying in these orbits pass the tangent intersection points at the same time. Finally, the recently proposed concept of observing a space object from onboard a spacecraft using a star tracker is considered. The measurements of the star tracker provide directions to the target in space and do not provide range measurements. Estimation for the orbit of the target space object using the measurements of the star tracker is developed. An observability analysis is performed to derive conditions on the observability of the system states. The Gaussian Least Squares Differential Correction Technique is implemented. The results obtained demonstrate the feasibility of using the measurements of the star tracker to get a good estimate for the target orbit within a period of measurements ranging from about 20 percent to 50 percent of the orbital period depending on the two orbits

    Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics

    Get PDF
    For spacecraft conducting on-orbit operations, changes to the structure of the spacecraft are not uncommon. These planned or unanticipated changes in inertia properties couple with the spacecraft\u27s attitude dynamics and typically require estimation. For systems with time-varying inertia parameters, multiple model adaptive estimation (MMAE) routines can be utilized for parameter and state estimates. MMAE algorithms involve constructing a bank of recursive estimators, each assuming a different hypothesis for the systems dynamics. This research has three distinct, but related, contributions to satellite attitude dynamics and estimation. In the first part of this research, MMAE routines employing parallel banks of unscented attitude filters are applied to analytical models of spacecraft with time-varying mass moments of inertia (MOI), with the objective of estimating the MOI and classifying the spacecraft\u27s behavior. New adaptive estimation techniques were either modified or developed that can detect discontinuities in MOI up to 98 of the time in the specific problem scenario.Second, heuristic optimization techniques and numerical methods are applied to Wahba\u27s single-frame attitude estimation problem,decreasing computation time by an average of nearly 67 . Finally, this research poses MOI estimation as an ODE parameter identification problem, achieving successful numerical estimates through shooting methods and exploiting the polhodes of rigid body motion with results, on average, to be within 1 to 5 of the true MOI values

    Space shuttle guidance, navigation and control design equations. Volume 3: Orbital operations

    Get PDF
    Revised specifications are presented of the equations necessary to perform the guidance, navigation, and control onboard computation functions for the space shuttle orbiter vehicle. The orbital operations covered include: (1) orbital coast, (2) orbital powered flight, (3) rendezvous mission phase, (4) station keeping mission phase, (5) docking and undocking, and (6) docked operations

    Sensors, measurement fusion and missile trajectory optimisation

    Get PDF
    When considering advances in “smart” weapons it is clear that air-launched systems have adopted an integrated approach to meet rigorous requirements, whereas air-defence systems have not. The demands on sensors, state observation, missile guidance, and simulation for air-defence is the subject of this research. Historical reviews for each topic, justification of favoured techniques and algorithms are provided, using a nomenclature developed to unify these disciplines. Sensors selected for their enduring impact on future systems are described and simulation models provided. Complex internal systems are reduced to simpler models capable of replicating dominant features, particularly those that adversely effect state observers. Of the state observer architectures considered, a distributed system comprising ground based target and own-missile tracking, data up-link, and on-board missile measurement and track fusion is the natural choice for air-defence. An IMM is used to process radar measurements, combining the estimates from filters with different target dynamics. The remote missile state observer combines up-linked target tracks and missile plots with IMU and seeker data to provide optimal guidance information. The performance of traditional PN and CLOS missile guidance is the basis against which on-line trajectory optimisation is judged. Enhanced guidance laws are presented that demand more from the state observers, stressing the importance of time-to-go and transport delays in strap-down systems employing staring array technology. Algorithms for solving the guidance twopoint boundary value problems created from the missile state observer output using gradient projection in function space are presented. A simulation integrating these aspects was developed whose infrastructure, capable of supporting any dynamical model, is described in the air-defence context. MBDA have extended this work creating the Aircraft and Missile Integration Simulation (AMIS) for integrating different launchers and missiles. The maturity of the AMIS makes it a tool for developing pre-launch algorithms for modern air-launched missiles from modern military aircraft.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Flight Mechanics/Estimation Theory Symposium

    Get PDF
    The conference emphasizes orbital position estimation and trajectory calculation methods that consider flight mechanical parameters
    corecore