117,474 research outputs found

    Formal Modeling and Verification of a Blockchain-Based Crowdsourcing Consensus Protocol

    Get PDF
    Crowdsourcing is an effective technique that allows humans to solve complex problems that are hard to accomplish by automated tools. Some significant challenges in crowdsourcing systems include avoiding security attacks, effective trust management, and ensuring the system’s correctness. Blockchain is a promising technology that can be efficiently exploited to address security and trust issues. The consensus protocol is a core component of a blockchain network through which all the blockchain peers achieve an agreement about the state of the distributed ledger. Therefore, its security, trustworthiness, and correctness have vital importance. This work proposes a Secure and Trustworthy Blockchain-based Crowdsourcing (STBC) consensus protocol to address these challenges. Model checking is an effective and automatic technique based on formal methods that is utilized to ensure the correctness of STBC consensus protocol. The proposed consensus protocol’s formal specification is described using Communicating Sequential Programs (CSP#). Safety, fault tolerance, leader trust, and validators’ trust are important properties for a consensus protocol, which are formally specified through Linear Temporal Logic (LTL) to prevent several security attacks, such as blockchain fork, selfish mining, and invalid block insertion. Process Analysis Toolkit (PAT) is utilized for the formal verification of the proposed consensus protocol

    Architecting specifications for test case generation

    Get PDF
    The Specification and Description Language (SDL) together with its associated tool sets can be used for the generation of Tree and Tabular Combined Notation (TTCN) test cases. Surprisingly, little documentation exists on the optimal way to specify systems so that they can best be used for the generation of tests. This paper, elaborates on the different tool supported approaches that can be taken for test case generation and highlights their advantages and disadvantages. A rule based SDL specification style is then presented that facilitates the automatic generation of tests

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Inside Job: Diagnosing Bluetooth Lower Layers Using Off-the-Shelf Devices

    Full text link
    Bluetooth is among the dominant standards for wireless short-range communication with multi-billion Bluetooth devices shipped each year. Basic Bluetooth analysis inside consumer hardware such as smartphones can be accomplished observing the Host Controller Interface (HCI) between the operating system's driver and the Bluetooth chip. However, the HCI does not provide insights to tasks running inside a Bluetooth chip or Link Layer (LL) packets exchanged over the air. As of today, consumer hardware internal behavior can only be observed with external, and often expensive tools, that need to be present during initial device pairing. In this paper, we leverage standard smartphones for on-device Bluetooth analysis and reverse engineer a diagnostic protocol that resides inside Broadcom chips. Diagnostic features include sniffing lower layers such as LL for Classic Bluetooth and Bluetooth Low Energy (BLE), transmission and reception statistics, test mode, and memory peek and poke

    Towards the Usage of MBT at ETSI

    Full text link
    In 2012 the Specialists Task Force (STF) 442 appointed by the European Telcommunication Standards Institute (ETSI) explored the possibilities of using Model Based Testing (MBT) for test development in standardization. STF 442 performed two case studies and developed an MBT-methodology for ETSI. The case studies were based on the ETSI-standards GeoNetworking protocol (ETSI TS 102 636) and the Diameter-based Rx protocol (ETSI TS 129 214). Models have been developed for parts of both standards and four different MBT-tools have been employed for generating test cases from the models. The case studies were successful in the sense that all the tools were able to produce the test suites having the same test adequacy as the corresponding manually developed conformance test suites. The MBT-methodology developed by STF 442 is based on the experiences with the case studies. It focusses on integrating MBT into the sophisticated standardization process at ETSI. This paper summarizes the results of the STF 442 work.Comment: In Proceedings MBT 2013, arXiv:1303.037
    corecore