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ABSTRACT

Orbit Design and Estimation for Surveillance Missions

Using Genetic Algorithms. (December 2005)

Osama Mohamed Omar Abdelkhalik, B.Sc., Cairo University;

M.Sc., Cairo University

Chair of Advisory Committee: Dr. Daniele Mortari

The problem of observing a given set of Earth target sites within an assigned time

frame is examined. Attention is given mainly to visiting these sites as sub-satellite

nadir points. Solutions to this problem in the literature require thrusters to continu-

ously maneuver the satellite from one site to another. A natural solution is proposed.

A natural solution is a gravitational orbit that enables the spacecraft to satisfy the

mission requirements without maneuvering. Optimization of a penalty function is

performed to find natural solutions for satellite orbit configurations. This penalty

function depends on the mission objectives. Two mission objectives are considered:

maximum observation time and maximum resolution. The penalty function poses

multi minima and a genetic algorithm technique is used to solve this problem. In

the case that there is no one orbit satisfying the mission requirements, a multi-orbit

solution is proposed. In a multi-orbit solution, the set of target sites is split into

two groups. Then the developed algorithm is used to search for a natural solution

for each group. The satellite has to be maneuvered between the two solution orbits.

Genetic algorithms are used to find the optimal orbit transfer between the two orbits

using impulsive thrusters. A new formulation for solving the orbit maneuver problem

using genetic algorithms is developed. The developed formulation searches for a mini-
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mum fuel consumption maneuver and guarantees that the satellite will be transferred

exactly to the final orbit even if the solution is non-optimal. The results obtained

demonstrate the feasibility of finding natural solutions for many case studies.

The problem of the design of suitable satellite constellation for Earth observing

applications is addressed. Two cases are considered. The first is the remote sensing

missions for a particular region with high frequency and small swath width. The sec-

ond is the interferometry radar Earth observation missions. In satellite constellations

orbit’s design, a new set of compatible orbits, called the “Two-way orbits”, whose

ground track path is a closed-loop trajectory that intersects itself, in some points,

with tangent intersections is introduced. Conditions are derived on the orbital ele-

ments such that these Two-way Orbits exist and satellites flying in these orbits pass

the tangent intersection points at the same time. Finally, the recently proposed con-

cept of observing a space object from onboard a spacecraft using a star tracker is

considered. The measurements of the star tracker provide directions to the target in

space and do not provide range measurements. Estimation for the orbit of the target

space object using the measurements of the star tracker is developed. An observability

analysis is performed to derive conditions on the observability of the system states.

The Gaussian Least Squares Differential Correction Technique is implemented. The

results obtained demonstrate the feasibility of using the measurements of the star

tracker to get a good estimate for the target orbit within a period of measurements

ranging from about 20 percent to 50 percent of the orbital period depending on the

two orbits.
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CHAPTER I

INTRODUCTION

The orbits of space remote sensing systems usually control the ground resolution, area

coverage, and the frequency of coverage parameters. The orbit hight affects the reso-

lution and the swath width. The higher the spacecraft the more area that is covered

with a corresponding decrease in the resolution of measurements. Lower altitudes

enable a spacecraft to get higher resolution measurements but orbit perturbations

will be non-negligible due to air drag [7]. Electric propulsion systems were proposed

to enable such missions where the orbit altitude is low [1]. The air drag, in this case,

is compensated using electric thrusters. Low altitude orbits, however, poses lack of

coverage. To overcome this lack of coverage, strategies for maneuvering the space-

craft using the electric propulsion also were proposed in literature [15]. In this case,

the thrusters are not only used to compensate the perturbations but also are used to

continuously maneuver the spacecraft to achieve given coverage requirements. This

solution, however, complicates the satellite system by adding a propulsion system to

it. The motivation for this study is to search for a natural orbit that will enable a

spacecraft to achieve the mission coverage requirements without the use of propulsion.

Ground surveillance can be defined as the observation of a discrete number of

Earth surface locations from space. This kind of missions require that the satellite

visits all the given sites within a given time frame. A site is said to be visited if

the nadir point of the satellite passes through a given specified neighborhood of that

target. The neighborhood size is determined based upon the mission scenario and

sensors specifications. One example is to visit a set of 20 sites on the terrestrial

The journal model is IEEE Transactions on Automatic Control.
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surface within a time frame, tf , of 50 days. In other applications this time could be

tf = 3 days.

Throughout this study, the ground surveillance remote sensing missions are con-

sidered. For this type of missions, maneuvering strategies were developed in the

literature to achieve the coverage requirements. Guelman and Kogan [15] developed

an algorithm to provide the spacecraft the ability to pass over the target sites within

the specified time frame. In this algorithm, the optimal trajectory is calculated on

two steps, piecewise optimization and scheduling. The piecewise optimization is the

calculation of the optimal trajectory that connects two sequential target sites. Pon-

tryagin’s principle is used to find the optimal trajectory. Scheduling is the selection

of visiting time for each site. The simulated annealing method is used to solve the

scheduling part.

The solution proposed in this study, however, does not use propulsion for ma-

neuvers. A global search is performed to find a natural orbit that will enable the

spacecraft to visit all the target sites within the assigned time frame. A penalty

function is constructed to represent how far a given orbit is far from an ideal orbit.

The global search will find the orbit that minimizes this penalty function in the in-

vistigated regions of the design space. The search algorithm exploites the most fit

solutions to direct the search into regions with higher potential for having the global

optimal. This global search is performed using the genetic algorithms technique. The

reason for using the genetic algorithms is because the penalty function has multiple

local minima.

In case all the sites in the given set cannot be visited within the assigned time

frame, then the given set is split into two subsets. The global search method is then

used to find a natural orbit for each subset. The complete mission is then achieved

by maneuvering the spacecraft between the two orbits or by having two spacecraft,
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one for each orbit. In case a single spacecraft is used, an orbit transfer algorithm is

developed. The proposed algorithm implements the impulsive thrusters. The min-

imum fuel maneuver is calculated using genetic algorithms. A new formulation for

this problem is introduced. This formulation guarantees that the satellite will arrive

at the final orbit exactly even if the solution provided by the genetic algorithms is

not the optimal solution.

Throughout this study, spacecraft are assumed to be moving in Keplerian or-

bits. A brief review for Keplerian orbits is described in section(A). The genetic

algorithms technique is described in section(C). Section(D) describes the objectives

of this dissertation. The organization of this dissertation is described in section(E).

A. Keplerian Orbits

The spacecraft is assumed to be subject only to the Newtonian attraction from the

central body. In this case, the motion of the spacecraft can be described by [8]:

r̈ +
µr

r3
= 0 (1.1)

where r is the position vector of the spacecraft and µ is the gravitational constant of

the central body. Throughout this dissertation, the central body is the Earth unless

otherwise stated. The gravitational constant for the Earth is µ = 3.986004415 ×
105Km3/s2 [34].

Since the subject of this dissertation addresses orbits that are suitable for Earth

observations, only elliptical orbits will be considered in this study. Elliptical orbits

can be completely defined by one of the following sets:

1. The orbital elements

2. Position and velocity vectors for the satellite at a point on the orbit
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3. Two positions on the orbit and the time of satellite travel from one point to the

other.

The orbital elements description will be used throughout this study. Orbital elements

are described in brief in this chapter. Given the position and velocity vectors of the

satellite at one point on the orbit, these two vectors can be transformed to the orbital

elements and vise versa. The determination of the orbit from two position vectors

on the orbit given the time of satellite travel between them is known in literature as

Lambert’s problem. Lambert’s problem will be explained in Chapter IV.

1. Orbital Elements

Orbital elements are widely used to describe the position of a spacecraft in space.

The position of a spacecraft is described using six parameters or elements. Two of

them are angles defining the plane of the orbit. These two angles are the inclination

of the orbit plane on the equatorial plane, ı, and the right assention of the ascending

node, Ω, which is the angle of the line of nodes measured from the inertial vernal

equinox in the equatorial plane. Two other parameters define the size and shape of

the orbit, these are the semi-major axis a, and the eccentricity e. The fifth element

defines the orientation of the orbit in the orbit plane. This is the angle, ω, of the

semi-major axis measured from the line of nodes in the orbit plane. The last element

is an angle defining the position of the spacecraft in the orbit. This angle is called the

true anomaly, θ, and is the angle from the perigee to the satellite position measured

in the orbit plane and from the center of the Earth.
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2. Transformation from Orbital Elements to Position and Velocity Vectors

This transformation is used frequently throughout this work and is detailed here.

The derivation in this section follows the work presented in [32]. Given the six orbital

elements, it is required to find the position and velocity of the satellite in the inertial

frame. Consider the orbit plane. Assume a coordinate system in this plane: x, y, and

z as shown in Fig. 1. Unit vectors in this coordinate system are: x̂, ŷ, and ẑ. Note

that in this coordinate system, the satellite position will always have z = 0. From

Fig. 1:

Fig. 1. Orbital plane coordinate system

x = a cos(E)− c = a cos(E)− ae (1.2)

y =
ab sin(E)

c
= a sin(E)

√
1− e2 (1.3)

r = xx̂ + yŷ (1.4)
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The eccentric anomaly, E, can be easily calculated from the mean anomaly, M ,

iteratively using the kepler equation:

E − e sin(E) = M = nt (1.5)

So, r is calculated in the orbital plane coordinate system. Next, the vector r is

transferred to the inertial coordinate system [32]:




X

Y

Z




= [Az(Ω)]T [Ax(ı)]
T [Az(ω)]T




x

y

0




(1.6)

where, X,Y , and Z are the inertial components of r, and

[Az(ω)] =




cos(ω) sin(ω) 0

− sin(ω) cos(ω) 0

0 0 1




, [Ax(ı)] =




1 0 0

0 cos(ı) sin(ı)

0 − sin(ı) cos(ı)




The velocity vector is calculated first in the orbital plane coordinate system and then

transferred to the inertial coordinate system.

v =
dr

dt
=

dr

dE

dE

dt
(1.7)

From Kepler equation:

dM

dt
= n =

dE

dt
− e cos(E)

dE

dt
(1.8)

Recall that:

r = a[1− e cos(E)] (1.9)

where r is the magnitude of r. Using (1.9)and (1.8) into (1.7):

v =
a2n

r
[− sin(E)x̂ +

√
1− e2 cos(E)ŷ] (1.10)
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The transformation in (1.6) is then used to find the inertial coordinates of v.

The transformation from position and velocity vectors to orbital elements follows

a similar derivation and is detailed in [32].

B. Optimization Methods

This section describes common standard global optimization algorithms. This de-

scription summerizes the survey available in Ref. [13]. The focus is on general

techniques that are applicable to a wide variety of combinatorial and continuous

optimization problems.

1. Branch and Bound : Branch and Bound is a general search method. Suppose we

wish to minimize a function f(x). To apply branch and bound, it is required to

compute a lower bound on an instance of the optimization problem(bounding).

It is also required to be able to divide the feasible region of a problem to create

smaller subproblems(branching). The method starts by considering the original

problem with the complete feasible region, which is called the root problem. The

lower bound and upper bound are calculated to the root problem. If the bounds

match, then an optimal solution has been found and the procedure terminates.

Otherwise, the feasible region is divided into subregions, which together cover

the whole feasible region. These subregions become children of the root search

node. The algorithm is applied recursively to the subproblems, generating a tree

of subproblems. If an optimal solution is found to a subproblem, it is a feasible

solution to the full problem, but not necessarily globally optimal. Since it is

feasible, it can be used to prune the rest of the tree: if the lower bound for a node

exceeds the best known feasible solution, no globally optimal solution can exist

in the subregion of the feasible region represented by the node. Therefore, the
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node can be removed from consideration. The search proceeds until all nodes

have been solved or pruned, or until some specified threshold is meet between

the best solution found and the lower bounds on all unsolved subproblems. For

the application of interest, this method can be applied. However, a bounding

method must be found.

2. Clustering methods : Clustering methods are a modified form of the standard

multistart procedure, which performs a local search from several points dis-

tributed over the entire search domain. In a multistart procedure, when many

starting points are used, the same local minimum may be identified several

times, thereby leading to an inefficient global search. In Clustering methods,

points at which the local search is initiated are carefully selected such that this

inefficiency is avoided. First, points are sampled in the search domain, then

the sampled points are transformed to group them around the local minima.

Finally, a clustering technique is applied to identify groups that represent neigh-

borhoods of local minima. Redundant local searches can be avoided by simply

starting a local search for some point within each cluster.

3. Evolutionary algorithms : Evolutionary algorithms (EAs) are search methods

that take their inspiration from natural selection and survival of the fittest

in the biological world. EAs involve a search from a population of solutions,

not from a single point. The solutions with high fitness are recombined with

other solutions by swaping parts of a solution with another. Solutions are

also mutated by making a small change to a single element of the solution.

Recombination and mutation are used to generate new solutions that are biased

towards regions of the space for which good solutions have already been seen.

genetic algorithms are one type of the EAs and is the method adopted to solve
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the problem of interest. More details on the method is presented in section C.

4. Tree annealings : Simulated annealing was designed for combinatorial optimiza-

tion, usually implying that the decision variables are discrete. A variant of

simulated annealing called tree annealing was developed to globally minimize

continuous functions.

In simulated annealing, one is given an initial point x and randomly gener-

ates a new candidate solution, y. If f(y) ¡ f(x), then y replaces x and the

process repeats. If f(y) ¿ f(x), y replaces x with a probability that is based

on the Metropolis criteria and the progress of the algorithm. In tree anneal-

ing, candidate subspaces are accepted or rejected by evaluating the function at

representative points.

Application Domains It is not guaranteed to converge, and often the rate of

convergence is very slow [13]. It is recommended to use tree annealing in the

first part of optimization to find the region of the global optimum, then use a

gradient descent or other method to hone in on the actual value. Given enough

time, a sufficiently low final temperature, and a slow cooling rate, tree annealing

should at least converge to a local minimum, and will often converge to a global

minimum, especially for piecewise functions with discontinuities [13].

Tree annealing has been used in applications such as signal processing and

spectral analysis, neural nets, data fitting, etc. These problems involve fitting

parameters to noisy data, and often it is difficult to find an optimal set of

parameters via convential means.
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C. Genetic Algorithms

The original concept of genetic algorithms was first introduced in the 1970s by John

Holland of the University of Michigan. As the name denotes, genetic algorithms try

to artificially imitate the concept of evolution observed in nature. A wide variety

of genetic algorithm applications has been developed: control systems engineering,

robotics, wire routing, game playing, cognitive modelling, seismology, structural dy-

namics, aircraft and ship design, spacecraft trajectory optimization, and other appli-

cations.

The current literature identifies three main types of search methods [12]:

Calculus-based methods: these methods have been extensively studied and used

in literature. Calculus-based methods can be categorized into two categories:

• Direct methods: these are hill-climbing methods, where the optimum point is

searched by evaluating the local gradient at a point and move in the steepest

direction.

• Indirect methods: These method utilize the fact that the gradient at the opti-

mum point is zero. By equating the gradient to zero, we get a set of equations.

This set of equations is usually nonlinear.

Both methods are local. Starting with an initial guess point, the optimum they

seek is the best in a neighborhood of the current point. If the optimized function has

multi minima, then the solution that we get is the local optimum near the initial guess

and there is no way to take off from that local minimum unless through a random

restart. Another important disadvantage in calculus-based methods is that they re-

quire the existence of derivatives. Many practical parameter spaces are discontinues,

some problems have integer variables in the design parameters.
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Enumerated methods: the basic idea of these methods is to evaluate the objective

function values at every point within a finite search space, one at a time. These

methods are not efficient for problems with large search space.

Randomized methods: these methods processes direct search and performs ran-

dom choices as a tool during the search. Genetic Algorithms (GAs) and Simulated

Annealing Methods are two examples for randomized techniques.

GAs then have the advantage of being a robust technique among a wide range

of problems. GAs differ from other optimization techniques in the way it works as

follows. Calculus-based methods start with an initial point. GAs, however, start

with a random initial population of points. Derivatives information are not needed

in GAs. Only function evaluations are performed for the objective function. Thus,

the continuity condition on the objective function is not required. The operations

performed by the GAs are probabilistic not deterministic.

GAs work with coded parameters set. A binary representation for the parameters

set is used rather than the parameters themselves. Assume that the parameters that

we wish to optimize are x, y and z. Each variable is assigned a number of bits for

coding. The number of bits is determined based on the range of this variable and the

required accuracy for the variable. Assume the number of bits for x is 4, the number

of bits for y is 5, and the number of bits for z is 4. Then the coding is to find the

binary code for each variable and then stack them together in one string. This string

is called a member or a chromosome. If the values of the variables are: x = 6, y = 24,

and z = 13, then the corresponding chromosome is 0110110001101. The structure of

chromosome is illustrated in Fig. 2.

GAs work on a group of chromosomes called a population. The initial population

is randomly selected. GAs performs a series of probabilistic operations on the current

population to generate a new generation. The new generation is then used as the
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Fig. 2. Chromosome consists of a string of variables

current population and the GAs operations are performed again to produce a third

generation and so on. Each generation is an iteration.

In a maximization problem, it is required to find the maximum of an objective

function. The value of the objective function corresponding a member is called the

fitness of the member. Literature presents many levels of genetic algorithms based on

the complication of the algorithm. Basic operations that are used in all the algorithms

are: reproduction, crossover, and mutation.

Reproduction: sometimes referred to as selection, is the operation of selecting

some members out of the current generation to be transferred to the next generation.

There is a number of techniques in literature that are used for reproduction. The

simplest is to select the fittest 50% of the current generation to be transferred to the

next generation. A more common technique is the fitness-proportional, or roulette

wheel, technique where a member is selected for reproduction with a probability

proportional to its fitness. The roulette wheel however does not guarantee that the

fittest member in the current generation will be selected. It is possible that each

time a new generation is produced, the fittest member in the previous generation is

not selected. In this case the process may take longer time to converge to the best

member. The speed of the process can be improved by not losing the best member

from the current generation and transfer it as is to the next generation. This is called

elitism. However, this is a trade off. If the elite member is not selected and the
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process takes more time until convergence, this will allow for more exploration for the

search space leading to higher probability to locate the true global optimal [10].

Crossover : is a recombination operator where information from different mem-

bers are melded to construct new members in a new portion in the design space. Pairs

of members are selected to undergo a crossover with a probability Pc. The crossover

is performed by cutting the pair of members at a random point and swapping the

tails to generate two new members. The new members are called children, the origi-

nal pairs are called parents. This is called single point crossover, and this is what is

used throughout this study. Nature, however, have up to eight crossover points [2].

Example for the crossover operation is shown in table I, where the crossover point is

selected to be after the third digit from the left.

Table I. Single point crossover operation

Parents 1101/001 1010/111

Children 1101/111 1010/001

Mutation: is the operation of flipping a 1 to a 0 or vice versa. This operation is

applied to all bits in all members in a generation with a probability Pm. Pm usually

takes a value of about 0.001 [12]. However, Pm value is problem dependant. Many

have used Pm = 1/L, where L is the length of the member [10].

A flow chart for a simple GA is shown in Fig. 3. There is no guarantee that GAs

converge to the true global optimal. To explain more about how the GAs work and

why does it work, the concept of similarity templates is introduced.
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Fig. 3. Flow chart for a simple genetic algorithm
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1. Similarity Templates

Similarity templates are sometimes named as Schemata. A schema, the singular of

schemata, is a subset of chromosomes, or members, with similarities at certain string

positions. As an example, the schema (∗111∗) describes a subset of 4 members:

(01110), (01111), (11111), and (11110). The schema (0 ∗ 1 ∗ ∗) describes a subset of

8 members that begin with a 0 and have 1 in the third position. To illustrate how

the schemata are used to explain why GAs work, a common example in literature is

introduced [10], [12]. Consider the function f(x) = x2. In this example there is only

one parameter to optimize, x. Consider the four chromosomes in table II and their

fitness values:

Table II. Chromosomes and fitness values for given points of x

x-value Chromosome Fitness

13 01101 169

24 11000 576

8 01000 64

19 10011 361

Looking at the fitness of each member, the two most fit members are the second

and the fourth members. Both has a 1 at the left most digit. We may conclude

from this that the optimal solution will have a 1 in the left most digit. So, the

basic idea is to look for similarities among members and then find a relation between

these similarities and high fitness. The number of the members of a schema with

high fitness will be increased from one generation to the next, while the number of

members of a schema with lower fitness will decreased. To prove this statement, the



16

following definitions are first introduced.

• The order of a schema H, denoted by o(H), is the number of fixed positions in

the template. e.g. o(011 ∗ 1 ∗ ∗) = 4.

• The defining length of a schema, δ(H), is the distance between the first and

the last specific positions in the string. e.g. δ(011 ∗ 1 ∗ ∗) = 5 − 1 = 4 and

δ(∗ ∗ 1 ∗ ∗ ∗ ∗) = 0.

Assume a string A = a1a2a3a4a5a6a7 , and let A(t) be the population at gener-

ation t. Suppose at a given time step t, there are m members, or examples, of the

schema H, m = m(H, t). During reproduction, a string is copied according to its

fitness, so Ai is selected with probability pi = fi/Σfj. If the population size is n,

then:

m(H, t + 1) =
m(H, t)nf(H)

Σfj

(1.11)

where f(H) is the average fitness of the strings representing H. Let the population

average fitness be fp = Σfj/n then:

m(H, t + 1) =
m(H, t)f(H)

fp

(1.12)

From (1.12), the number of members in a particular schema grows as the ratio of the

average fitness of the schema to the average fitness of the population. All schemata

can grow or decay under the operation of reproduction alone. To investigate what

is the rate of growth or decay for a particular schema, assume a schema H remains

above average with amount cfp where c is constant, then:

m(H, t + 1) =
m(H, t)(fp + cfp)

fp

= (1 + c)m(H, t) (1.13)
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Starting at time t = 0, and assuming a stationary value of c, then:

m(H, t) = m(H, 0)× (1 + c)t (1.14)

From (1.14), we can conclude that reproduction allocates exponentially increasing

(decreasing) strings of schemata to above(below) average schemata.

So far, only the reproduction operation is considered. Next, we investigate the

effect of crossover operation on the growth or decay of a schema members. To do that,

consider a member A = 011|1000 that will undergo a crossover operation at the shown

position. The member A belongs to many schemata, of them are H1 = ∗1 ∗ | ∗ ∗ ∗ 0

and H2 = ∗ ∗ ∗|10 ∗ ∗. Both schemata will be undergo the same crossover operation

in the same position as A. Clearly, H1 will be destroyed while H2 will survive. It

is clear that H2 is less likely to survive crossover than H1 because on average the

cut point is more likely to fall between the extreme fixed positions. This previous

observation can be quantified as follow: A schema is destroyed with the probability

of having the crossover point within the fixed points of the schema, so the probability

of destruction Pd is:

Pd =
δ(H)

(l − 1)
(1.15)

where l is the number of bits in the member. The probability of Survival is then:

Ps = 1− δ(H)

(l − 1)
(1.16)

If the crossover itself is performed by random choice, with probability Pc at a partic-

ular mating then:

Ps = 1− Pc
δ(H)

(l − 1)
(1.17)
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Assuming the independence of crossover and reproduction operations, then:

m(H, t + 1) = m(H, t)

(
f(H)

fp

) (
1− Pc

δ(H)

(l − 1)

)
(1.18)

Those schemata with both above-average performance and short defining lengths are

going to be sampled at exponentially increasing rates.

To take into account the effect of mutation operation, recall that mutation is

a random alternation of a single position with probability Pm. A single bit survives

with probability (1−Pm). A schemata H survives if all its specified positions survive.

Each of the mutations are independent. A schema then survives with probability

(1 − Pm)o(H). If Pm << 1, then the survival probability can be approximated as:

1− o(H)Pm.

Combining the three operations effects in one formula, and neglecting the cross

product terms: we conclude that a particular schema receives an expected number

of copies in the next generation under reproduction, crossover and mutation as given

by:

m(H, t + 1) = m(H, t)

(
f(H)

fp

) (
1− Pc

δ(H)

(l − 1)
− o(H)Pm

)
(1.19)

Equation (1.19) represents the Fundamental Theorem of GA(schema theorem):

“Short, low-order, above-average schemata receives exponentially increasing in-

dividuals (trials) in subsequent generations.”

Short, low-order, highly fit schemata are called building blocks.

It is important to note here that the concept of schemata is used to illustrate why

the GAs work. Though the GAs does not use schemata for processing but rather uses

the probabilistic operations defined earlier, reproduction, crossover and mutation.

This was a brief for the fundamentals of GAs necessary to understanding the

developed work in the next chapters. More details on the principals of GAs can be
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found in [12], [10], [18], [28].

D. Objective of This Dissertation

The problem of optimal trajectories of spacecraft for remote sensing applications will

be studied. First, current development in literature will be reviewed. For Ground

surveillance missions, a proposed natural solution based on searching for the opti-

mal orbit will be formulated. The genetic algorithms optimization technique will be

studied and the feasibility of applying it to the problem will be investigated. Case

studies will be considered and comparison with other solutions in literature will be

presented. In cases where there is no solution that achieves the mission requirements

exist, then a multi-orbit solution is proposed. In this case, the set of targets will be

split into two groups. A solution is proposed for each group. The spacecraft will

be maneuvered from one orbit to another. The problem of optimal orbit transfer is

addressed. Genetic algorithms technique is used to solve this problem. A new for-

mulation is proposed that has advantages to the current formulations in literature.

The two-way set of orbits are introduced in this research. The concept is to have two

spacecraft passing over the same Earth target at the same time and parallel to each

other. Or, to have a spacecraft, that is maneuvered between two orbits, to pass over

a particular target in the two orbits. Conditions on the orbit parameters for the two

orbits will be derived.

E. Dissertation Organization

The first chapter of this dissertation is an introduction. This chapter presents in brief

the fundamentals necessary to understand the developments in the next chapters.

Chapter II presents the solution to the problem of finding the optimal natural
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orbit for the Ground surveillance missions. It includes the development of the math-

ematical formulation of the problem. It also describes all the software subroutines

developed to solve the problem. Many results and case studies are presented. This

chapter was presented as a research paper.

Chapter III addresses the problem of splitting the set of target sites into two

subsets. A mathimatical formulation for the problem is presented. An algorithm for

splitting is developed in this chapter.

Chapter IV presents the problem of optimal orbit transfer using genetic algo-

rithms. The mathematical formulation is developed. Validation to the technique is

presented. Case studies are presented. Comparison to other formulations in literature

is also discussed.

Chapter V introduces the concept of Two-way orbits. Analytical derivations are

developed to find the conditions for the two-way orbits. A two-way orbit is an orbit

which relative trajectory, with respect to the Earth, intersects itself, both branches

of the trajectory at the intersection point are parallel. Conditions on the orbital

parameters are derived for two-way orbits. If two spacecraft are flying in the two

compatible two-way orbits, a condition is derived such that the two spacecraft will

visit the intersection point at the same time. All these conditions are once more

derived for the case of special two-way orbits. The special two-way orbits are special

cases where the intersection point is at the perigee and apogee points of the orbit.

This chapter was presented as a research paper.

Chapter VI presents the development of an estimator that uses star tracker mea-

surements to estimate the orbit of a space object. Given a history of observations

from a star tracker onboard an observing spacecraft to a space object, Kalman fil-

ter and a least squares differential correction methods are developed to estimate the

object orbit.
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CHAPTER II

ORBIT DESIGN FOR GROUND SURVEILLANCE MISSIONS

A. Introduction

Ground surveillance is the observation from space of a discrete number of sites of

interest on the surface of the Earth. This kind of missions require that the satellite

visits all the given sites within a given time frame. A site is said to be visited if

the nadir point of the satellite passes through a given specified neighborhood of that

target. One example is to visit a set of 20 sites on the terrestrial surface within a

time frame, tf , of 50 days. In other applications this time could be tf = 3 days.

Ground surveillance missions can be accomplished using active orbit control to allow

the satellite to transfer from one target site to another [15]. In the contrary, the aim

of this study is to solve the ground surveillance problem in a completely passive way.

The goal is to find an orbit such that all the assigned sites will be visited within a

prescribed time frame. In this case, the consumption of the control fuel is limited

to that needed to just compensate the perturbations and not for accomplishing the

mission task.

To accomplish this goal, the proposed method performs optimization among all

possible orbits to find the best achievable orbit. This optimization is performed

through minimizing an error function that quantifies how a particular orbit is far

from an ideal solution. This error function is a function of the mission requirements.

The optimization is performed through a hybrid method that implements both the

Genetic Algorithms technique and a steepest descent technique.

Genetic algorithms have been already adopted to solve orbital mechanics prob-

lems. In particular, GAs have been used to find optimal solution for spacecraft
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rendezvous [17] and for orbit transfer [27] problems. The reason why GAs have been

adopted to solve the ground surveillance problem is essentially because the ground

surveillance problem is characterized by many local minima. Conventional optimiza-

tion methods (e.g., gradient/derivative methods) are not suitable for this kind of

problems because the final solution highly depends on the initial guess, and to obtain

a good initial guess is usually an even more complicate problem. On the other hand,

GAs provide global optimization solutions due to their randomized nature.

A local minimum solution is obtained through traditional optimization method-

ologies using the solution provided by the GA as a starting point. The final solution

is then guaranteed to be at a local minimum and globalized through the randomized

nature of the GA. The solution obtained by this approach as will be referred to as

“optimal” throughout this chapter. Enumerated methods can provide good solutions

to the problem. However, the efficiency of these algorithms is very low compared to

genetic algorithms.

Two types of missions are considered. Each mission will have a different penalty

function that we wish to minimize. The first mission is to get the highest resolution

for each target site for a given imaging sensor. In this case, and since the resolution

is proportional to the slant range, the objective is then to have the point of closest

approach of the satellite to each of the target sites as close as possible to that site.

The second mission requires that the observation time for each target site is a maxi-

mum. Depending on mission requirements, a combination between these two penalty

functions may be used.

This solution presents a fuel-free mission except for the fuel needed to compensate

the orbit perturbations. The amount of fuel needed for this purpose is relatively small.

A comparison between the fuel required to maintain the orbit for this solution and

the fuel required to achieve the mission by maneuvering the spacecraft from one site
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to another will be presented.

In the case that there is no natural solution satisfying the mission requirements,

the multi-orbit solution is proposed. In this solution, the set of target sites is split

into two groups. For each group, we use the same method to find the optimal orbit

for the group. So we have two orbits in order to visit all sites in the targets set. The

satellite will then be maneuvered from one orbit to another during mission operation.

It is required then to find the optimal maneuver that achieves the orbit transfer with

minimum fuel consumption. GAs is used to search for the optimal orbit transfer as

detailed in Chapter IV.

B. Problem Formulation

1. Sites Position Vector

Assume we have n target sites to be visited. Each target is defined by its longitude

and latitude, λk and φk, respectively, where k = 1, . . . , n. The position vector for the

kth target site in the inertial frame is then

rI
k = RE





cos φk cos(λk + ωE t)

cos φk sin(λk + ωE t)

sin φk





(2.1)

The only variable in the position vector of the kth target site is the Greenwich Sidereal

time, t, at which this site will be visited.
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2. Satellite Position Vector

The satellite position r O can be expressed in orbital fixed coordinate system as

rO =
p

1 + e cos ϕ





cos ϕ

sin ϕ

0





(2.2)

where ϕ is the true anomaly and p is the semilatus rectum. This vector is then

transformed to the inertial coordinate system through the transformation matrix,

R I/O (C ≡ cos and S ≡ sin)

R I/O =




CωCΩ − CiSωSΩ −SωCΩ − CiSΩCω SiSΩ

CωSΩ + CiSωCΩ −SωSΩ + CiCΩCω −SiCΩ

SωSi CωSi Ci




(2.3)

by

r I = RI/O rO (2.4)

The time in Eq. (2.1) is coupled with the true anomaly in Eq. (2.2) through the

Kepler time equation [32]

(tk − tp)

√
µ

a3
= Ek − e sin Ek (2.5)

where k = 1, . . . , n, tp is the perigee time, and E is the eccentric anomaly which is

related to the true anomaly by the relationship

tan
(

Ek

2

)
=

√
1− e

1 + e
tan

(
ϕk

2

)
(2.6)

The objective is to minimize a penalty function L, that will depend on the above

two position vectors which are, in turn, functions of the six orbital elements a, e, i,

ω, Ω, and ϕ(t). Consequently, the penalty function L is a function of a state vector
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whose elements are the orbital parameters a, e, i, ω, Ω, and all the visiting times tk.

A visiting time tk is the time of closest approach to the target site k. The elements

of the state vector constitute the design space.

Fig. 4. The angle ηk as defined for the k-th target site

C. Optimality Definition

A target site is characterized by a relative weight which establishes its relative im-

portance with respect to the other targets. Consider a satellite with an observing

instrument (radar, camera, etc) with an aperture of 2ϑFOV. Two cases are consid-

ered, one is to maximize the resolution and one is to maximize the observation time,

respectively.

For the resolution, a candidate optimality criterion would be to minimize a

weighted sum of squares of the distances between each site and the satellite at the

nearest ground track point. The penalty function

LR =
∑

k

αk(rk − r)T(rk − r) (2.7)
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will drive a solution orbit to pass as near as possible to each target site and also have

the best achievable resolution since the resolution is proportional to ‖(rk − r)‖.
For the observation time, the penalty function that will be minimized is

LT =
∑

k

αk H(ϑFOV − δk)
(
tf −

∫ tf

0
cos ηk dt

)
(2.8)

where ηk is the angle between r and rk (see Figure 4). H(x) is the Heaviside unit

step function [H(x) = 0 if x < 0, H(x) = 1 if x > 0], and δk is the nadir angle,

measured at the satellite from the nadir to the target. The cosine of the angle η can

be expanded as follows:

cos ηk = r̂I
k · r̂I =

= cos φk cos(λk + omegaEt) [cos(ω + ϕk) cos Ω− cos i sin(ω + ϕk) sin Ω] +

+ cos φk sin(λk + ωEt) [cos(ω + ϕk) sin Ω + cos i sin(ω + ϕk) cos Ω] +

+ sin φk sin(ω + ϕk) sin i (2.9)

The integral in Eq.(2.8) is evaluated numerically for general orbit solutions. However,

the search can be directed to look for only near circular orbits, if that is a requirement.

This can be achieved by constraining the range for eccentricity to be close to zero. In

this case, the integral in Eq.(2.8) can be evaluated analytically.

In the special case of a circular orbit the true anomaly coincides with the mean

anomaly

ϕ =

√
µ

a3
(t− tp) (2.10)

Then an analytical expression for the integration in Eq. (2.8) can be derived

∫ tf

0
cos η dt = I1 + I2 + I3 (2.11)



27

where the subscript k has been removed for simple writing, and

I1 =
∫ tf

0
cos φ cos(λ + ωEt) [ cos(ω + ϕ) cos Ω− cos i sin(ω + ϕ) sin Ω ] dt =

=
cos φ cos Ω

2(c2
1 − c2

3)
{(c1 + c3)[sin(tfc1 − tfc3 + c2 − c4)− sin(c2 − c4)] +

+(c1 − c3)[sin(tfc1 + tfc3 + c2 + c4)− sin(c2 + c4)]}+

+
cos φ cos i sin Ω

2(c2
1 − c2

3)
{(c1 + c3)[cos(tfc1 − tfc3 + c2 − c4)− cos(c2 − c4)] +

+(c1 − c3)[ cos(tfc1 + tfc3 + c2 + c4)− cos(c2 + c4) ]}

I2 =
∫ tf

0
cos φ sin(λ + ωEt)[ cos(ω + ϕ) sin Ω + cos i sin(ω + ϕ) cos Ω ] dt

=
cos φ

2(c2
1 − c2

3)
(sin Ω + cos i cos Ω) {(c1 + c3)[ cos(tfc1 − tfc3 + c2 − c4) (2.12)

− cos(c2 − c4) ] +−(c1 − c3)[ cos(tfc1 + tfc3 + c2 + c4)− cos(c2 + c4) ]}

I3 =
∫ tf

0
sin φ sin i sin(ω + ϕ) dt =

sin φ sin i

c1

[cos(ω + c2)− cos(ω + c2 + c1tf )]

where it has been set

c1 =

√
µ

a3
, c2 = ω − tp c1, c3 = ωE, and c4 = λ

D. Genetic Algorithms Implementation

Genetic Algorithms are search algorithms based on the mechanics of natural selection

and natural genetics. They combine survival of the fittest among string structures

with a structured yet randomized information exchange to form a search algorithm.

In GAs, a design point is called a member. A number of members is grouped

in a population. Generations of this population are created using GA operations like

reproduction, crossover, and mutation [12, 10, 18]. Each generation represents one

iteration in the searching process. At each generation, members that are fittest are

selected in a parents pool. The fitness of a member is determined according to the

objective, which is constructed based on the penalty function. These parents are then
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used to create the new generation. This process leads to the evolution of populations

of individuals that are more fit.

After expanding the expression for the penalty functions, the design variables

turn out to be the five orbital elements plus the n visiting times. Each member, i.e.

design point, is presented in a binary format as a binary string. This string contains

the binary representation of the values of all the design variables at the corresponding

design point, as shown in Fig. 5.

Fig. 5. bit string of a member, tk is the visiting time of site k

The number of bits allocated for each variable determines its accuracy. The more

number of bits, the higher the accuracy, however, the computational cost increases.

The number of bits for a variable is selected according to the following inequality:

2b ≤ m

a
(2.13)

Where b is the number of bits representing a variable, m is the maximum value for

the variable, and a is the required accuracy for the variable.

Based on this inequality, the number of bits allocated for the visiting time vari-

ables is 25, for the orbit angles is 13, and for orbit eccentricity is 7. The population

size selection depends mainly on the size of the problem. For the results presented in

this chapter, a population size of 100 members is used. The strings for all members

in the initial population are selected randomly. The fittest members are selected as
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parents for the next generation. Genetic algorithm operations are then used to gen-

erate a new generation. This process is repeated until a stopping criteria is satisfied.

In this problem the stopping criteria is to have the relative improvement of the fittest

member in a number of successive generations less than a certain bound.

As a final step, the solution found by the GA is then used as an initial guess in an

iterative optimization method to find a local optimal solution near the GA solution.

The fitness of each member is evaluated as a sum on all target sites. For the case

of a maximum resolution mission, the fitness of a member is evaluated as follows. For

each site, the mean anomaly is calculated as a function of the visiting time for this

site. The visiting time is a design variable and is generated from the GA operations.

The mean anomaly along with eccentricity are used to find the true anomaly by

solving Kepler equation, Eq.(2.5) and Eq.(2.6). The true anomaly is then used to

calculate the satellite position, Eq.(2.2). The satellite position is then compared to

the target site position to calculate the penalty for this site.

1. Genetic Algorithm Parameters

The crossover probability, the mutation probability, and the population size param-

eters need to be carefully selected. The selection of these parameters is problem

dependant [10]. Several run cases showed that a small change in the probability of

crossover can cause a big change in the final result. Different references suggests

different ranges for these parameters. Coly [10] suggests values for the crossover

probability, Pc, of 0.4 to 0.9. He also states that a typical value for the mutation

probability, Pm, is 0.001. However, many have used Pm ≈ 1/L or Pm ≈ 1/(N
√

(L))

[31], where L is the length of the chromosome and N is the population size.

For the ground surveillance problem, in each case several values for the parame-

ters are tested to find the best values for these parameters within the above mentioned
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ranges. For example, the case of 5 target sites has an optimal value for the crossover

probability of 0.95. Fig. 6 show the variation of the optimal cost function with the

crossover probability Pc. This results were generated with a population size of 200.

The number of days for the mission is 3 days. The maximum number of generations

is 100.

Fig. 6. Variation of the cost function with the crossover probability

E. Results

To demonstrate how good the algorithm is, the simple case of having only two target

sites is examined. The mission duration time is 3 days in this example. The penalty

function used is the maximum resolution mission penalty function, LR. LR is a non-
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dimensional measure for how far the solution is from an ideal solution. The expected

optimal solution should then be an orbit whose ground track is as close as possible

to the target sites. The semi-major axis, a, is not included in the design variables.

Because resolution is proportional to slant range, the algorithm would find orbits too

close to the ground if a was a design variable. The semi-major axis is set as an input

parameter.
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Fig. 7. Optimal orbit (n = 2 sites , tf = 3 days)

Figure 7 shows the ground track of the optimal orbit for that case. The orbit

parameters are a = 7, 753.5 Km, e = 0.7, i = 40◦, ω = 330◦, and Ω = 362◦, the

penalty function, at convergence, reached the value of LR = 2.58 · 10−9. As can be

seen from the figure, the error is almost zero and the two sites are nearly perfectly

visited. The penalty function is almost zero. A more complicated case of 15 target

sites visited within 3 days is shown in Fig. 8.

For the case of 15 target sites, the penalty function value did not go to zero. The

mission requirements, however, determines whether the resulting errors are acceptable
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Fig. 8. Optimal orbit (n = 15 sites, tf = 3 days)

or not. The orbital parameters for the solution orbit are a = 7, 753.5 km, e = 0.034,

i = 76 deg, ω = 207 deg, and Ω = 275 deg. Figures 9 and 10 show the results for a

case study of 20 target sites with a mission duration of 3 days.

The solution presented for this case is achieved after 150 generations (iterations).

The highest resolution is also required in this mission. The solution orbit semi-major

axis is set to 6892.8 km. The resulting orbit parameters are e = 0.045, i = 40.8 deg,

ω = 145.7 deg, Ω = 86 deg. The visiting times at which each target site is visited are

calculated. Here we present this by indicating the index of the satellite revolution in

which the site will be visited. The visiting orbit indices are shown in Table III.

The solution resulted from the GA has a penalty function of LR = 16. The

Guess-Newton optimization algorithm is used to refine the solution. The solution

provided by the GA is used as initial starting point. The final value for the penalty

function after refinement is LR = 3.23. The solution resulted from the GA is shown

in Fig. 10. Also the occurrences of the orbital elements in the last population as well

as the history of convergence are shown. Assume that the resulting non-dimensional
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Fig. 9. High resolution mission (n = 20 target sites, tf = 3 days)

error, LR = 3.23, is not satisfactory for a particular mission. The solution is to split

the set of target sites into two groups. Each group includes ten target sites. Because

the satellite will be transferred from one orbit to the other, and because the out of

plane maneuvers are expensive, constraints are added on the inclination and the right

ascension of the ascending node (RAAN) of the orbit of the second group. The second

orbit inclination and RAAN should be very close to those of the first orbit. This is

achieved by limiting the design space of both angles to small ranges around those

of the first orbit angles. As a result, the first group has a penalty function value of

LR = 0.61. The second group has a penalty function value of LR = 1.17. The orbit

of the first group has the following parameters: a = 6892.8km, e = 0.02, i = 127.5o,

ω = 8.9o, and Ω = 36.6o. The orbit of the second group has the following parameters:

a = 6892.8km, e = 0.01, i = 127.55o, ω = 248.4o, and Ω = 36.6o. Each orbit is

required to visit all the target sites in its group in two days. The resulting two orbits

have equal RAANs and very close inclinations.
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Fig. 10. High resolution mission (min LR, n = 20 target sites)

Figures 11 and 12 show the results for the second optimality definition, LT , where

the objective is to have maximum observation time. The mission duration is also 3

days. Figure 11 shows the solution for the case of 20 target sites. The resulting orbit

parameters are a = 6, 886.6 Km, e = 0.02, i = 56.1◦, ω = 0◦, Ω = 247.6◦. The visiting

orbit indices are shown in Table IV. Figure 12 shows the results of the GA iterations.

The range for each design variable is controlled. The eccentricity is limited to be

higher than zero and less than a maximum value emax:

emax = 1− rp

a
(2.14)

It can be limited to even lower values if high eccentric orbits are not required.
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Table III. Observed orbits sequence (min LR and n = 20)

Target 1 2 3 4 5 6 7 8 9 10

Orbit 9 28 6 23 3 17 19 28 15 1

Target 11 12 13 14 15 16 17 18 19 20

Orbit 25 30 37 38 29 15 38 20 9 15

Table IV. Observed orbits sequence (min LT and n = 20)

Target 1 2 3 4 5 6 7 8 9 10

Orbit 8 3 1 34 1 37 38 1 37 35

Target 11 12 13 14 15 16 17 18 19 20

Orbit 1 1 1 1 1 18 1 5 15 35

Disturbances like the aerodynamic drag and solar radiation pressure cause the

orbit to decay. The resulting orbit solution must be maintained during the mission

period to cancel the effect of the disturbances. Assume electric propulsion is used for

the orbit maintenance of the orbit obtained for the case of 20 target sites and duration

time of 3 days. Algorithms for orbit maintenance and estimates for the required

thrust and fuel mass using electric propulsion are available in the literature [1]. These

algorithms are used to estimate the amount of fuel needed for orbit maintenance in

this case. Assume the thruster specific impulse is 6000 sec and the spacecraft mass

is 200 kg, then the amount of fuel needed for orbit maintenance in this case is on

the order of 0.25 g/day. The maximum thrust needed is in the order of 0.3 mN. The

thruster will not be working continuously all the time but rather with a duty cycle

that ranges from 47% to 85%. On the other hand, if using the electric propulsion
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to maneuver the spacecraft continuously between sites, estimates [15] show that, for

the case of 20 target sites and duration time of 50 days, the amount of fuel needed

is 5 g/day. The maximum thrust needed is in the order of 1 mm/s2. The thruster is

working continuously all the time.
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Fig. 11. Optimal orbit (min LT and n = 20 sites)
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Fig. 12. Optimal orbit (min LT , n = 20 sites)

F. Conclusions

The problem of the orbit design for optimal ground surveillance is considered. The

GA method along with a steepest descent algorithm are used for optimization. The

use of GA requires the determination of many genetic parameters. These parameters

were determined using parametric analysis performed for each particular problem.

The problem formulation has a big effect on the solutions obtained by the GA. The

problem formulation is the set up of the member structure and the fitness function.

Other formulations for the ground surveillance problem were investigated, the current

formulation demonstrated to be the most efficient. However, no guarantee that it is

the best possible formulation.
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CHAPTER III

MULTI ORBIT SOLUTION TO THE GROUND SURVEILLANCE PROBLEM

Chapter (II) describes a method to find a natural orbit solution to the ground surveil-

lance mission. This solution may or may not satisfy the mission requirements, in terms

of the error associated with each site. In the case that there is no single orbit satis-

fying the mission requirements, a multi-orbit solution is proposed. The set of target

sites is split into two subsets. For each subset, we find the orbit solution associated

with this subset. The mission is completed by maneuvering the satellite from one

orbit to another. Two subproblems need to be solved. The first is to develop an al-

gorithm to split the set of targets into two subsets, this is the subject of this chapter.

The second subproblem is to develop an algorithm for optimal orbit maneuver, this

is the subject of chapter (IV).

The split can be done in many ways resulting in different subsets combinations.

The optimal split is defined as the split that results in two subsets, the penalty

function for them are the least that can be achieved among all possible splitting

solutions. The first section presents a mathematical formulation for the problem.

Next, an algorithm for splitting is introduced.

A. Mathematical Formulation

Let n be the number of target sites in a set S. Let the sites be indexed from 1 to n.

Introduce a binary variable xij that is related to the two sites, i and j. xij is defined

as follows:

xij =





1 if i and j are in the same set

0 if i and j are not in the same set



39

The range for i:

1 ≤ i ≤ n− 1 (3.1)

Noting that xii = 1 and xij = xji, then we can reduce the range of j to be:

i + 1 ≤ j ≤ n (3.2)

Specifying the variables xij for all values of i and j completely describes the

splitting. As a simple example, consider the case of n = 3. Assume that xij are

specified as follows:

x12 = 0, x13 = 1, x23 = 0 (3.3)

This specification for xij tells us that we have two subsets, the first includes the

sites 1 and 3 and the second subset includes the site 2. So we will call this specification

a splitting. Recall that we are concerned only with splitting the set S into two subsets

only, S1 and S2. So, in the above splitting, if the value for x13 was 0, then that would

give us a splitting for S into 3 subsets each includes a site. So, The above splitting

with x13 = 0 is not accepted. This condition can be written as follows:

If xjk = 0 then xji 6= xki (3.4)

The condition (3.4) guarantees that the set S will be split into two subsets only.

Consider again the splitting (3.3), if the value of x23 was 1 rather than 0, this means

that site 3 exists in both subsets. This can be accepted since it means a site will

be visited by both orbits. However, since we know that adding a site to a given set

of target sites results in an error function that is greater than or equal to the error

function before addition, then this case should be excluded. In fact, the condition

(3.4) implies also this new condition. It states that one site should not exist in two
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subsets and no more than two subsets is allowed.

So, the optimal splitting problem can be stated as follows: Given a set of target

sites S, find the splitting xij that splits S to S1 and S2, such that the penalty functions,

L1 for S1 and L2 for S2, are the minimum penalty functions among all possible

splittings, subject to the constraint (3.4).

B. Splitting Algorithm

In this section, an algorithm to perform the splitting is introduced. The algorithm

does not guarantee that the splitting is optimal, however, a satisfactory solution is

achieved. Let the length, ni, of a subset Si be the number of sites in this subset. Two

subsets S1 and S2 are initialized randomly with small number of sites, p, in each of

them, selected from the main set S. Then, the rest of sites in S is distributed on S1

and S2. The solution orbits for the initial subsets are calculated. Then each of the

remaining sites in S is added to either S1 or S2 according to whether it is closer to

the solution orbit of S1 or S2. This process is repeated with different initializing for

S1 and S2 until a satisfactory solution is achieved. This algorithm implements the

GA method to find the orbit solution for the initial subsets only.

Consider the maximum resolution mission. Recall that the penalty function

represents the sum of squares of errors on all the target sites from the orbit. So,

the penalty function is always a positive scalar. Consider a subset S1 that has a

penalty function L1, adding a new target site to this subset results in a new value

for the penalty function that is greater than or equal to the current value for L1. So,

decreasing the number of targets in a subset leads to a lower penalty function for this

subset. However, the other subset will have a higher number of targets. So, we will

constraint the search to pairs of subsets which difference in length is less than 2 sites.
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Given a set of n target sites S. It is required to split it into two target subsets S1 and

S2 with penalty functions L1 and L2 respectively. Assume that the maximum size for

any of the two subsets is nm; where nm is the least integer satisfying the condition:

nm ≥ n + 1

2
(3.5)

The algorithm starts by giving a random indexing for all targets in S.

S = {S(1), S(2), . . . , S(n)} (3.6)

The first p targets in S are selected and added to subset S1. The next p targets are

selected and added to subset S2:

S1 = {S(1), S(2), . . . , S(p)}

S2 = {S(p + 1), S(p + 2), . . . , S(2p)} (3.7)

The solution orbit for each subset is calculated along with the corresponding penalty

functions L1 and L2. The number of initially selected targets, p, is a parameter that

can be varied. From the results that were presented in the chapter II, the developed

method for optimal ground surveillance can find a solution that is almost optimal if

the number of sites is 2; the penalty function for this case is LR = 2.6×10−9, see Fig.

7. If the number of sites is 3, the penalty function is small, LR = 0.00061. These

results motivate the selection of p to be 2 or 3. The initial penalty function for each

subset will be almost zero. The next site in S is selected and added to both S1 and

S2, to form S1
′ and S2

′. The new penalty functions, L′1 and L′2, are calculated. The

calculation of L′1 and L′2 does not require the calculation of a new orbit solution but

rather calculating the error between the new site and the current orbit solution. The
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increase in each of the penalty functions is:

4L1 = L′1 − L1 (3.8)

4L2 = L′2 − L2 (3.9)

Let k be an index such that 1 + 2p < k < n. The new site, S(k) is added to S1 if

4L1 < 4L2 (3.10)

and is added to S2 if

4L2 < 4L1 (3.11)

If both 4L1 and 4L2 are equal, it will be added to the subset with less number

of sites in it. The process of selecting the next site from S and adding it to one

of the two subsets repeats until all sites in S are selected. The resulting S1 and S2

are stored and the whole process is repeated again with a new random indexing for

S. The process repeats until a satisfactory solution is achieved. For each indexing

of S, the GA method is used only one time for each set. Not all possible subsets

are checked but only those which sites are closer to a particular orbit, namely the

solution orbits of the initial subsets. In the limit when all possible indexing orders

are checked, the algorithm is equivalent to a numerical search. A flow chart for this

algorithm is presented in Fig 13.
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Fig. 13. Splitting algorithm flow chart
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CHAPTER IV

OPTIMAL ORBIT MANEUVERS USING GENETIC ALGORITHMS

A. Introduction

The solution to the ground surveillance problem may not be achieved using a single

orbit. In this case, the set of ground sites is split into two groups. Each group will

be considered independently. A natural orbit solution for each group is calculated.

An orbit transfer between the solution orbits is required. The problem of finding the

optimal orbit transfer using genetic algorithms is addressed in this chapter; optimum

in the sense of minimum fuel requirements.

McCue [19] solved the problem of finding the optimal two-impulse orbit trans-

fer. His solution is a combination between numerical search and steepest descent

optimization procedures. Numerical search is first used to present large amounts of

optimum impulse information in a concise contour form. Initial conditions taken from

the contour maps are used to find the local optimum. Although the steepest descent

algorithm converges very fast due to the good initial conditions, the numerical search

technique used to generate the impulse function contours has a higher computational

cost.

The problem of finding the optimal orbit transfer using GAs is addressed in

the literature. Kim [17] formulated this problem by constructing a member, or a

chromosome, from six design variables in the co-planar orbits case. The six design

variables are the true anomaly at the departure and arrival points, the required thrust

magnitudes at the departure and arrival points, and the thrust direction at the de-

parture and arrival points. This formulation can be easily generalized to a general

non-coplanar case. The number of design variables will be eight in this case. This
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formulation produces optimal solutions to the problem, however, the satellite is not

guaranteed to arrive exactly at the final orbit but rather close to it. Reichert [28]

also addressed this problem for co-planar orbits only. He formulated the problem

by constructing a member from three design variables. These design variables are

the eccentricity, semi-latus rectum, and orientation angle of the transfer orbit. The

required thrust to transfer the satellite is then calculated from the information of

the transfer orbit, initial orbit, and final orbit. This formulation can be generalized

to non-coplanar orbits, however, the number of design variables will increase. The

solution in this case also does not guarantee that the satellite will reach exactly the

required final orbit.

In this chapter, a new formulation to the problem is introduced. This formulation

requires only three design variables for the general case of non-coplanar orbits. The

solution obtained by this method is guaranteed to put the satellite on the final orbit

exactly even if the GAs did not converge to the optimal solution. The design variables

in this formulation are: the true anomaly at the departure and arrival points, and the

time of flight on the transfer orbit from the initial position to the final position. This

formulation requires solving Lambert problem to find the parameters of the transfer

orbit for a given set of the three design variables. Lambert problem is reviewed in

brief in this chapter. Validation to this formulation is performed by solving several

case studies to which the optimal solution is known. This method is used to complete

the solution for the Ground surveillance problem in the case of Multi-Orbit Solution.

1. Lambert Problem

Lambert was the first to form the solution to the problem of determining the orbit

given two position vectors and the time of flight between them in 1761. Lambert’s

original problem was to find the orbital transfer time between two vector positions.
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Lambert’s theorem states that the orbital transfer time depends only upon the semi-

major axis, the sum of distances of the initial and final points of the arc from the

center of force, and the length of the chord joining these points. The proof of Lam-

bert’s theorem is detailed in Ref. [3], and is briefed as follows: Let (t2 − t1) be the

orbital transfer time, then Lambert’s theorem states that:

√
µ(t2 − t1) = F (a, r1 + r2, c) (4.1)

The theorem is applicable to any conic orbit, however in this section we will consider

only elliptical orbits since the surveillance problem is restricted to only elliptical

orbits.

Let E1 and E2 be the respective eccentric anomalies associated with the two

position vectors ~r1 and ~r2. Then, from Kepler’s equation, the time to traverse the arc

from ~r1 to ~r2 is:

√
µ(t2 − t1) = 2a

3
2 [

1

2
(E2 − E1)− e sin(

1

2
(E2 − E1)) cos(

1

2
(E2 + E1))] (4.2)

Define ψ and φ by:

ψ =
1

2
(E2 − E1) cos φ = e cos(

1

2
(E2 + E1)) (4.3)

Then the Kepler’s equation becomes:

√
µ(t2 − t1) = 2a

3
2 (ψ − sin ψ cos φ) (4.4)

The sum, r1 + r2, can be calculated from the equation of orbit [3],

r1 + r2 = 2a(1− cos ψ cos φ) (4.5)
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The cord, c, can also be expressed in terms of ψ and φ [3]:

c = 2a sin ψ sin φ (4.6)

From Eq.(4.5) and Eq.(4.6), ψ and φ can be expressed as functions of a, r1 + r2,

and c. Substituting ψ and φ into Eq.(4.4), we get the mathematical expression for

Lambert’s theorem.

Lambert’s problem can be stated as follows: given two position vectors ~r1 and

~r2 and the time of flight between them, find the transfer orbit for the spacecraft.

Methods to Solve the Lambert’s problem are available in the literature. One Method

is the Universal Variable Method and is presented in Ref. [34]. The method evaluates

the two velocity vectors, ~v1 and ~v2, to completely specify the transfer orbit.

~v1 =
~r2 − f ~r1

g
~v2 =

ġ ~r2 − ~r1

g
(4.7)

where,

f = 1− yn

r1

ġ = 1− yn

r2

g = A

√
yn

µ
(4.8)

and, A = tm
√

r1r2(1 + cos(∆ν)), tm is the transfer time, and yn is a variable that is

evaluated numerically after a loop converges to a solution.

B. Orbit Maneuver Algorithm

Consider a satellite in an initial orbit defined by the five orbital elements aI , eI , iI ,

ωI , and ΩI . The final orbit is defined by the five orbital elements: aF , eF , iF , ωF ,

and ΩF . Assume that the satellite is subject only to the Newtonian force from the

central body. The true anomaly on the initial orbit at the time of satellite departure

from the initial orbit is θI . The true anomaly on the final orbit at the time of satellite

arrival to the final orbit is θF . The geometry for the orbit transfer is shown if Fig. 14.
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Both θI and θF are design variables for which we need to find the optimal values that

minimize the fuel consumption. For a given value of θI , we can calculate the position

and velocity of the satellite on the initial orbit, ~rI and ~vI respectively as detailed in

section (I.2). Similarly, for a given value of θF , we can calculate the position and

velocity of the satellite on the final orbit, ~rF and ~vF respectively. The time of flight,

tf , on the transfer orbit from the initial position to the final position is a design

variable. For given values for ~rI , ~rF , and tf , we can solve the Lambert’s orbital two

point boundary value problem [3] to find the transfer orbit parameters. From the

transfer orbit parameters, we can calculate the velocities on the transfer orbit at the

initial and final positions, ~vIt and ~vFt respectively. The required 4v can then be

calculated as follow:

4v = ‖~vI − ~vIt‖+ ‖~vF − ~vFt‖ (4.9)

The problem formulation is, therefore, as follows. Given the initial orbit and the

final orbit, find values for the time of flight tf , the departure true anomaly θI , and the

arrival true anomaly θF , such that the total 4v is a minimum. A genetic Algorithm

is used to search for the optimal values of tf , θF , and θI .

1. Validation

In order to check the validity of using GAs to find a solution for the orbit transfer

problem, some test cases are considered.

Case 1: Simple Coplanar Orbit Change

The first case tested is a simple case of transferring a spacecraft from a circular orbit

of altitude 300Km to an elliptic orbit of perigee altitude equal to 300Km, and an
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Fig. 14. Geometry for orbit transfer

apogee altitude of 3000Km. Although the above algorithm was designed for the case

of two impulse maneuvers, this example demonstrate that it can be used for the

simple cases of one impulse maneuvers. The exact solution to this case can be easily

calculated. Velocity on the initial circular orbit is:

vI =

√
µ

r
= 7.726 Km/sec (4.10)

Velocity on the final orbit at the periapsis is:

vF =

√
2µ

r
− µ

a
= 8.35 Km/sec (4.11)

So, the required increase in velocity is:

∆v = vF − vI = 0.624 Km/sec (4.12)

This ∆v should be applied at the perigee of the final orbit.
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Consider applying the developed GA algorithm to this problem. Since, the devel-

oped algorithm is designed for two impulse maneuver problems, the expected optimal

solution should be as follows. The optimal solution should consist of two impulses,

both at the perigee of the final orbit, and the time gab between them is the orbital

period of the final orbit. The sum of the two impulses should equal to the value

calculated in Eq.(4.12).

The optimal solution provided by the GA is shown in Figures 15 and 16. The

spacecraft is transferred exactly to the final orbit with zero error. The first impulse is

fired at a true anomaly angle of 0.038o (the correct value is 0o). The second impulse is

fired at a true anomaly angle of 357.25o (the correct value is 360o). The total impulse

as calculated from the GA solution is 0.62436 Km/sec, and the optimal value as

calculated above is 0.624 Km/sec. The solution provided by the GA is very close to

the optimal solution. The error in the final ∆v is 0.57%. The convergence is very

fast. From Fig. 16, the final solution was achieved after the third iteration.

Case 2: General Orbit Plane Change

Consider the case of transferring a spacecraft between two orbits that are not in the

same plane. In general, non-coplanar orbits have different inclinations, Longitudes

of ascending nodes, or both. In this case study, the general case of both angles are

different is considered.

Consider an initial circular Earth orbit of altitude 275 Km, inclination 28.5o,

and Ω = 60o. The final orbit is also a circular orbit with altitude altitude 275 Km,

inclination 10o, and Ω = 100o. The analytical solution to this problem [4] is as follows.

The intersection point of the two orbits is located at an anomaly angle of 162.45o as

measured along the initial orbit from its node point, and at an angle of 124.1o as

measured along the final orbit from its node point. These two angles correspond to
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Fig. 15. Single imulse maneuver: initial, final, and transfer orbits and fire points

the departure and arrival true anomalies. At the intersection point, the angle between

the two orbits is 21.73o. The required velocity change is ∆v = 2.918Km/sec. This

is also a single impulse maneuver. The optimal solution provided by the developed

GA tool is expected to have two fires coincide on the same location and the time gap

between them is equal to the period of the final orbit. The solution provided by the

developed GA tool is presented in Fig. 17 and Fig. 18. As seen from Fig. 18, two

impulses are fired, the total required velocity change is 2.9181 Km/sec. This value

corresponds to the true optimal value of 2.918 Km/sec with an error of 0.0034%. The

first impulse is fired at a departure true anomaly of 162.588o, corresponding to 162.45o.

The second impulse is fired at an arrival true anomaly of 123.407o, corresponding to

124.1o. The time between the two impulses is 1.4552 hr which is 2.88 min. less than

the orbital period of the final orbit. So, it can be concluded that the developed GA
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Fig. 16. Single imulse maneuver, design variables and cost function convergence

tool works well very the case of a general orbital plane change.

Case 3: The Hohmann Transfer

The Hohmann transfer maneuver is considered. In this case, both initial and final

orbits are circular. The optimal solution to the Hohmann transfer problem is a two

impulse maneuver. It is characterized by that the point of departure from the initial

orbit, the point of arrival on the final orbit, and the center of the central body are all

aligned. This can be written as: θF = θI + π. As a case study, consider the transfer

from a circular Mars orbit of radius 8000 Km to a circular Mars orbit of radius 15000

Km. The optimal solution is the Hohmann transfer with a required total velocity
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Fig. 17. General plane change: initial, final, and transfer orbits

change of 0.609 Km/sec. The time required for transfer is 5.08 hr [4].

The solution provided by the GA is shown in Fig. 19 and Fig. 20. Figure 19

shows a plot for the transfer orbit. The previously mentioned three points are almost

aligned which implies that this is the optimal solution. Figure 20 shows the number

of iterations and the final values for θI , θF , and tf and their occurrences in the final

generation. In Fig. 20, M1 is θI and M2 is θF . The required total velocity change

is 0.60928 Km/sec. This is compared to the above optimal value of 0.609 Km/sec.

The error is 0.045%. The true anomaly at departure is 127.85o. The true anomaly

at arrival is 306.73o. The difference between them is 178.88o, compared to the exact

optimal value of 180o. The calculated transfer time is 5.157 hr, compared to the

exact optimal value of 5.08 hr. The satellite is transferred exactly to the final orbit

with no error. The slight drift from the optimal solution appears as a slightly higher

transfer time and consequently a slightly higher total ∆v. The method converged to

the optimal solution after about 20 iterations. This fast convergence can be explained
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Fig. 18. General plane change: design variables and cost function convergence

as follows. The GAs look for a relation, or similarity, between the design variables

among the more fit elements. So, if the optimal solution poses a certain similarity,

or relation between some of the design variables, then a GA will figure out this

relation very quickly. In this problem, since the optimal solution is characterized by:

θF = θI +π, the GAs is able to figure out this relation and the remaining part is then

to find the optimal value for tf . Any value for θI is accepted as long as the above

relation is satisfied.

Case 4: Transfer from parking orbit to geosynchronous orbit

Consider the case of transferring a spacecraft from a circular Earth parking orbit at

altitude of 185 Km and inclination of 28.5o, to a geosynchronous orbit of altitude of
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Fig. 19. Solution orbit of the Hohmann transfer problem using GA

35786 Km and zero inclination. First, the spacecraft need to be maneuvered to an

elliptic transfer orbit to reach the altitude of the geosynchronous orbit. Then, it needs

to be maneuvered to circulate the orbit. Finally, the plane inclination maneuver is

performed to reach the final orbit. The previous three maneuvers can be done either

separately or by combining the last two maneuvers to save fuel. If they are performed

separately, the total cost is ∆v = 4.724 Km/sec [14]. If combining the last two

maneuvers together, the total cost will be reduced to ∆v = 4.297 Km/sec.

The developed GA tool is used to find the optimal solution to this problem. The
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Fig. 20. The Hohmann transfer solution, no. of iterations and design variables values

results are shown in Figures 21-23. The solution consists of two impulses. The first

is at the parking orbit, causing the spacecraft to go to the transfer orbit. The second

impulse is at the apogee of the transfer orbit causing a plane change and circulating

to the final required orbit. Fig. 21 shows the initial, transfer and final orbits. The

transfer orbit is inclined to the final orbit. The apogee radius of the transfer orbit is

equal to the radius of the final orbit. To better see this, a projection for the three

orbits on the equatorial plane is plotted in Fig. 22. Fig. 23 shows the final values for

the design variables and the cost convergence history. The total required change in

velocity is 4.2742 Km/sec.

Since the initial and final orbits are circular, it does not matter where to depart



57

Fig. 21. Parking orbit to geosynchoronous orbit transfer-3D view

from the parking orbit as long as the spacecraft will depart at the perigee of the

transfer orbit and depart from the transfer orbit at its apogee. From Fig. 23, the

spacecraft departs at an angle equal 181.4o on the parking orbit, and arrives the final

orbit at angle of 359.9o. The solution provided by the GA developed tool is almost

optimal in this case.

2. Discussion

The formulation for the orbit transfer problem has the following advantages. First,

the satellite is guaranteed to reach exactly the final orbit even if the transfer is not

optimal. Any solution provided by the GA will put the satellite in the final orbit. The

non optimality in a solution will appear as more fuel required to transfer the satellite

from the initial to the final orbit and longer maneuver time. The reason relies on

the fact that for each member in the population, the lambert problem is solved. The

solution of the lambert problem yields the exact orbit transfer from the member’s
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Fig. 22. Parking orbit to geosynchoronous orbit transfer-projected on the equatorial

plane

initial position to its final position during its assigned time of flight. So, the most

fit member in the last generation, which is the solution provided by the GAs, will

exactly arrive the final orbit with no error in position.

Second, the number of design variables is only three, even for the case of non

coplanar initial and final orbits. This is compared to six design variable in coplanar

orbits and eight design variables in non coplanar orbits in the formulation introduced

by Kim and Spencer [17] and compared to three design variables in only coplanar

orbits in the formulation introduced by Reichert [28].

Finally, because of the lower number of design variables, the running time for this

algorithm is relatively small. This small running time allows for a more exploration for

the design space. Usually a GA has to trade off between two contradicting approaches.

The first is to exploit the most fit members until the final solution is achieved through
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function convergence

successive GA operations on these most fit members. In the first population, the most

fit members are selected and kept in the next generation. In the second generation,

the most fit members are again selected and kept to the next generation and so

on. Exploitation causes a fast convergence to the solution. The disadvantage of

exploitation is that some regions in the design space may not be investigated at

all, and the optimal solution could be in these regions. The second approach is to

explore the design space. In this approach, most fit members in the current generation

are not kept to the next generation, but rather new regions in the design space are

investigated. Clearly this approach is slower in finding the final solution but has more

probability to hit the true optimal solution. Usually a trade off between exploitation

and exploration is tailored for each problem. In the orbital maneuver problem, and

because of the small number of variables and fast running time, it is possible to give
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more time for exploring new solutions and so increase the probability of hitting the

true optimal solution.

Having validated the use of the developed algorithm for solving the orbit transfer

problems, it is then applied to the general orbit transfer problem as a required part

to complete the solution of the Ground surveillance problem.

C. Conclusion

A new formulation for using the genetic algorithms to find the optimal orbit transfer

using impulsive thrust was developed in this chapter. The new formulation has some

advantages to other current formulations in literature. It has a few number of design

variables. Only three design variables are optimized in the general case of a transfer

between two non-coplanar orbits. This few number of design variables result in a

very efficient algorithm in terms of the computational cost. This efficiency enables

the user of this formulation to explore more in the design space searching for the global

optimal and so increasing the probability of finding the global optimal solution. The

developed formulation also guarantees that the optimal solution is achieved even if

the final solution is not the global optimal. The non-optimality appears as more flight

time during the transfer and more required fuel for the transfer but the spacecraft will

arrive exactly at the final orbit. The developed formulation was validated through a

number of cases and proved to find the optimal solution in all cases.
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CHAPTER V

TWO WAY ORBITS

This chapter introduces a new set of compatible orbits, called the “Two-way orbits”,

whose ground track path is a closed-loop trajectory that intersect itself, in some

points, with tangent intersections. The spacecraft passes over these tangent inter-

sections once in a prograde and once in a retrograde mode. Motivations are found

on the need of having simultaneous observations of the same target area for ground

surveillance systems. The general mathematical model to design a Two-way orbit is

presented for the specific case where the tangent points are experienced at the orbit

extremes, perigee and apogee. As for the general case, the Two-way orbit conditions

are formulated and numerically solved. Results show that, in general, Two-way orbits

could be formed over any Earth point. Since Two-way orbits use compatible orbits,

then all the theory of Flower Constellations can be applied to them. Using these Two-

way orbits, this chapter also introduces the Two-way Flower Constellations, having

one spacecraft prograde and one retrograde, passing simultaneously over the tangent

intersections.

A. Introduction

With the introduction of the Flower Constellations theory (FC), a new unified family

of satellite constellations and a new space object have been, simultaneously, created

[22]. The Flower Constellations open a new frontier on complex satellite formations

for two main reasons. Firstly, the Flower Constellations can be seen as constituted of

two distinct parts: an “internal part”, associated with the motion of all the satellites

along a prescribed identical relative space track, and an “external part”, associated

with the dynamic of the whole constellation, as a rigid object, that spins about an
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axis with a prescribed angular velocity. Secondly, these new constellation-objects

are used, as building blocks, to construct more complex configurations that allow to

accomplish more complex tasks.

The Flower Constellations, and the more recently introduced Synodic and Rel-

ative Flower Constellations (see [20]), combine a number of new attractive features

suitable for many potential classic applications (communications, Earth and deep

space observation, coverage, navigation systems, etc.), as well as for new and ad-

vanced concepts.

A Flower Constellation is built using orbits that are compatible with respect to

an assigned rotating reference frame. This implies that all the spacecraft, in this

rotating frame, follow the same continuous closed-loop trajectory. For information

on the Flower Constellations see also [5], [25], [24], [38], [39], and [40]. In particular,

when the reference frame is chosen to be Earth-Centered Earth-Fixed (ECEF), then

the FC spacecraft all follow the same relative trajectory (space track) in ECEF and,

consequently, the same continuous closed-loop ground track.

Fig. 24. Ground track intersecting angle.
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In general, the ground track is made of prograde and retrograde parts, depending

if the spacecraft ground track longitude increases or decreases with the time, respec-

tively. Also, the ground track (for a compatible orbit) is a continuous closed-loop line

that intersect itself in several points. These intersections can be characterized by the

angle between the ground velocities along the two intersecting parts, Fig. 24. When

this angle is equal to π, then the intersecting point is a tangent intersecting point and

the two intersecting parts are, locally, one prograde and another retrograde, respec-

tively, over the intersecting point on the Earth surface. This describes the concept of

the Two-way orbits. Figure 25 shows an example of a Two-way orbit.

In the Two-way orbits the relative trajectory will have (at least) one tangent

intersecting point. This implies that it is possible to build special Flower Constella-

tions with one spacecraft moving along the tangent prograde direction and another

spacecraft moving along the retrograde tangent direction. In particular, it is pos-

sible to phase the spacecraft in a such a way they will pass over the tangent point

simultaneously.

Two cases will be considered here. The first is the “special” Two-way orbits

where the tangency point is at the perigee of one spacecraft and the apogee of the

other. The second case is the “general” Two-way orbits where the tangency point is

any general point on the trajectories of the two spacecraft.

In this chapter, conditions on the orbits parameters such that they constitute a

Two-way orbit are derived. The second section will briefly review the theory of Flower

Constellations. The third section will review the orbit compatibility conditions. In

the fourth section, the case of special Two-way orbits is considered. Condition on the

orbits inclination is derived to have Two-way orbits. A plot is generated relating the

inclination vs. the eccentricity for specified values of the semimajor axis. The fifth

section will develop similar analysis for the general Two-way orbits. However, for



64

Fig. 25. Two-way orbits example.

this specific case the solution is obtained numerically. Algorithm for the numerical

solution is presented in the sixth section. The last section considers the compatibility

of the developed conditions with the Flower Constellation theory. Results show that

the derived conditions are compatible with the FCs only in the special Two-Way

Orbits.

B. Flower Constellations

We shall here briefly summarize some characteristics of the Flower Constellations.

They are:

1. Axial-symmetric dynamics,

2. Compatible orbits,

3. Constellation axis can be re-oriented,

4. The whole constellation can be seen as a new space object (secondary path)

spinning at constant rate about the constellation axis,
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5. Multiple constellations (constellations),

6. Repeated-repeated ground track (repeated),

7. Relative Sun-Synchronous orbits,

8. Morphing constellations,

In order to design a Flower Constellation the “FC Visualization and Analysis

Tool” (FCVAT) has been developed. FCVAT is a software written in JAVA and JAVA-

3D, it runs on every machine and OS with 3D capabilities, it has easy input/output,

it is STK compatible, and it can be specialized for any planet, Sun, and a fictitious

planet.

FC Phasing: The closed-loop relative trajectory intersects the associated (gen-

eral compatible) inertial orbit in many points. A subset of these points identifies the

admissible positions for a spacecraft to belong to the same relative trajectory. The

logic used to distribute the satellites in the admissible positions encompasses all the

possible different distribution.

FC Secondary Paths: For some particular values of the design parameters or,

equivalently, for some particular satellite distribution, the resulting Flower Constel-

lation highlights a shape that is maintained during the entire repetition period. This

shape, called Secondary Path, represents the contour of a fictitious rigid body that

spin about the constellation axis with a prescribed angular velocity.

Consider an Earth-Centered Earth-Fixed (ECEF) system of coordinates identi-

fied by E = {O, êx, êy, êz}, where the origin O is at the center of the Earth, êx on

the equatorial plane at Greenwich meridian, êz aligned with Earth’s spin axis, and

êy = êz × êx to form a right-handed reference frame.
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A orbit is called compatible with respect to the Earth [6] when the spacecraft

trajectory in E constitutes a closed-loop relative trajectory. A compatible orbit,

which is often and inappropriately called repeated ground track orbit, is defined as the

orbit whose orbital nodal period TΩ (node to node) satisfies the relationship

Np TΩ = Nd TΩG (5.1)

where Np and Nd are two integer numbers indicating the number of orbit periods and

the number of the Earth rotational periods to repeat, and where TΩG is the Greenwich

nodal period, which has been defined by Carter [6] as

TΩG =
2π

α̇⊕ − Ω̇
(5.2)

where α̇⊕ = 7.29211585530 × 10−5 rad/sec is the rotation rate of the Earth and Ω̇

is the nodal regression of a satellite’s orbit plane caused by perturbations such as

the Earth’s oblateness. In particular, Tr = Np TΩ is the period of repetition on the

relative trajectory.

Equations (5.1) and (5.2) allow us to write

TΩ =

(
2 π

α̇⊕ − Ω̇

)
Nd

Np

=

(
2 π

α̇⊕ − Ω̇

)
ξ (5.3)

where ξ = Nd/Np is the rational compatibility parameter. Equation (5.3) tells us

that, for every distinct value of ξ, there is a different nodal period TΩ, associated

with Earth’s compatible orbits. However, this equation can also be seen from a

different perspective: for a given value of ξ, an arbitrary orbit (with nodal period TΩ

and nodal rate Ω̇) can be seen as compatible with a fictitious Earth that rotates with

angular velocity

α̇ = Ω̇ +
2 π

TΩ

ξ (5.4)
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Therefore, every orbit can be seen compatible with an associated Earth-Centered

Rotating (ECR) system of coordinates that rotates at the angular velocity provided

by Eq. (5.3). The final result is that any Earth-compatible orbit is compatible with

infinite ECR reference frames. The compatibility concept is a relative concept, which

is referring always to a rotating reference frame. Thus, if we consider a different

rotating reference frame, then there will be a definition of orbit compatibility with

respect to this reference frame.

C. The “Special” Two-way Orbits

The condition for two satellites to have tangent ground tracks at a point is to have

parallel Earth-relative velocities at that point. The Earth-relative velocity, ~V R, is the

velocity of the satellite with respect to an Earth rotating system of coordinates.

~V R = ~V − ~VE (5.5)

where ~V is the satellite velocity in ECI and ~VE is the local geographical velocity

evaluated at radius ~r in ECI. The transformation matrix between inertial and orbital

reference frames is (C ≡ cos and S ≡ sin )

RT =




CΩCω − CiSΩSω −CΩSω − CiSΩCω SiSΩ

SΩCω + CiCΩSω −SΩSω + CiCΩCω −SiCΩ

SωSi CωSi Ci




(5.6)

This matrix allows to evaluate inertial (ri) from orbital (ro) directions, and vice versa

ri = RT ro ⇐⇒ ro = R ri (5.7)
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In particular, position and velocity are transformed accordingly with

ri =
p

1 + e cos ϕ





cos Ω cos(ω + ϕ)− sin Ω sin(ω + ϕ) cos i

sin Ω cos(ω + ϕ) + cos Ω sin(ω + ϕ) cos i

sin(ω + ϕ) sin i





(5.8)

while the velocity in orbital reference frame is expressed as

vo =

√
µ

p





− sin ϕ

e + cos ϕ

0





(5.9)

Let us consider, for simplicity, two eccentric orbits having the apsidal lines lying on

the equatorial plane (ω = 0). Under this condition, the velocity of the first at perigee

is

~Vp1 = (e + 1)

√
µ

p





− sin Ω1 cos i

cos Ω1 cos i

sin i





(5.10)

while at apogee of the second orbit the velocity is

~Va2 = (e− 1)

√
µ

p





− sin Ω2 cos i

cos Ω2 cos i

sin i





(5.11)

The local geographical velocity is

~VE = ~ωE × ~r (5.12)
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where ~ωE is the Earth angular velocity. Specializing Eq. (5.12) for the perigee position

and orbit #1 we obtain

~VEp1 =





0

0

ωE





× p

1 + e





cos Ω1

sin Ω1

0





=
p ωE

e + 1





− sin Ω1

cos Ω1

0





(5.13)

while at apogee of orbit #2 the Earth velocity is

~VEa2 =





0

0

ωE





× p

1− e





− cos Ω2

− sin Ω2

0





=
p ωE

e− 1





− sin Ω2

cos Ω2

0





(5.14)

Substituting Eqs. (5.10) and (5.13) into Eq. (5.5) we obtain

~V R
p = (e + 1)

√
µ

p





− sin Ω1 cos i

cos Ω1 cos i

sin i





− p ωE

e + 1





− sin Ω1

cos Ω1

0





(5.15)

while Eqs. (5.11) and (5.14) into Eq. (5.5) we obtain

~V R
a = (e− 1)

√
µ

p





− sin Ω2 cos i

cos Ω2 cos i

sin i





− p ωE

e− 1





− sin Ω2

cos Ω2

0





(5.16)

In general, in order to have tangent ground tracks at the intersection, the two

velocity vectors and the vector pointing at the intersection, ~Req, must be linearly

dependent (they identify the plane passing through the origin of the coordinates and

containing the two velocities ~V R
a and ~V R

p ). In our case, since we are looking for

tangency at equator and experienced at perigee/apogee, then our tangency condition

can be substituted with the condition for the two velocity vectors, ~V R
a and ~V R

p , of



70

being parallel. This implies that we can write

~V R
a = k ~V R

p (5.17)

where k is the proportionality constant whose value can be directly obtained from

the third scalar identity of Eq. (5.17)

k =
e− 1

e + 1
(5.18)

This condition yields to the relationship

−CiSΩ1Vp + ωErpSΩ1

CiSΩ2Va − ωEraSΩ2

=
CiCΩ1Vp − ωErpCΩ1

−CiCΩ2Va + ωEraCΩ2

(5.19)

and

−CiSΩ1Vp + ωErpSΩ1

CiSΩ2Va − ωEraSΩ2

=
Vp

−Va

(5.20)

With little manipulation, Eq. (5.19) is satisfied iff

sin (Ω1 − Ω2) = 0 (5.21)

or

VaVpC
2
i − ωECi (rpVa + raVp) + ω2

Erpra = 0 (5.22)

The latter case is refused because it does not satisfy the condition in Eq. (5.20) The

result in Eq. (5.21) states that either Ω1 = Ω2, which is a trivial case where the two

orbits are identical, or

Ω1 − Ω2 = π (5.23)

The latter gives the condition on the right ascension of ascending node for the two

orbits. The condition in Eq. (5.20), after manipulation, implies that

Ci =

ωE

(
rp

Vp

SΩ1 − ra

Va

SΩ2

)

SΩ1 − SΩ2

(5.24)



71

From Eq. (5.23), we have sin(Ω2) = − sin(Ω1) then Eq. (5.24) simplifies to

cos i =
ωE

2

(
rp

Vp

+
ra

Va

)
− 2eωE√

a(1− e2)

√√√√a3

µ
(5.25)

where Vp =

√
2µ

rp

− µ

a
and Va =

√
2µ

ra

− µ

a
. Equations (5.23) and (5.25) constitutes

the necessary and sufficient conditions to have Two-way orbits.

Fig. 26 shows Two-Way Orbits inclinations for different values of e and a.
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Fig. 26. Two-way orbits inclinations for different values of e and a

D. The “General” Two-way Orbits

We considered the case where the two orbits have similar shape, size and inclination.

Moreover, we assumed zero argument of perigee and the intersection point occur at
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the perigee and apogee points of the two orbits. In this section we look at the same

problem but the intersection point is any general point, not necessarily an apogee or

perigee.

First we find the condition of having an intersection between the two ground

tracks for two different orbits. An intersection between the ground tracks occurs if

the two position vectors of the two satellites are parallel.

~r1 = kr~r2 (5.26)

Substituting for the vectors ~r1 and ~r2 from Eq. (5.8) then we can get the following

two conditions for an intersection to occur

cos Ω1 cos(ω + ϕ1)− sin Ω1 sin(ω + ϕ1) cos i

cos Ω2 cos(ω + ϕ2)− sin Ω2 sin(ω + ϕ2) cos i
=

sin(ω + ϕ1)

sin(ω + ϕ2)
(5.27)

and

sin Ω1 cos(ω + ϕ1) + cos Ω1 sin(ω + ϕ1) cos i

sin Ω2 cos(ω + ϕ2) + cos Ω2 sin(ω + ϕ2) cos i
=

sin(ω + ϕ1)

sin(ω + ϕ2)
(5.28)

These two conditions can be simplified to the following form




Cia1 −a3

a3 Cia1








SΩ1

CΩ1





=




Cia1 −a4

a4 Cia1








SΩ2

CΩ2





(5.29)

where, a1 = sin(ω + ϕ1) sin(ω + ϕ2), a3 = cos(ω + ϕ1) sin(ω + ϕ2), and a4 = sin(ω +

ϕ1) cos(ω + ϕ2).

1. Observations

1. We notice that for the special case where a3 = a4, then either Ω1 = Ω2, which is

obvious case, or Ci
2a1

2 +a3
2 = 0 and this is satisfied only if ω +ϕ2 = nπ where,

n = 0, 1, . . .. This later case is the special case solved in the previous section.
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2. If we eliminate Ci from Eq. (5.29) then we get

a4SΩ2 − a3SΩ1

∆C
=

a3CΩ1 − a4CΩ2

∆S
(5.30)

where ∆C = CΩ1 − CΩ2 and ∆S = SΩ1 − SΩ2. Then by rearrangement of Eq.

(5.30)we can write

a4

a3

≡ tan(ω + ϕ1)

tan(ω + ϕ2)
=

CΩ1∆C + SΩ1∆S

CΩ2∆C + SΩ2∆S
(5.31)

This can be further simplified to the form

(a3 + a4)[ cos(Ω1 − Ω2)− 1 ] = 0 (5.32)

Which means that either Ω1 = Ω2, which is a trivial solution, or a3 = a4. The

latter can be written in the form

ω1 + ϕ1 + ω2 + ϕ2 = nπ n = 0, 1, · · · (5.33)

3. For given Ω1 and Ω2, Eq. (5.31) gives one relation between ϕ1 and ϕ2 at

the intersection point. Another relation is required to find the two anomalies.

The other relation should relate them through the time equation. The above

relation only states that the intersection is possible between the two tracks but

not necessarily implies that the both satellites will pass by this point at the

same time. A second condition should relate the two anomalies through the

time such that the two satellite will pass by the intersection point at the same

time.

4. For the special case where Ω1−Ω2 = π, the above equation reduces to
a4

a3

= −1.

This means that ϕ2 = π − ϕ1, which is the special case solved in the previous

section.
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The condition in Eq. (5.33) implies that the two trajectories of two satellites

intersects at certain point; however, it does not imply that the two satellites will

pass by this point both at the same time. To guarantee that both will pass by the

intersection point at the same time, we introduce the following condition.

Assume the two satellites of interest intersect at time t = ti, and writing the

time equation for both satellites at the intersection point

(ti − tp1) n = ψ1i − e sin(ψ1i) (5.34)

(ti − tp2) n = ψ2i − e sin(ψ2i) (5.35)

where n is the mean motion. Then,

ψ2i − e sin(ψ2i) = ψ1i − e sin(ψ1i)− n(tp2 − tp1) (5.36)

In order to find tp1 and tp2, we need to define the phasing between the two satellites.

Recalling that for a Flower Constellation we have two phasing conditions [22]. The

first, for a two body case

Mk+1(0) = Mk(0) + 2π
Fn

Fd

n

ωE

(5.37)

where Fn and Fd are integers defining the phasing of the two satellites. Now if we set,

without loss of generality, tp1 = −M1(0)/n and tp2 = −M2(0)/n, then the condition

in Eq. (5.36) becomes

ψ2i − e sin(ψ2i) = ψ1i − e sin(ψ1i) + 2π
Fn

Fd

n

ωE

(5.38)

Eq. (5.33) and Eq. (5.38) completely determine the intersection point of the two

satellites.

Now, we proceed to the condition of two way orbits. We proceed as in the
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previous section but with general orbit parameters.

Assume that the point of intersection occur at point 1 in the first orbit corre-

sponding to a true anomaly, ϕ1, and at point 2 in the second orbit corresponding to

a true anomaly, ϕ2. And assume also that the two orbits have common e, i, and ω.

Then it can be shown that the velocity of point 1 relative to the Earth is

~V R
1 =





√
µ

p1

(τ11τ12 + τ13τ14) +
ωEp1

1 + e cos(ϕ1)
τ15

√
µ

p1

(τ21τ12 + τ23τ14)− ωEp1

1 + e cos(ϕ1)
τ25

√
µ

p1

Si (Sωτ12 + Cωτ14)





(5.39)

where

τ11 = CΩ1Cω − CiSΩ1Sω

τ12 = sin(ϕ1) [cos(ϕ1) (1− e)− 1]

τ13 = −CΩ1Sω − CiSΩ1Cω

τ14 = 1− [cos(ϕ1) (1− e)− 1] cos(ϕ1)

τ15 = SΩ1 cos(ω + ϕ1) + CiCΩ1 sin(ω + ϕ1)

τ21 = SΩ1Cω + CiCΩ1Sω

τ23 = −SΩ1Sω + CiCΩ1Cω

τ25 = CΩ1 cos(ω + ϕ1)− CiSΩ1 sin(ω + ϕ1)

The vector ~V R
2 is defined similar to ~V R

1 with p2, Ω2 and ϕ2 replacing p1, Ω1 and ϕ1,

respectively.

~V R
2 =





√
µ

p2

(σ11σ12 + σ13σ14) +
ωEp2

1 + e cos(ϕ2)
σ15

√
µ

p2

(σ21σ12 + σ23σ14)− ωEp2

1 + e cos(ϕ2)
σ25

√
µ

p2

Si (Sωσ12 + Cωσ14)





(5.40)

where σij correspond to τij.
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The condition for having two way orbits is that the vectors ~V R
1 , ~V R

2 and the position

vector of the intersection point, ~ri, belongs to the same plane. Then we can write

this condition as follow:

χ = ~ri ·
(
~V R

1 × ~V R
2

)
= 0 (5.41)

It is difficult to derive analytically an expression that gives the inclination of such

orbits, however a numerical solution is developed.

E. Numerical Solution Algorithm

It is possible to introduce a numerical algorithm to find the intersection point of two

satellites and the condition of the two orbits such that they constitute a Two-way

orbit. This is done through two consecutive steps.

1. Determine the Intersection Point

Equations (5.33) and (5.38) can be solved numerically to fined ϕ1 and ϕ2 as follow:

1. Assume a value for ϕ1,

2. Get the corresponding ψ1,

3. Given the phasing parameters, Fn and Fd, evaluate ψ2 using Eq. (5.38),

4. Evaluate the corresponding ϕ2, and

5. Check if ϕ1 and ϕ2 satisfy Eq. (5.33), if not then repeat from step 1.

This will result in the values of ϕ1 and ϕ2 at the intersection point given the orbital

shape, a, e, and ω.



77

2. Determine the Orbits Inclination

In this step, we use the Two-way orbit condition, Eq. (5.41), to find the orbit incli-

nation. Given Ω1, Ω2 can calculated as follow

Ω2 = Ω1 − 2π
Fn

Fd
(5.42)

we will then loop on all possible values inclination, and in each time we check if the

derived condition is satisfied or not. This will result in all possible values for the

inclination, i, completing the five orbital elements. There are many parameters to

play with, one case is plotted in Figures 27 and 28 where Fn = 1 and Fd = 4. The

condition χ = 0 satisfaction is investigated and the variation of χ with different values

for the eccentricity is plotted in Fig. 28.
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Fig. 27. “General” Two-way orbits: eccentricity vs. inclinations for different values of

a

For a Flower Constellation [22], we have two phasing conditions. The first is
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Fig. 28. “General” Two-way orbits: The χ values vs. inclination for different values

of e

used in calculating the intersection point as discussed above. The second is used to

calculate Ω2, Eq. (5.42). So all the calculated satellites constitute a Flower Constel-

lation.

F. Conclusions

In this chapter, the concept of Two-way orbits is investigated. The special case of

two satellites intersecting at their perigee and apogee locations is solved analytically.

The general case of the two satellites intersecting at two general points on their orbits

with tangent ground tracks is formulated and solved numerically. The case of two

satellites in a Flower Constellation is investigated and results demonstrated possible
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existence of general Two-way orbits in the Flower Constellation set.
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CHAPTER VI

SPACE SURVEILLANCE WITH STAR TRACKERS

ORBIT ESTIMATION

This chapter develops an estimator that uses star tracker measurements to estimate

the orbit of space objects. Given a history of observations from a star tracker on-

board an observing spacecraft to a space object, a batched least square approach

is implemented to estimate the object orbit. A dual-use for wide field-of-view star

trackers along with the Pyramid algorithm that provides their attitude determination

capabilities can provide a measurement for the direction of the space object. As a

matter of course, the Pyramid algorithm examines all objects that appear in the field

of view of the star tracker. Objects that are identified as belonging to the star catalog

are used for precision attitude determination. The star tracker, owing to the robust-

ness of the Pyramid algorithm, can be used to obtain azimuth and elevation angles

for the other unidentified space objects in the satellite’s body frame. Additionally,

star trackers are capable of taking measurements at frequencies approaching 100 Hz.

Hence, star trackers that have adopted the Pyramid algorithm are capable of produc-

ing extremely dense short-arc in situ surveillance data of space objects within their

field of view. Once the surveillance data has been collected on-board the satellite, it

can be down-linked to Earth for use in orbit determination and object identification.

The object identification process can be eliminated if the star tracker is deliberately

pointed at a known space object for which we desire to have precision observations.

A. Introduction

Orbit determination is an integral part of current space operations. The ability to

know precisely where a space object is orbiting the Earth is critical to mission plan-
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ners for reaching science objectives as well as avoiding catastrophic collisions with

other space objects or space debris. Currently, tracking information is provided by

a number of facilities around the world including NASA’s Satellite Laser Ranging

(SLR) stations, the U.S. Air Force Space Surveillance Network, the U.S. High Accu-

racy Network Determination System (HANDS), the U.S. Navy Interferometer Fence,

the Russian Space Surveillance Syste, the French Doppler Orbitography and Radio

Position Integrated by Satellite system, as well as the U.S. Global Positioning System.

The SLR stations provide some of the most accurate data that is often used to define

“truth” orbits; however, its use is primarily limited to those space objects equipped

with retro-reflectors.

Short-arc dense data sets are defined by Vallado and Carter [35] as having ob-

servations every second for at least two minutes. Long-arc data sets are in the five

to six minute range. Dense data allows one to estimate a larger state that not only

includes position and velocity but also error biases and the ballistic coefficient. Ad-

ditionally, short-arc dense data provides a more realistic covariance matrix while the

importance of the fit-span diminishes. Lastly, dense data sets allow for improved

orbit determination of drag perturbed orbits.

In a study of the High Accuracy Network Determination System (HANDS),

Sabol and Culp [29] found that supplementing traditional ranging observations with

unbiased and well-calibrated angles only optical observations could improve the es-

timated error to the 10 m range. The Raven class telescope [30] has measurement

standard deviations of less than 1′′ (4.8 · 10−6 rad) in azimuth and 0.5′′ (2.4 · 10−6

rad) in declination. However, it suffers from systemic errors [36] that are currently

under investigation. Once these systemic errors are removed, the HANDS network

will prove to be one of the most accurate and affordable ground-based tracking net-

works available. For comparison, the radar facilities at Eglin Air Force Base, located
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at N30.2316◦ latitude and W86.2147◦ longitude, have measurement error standard

deviations of σrange = 34.3 m, σazimuth = 0.0149◦, and σelevation = 0.0166◦. [37]

Now consider if one were able to take observations of space objects in situ. In

situ data has the advantage of being taken outside the Earth’s atmosphere. By

using Gaussian best fitting to centroid the observed stars [21] and a state of the art

CCD/CMOS digital imager, the centroiding of space objects can be provided with

standard deviations below 2′′ (0.00083◦). Additionally, star trackers have been shown

to take reliable observations at frequencies approaching 100 Hz [33]. Therefore, wide

FOV star trackers combined with the Pyramid algorithm described above can produce

highly accurate, dense data sets for objects that cross its field of view. Clearly, a

sensor that can provide dense, highly accurate angles only data sets in situ would be

desirable.

Once these data sets have been obtained, there are two primary methods of

orbit determination. The most widely used is the least squares method. Batch least

squares has been implemented in most major orbit determination packages such as the

NASA GSFC Ops Goddard Trajectory Determination System (Ops GTDS), the Naval

Research Laboratory’s Special-K, and the General Research Corporation’s Analyst

Workstation (AWS) Program to name a few. That being said, Kalman filtering

presents new opportunities for orbit determination that should not be overlooked.

Kalman filtering allows for the fact that our force models are imperfect, which may

lead to a more accurate understanding of the orbit error.

In the following sections, the observability of the system is first investigated to

check the possibility of estimating the system states from the measurements. For

estimation purposes, the model of the system is here introduced and an analytical

expression for the Jacobian matrix is derived. The Gaussian Least Squares Differential

Correction (GLSDC) technique is implemented and results are presented.
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B. Observability Investigation

In this section, the system observability is investigated to see whether the states of

the system are independently observable from the measurements or not. For a linear

system, this can be done by calculating the observability matrix and checking if it

can be inverted or not. If it can be inverted, then all the states are observable from

the measurements of the system [23]. For a nonlinear system, however, it is not

that straight forward. The Newtonian gravitational attraction model is nonlinear.

Even, if we assume small relative distance between the two spacecraft and use Hills

equations as a model for the relative motion, the states equations are linear but the

measurement is a nonlinear function of the states. Two cases will be considered

to check the observability, the Hills equations model and the Newtonian attraction

model.

1. Observability of the Nonlinear Model

In this nonlinear model, the system states are the object orbital elements and the

true anomaly at the first measurement. The measurements are a series of directions

from the observing spacecraft to the object spacecraft. The observability of the state

vector from the measurements can be investigated by perturbing each of the states

and check the resulting perturbation in the measured quantity [26]. If a perturbation

of each of the states results in independent perturbation responses in the measured

quantity, then all the states can be estimated from the measured quantity.

Each of the orbital elements for the object orbit is perturbed as well as the true

anomaly at epoch, the first measurement. These perturbations result in a correspond-

ing perturbation in the vector of object position relative to the observing spacecraft

position. The relative position vector can be seen as two separate quantities, mag-
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nitude and direction. We are only concerned about the direction because this is the

quantity that we can measure.

As a case study, it is assumed that the two spacecraft are moving in the same

orbit with small eccentricity of 0.005 and an altitude of 550Km. The object space-

craft, spacecraft A, is leading the observing spacecraft, spacecraft B. Figures 29-33

show the perturbation in the relative position magnitude and direction due to states

perturbations. The direction is measured w.r.t. an inertial fixed axis.
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Fig. 29. Perturbations of range and angle caused by perturbation of the mean anomaly

at epoch

As can be seen from Fig. 29, positive perturbation in the true anomaly at epoch

results in constant positive perturbation in the direction of the relative position vector,

ψAB. A negative perturbation causes also a negative constant perturbation in ψAB.
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Fig. 30. Perturbations of range and angle caused by perturbation of the eccentricity

Eccentricity perturbation causes harmonic perturbation in ψAB, as shown in Fig 30.

Positive and negative eccentricity perturbations can be distinguished from each other

from the phase difference in the perturbed ψAB. Since eccentricity perturbations cause

harmonic ψAB perturbations compared to a constant perturbation for the case of the

true anomaly at epoch, then these two states can distinguished from each other based

on the measured ψAB. Considering Fig. 31, any perturbation in the semi major axis

will cause the two spacecraft to orbit the Earth with different orbital period. This will

result in ψAB changing as a ramp or even faster. Positive and negative perturbations

in a, or equivalently in n, are distinguishable from each other based on the sign of the

perturbed ψAB. Both are distinguishable from previous states because of the ramp
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Fig. 31. Perturbations of range and angle caused by perturbation of the semi-major

axis

nature of the ψAB response.

The orbit plane observability can be investigated geometrically as follows. First,

consider the case of the two spacecraft are in the same plane. Then all the measured

directions of the target spacecraft will be in the same plane. So, if all the measured

directions are normal to the known observer plane normal vector, then the target

spacecraft is in the observer plane. For the case of the two spacecraft are not in the

same plane, consider the intersection point of the two orbits. The observer spacecraft

orbit normal is known. The unit vector from the observer to the target at the inter-

section point is in the observer plane. So it is normal to the known observer plane

normal vector. This means that the intersection points can be determined from the
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Fig. 32. Perturbations of range and angle caused by perturbation of inclination

measurements: If the target direction is normal to the observer plane normal, then

the target is at the intersection point at this time. Given the intersection point of the

two orbits, and the plane of one of them, the plane of the second orbit cab calculated

geometrically.



88

0 1000 2000 3000 4000 5000 6000
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Effect of ∆ Omega
A
 on the perturbation time history of ∆ ψ

BA

Time (sec)

∆ 
ψ

 (
de

g)

∆ Omega
A
 =  0.05o

∆ Omega
A
 =  −0.05o

0 1000 2000 3000 4000 5000

−0.013

−0.012

−0.011

−0.01

−0.009

∆ 
ψ

 (
de

g)

∆ Omega
A
 =  0.05o

∆ Omega
A
 =  −0.05o

Fig. 33. Perturbations of angle caused by perturbation of ΩA



89

From the above discussion, it can be concluded that all states can be estimated

given a history of measurements. However, of importance is the duration of these

measurements. Looking again at the previous figures, one can recognize that a short

history of measurements, say 1000 seconds, may not tell whether the perturbed ψAB

is, in this short period, a part of a ramp or a harmonic wave or even a constant with

some noise added to it. It is concluded from that the measurements history should

cover enough time to distinguish between different behaviors in the measured ψAB.

This measurements period will depend on the two orbits of the two spacecrafts and

some special cases may have special requirements. From the case studied above, one

may conclude that a safe period of time is half the orbital period, or little less than

that. As a demonstration for this concluded results; a GLSDC technique is used to

estimate the states of a space object and the measurements are assumed ideal with no

errors. Several cases are considered for different measurements duration period to see

after how long measurements period can the estimator reach the true values. Consider

the case of a LEO with eccentricity of 0.05, hp = 300 Km, and inclination of 95o.

Assume that the observing spacecraft is flying in an orbit with the same parameters

but circular. Results are shown in figures 34-36. Figure 34 shows that the semi major

length and eccentricity could not be estimated even from ideal measurements in 20

minutes. Even if with more measurements, 140 compared to 40 in the previous case,

but still within the 20 minutes, we cannot estimate the true values, Fig. 35. However,

if this period is increased to half of the orbit, we get the true values as shown in Fig.

36. Reasonable measurements rate is still needed to accurately detect the harmonic

behaviors in the measurements.
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2. Observability of the Linear States Model

If the distance between the two spacecraft is small compared to the orbit size, and

the orbit of the spacecraft is near circular, then the linear Hills equations [9] can be

used to represent the relative motion of the two spacecraft:

ẍ− 2ωẏ − 3ω2x = fx

ÿ + 2ωẋ = fy

z̈ + ω2z = fz (6.1)

where x, y, and z are the three components of the object relative position w.r.t the

observing spacecraft in the later’s coordinate system. fx, fy, and fz are the external

forces applied to the object spacecraft. For the purpose of observability analysis,

consider the solution of the above equations in the case of zero external forces [34]

which can be written in a compact form as:

x(t) = f1(x0, ẋ0, y0, ẏ0, t)

y(t) = f2(x0, ẋ0, y0, ẏ0, t)

z(t) = f3(z0, ż0, t) (6.2)

The states that need to be estimated are the initial conditions: x0, ẋ0, y0, ẏ0, z0,

and ż0. The measurement is the direction of the object spacecraft which can be

considered as a unit vector in the direction of the object. So, a measurement mk at

time tk is:
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mk =
1√

f 2
1k + f 2

2k + f 2
3k




f1k

f2k

f3k




(6.3)

where, fik is the function fi evaluated at time tk.

Given one measurement vector, Eq.(6.3) will give you three equations in six

unknowns. Given two measurements, then we will have six equations in six unknowns.

This set of nonlinear equations may have a single solution or multiple solutions.

Additional measurements can be used to solve the ambiguities in the solution. So,

from a mathematical point of view, This linear model is observable if we have two or

more measurements.

C. Gaussian Least Squares Differential Correction

The state variable vector x is selected to be:

x = [a, e, ı, ω, Ω, φ0]
T (6.4)

where φ0 is the true anomaly of the first measurement. The position of the object is

ro. The position of the star tracker is rs. The position of the object with respect to

the star tracker is ro/s. See Fig. 37 for geometry of the space surveillance problem.

The model for m measurements, ỹj, is:

yj = fj(x), j = 1 . . .m (6.5)

f =
ro/s

ρ
, ρ = ‖ro/s‖ (6.6)

So, Given a set of measurements ỹ, it is required to find the state vector x. The
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Fig. 37. Geomtery for space surveillance

motion of the object is assumed to follow a Keplarian orbit. The method of GLSDC

is implemented.

The least squared error cost function,

J =
1

2
eT W e =

1

2
[ ỹ − ŷ ]T W [ ỹ − ŷ ],

is minimized by repeated state updates of the form

∆x = (HT W H)−1 HT W [ ỹ − f(x̂i) ]

where x̂i is the current estimate of the state, H =
∂f

∂x

∣∣∣∣∣
xi

is the Jacobian matrix, W is

the weighting matrix, and (HT W H)−1 is the auto-correlation matrix. If the weight-

ing matrix is the inverse of the measurement variances, then the auto-correlation

matrix becomes the error covariance.
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D. Jacobian Matrix Derivation

The jacobian matrix, H, is by definition:

H =
∂f

∂x
(6.7)

Differentiating Eq.(6.6),

ρ
∂f

∂x
+ f

∂ρ

∂x

T

=
∂ro/s

∂x
(6.8)

where,

ρ2 = (ro/s)
T ro/s (6.9)

∂ρ

∂x
=

1

ρ

(
∂ro/s

∂x

)T

ro/s (6.10)

So, to evaluate H, we need only to calculate
∂ro/s

∂x
. In fact, since rs is not a function

of x, then:

∂ro/s

∂x
=

∂ro

∂x
(6.11)

The inertial position of the object at time tj at which the measurement j was taken

can be expressed as a function of the six orbital elements as follows [32]:

(ro)j = ξ(ı, Ω, ω)




a (cos(ψj)− e)

a
√

1− e2 sin(ψj)

0




(6.12)

where,

ξ(ı, Ω, ω) = [Az(Ω)]T [Ax(ı)]
T [Az(ω)]T (6.13)

and

[Az(ω)] =




cos(ω) sin(ω) 0

− sin(ω) cos(ω) 0

0 0 1




, [Ax(ı)] =




1 0 0

0 cos(ı) sin(ı)

0 − sin(ı) cos(ı)




(6.14)
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Differentiating Eq.(6.12) w.r.t. each of the six elements of x:

∂(ro)j

∂a
= ξ(ı, Ω, ω)




(cos(ψj)− e)
√

1− e2 sin(ψj)

0




(6.15)

∂(ro)j

∂e
= ξ(ı, Ω, ω)




−a

−ae sin(ψj)√
1− e2

0




(6.16)

∂(ro)j

∂ı
=

∂ξ

∂ı




a (cos(ψj)− e)

a
√

1− e2 sin(ψj)

0




(6.17)

∂(ro)j

∂ω
=

∂ξ

∂ω




a (cos(ψj)− e)

a
√

1− e2 sin(ψj)

0




(6.18)

∂(ro)j

∂Ω
=

∂ξ

∂Ω




a (cos(ψj)− e)

a
√

1− e2 sin(ψj)

0




(6.19)

where,

∂ξ

∂Ω
=

∂[Az(Ω)]T

∂Ω
[Ax(ı)]

T [Az(ω)]T (6.20)

∂ξ

∂ω
= [Az(Ω)]T [Ax(ı)]

T ∂[Az(ω)]T

∂ω
(6.21)

∂ξ

∂Ω
= [Az(Ω)]T

∂[Ax(ı)]
T

∂Ω
[Az(ω)]T (6.22)
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and,

∂[Az(ω)]T

∂ω
=




− sin(ω) − cos(ω) 0

cos(ω) − sin(ω) 0

0 0 1




,
∂[Ax(ı)]

T

∂ı
=




1 0 0

0 − sin(ı) − cos(ı)

0 cos(ı) − sin(ı)



(6.23)

The derivative of (ro)j w.r.t. the true anomaly at the first measurement can be

evaluated as follows:

∂(ro)j

∂φ0

=
∂(ro)j

∂ψj

∂ψj

∂ψ0

∂ψ0

∂φ0

(6.24)

To calculate these derivatives, recall that:

tan(
ψ0

2
) =

√
1− e

1 + e
tan(

φ0

2
) (6.25)

differentiating this equation, then:

∂ψ0

∂φ0

=

√
1− e

1 + e

sec2(
φ0

2
)

sec2(
ψ0

2
)

(6.26)

Recall also that:

n(t1 − tp) = ψ0 − e sin(ψ0) (6.27)

n(tj − tp) = ψj − e sin(ψj) (6.28)

Subtracting Eq.(6.27) from Eq.(6.28), then:

ψj − e sin(ψj)− ψ0 + e sin(ψ0) = n(tj − t1) (6.29)

Differentiating Eq.(6.29) w.r.t. ψ0 and taking into account that the difference in time

between the two measurements, tj − t1, does not depend on ψ0:

∂ψj

∂ψ0

=
1− e cos(ψ0)

1− e cos(ψj)
(6.30)
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Differentiating Eq.(6.12) w.r.t. ψj:

∂(ro)j

∂ψj

= ξ(ı, Ω, ω)




−a sin(ψj)

a
√

1− e2 cos(ψj)

0




(6.31)

Combining (6.30),(6.31), and (6.26):

∂(ro)j

∂ψ0

= ξ(ı, Ω, ω)




−a sin(ψj)

a
√

1− e2 cos(ψj)

0




1− e cos(ψ0)

1− e cos(ψj)

√
1− e

1 + e

sec2(
φ0

2
)

sec2(
ψ0

2
)

(6.32)

Equations (6.15)-(6.19) and (6.32) construct
∂ro

∂x
. The last in turn is substituted into

equations (6.11), (6.10), and (6.8) to find H.

E. Results and Discussion

The above formulation is coded and the results show that this algorithm does not

converge. The condition number for the matrix (HT H) starts in the first iteration

with a value in the order of 108 and rapidly increases as the number of iterations

increase.

A small modification to the above formulation is done to try to get it to converge.

A virtual measurement vector is assumed to be the object inertial vector. This virtual

measurements vector is calculated from the actual measurements vector as follows:

(ro)j = (rs)j + (ro/s)j

= (rs)j + ρjyj j = 1 . . . m (6.33)

The length ρj in Eq.(6.33) is calculated based on the current estimate for the

state vector x. This enhances the previous model with more information, the range of
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the object spacecraft from the star tracker. However, this information is based on an

estimate not actual measurements. The Jacobian matrix, H, is slightly modified. It

is in this case, H =
∂ro

∂x
. This modified algorithm converges. The solution provided

by this algorithm is described and analyzed through the discussion of the following

figures. The figures below show the convergence history and the number of iterations

required for convergence. The true values of the states are plotted as horizontal lines

in figures. In all figures presented, the model for the measurements errors is assumed

to be random error in the satellite inertial position. The random error has zero mean.

The maximum error is assumed to be a 100 Km in each direction of the three inertial

coordinate system.

The first case presented is a case with a 2000 measurements, collected 5 times per

second. This is about 7 minutes of spacecraft flight. So the duration of measurements

in this case is about 7 minutes. The results for different values of iterations are shown

in Fig. 38 and Fig. 39. In Fig. 38, the iterations were truncated after 40 iterations.

As seen from figure, results encourage to continue with more iterations to converge

to the true value. The number of iterations is increased to 150 iterations and the new

results are plotted in Fig. 39. The results show a closer convergence to the true values.

This can lead to the conclusion that with more iterations, a good estimate can be

achieved. The drawback is the running time. With this big number of measurements,

2000 measurements, the Jacobian matrix becomes huge and the running time for

more than 200 iterations may take a day on a personal computer.

After discussion with Dr. Junkines [16], he advised to increase the total time span

of observations rather than worrying about the time between measurements. So, the

number of measurements is reduced to be only 70 and the time between measurements

is increased to be 33 seconds. The measurements duration is then about 39 minutes

of observations. This resulted in decreasing the running time significantly since the
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Fig. 38. GLSDC, measurements collected 5 times/second

number of measurements is much smaller. The results of this case are shown in Fig.

40 and Fig. 41. Figure 40 shows a good convergence to a close to the true values. The

inclination of the orbit is almost exactly correct. Other states converge to a steady

state value that is biased from the true value. For the purpose of analysis, the same

case is run again but thus time with ideal measurements. Zero measurements errors

are assumed. The only error is the initial guess. Results of this run are shown in Fig.

41. All states almost converges very close to the true values. It can be concluded

that the biased estimate of the states is due to the model of measurements errors.

The duration of measurements was chosen to be 39 minutes in the previous case.

To see how small can we go with this figure, the case of 15 minutes of measurements

duration is considered. Several runs are performed and the results showed instability

in the solution depending on the number of measurements and on the measurements
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Fig. 39. GLSDC, measurements collected 5 times/second

errors which are random. As a result, with only 15 minutes of measurements, some-

times we can get a convergence and some times not. One example of a case that

converged is shown in Fig. 42. If we increase the time of measurements duration to

20 minutes which is about 20% of the true orbital period, the algorithm will converge

independent from the number of measurements. Three cases are plotted for a number

of measurements of 30, 40, and 80. All converged to a close value to the true states.

The condition number history for the matrix (HT WH) is plotted. It is always below

the order of 1010. As the number of measurements increase, a better accuracy is

achieved. This can be figured out by comparing Fig. 43, Fig. 44, and Fig. 45. The

accuracy improvement is clear in the states φ0 and ω. Orbit inclination is always

accurately achieved.

If the error in the measurements is changed to be Gaussian with a maximum of
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Fig. 40. GLSDC, measurements collected 2 times/min. for 39 minutes

1 km in each coordinate direction, then the residual error in the estimated orbit will

be much improved. Fig. 46 shows the results for this case. Fig. 47 shows the results

for the same case but with more measurements collected.
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Fig. 41. GLSDC, measurements collected 2 times/min. for 39 minutes
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Fig. 42. GLSDC, measurements duration = 15 min. no. of measurements = 40
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Fig. 43. GLSDC, measurements duration = 20 min. no. of measurements = 30
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Fig. 44. GLSDC, measurements duration = 20 min. no. of measurements = 40
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Fig. 45. GLSDC, measurements duration = 20 min. no. of measurements = 80
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Fig. 46. GLSDC, measurements duration = 20 min. no. of measurements = 40
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Fig. 47. GLSDC, measurements duration = 20 min. no. of measurements = 100
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F. Iterated Kalman Filter

In this section the extended Kalman filter technique [11] is implemented for estima-

tion. The state vector is chosen to be the initial position and velocity vectors. The

truth model used is:

~̈r = − µ

‖~r(t)3‖~r(t) + w(t) (6.34)

w(t) is the process noise, which is assumed to be zero. The Extended Kalman Filter

converges much faster than the least square technique implemented in the previous

section. The extended Kalman filter is used to process data forward with guessed

initial conditions, and then process the data backward. Initial conditions for the

backward pass are the final states of the forward pass. Each iteration consists of a

forward and a backward pass. Figure 48 shows the estimated initial position and

velocity using the iterated Kalman filter.

G. Conclusions

The orbit of a space target can be estimated using the measurements of a star tracker.

An important factor is how long is the time span in which the measurements are

taken. Initial analysis performed in this study shows that the orbit parameters can

be estimated if the measurements cover a time span of the order of 10% to 20% of the

orbital period, depending on the target orbit. The target orbit plane however can be

estimated in much less time span, which is in the order of 5% to 10% of the orbital

period.
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Fig. 48. Iterated Kalman filter. time span = 10 min, no. of measurements = 11
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CHAPTER VII

CONCLUSIONS

In this dissertation, the problem of finding the optimal orbit for a remote sensing

mission is addressed. In Chapter II, the optimal orbit that enables a spacecraft to

visit a set of targets on the surface of the Earth within an assigned time frame is

calculated. The genetic algorithms technique is implemented to optimize the multi

minima cost function. The main advantage of the proposed solution is that it is a

fuel free solution. Other solutions to this problem use thrusters to maneuver the

spacecraft between sites. The solution to this problem mainly depend on the mission

objectives. Two case studies are considered. The first is a mission which objective

is to get a maximum resolution image for each visited site. The second is a mission

which objective is to maximize the observation time for each visited site. The solution

provided by the genetic algorithms is then used as initial guess in a gradient method

to find the local optimum solution near the genetic algorithms solution. Results

obtained demonstrate the effectiveness of the developed tool to find good solutions

to the problem.

If the resulting solution is not satisfactory for a particular mission, a multi-orbit

solution is proposed. This solution has two orbits to visit all the target sites. The

satellite is maneuvered between the two orbits. Chapter IV addresses the problem of

designing the optimal orbit maneuver using impulsive thrusters using genetic algo-

rithms. A new formulation for the problem was developed. The new formulation has

advantages to other current formulations in literature. It has a few number of design

variables. Only three design variables are optimized in the general case of a transfer

between two non-coplanar orbits. This few number of design variables results in a

very efficient algorithm in terms of the calculations time. This efficiency enables to
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explore more in the design space, searching for the global optimal, and so increasing

the probability of finding the global optimal solution. The developed formulation also

guarantees that the optimal solution is achieved even if the final solution is not the

global optimal. The non-optimality appears as more flight time during the transfer

and more required fuel for the transfer but the spacecraft will arrive exactly at the

final orbit. The developed formulation was validated through a number of cases and

proved to find the optimal solution in all cases.

The problem of having two spacecraft visit the same target site at the same

time is addressed in Chapter V. conditions on the orbits parameters are derived

analytically such that: the two spacecraft move in compatible orbits that intersect

each other, the two spacecraft pass through the intersection points at the same times,

and the two ground tracks are tangent to each other at the intersection points. Two

cases are considered. The first is the special case where the intersection points are

the perigee and apogee of the two orbits. The second is a general case where the

intersection points are any points on the orbits. The case of two satellites in a Flower

Constellation is investigated and results demonstrated possible existence of general

Two-way orbits in the Flower Constellation set.

The problem of estimating the orbit of a space object orbiting the Earth using

only star tracker measurements is addressed in Chapter VI. This space object could

be another spacecraft. Star trackers are able to identify spacecraft and provide a

direction to the target spacecraft buy not the range. Given a history of observations

from a star tracker onboard an observing spacecraft to a space object, a The Gaussian

Least Squares Differential Correction technique is implemented to estimate the object

orbit. First, the observability of the system is investigated to check the possibility of

estimating the system states from the measurements. Two observability checks are

performed. The first is the observability analysis for the nonlinear dynamical system,
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where the nonlinear model for spacecraft motions is implemented. The second is

the observability analysis for the linear system of Hills equations assuming that the

observing and the observed spacecraft are close to each other. The measurements

in this model, however, are not linear functions in the states. The results of the

observability analysis show that for the linear model, all states are observable. For the

nonlinear model, the states are observable under the condition that enough time span

of measurements is available. This enough time span will be no less than 20% of the

orbital period. Analytical derivations for the Jacobian matrix is developed. Several

cases are studied with different time span periods. The results of the developed

estimator validates the results of the observability analysis.
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APPENDIX A

CODE FOR ESTIMATION OF SPACE TARGETS ORBITS

This is the code for the Estimation of Space Targets Orbits using Star Tracker mea-
surements.

function observ_check() clear ;
% This function invistigates the observability of the target orbit
% parameters from the star tracker measurements

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DATA %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global mu ;
Re = 6378.14 ; % Earth Radius in Km
mu = 3.986012e5 ; % EARTH GRAVITAIONAL CONSTANT Km^3/sec^2
d2r = pi/180 ; ref_direction = [1;0;0];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Nominal Observing Spacecrfat Orbit A%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hp = 515 ; % Perigee Altitude in Km
ha = 585 ; % Apogee Altitude in Km
a_A = Re + 0.5*(hp + ha) ;
e_A = 1 - (hp+Re)/a_A ; i_A = 90 ; omega_A = 10*d2r ;
Omega_A = 0 ; phi_0_A = 0*d2r ; % True anomay at epoch
psi_0_A = Tanom2Eanom(phi_0_A,e_A) ;
M_0_A = psi_0_A - e_A*sin(psi_0_A) ;
n_A = sqrt(mu/a_A^3) ; PeriodA = 2*pi/n_A ; % Orbit Period in seconds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Nominal Observed Spacecrfat Orbit B%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hp = 515 ; % Perigee Altitude in Km
ha = 585 ; % Apogee Altitude in Km
a_B = Re + 0.5*(hp + ha) ; e_B = 1 - (hp+Re)/a_B ; i_B = 90 ;
omega_B = 10*d2r ;
Omega_B = 0 ; phi_0_B = 10*d2r ; % True anomay at epoch
psi_0_B = Tanom2Eanom(phi_0_B,e_B) ;
M_0_B = psi_0_B - e_B*sin(psi_0_B) ;

n_B = sqrt(mu/a_B^3) ; PeriodB = 2*pi/n_B ; % Orbit Period in seconds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Orbit Propagation %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
time_step = 0.5*60 ; for time_count = 0 :time_step : PeriodA
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M_A = M_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho(time_count+1) = norm(r_B_A);
psi_angle = get_psi(r_B_A,ref_direction,d2r) ;
psi_v(time_count+1) = psi_angle ;
count(time_count+1) = time_count ;

end ;

DM0_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...
time_step,rho,psi_v,ref_direction) ;

De_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...
time_step,rho,psi_v,ref_direction) ;

Da_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...
time_step,rho,psi_v,ref_direction) ;

Di_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...
time_step,rho,psi_v,ref_direction) ;

DO_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...

time_step,rho,psi_v,ref_direction) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Da_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...
time_step,rho,psi_v,ref_direction) ;

global mu ;

n_A_temp = n_A ; n_B_temp = n_B ;
dn_A = 2.8e-5 ;
% dn_B = dn_A ;
dn_B = 0 ; n_A = n_A + dn_A ;
n_B = n_B + dn_B ; a_A = (mu/n_A^2)^(1/3) ;
a_B = (mu/n_B^2)^(1/3) ;

for time_count =0 : time_step : PeriodA
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M_A = M_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n(time_count+1) = norm(r_B_A);
psi_vn(time_count+1) = get_psi(r_B_A,ref_direction,d2r) ;
v1(time_count+1) =
psi_v(time_count+1) -psi_vn(time_count+1) ;
if abs(abs(v1(time_count+1)) - 360) < 10

v1(time_count+1) = v1(time_count+1) - 360 ;
end ;
count(time_count+1) = time_count ;

end ; clear count ; dn_A = -2.8e-5 ;
% dn_B = -dn_A ;
dn_B = 0 ; n_A = n_A_temp + dn_A ; n_B = n_B_temp + dn_B ;

a_A = (mu/n_A^2)^(1/3) ; a_B = (mu/n_B^2)^(1/3) ;

for time_count = 0 : time_step : PeriodA
M_A = M_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n1(time_count+1) = norm(r_B_A);
psi_vn1(time_count+1) = get_psi(r_B_A,ref_direction,d2r) ;
v2(time_count+1) =
psi_v(time_count+1)-psi_vn1(time_count+1) ;
if abs(abs(v2(time_count+1)) - 360) < 10

v2(time_count+1) = v2(time_count+1) + 360 ;
end ;
count(time_count+1) = time_count ;

end ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function De_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...

time_step,rho,psi_v,ref_direction) ;

e_A_temp = e_A ; e_B_temp = e_B ;
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de_A = -1.7e-4 ;
% de_B = -de_A ;
de_B = 0 ; e_A = e_A + de_A ; e_B = e_B + de_B ;
for time_count = 0 : time_step : PeriodA

M_A = M_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n(time_count+1) = norm(r_B_A);
psi_vn(time_count+1) =
get_psi(r_B_A,ref_direction,d2r) ;
count(time_count+1) = time_count ;

end ; clear count ; de_A = 1.7e-4 ;
% de_B = de_A ;
de_B = 0 ; e_A = e_A_temp + de_A ;
e_B = e_B_temp + de_B ;

for time_count = 0 : time_step : PeriodA
M_A = M_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n1(time_count+1) = norm(r_B_A);
psi_vn1(time_count+1) =
get_psi(r_B_A,ref_direction,d2r) ;
count(time_count+1) = time_count ;

end ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Di_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...
time_step,rho,psi_v,ref_direction) ;

global mu ;

i_A_temp = i_A ; i_B_temp = i_B ; di_A = 0.05*d2r ;
% di_B = di_A ;
di_B = 0 ; i_A = i_A + di_A ; i_B = i_B + di_B ;
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for time_count = 0 : time_step : PeriodA
M_A = M_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n(time_count+1) = norm(r_B_A);
psi_vn(time_count+1) = get_psi(r_B_A,ref_direction,d2r) ;
v1(time_count+1) = psi_v(time_count+1) -psi_vn(time_count+1) ;

% if abs(abs(v1(time_count+1)) - 360) < 10
% v1(time_count+1) = v1(time_count+1) + 360 ;
% end ;

count(time_count+1) = time_count ;
end ; clear count ; di_A = -0.05*d2r ;
% di_B = -di_A ;
di_B = 0 ; i_A = i_A_temp + di_A ;
i_B = i_B_temp + di_B ;

for time_count = 0 : time_step : PeriodA
M_A = M_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n1(time_count+1) = norm(r_B_A);
psi_vn1(time_count+1) = get_psi(r_B_A,ref_direction,d2r) ;
v2(time_count+1) = psi_v(time_count+1)-psi_vn1(time_count+1) ;
if abs(abs(v2(time_count+1)) - 360) < 10

v2(time_count+1) = v2(time_count+1) - 360 ;
end ;
count(time_count+1) = time_count ;

end ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DM0_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...
time_step,rho,psi_v,ref_direction) ;

dM_0_A = 0.01*d2r ;
% dM_0_B = dM_0_A ;
dM_0_B = 0 ; for time_count = 0 : time_step : PeriodA
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M_A = M_0_A + dM_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + dM_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n(time_count+1) = norm(r_B_A);
psi_vn(time_count+1) =
get_psi(r_B_A,ref_direction,d2r) ;
count(time_count+1) = time_count ;

end ; clear count ; dM_0_A = -0.01*d2r ;
% dM_0_B = -dM_0_A ;
dM_0_B = 0 ; for time_count = 0 : time_step : PeriodA

M_A = M_0_A + dM_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + dM_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n1(time_count+1) = norm(r_B_A);
psi_vn1(time_count+1) =
get_psi(r_B_A,ref_direction,d2r) ;
count(time_count+1) = time_count ;

end ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DO_observ(PeriodA,M_0_A,n_A,a_A ,e_A ,i_A,omega_A ,...
Omega_A,M_0_B,n_B,a_B,e_B,i_B,omega_B,Omega_B,d2r,...
time_step,rho,psi_v,ref_direction) ;

global mu ;

Omega_A_temp = Omega_A ; Omega_B_temp = Omega_B ;
dOmega_A = 0.05*d2r ;
% dOmega_B = dOmega_A ;
dOmega_B = 0 ; Omega_A = Omega_A + dOmega_A ;
Omega_B = Omega_B + dOmega_B ;

for time_count = 0 : time_step : PeriodA
M_A = M_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + n_B*time_count ;
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[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n(time_count+1) = norm(r_B_A);
psi_vn(time_count+1) = get_psi(r_B_A,ref_direction,d2r) ;
v1(time_count+1) =
psi_v(time_count+1) -psi_vn(time_count+1) ;
if abs(abs(v1(time_count+1)) - 360) < 10

v1(time_count+1) = v1(time_count+1) + 360 ;
end ;
count(time_count+1) = time_count ;

end ; clear count ; dOmega_A = -0.05*d2r ;
% dOmega_B = -dOmega_A ;
dOmega_B = 0 ; Omega_A = Omega_A_temp + dOmega_A ;
Omega_B = Omega_B_temp + dOmega_B ;

for time_count = 0 : time_step : PeriodA
M_A = M_0_A + n_A*time_count ;
[psi_A, phi_A] = kepler2 (M_A, e_A) ;
[r_A, v_A] =
orb2eci([a_A ; e_A ; i_A; omega_A ; Omega_A ; phi_A]) ;
M_B = M_0_B + n_B*time_count ;
[psi_B, phi_B] = kepler2 (M_B, e_B) ;
[r_B, v_B] =
orb2eci([a_B ; e_B ; i_B; omega_B ; Omega_B ; phi_B]) ;
r_B_A = r_B - r_A ;
rho_n1(time_count+1) = norm(r_B_A);
psi_vn1(time_count+1) =
get_psi(r_B_A,ref_direction,d2r) ;
v2(time_count+1) = psi_v(time_count+1)-psi_vn1(time_count+1) ;
if abs(abs(v2(time_count+1)) - 360) < 10

v2(time_count+1) = v2(time_count+1) - 360 ;
end ;
count(time_count+1) = time_count ;

end ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function angle = get_psi(r_B_A,ref_direction,d2r) ;

angle = acos((dot(r_B_A,ref_direction)/(norm(r_B_A)*...
norm(ref_direction))))/d2r ;

v3 = cross(r_B_A,ref_direction) ;

if v3(3) > 0
angle = -angle ;

end ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function eanom = Tanom2Eanom(tanom,e)

s_eanom = sin(tanom)*sqrt(1 - e^2)/(1+e*cos(tanom)) ;
c_eanom = (e + cos(tanom))/(1+e*cos(tanom)) ;

eanom = atan2(s_eanom,c_eanom) ;
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