
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

VMASC Publications Virginia Modeling, Analysis & Simulation Center

2022

Formal Modeling and Verification of a Blockchain-Based Formal Modeling and Verification of a Blockchain-Based

Crowdsourcing Consensus Protocol Crowdsourcing Consensus Protocol

Hamra Afzaal

Muhammad Imran

Muhammad Umar Janjua

Sarada Prasad Gochhayat
Old Dominion University, sgochhay@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/vmasc_pubs

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Original Publication Citation Original Publication Citation
Afzaal, H., Imran, M., Janjua, M. U., & Gochhayat, S. P. (2022). Formal modeling and verification of a
blockchain-based crowdsourcing consensus protocol. IEEE Access, 10, 8163-8183. https://doi.org/
10.1109/ACCESS.2022.3141982

This Article is brought to you for free and open access by the Virginia Modeling, Analysis & Simulation Center at
ODU Digital Commons. It has been accepted for inclusion in VMASC Publications by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/vmasc_pubs
https://digitalcommons.odu.edu/vmasc
https://digitalcommons.odu.edu/vmasc_pubs?utm_source=digitalcommons.odu.edu%2Fvmasc_pubs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.odu.edu%2Fvmasc_pubs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.odu.edu%2Fvmasc_pubs%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ACCESS.2022.3141982
https://doi.org/10.1109/ACCESS.2022.3141982
mailto:digitalcommons@odu.edu

Received November 24, 2021, accepted December 21, 2021, date of publication January 11, 2022,
date of current version January 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3141982

Formal Modeling and Verification of a
Blockchain-Based Crowdsourcing
Consensus Protocol
HAMRA AFZAAL 1, MUHAMMAD IMRAN 2, (Member, IEEE), MUHAMMAD UMAR JANJUA1,
AND SARADA PRASAD GOCHHAYAT 3
1Department of Computer Science, Information Technology University, Lahore 54000, Pakistan
2School of Engineering, Information Technology and Physical Sciences, Federation University, Brisbane, QLD 4000, Australia
3Virginia Modeling, Analysis, and Simulation Center, Suffolk, VA 23435, USA

Corresponding author: Hamra Afzaal (hamraafzaal@hotmail.com)

ABSTRACT Crowdsourcing is an effective technique that allows humans to solve complex problems
that are hard to accomplish by automated tools. Some significant challenges in crowdsourcing systems
include avoiding security attacks, effective trust management, and ensuring the system’s correctness.
Blockchain is a promising technology that can be efficiently exploited to address security and trust
issues. The consensus protocol is a core component of a blockchain network through which all the
blockchain peers achieve an agreement about the state of the distributed ledger. Therefore, its security,
trustworthiness, and correctness have vital importance. This work proposes a Secure and Trustworthy
Blockchain-based Crowdsourcing (STBC) consensus protocol to address these challenges. Model checking
is an effective and automatic technique based on formal methods that is utilized to ensure the correctness
of STBC consensus protocol. The proposed consensus protocol’s formal specification is described using
Communicating Sequential Programs (CSP#). Safety, fault tolerance, leader trust, and validators’ trust
are important properties for a consensus protocol, which are formally specified through Linear Temporal
Logic (LTL) to prevent several security attacks, such as blockchain fork, selfish mining, and invalid block
insertion. Process Analysis Toolkit (PAT) is utilized for the formal verification of the proposed consensus
protocol.

INDEX TERMS Blockchain, consensus protocol, crowdsourcing, model checking, PAT.

I. INTRODUCTION
Crowdsourcing is an effectiveway to solve complex problems
by outsourcing to a crowd of people [1]. In recent years,
it has gained considerable attention in academia and adoption
in the industry. A large number of companies are using
crowdsourcing as a method to solve critical problems.
Human intelligence-based crowdsourcing consists of service
consumers, service providers, and a crowdsourcing platform,
as shown in Figure 1.

Mechanical Turk [2], Upwork [3] and Uber [4] are some
of the famous crowdsourcing platforms. In crowdsourcing,
service consumers post tasks through a crowdsourcing
platform that are hard to solve for computers but are
comparatively easy for humans. In some platforms, such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

FIGURE 1. Traditional crowdsourcing system.

Upwork, a service consumer needs to deposit the payment
as an escrow amount to a crowdsourcing platform before a
task begins. The interested service providers receive tasks
through a crowdsourcing platform. They compete to solve
and submit solutions of tasks to the crowdsourcing platform.
The service consumers then select the appropriate solu-
tions, and the corresponding service providers get the task
payment.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 8163

• • •

• • •

e

e

e
e

IEEEAccess·
Multidisciplinary : Rapid Review l Open Access Journal

Requesters Workers

https://orcid.org/0000-0003-4896-811X
https://orcid.org/0000-0002-6946-2591
https://orcid.org/0000-0003-0412-7722
https://orcid.org/0000-0001-7300-9215

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

Crowdsourcing has a wide range of applications in various
security-critical systems, for example, disaster management
systems [5], traffic monitoring systems [6], and healthcare
systems [7]. With the rapid development of crowdsourcing
applications, the limitations of traditional crowdsourcing
systems are exposed. Firstly, the traditional crowdsourcing
systems are based on centralized servers, which can suffer
from a single point of failure [8]. Secondly, in case of a
dispute between service providers and consumers, issues of
free riding and false reporting can occur due to a lack of
accountability and effective trust management [9]. In free
riding, service providers try to get rewards without pro-
viding satisfactory solutions, and in false reporting, service
consumers intentionally get useful solutions without losing
the deposit. Thirdly, crowdsourcing systems are vulnerable
to various security attacks, such as sybil, distributed denial
of service (DDoS), and hijacking attacks [10]. Fourthly,
sensitive information of users is at risk of privacy disclosure
during the process of task assignment [11]. Lastly, there
is minimal work on the formal verification of crowdsourc-
ing systems to ensure the correctness, consistency, and
completeness of the algorithms and protocols [12]. The
advent of blockchain technology [13] brings high hopes to
overcomemost of the drawbacks in traditional crowdsourcing
systems. A consensus protocol is the most critical component
of blockchain which can establish mutual trust among
crowdsourcing participants in a decentralizedway. Therefore,
crowdsourcing issues are solved using blockchain consensus
algorithms.

A. MOTIVATION FOR A NEW CONSENSUS PROTOCOL
Most of the existing generic blockchain consensus protocols
have certain limitations. For example, Proof of Work (PoW)
is highly resource-intensive and difficult to apply for large-
scale online systems [13]. Employing Proof of Stake (PoS)
in crowdsourcing systems may compromise the rights of
nodes [14] as it suffers from security, fairness, and cen-
tralization issues. Delegated Proof of Stake (DPoS) handles
the fairness issue by democratic voting, but still, it has
some degree of centralization [15]. Moreover, employing
DPoS cannot avoid collusion among stakeholders. Therefore,
an application-specific blockchain consensus protocol is
highly desirable, considering the peculiarities of crowdsourc-
ing systems [16], [17]. To address the security and trust
challenges, some recent studies [18]–[20] have proposed
blockchain-based consensus protocols for crowdsourcing
applications that also strive to handle accountability, credible
crowdsourcing, free riding, and false reporting, and com-
pelling trust management issues. These studies were the
prime motivation behind this work.

Several drawbacks are identified in the existing blockcha-
in-based crowdsourcing consensus protocols. For example,
Proof of Trust (PoT) elects a leader from ledger nodes using
Reliable-Replicated-Redundant And Fault-Tolerant (RAFT)
and validators from crowdsourcing service participants based
on trust values [18]. However, PoT analyzes some of

the security attacks, including sybil, DDoS, and collusion
through simulations, and theoretically describes a few of the
security properties. An improved PoT is a reputation-based
protocol in which a high reputation worker is selected as a
miner of the block, and verification nodes are also selected
based on reputation [19]. However, the reputation calculation
is based on the historical interaction of a miner and feedback
of other nodes that may not be reliable. It is based on
simulation techniques and analyzes collusion attacks. Mobile
Crowdsourcing (MCS) chain is based on the total payment
for block generation which informally analyzes security
properties [20]. The consensus protocol of zkCrowd is based
on DPoS and Practical Byzantine Fault Tolerance (PBFT)
and is validated using simulation techniques, which favors
voters having more tokens [21]. The RAFT and PBFT used
in the existing blockchain-based crow-dsourcing consensus
protocols are formally verified [22]–[24], therefore, PoT
and zkCrowd are partially verified. The existing blockchain-
based crowdsourcing consensus protocols discussed-above
employ simulation techniques that do not assure the models’
correctness as simulations are performed on limited data set.

B. CHALLENGES
The weaknesses of the existing blockchain-based crowd-
sourcing consensus protocols present the following chal-
lenges.

1) How to design a secure and trustworthy consensus
protocol that applies to crowdsourcing services?
a) How to prevent security attacks, such as

blockchain fork, invalid block insertion, and
selfish mining?

b) How to select trusted leader and validators to
prevent their malicious behaviors?

2) How to ensure the correctness of the blockchain-based
crowdsourcing consensus protocol?

C. CONTRIBUTIONS
This research work aims to present a formally verified
Secure and Trustworthy Blockchain-based Cr-owdsourcing
(STBC) consensus protocol to deal with the above-discussed
challenges. The consensus protocol is nam-ed as STBC
because we have defined the security properties of the
protocol and trustworthy selection process of a leader and
validators based on trust factors. The peculiarities of the
STBC consensus protocol are:
1) It records the activities of service providers and

consumers, e.g., post, receive, and perform tasks as
transactions, and the transactions that gain maximum
votes are included in the proposed block.

2) The service consumers have to escrow deposit when
they post a task, and the service providers get their
share from the escrowed deposit after the successful
completion of a task. When the service providers
and consumers perform activities, their activity rate is
incremented.

8164 VOLUME 10, 2022

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

3) It selects a trusted leader from blockchain management
nodes to propose a block and trusted validators from
blockchain management nodes, crowdsourcing service
providers, and consumers to validate and vote for the
transactions and the block. The trusted leader and
validators have to escrow deposit to prevent malicious
behaviors.

4) Unlike the existing consensus protocols of blockchain-
based crowdsourcing [18]–[21], the selection criteria
of a leader and the validators are different. While the
leader is selected based on three trust factors (i.e.,
deposit ratio, activity rate, missed rate), the validators
are chosen based on deposit ratio and activity rate.

The STBC consensus protocol prevents blockchain fork,
selfish mining, and invalid block insertion attacks. In STBC
consensus protocol, at most one block is proposed in every
round, which avoids the possibility of a blockchain fork.
If multiple nodes propose a block simultaneously, then bloc-
kchain can fork. A single leader is selected to propose a
block in each round of consensus to prevent this situation.
A successfully generated block that is accepted by a majority
of the validators is only added in the blockchain. In this
way, all the nodes record the same block, which ensures the
absence of a fork. Moreover, only the block of a trusted leader
is added to the blockchain which prevents selfish mining
attack. If a leader acts maliciously to add an invalid block,
the consensus protocol resists it by adding no block.

The guarantee of correctness of any system is essential,
especially critical and real-time systems. As a crowdsourcing
system involves several critical tasks, therefore its correct-
ness has vital importance. Formal methods are rigorous
mathematical techniques to model computer systems that
help designers verify the system’s properties and assist in
system testing to increase the confidence of correctness of
a system. Model checking is an important formal methods-
based technique used for the formal verification of critical
systems. It is automatic, effective, and requires less human
intervention. Therefore, it is utilized in this work.

The main contributions of this work are summarized
below:

1) Security: The proposed consensus protocol provides
security by defining security properties, i.e., safety and
fault tolerance to prevent blockchain fork and selfish
mining attacks. It is secure when at most

⌊
n−1
3

⌋
nodes

are faulty. Here n denotes the total number of nodes.
This ratio is assumed similar to most of the byzantine
fault tolerance (BFT) consensus protocols.

2) Trustworthy: We presented an improved trust model
based on several new factors such as deposit ratio,
activity rate, andmissed rate. The leader and validators’
trust properties are defined to prevent blockchain fork,
selfish mining, and invalid block insertion attacks.

3) Fairness: The proposed consensus protocol provides
a fair environment for the selection of leaders and
validators. The activity rate is included to prevent rich
nodes dominating the network. The introduction of

missed rate of a node will increase its chances to be
selected as a leader. The trust values update mechanism
enforces nodes to obey protocol rules; because in the
case of malicious activity, in addition to trust values,
they also lose their deposit as a punishment.

4) Energy-saving: The protocol saves energy as a single
leader is supposed to propose a block in every round.

5) Correctness: The correctness of the proposed consen-
sus protocol is ensured utilizing a formal methods-
based technique, i.e., model checking. The formal
specification of the proposed STBC protocol is per-
formed using CSP#. Furthermore, the PAT model
checker is applied for the formal verification of
safety, fault tolerance, leader trust, and validators’ trust
properties. Linear Temporal Logic (LTL) is utilized to
specify the security and trust properties.

This work is novel in formal modeling and verification of
the consensus protocol for a blockchain-based crowdsourcing
system ensuring safety, fault tolerance, leader trust, and val-
idators’ trust. Albeit there are some formally verified blockc-
hain consensus protocols [25]–[28], some of the existing
consensus protocols for a blockchain-based crowdsourcing
system are partially verified [18], [21]. This work is different
from [25]–[28] as the proposed protocol is designed for a
crowdsourcing application and in comparison to [18], [21]
the proposed consensus protocol is formally verified.

The rest of the paper is organized as follows: Section II
establishes the background knowledge; Section III discusses
the related work; Section IV presents the system model;
Section V defines the formal model of the proposed protocol;
Section VI describes the results; and finally Section VII
presents the conclusion and future work.

FIGURE 2. An example of blockchain.

II. BACKGROUND
This section provides background knowledge about bloc-
kchain and formal modeling and verification.

A. BLOCKCHAIN TECHNOLOGY
Blockchain technology was introduced by an unknown
person Satoshi Nakamoto, as a distributed, peer-to-peer,
decentralized, and a linked structure to address the issue
of double-spending [13]. Figure 2 represents an example
of blockchain. The transactions are grouped and ordered
in a structure called a block . In addition to transactions,
a block contains its hash and the previous block hash. The
variable Prev. Block Hash in the current block in Figure 2 is
used to link the block to its previous block which prevents
alteration of blocks and insertion of a block between existing
blocks. The miners are responsible for adding the blocks in

VOLUME 10, 2022 8165

PreviousBlock.Blockl612 ti
~l::c~as:~~c:~~~~~~al 9 B~=:~=l~~~:7~:~14 , NextBlock: Block 16141

1'rans.Hash:a,.f417281a529bl 6 Prev.BlockHash:00006281390e3df Blockhash:000027l828bfac527

Trans.Hash:fle2572274a2fc904 Trans.Hash·cba172693831846f Prev.BlockHash:00001362a729bcl4

Tums. Ha,h. bc!5891324b26'bl _,. H~h, a39427loo8264271 tt _,. Hssh b,c51276bfl95,27

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

chronological order. In the blockchain, any node can initiate
a transaction and broadcast it to the nodes of the network.
The network nodes validate transactions and the miner of the
block adds the validated transactions to the blockchain. The
number of transactions in a block depends upon the size of a
block.

Blockchain have applications in various fields, for exam-
ple, healthcare [29], banking sector [30], insurance compa-
nies [31], and crowdsourcing [32]. In this work blockchain
is exploited for crowdsourcing systems, as it helps to
provide accountability, transparency, and immutability to
avoid unfaithful and dishonest behaviors.

B. FORMAL MODELING AND VERIFICATION
Formal modeling and verification of consensus protocols
is important to ensure their correctness. Model checking is
the formal methods-based technique that is effectively used
for formal verification. Model checking involves verifying
whether a formal model of the system satisfies the desired
properties. Model checking technique is useful to reveal the
errors that cannot be identified using testing and simulation
techniques. In this work, we use the model checking
technique because in comparison to other techniques, e.g.,
theorem proving, it is more effective, automatic, and needs
less human involvement. Model checking technique is
useful to check partial specifications. However, the state
explosion problem is a big limitation of the model checking
approach [33], as the state of the model grows infinitely
large with the increase of variables, distinct values, and
components.

CSP# is a formal specification language used for the formal
modeling of concurrent aspects of critical systems. The
high-level modeling constructs such as sequential/parallel
composition, channels, and interleaving are combined with
low-level C# constructs, e.g., variables, if-then-else, and
arrays. The syntax of CSP# can be described as:

Proc ::= SKIP (termination)
|STOP (deadlock)
|ev{program} → Proc (operation prefixing)
| ev→ Proc (event prefixing)
| [guard]Proc (state guard)
|Proc1 || Proc2 (parallel composition)
|Proc1 ||| Proc2 (interleaving)
|Proc1;Proc2 (sequential composition)
| ch?a→ Proc(a) (channel input)
| ch!a→ Proc (channel output)
|Proc1 � Proc2 (external choice)
|Proc1 u Proc2 (internal choice)
| if guard then Proc1 else Proc2 (boolean statement)
|Proc1 F Proc2 (timeout)
|Proc1 4 Proc2 (interrupt)

where Proc, Proc1 and Proc2 are processes, guard represents
a condition, ev is an event, program describes a piece of
code that executes atomically and ch denotes a synchronized
communication channel.
Assertions are used to query properties about the behavior

of a system. Various types of assertions are supported in PAT,

such as, deadlock-freeness, divergence-free, nonterminating,
reachability and LTL. Deadlock-freeness and LTL assertions
are used in this work.

C. DEADLOCK-FREENESS
This assertion checks whether a processProc is deadlock-free
or not.
#assert Proc() deadlockfree;

D. LINEAR TEMPORAL LOGIC (LTL)
LTL is used to specify properties to be checked on a formal
model. LTL extends predicate or propositional logic by
modalities and provide a way to mathematically represent
linear time properties. PAT supports the full syntax of LTL.
For a process Proc(), the below assertion checks whether
Proc() satisfies the LTL formula φ.
#assert Proc() |H φ;
The syntax of LTL is defined according to following rules:

φ = ev | prop |φ1 ∧ φ2| ¬φ|�φ|♦φ| © φ|φ1 ∪ φ2

where ev is an event, prop is an atomic proposition,� is read
as always, ♦ is read as eventually, © is read as next, and
∪ is read as until. An LTL formula �φ defines that φ must
hold on the entire respective path while ♦φ represents that φ
eventually holds on the respective path. An LTL formula©φ
describes that φ must hold at next state whereas φ1∪φ2 shows
that φ2 holds at the current position or at some future position
andφ1 has to hold before that state. From that positionφ2 does
not necessarily has to hold any more.

III. RELATED WORK
In this section, firstly blockchain consensus protocols are
described, then blockchain-based crowdsourcing consensus
protocols are discussed and crowdsourcing systems based on
blockchain are described in the end.

A. BLOCKCHAIN CONSENSUS PROTOCOLS
Some important blockchain consensus protocols are briefly
described here. PoW is the first consensus algorithm that is
used in Bitcoin [13]. It is based on complicated computation
where every node of the network continuously computes a
hash value of every block header using different nonce values
until the calculated hash value becomes less than or equal to a
certain target value.When a node gets the desired value, other
nodes of the network verifies its correctness, and the block
is added to the blockchain. However, it is highly resource-
intensive and has low throughput.
PoS is an alternative to PoW that requires much less energy

to be consumed [14]. In this mechanism, a node is selected
based on its stake to propose a block. However, it favors rich
nodes in the network. In this way, centralization can occur in
the network. Several solutions are proposed to address this
issue. For example, Peercoin [34] uses coin age selection
procedure, Blackcoin [35] is based on randomization and
Bitshares [36] uses Delegated Proof of Stake (DPoS) [15] in

8166 VOLUME 10, 2022

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

which stakeholders select delegates based on voting for the
generation and validation of a block, however, it has some
degree of centralization.

PBFT is proposed for tolerating byzantine faults [37].
It can tolerate 1/3 byzantine faults. The consensus is divided
into three phases, i.e., pre-prepare, prepared, and commit.
A node can transit from one phase to another phase after
getting 2/3 votes from other nodes. Tendermint is another
BFT consensus protocol [38]. However, the BFT protocols
are suitable for small networks and have poor scalability.
The survey of several other blockchain consensus protocols
is provided in [39].

B. BLOCKCHAIN-BASED CROWDSOURCING CONSENSUS
PROTOCOLS
Recently, the integration of blockchain technology and crow-
dsourcing has gained the attention of the research community.
PoT is a consensus protocol built upon the idea of blockchain
technology to handle the accountability issue in crowdsourc-
ing services [18]. The protocol utilizes RAFT [22] to elect
a leader from ledger nodes and selects service participants
as validators of transactions based on trust values. The PoT
protocol addresses the issue of scalability associated with
BFT and Paxos-based algorithms. It considers the unfaithful
behavior of nodes that is not addressed in BFT algorithms.
The security attacks, including, sybil, collusion, and DDoS
are analyzed in the work. As RAFT is formally verified
through TLA proof system and Coq proof assistant [22], [23],
therefore, PoT is defined as partially verified in Table 1.
However, PoT cannot preserve privacy of users. An improved
PoT consensus algorithm is presented for crowdsourcing
using blockchain as an underlying technology [19]. In this
protocol, a high reputation worker is selected as aminer of the
block. The calculation of reputation is based on the historical
interaction of a miner and feedback of other nodes which
may not be reliable. It analyzes the collusion attacks and does
not provide a mechanism to evaluate task solutions. Further,
privacy and reliability are also not addressed in this work.

MCS-Chain is presented as a blockchain-based mobile
crowdsourcing platform for decentralized and distributed
tr-ust management [20]. The trust evaluation mechanism
is defined which allows users to select reliable workers.
A consensus protocol is presented in MCS-Chain for block
generation to improve the efficiency of the blockchain. In the
protocol, a new block is created when the total payment
which needs to be recorded into the next block exceeds
the defined threshold. The centralization and fork issues
are addressed in the work which guarantee that even if
several blocks are generated simultaneously, a unique block is
added to the blockchain. The liveness, safety, fault tolerance,
and decentralization are demonstrated theoretically but the
system lacks in privacy and anonymity of users and workers.

The zkCrowd, a hybrid blockchain-based crowdsourcing
platform is proposed to balance transaction transparency
and privacy [21]. The zkCrowd consists of a public chain
to manage public tasks and multiple subchains to handle

TABLE 1. Summary of blockchain-based crowdsourcing consensus
protocols.

private tasks. DPoS is implemented on the public blockchain
to elect validators. The alternative validators which are
not elected in the public chain are elected as subchain
validators in a round-robin manner using PBFT on private
subchains. The zkCrowd is resilient against a 51% attack,
sybil attack, privacy leakage, free riding and false reporting,
and byzantine failures. As continuous-time Markov chain
models are defined for PBFT and are formally verified
through PRISM model checker [24], therefore, zkCrowd is
termed as partially verified in Table 1. However, zkCrowd
lacks in defining cross-communication between public and
private chains, privacy protection of answers, and a proper
reward distribution mechanism. On the public chain, voters
having more tokens have more influence on the network.
Further, if there are a large number of private tasks then
an issue of scalability can occur. The comparison of the
above-discussed consensus protocols is provided in Table 1.
Unlike [18]–[21], the proposed protocol is formally verified.

C. BLOCKCHAIN-BASED CROWDSOURCING SYSTEMS
1) TRUST MANAGEMENT
MCS-Chain+ is presented to address the issue of privacy in
MCS-Chain [40]. The Intel Software Guard Extension (SGX)
is utilized to anonymously authenticate trust through a
trustworthy evaluation of trust. RC-chain is a reputation-
based framework that is proposed as a crowdsourcing block-
chain to support crowdsourcing trading and evaluation of
user-reputation [41]. CrowdR-FBC is presented as a distribu-
ted fog-blockchain mechanism for reputation management
in crowdsourcing which prevents leakage of users’ privacy,
involvement of malicious users, and tampering of users’
reputation [42]. It ensures the selection of trusted workers
and the reliability of data. Blockchain technology is utilized
to present a trusted and decentralized approach for a crowd-
sourcing system [43]. The proposed mechanism enables
information of users and several behaviors to be transparent
and cannot maintain the privacy of user’s information.
A blockchain-based trust model using weighted consensus
technique to share information in crowd environments is
presented to achieve higher accuracy [44].

VOLUME 10, 2022 8167

Protocol / Formally
Platfonn Limitations Resilient attacks Security properties Trust properties

verified

Sybil, Collusion and Validity, Agreemen~
Validators trust PoT[l8] Cannot preserve privacy of users

DDoS Liveness, Fault toler- Partially

ance,Accountability

Improved
It is reputation based which depends

Authentication, Leader and Val-on opinions and sometimes cannot be Collusion attacks No PoT[19] reliable Safety,Accountability idatorstrust

MCS- Lacks in preserving privacy.
Centralization and

Integrity, Liveness,
Leader and Val-

Chain[20]
Security properties are described the-

fork issues
Safety, Fault tolera-

idatorstrust
No

oretically nce,Decentralization

Lacks in defining cross-
communication between public 51%, Sybil, Privacy Authentication, Non-

zkCrowd and private chains. leakage, Free riding, repudiation, Fault tol-
Partially

[21] Voters having more tokens have more false reporting and erance, Fraudresilien-

influence on the network. Byz.antinefailure ce,Accountability

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

TABLE 2. Comparison of blockchain-based crowdsourcing systems.

2) TASK MANAGEMENT
CrowdBC is a blockchain-based decentralized framework for
solving tasks of requesters by a crowd of workers without any
trusted third party [32]. It protects the privacy of users as it uti-
lizes pseudonymous addresses for the identities of requesters
and workers, and stores encrypted solutions in distributed
storage. However, defining an efficient evaluation function
for tasks solution is crucial in CrowdBC. ZebraLancer is
another platform that protects user privacy, but it depends
on a trusted third party for registration of identities [47].
A novel hybrid blockchain-based crowdsourcing platform is
proposed to ensure decentralization and privacy [45]. The
platform consists of a hybrid structure of blockchain and dual
consensus protocols to ensure secure communication among
requesters and workers. Zero-knowl-edge proofs are used to
protect the privacy of users whereas the access control model
is not defined in detail. FedCrowd platform is proposed as
a privacy-preserving and federated platform for blockchain-
based crowdsourcing [48]. The sma-rt contracts are employed
as a trusted platform to publish encrypted tasks and craft
matching protocols are designed for task recommendation
in an efficient way. But it depends on a trusted third party

for the management of public and private keys. PFcrowd
platform is presented to allow crowdsourcing systems to
perform encrypted task-worker matching on the blockchain
without any third party [49].

Blockchain-powered crowdsourcing model for the mobile
environment is proposed to address several challenges
such as, participants privacy, the integrity of services, and
improving quality of experience [50]. A blockchain-based
task matching (BPTM) model for crowdsourcing for reliable
and secure matching is proposed using smart contracts [51].
Confidentiality and identity anonymity are achieved using
searchable encryption. An auction-blockchain-based crowd-
sourcing technique, ABCrowd is presented to execute crowd-
sourcing on Ethereum blockchain including auctions [52].
It utilizes repeated bidders auction technique which allows
truthful bidding. However, it lacks to protect user privacy.
Task Select Worker Crowd (TSWCrowd) is presented to
address the issues of reliable tasks allocation, ensuring
workers’ payments and reliability of the platform [53]. The
task-select-worker mechanism is defined to sort the tasks and
the tasks having higher priority are assigned first. In contrast
to ABCrowd, the average workers’ payment in TSW-Crowd

8168 VOLUME 10, 2022

References Category

[18]

[19]

[20]

[21]
Trust management

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[32]

[47]

[48]

[49] Task management

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57], [58]

[59]

[60]
Dispute arbitration

[61]

STBC

CP C I AT AZ

✓ X X X X

✓ X X ✓ X

✓ X ✓ X X

✓ X X ✓ X

✓ X ✓ ✓ X

✓ X X ✓ ✓

X X X X X

X X X X X

X X X X X

✓ X X X X

✓ ✓ X X X

X X ✓ ✓ X

X X X ✓ X

X ✓ X X X

X X X X ✓

X X ✓ X X

X X ✓ X X

X X ✓ X X

X X X X X

X X X ✓ X

X X X ✓ X

X ✓ ✓ ✓ X

X X ✓ X X

X ✓ ✓ ✓ ✓

X X X X X

X X X X X

✓ X X X X

CP : Consensus Protocol
C : Confiendtiality
I : Integrity
AT : Authentication
AZ : Authorization
AV : Availability

Security

AV NR p LN

X X X ✓

X X X X

X X X ✓

X ✓ X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X ✓ X X

X X X X

NR: Non-Repudiation
P : Persistence
LN : Liveness
S: Safety
FT : Fault Tolerance
FR : Fraud Resilience

Trust

s FT FR AC LT/MT VrT/VlT WT DT PDT

X ✓ X ✓ X ✓ X X X

✓ X X ✓ ✓ ✓ ✓ X ✓

✓ ✓ X X ✓ ✓ ✓ ✓ ✓

X ✓ ✓ ✓ X X X X X

X X X X ✓ ✓ ✓ X X

X X X X X X X ✓ X

X X X X X X ✓ ✓ X

X X X X X X ✓ X X

X X X X X X ✓ X X

X X ✓ ✓ ✓ ✓ ✓ ✓ ✓

X X X ✓ ✓ ✓ X X X

X X ✓ X X X ✓ ✓ ✓

X X X ✓ X X X X X

X X X X X X X X X

X X X X X X X X X

X X ✓ X X X X X X

X X ✓ X X X X X X

X X ✓ X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X ✓ X X

X X ✓ X X X X X X

X X X X X X X X X

X X ✓ X X X X ✓ ✓

X X ✓ X X X ✓ ✓ X

X X ✓ X X X ✓ ✓ X

✓ ✓ X X ✓ ✓ X X X

AC : Accountability DT : Data Trust
LT : Leader Trust PDT : Personal Data Trust
MT : Miner Trust ✓ : satisfies a property
VrT : Verifier Trust x : does not satisfy a property
VIT : Validator Trust
WT : Worker Trust

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

is higher. ConGradetect is presented as a blockchain-based
crowdsourcing detection system that addresses code and
identity privacy but it analyzes simple codes [54].

Blockchain-based crowdsourcing is used for reliable data
analysis in Mobile Ad-hoc Cloud (MAC) [55]. It addresses
the challenges of attracting mobile devices to join the MAC
network and able to collect reliable computation from mobile
devices. A resilient-improved two-stage auction (ITA) is
presented for fault tolerance in mobile crowdsourcing [56].
The proposed technique is beneficial for organizations as
the workers are selected according to the time and budget
of organizations. The designs for crowdsourced energy
systems using blockchain technology are presented in [57],
[58] to crowdsource small-scale production or trading of
energy from distributed resources of energy. To handle
the issues of crowdsourcing data access, analysis, and
management, a framework based on blockchain technology is
proposed [46]. The framework helps researchers in accessing
operational data ensuring confidentiality, traceability, and
accountability of data, and disseminating data in a controlled
way to the public, but it lacks scalability.

3) DISPUTE ARBITRATION
A blockchain-based scheme for fine-grained authorization in
data crowdsourcing (BC-FGA-DCrowd) is proposed in [59].
The scheme resists internal malicious actions and external
sybil and DDoS attacks. The feasibility of the scheme
is tested on the Ethereum network, however, it lacks in
defining a proper function for evaluating the quality of
data. A decentralized oracle-based game is proposed to
decide the truth of queries and to resolve disputes [60].
In crowdsourcing, the quality of completed tasks and fairness
in the evaluation of tasks are addressed using blockchain
technology [61]. An arbitration mechanism is described for
the realization of business services and to avoid security
attacks, e.g., false reporting and free-riding but it lacks
privacy analysis.

The comparison of the discussed research work in terms
of security and trust is provided in Table 2. It is observed
in the literature that there are very few blockchain-based
crowdsourcing consensus protocols and some of these are
partially verified [18], [21]. To the best of our knowledge,
this is the first work which utilizes CSP# for the formal
specification of a blockchain-based crowdsourcing consensus
protocol and the PAT model checker for the verification of
security and trust properties.

IV. SYSTEM MODEL AND CONSENSUS PROTOCOL
This section describes the architecture of the system, design
of the consensus protocol, security properties, and associated
attacks. In the end, a threat model with attacks and defenses
is presented.

A. SYSTEM ARCHITECTURE
The architecture of the blockchain-based crowdsourcing
system (BBCS) is represented in Figure 3. It consists of four

FIGURE 3. Architecture of the system.

actors: service consumer, service provider, blockchain man-
agement nodes, and validator nodes. The service consumers
request for services by posting a task to the crowdsourcing
platform. A service consumer can check the status of
a task by sending a query to the blockchain. Service
providers provide services by receiving a task through a
crowdsourcing platform. A service provider can send a
query to the blockchain to get information about the task
payment. The blockchain management nodes are responsible
for managing blockchain, e.g., proposing and validating
blocks. In every round of consensus, a trusted leader is elected
from the blockchain management nodes to propose and add
a block to the blockchain. The validators validate and vote
for transactions and blocks. The blockchain management
nodes, service consumers, and providers can serve as
validators.

B. DESIGN OF CONSENSUS PROTOCOL
1) CROWDSOURCING CONSENSUS PROTOCOL
The overview of the proposed STBC consensus protocol is
presented in Figure 4. The consensus process starts with the
initialization of nodes that can perform the transactions. The
blockchain management node having the highest trust value
is selected as a leader for the current round. The trust is
calculated based on deposit ratio, activity rate, and missed
rate.The trusted validators are selected from blockchain
management nodes, crowdsourcing service providers, and
consumers to validate and vote for the transactions and the
block to avoid malicious behaviors. The validator’s trust
is calculated based on deposit ratio and activity rate. The
process of selection of leader and validators runs in parallel to
save time. After the process of selection, the trusted validators
vote for transactions and broadcast votes. The leader prepares
the block by including the transactions that gain the majority
of the votes from validators. The leader then broadcasts the
block to the validators and they vote for the block. If the
majority of the validators accept the block then the leader
adds the block in the blockchain and all the nodes update their
ledger. The trust values and deposit of leader and validators
are updated and the consensus process enters into the next
round. If the block is rejected, then the leader and validators
lose the trust and deposit, and the consensus protocol moves
to the next round.

VOLUME 10, 2022 8169

A A Reques for
'W' 'W' serv1c s

QQ
Service consumers

Q
,-Q,Validate blo ks
'W' /transactio s

Validator nodes

rowdsourcing
platform

I\ .
/ 1 Integration
I I
I I
I I
I I
\ I

IEEEAccess·

Provide
services Q Q

QQ
Service providers

• t :laer
e/manage • node

Blockchain
management nodes

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

FIGURE 4. Overview of STBC consensus protocol.

2) CALCULATION OF TRUST OF A LEADER
The trust factors of management nodes for the selection of a
leader are defined as:

Deposit ratio of a management node: The deposit
that a management node i made is denoted as mdi. The
sum of deposits of all management nodes is defined as
MD =

∑
mdi. The deposit ratio of a management node i

is calculated as αi =
mdi
MD ∈ [0, 1]. All the nodes should have

the deposit greater than some specific amount for the block
generation process.

Activity rate of a management node: Let MBi be the
total number of times that a management node i has been
selected for block generation and mbi be the number of times
that a management node i has successfully generated the
block. The activity rate of a management node is denoted as
βi =

mbi
MBi
∈ [0, 1]. Initially, it is assumed that βi = 0.

Missed rate of a management node: Let MSi be the
total number of times that a management node i participates
in leader selection and msi be the number of times that a
management node i has not been selected as a leader. The
missed rate of a management node is calculated as γi =

msi
MSi

∈ [0, 1]. It is assumed that γi = 0 initially.
A leader for block generation is selected frommanagement

nodes based on the above trust factors.
Trust of a leader: The trust of a leader i can be calculated

as: ηi =
αi+βi+γi

3 ∈ [0, 1]. The deposit ratio can affect the
leader selection process. Therefore, to avoid the situation
where a malicious attacker can dominate the network by
submitting a tremendous amount of money, a maximum
deposit that a node can submit is defined, which is agreed
by all participants. In the first few rounds, the nodes having
higher deposit and activity rate have a greater chance to be
selected as a leader but in the long-term the nodes having a
deposit and higher missed rate have an equal chance to be
selected as the nodes having higher deposit and activity rate.
Missed rate is introduced to provide fairness among nodes.

3) CALCULATION OF TRUST OF VALIDATORS
The trust factors to define a criteria for the selection of
validators are described below.

Deposit ratio of a validator node: The deposit that a
validator node j made is denoted as vdj. The sum of deposits
of all validator nodes is defined as VD =

∑
vdj. The deposit

ratio of a validator node j is calculated as 0j =
vdj
VD ∈ [0, 1].

All the nodes should have a deposit greater than some specific
amount for the block validation process.

Activity rate of a validator node: Let VBj be the
total number of times that a validator node j has been
selected for block validation and vbj be the number of
times that a validator node j has successfully validated the
block. The activity rate of a validator node is denoted as
3j =

vbj
VBj
∈ [0, 1]. Initially, it is assumed that 3j = 0.

Trust of a validator: The trust of a validator j can be
calculated as: σj =

0j+3j
2 ∈ [0, 1]. The activity rate is

introduced here to avoid rich nodes dominating the network.

4) ALGORITHM
The high-level pseudocode of STBC consensus protocol is
described in Algorithm 1. It takes managementM , consumer
C , provider P and validator V nodes as input (line 1).
Firstly, all these nodes are initialized (line 2). The consumer
and provider nodes can perform transactions (line 3). These
two steps are required for running the consensus protocol.
Then the selection of a trusted leader TLeader and K
trusted validators TValidators runs in parallel (lines 4-5).
After the selection process, the trusted validators vote for
T transactions for a block (lines 6-7). The leader proposes
the block by including the leader information, previous block
hash, and T transactions that receive maximum votes (lines
8-9). The proposed block is then broadcast for a vote to
validators (lines 10-11). If it is accepted by the majority
of the validators then it is added in the blockchain and the
leader and validators’ trust values and deposit are updated
(lines 12-14). Otherwise, the proposed block is discarded and
the selected leader and validators lose the trust and escrow
deposit (lines 15-17). The number of activities mbTLeader ,
number of misses msTLeader and deposit mdTLeader of the
leader are set to zero. The number of activities vbTValidators
and deposit vdTValidators of trusted validators become zero.
The whole process is repeated in the next round (line 18).
In Algorithm 1, Blockchain represents the old state of
blockchain and ˆ is the concatenation operator.

The high level pseudocode of Nodes_Initialization is
presented in Algorithm 2. A management node i is defined
by its deposit mdi, number of activities mbi, and number
of misses msi. Suppose a management node i has a deposit
that lies between the minimum and maximum deposit range.
If the number of activities and misses are initially zero,
then it can become part of the network (lines 2-5). It can
serve as a validator, therefore, it is added in the validator
nodes (line 6). Similarly, suppose a consumer node c and
a provider node p have sufficient deposit and zero number
of activities. In that case, they can be added to the network
(lines 7-10, 12-15). A consumer and a provider can also
serve as a validator, therefore, included in the validator nodes

8170 VOLUME 10, 2022

IEEE Access·

Start
1. Nodes initialization

2. Perl'orm transactions

Next round

Block is added in
blockchain

Update trust and
deposit

Leader selection
1. Deposit ratio 2. Activity rate

3.Missedrate

Validators selection
1. Deposit ratio 2. Activity rate

Validators vote for
block

Validators vote for
transactions and
broadcast votes

Leader proposes
block and broadcast

Block is discarded

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

Algorithm 1:High level pseudocode of STBC consensus
protocol.

1 STBC(M, C, P, V)
2 Nodes_Initialization(M, C, P, V)
3 Perform_Transactions(C, P)
4 Selection() = Leader_Selection(M) ‖
5 Validators_Selection(V, K)
6 VTransactions← VoteBroadcast(Transactions, T,
7 TValidators)
8 Propose(Block(index, TLeader, prevHash, hash,
9 Tmax(VTransactions)))
10 Broadcast(Block, TValidators)
11 Vote(Block, TValidators)
12 if (Accept(Block, Majority) == true)
13 Blockchain← Blockchain ˆ Block
14 UpdateTrustAndDeposit()
15 else
16 Discard(Block)
17 LoseTrustAndDeposit()
18 Next_Round()

(lines 11, 16). Here, s, t , and u represent a number of
management, consumer, and provider nodes respectively that
can be added to the network.

Algorithm 2: Pseudocode of nodes intialization.

1 Nodes_Initialization(M, C, P, V)
2 for i = 1, 2, . . . , s
3 if(mdi ≥ minDeposit && mdi ≤ maxDeposit &&
4 mbi == 0 && msi == 0)
5 M =M ∪ {i}
6 V = V ∪ {i}
7 for c = 1, 2, . . . , t
8 if(vdc ≥ minDeposit && vdc ≤ maxDeposit
9 && vbc == 0)

10 C = C ∪ {c}
11 V = V ∪ {c}
12 for p = 1, 2, . . . , u
13 if(vdp ≥ minDeposit && vdp ≤ maxDeposit
14 && vbp == 0)
15 P = P ∪ {p}
16 V = V ∪ {p}

Algorithm 3 defines the types of transactions that can occur
in a crowdsourcing system. A consumer c can post a task
and the deposit is stored in blockchain as an escrow amount
(lines 2-4). A consumer deposit includes three shares, the first
share is for task processing, the second share is the block
reward and the third share is the verification fee. The number
of activities of a consumer is updated (line 5). A provider
p can receive and perform a task (lines 6-8). The consumer
then evaluates the task and if it is accepted then the provider
gets the share of payment and the number of activities is

incremented (lines 9-13). Otherwise, the consumer gets some
proportion of the deposit (lines 14-17).

Algorithm 3: Pseudocode of performing transactions.

1 Perform_Transactions(C, P)
2 ∃ c ∈ C
3 PostTask(c)
4 Escrow(d_c)
5 c.UpdateNumActivities(1)
6 ∃ p ∈ P
7 ReceiveTask(p)
8 PerformTask(p)
9 EvaluateTask(c)

10 if (AcceptTask(c) == true)
11 treward← RemoveEscrow(d_c/total_shares)
12 TaskReward(p, treward)
13 p.UpdateNumActivities(1)
14 else
15 RejectTask(c)
16 pdeposit← RemoveEscrow(d_c/total_shares)
17 DepositReturned(pdeposit)

Algorithm 4 describes the procedure of leader selection
(line 1). Initially, the first management node M0 is selected
as a temporary trusted leader (line 2). The participation
values MSTLeader and MSx of all the management nodes that
take part in leader selection are incremented (lines 3, 6).
From all the management nodes, a management node having
the highest trust value η is selected as a trusted leader
(lines 4-5, 7-11). In case of a tie, an approach presented in [62]
is utilized to avoid it. According to this, a management node
having the smallest hash value of its identifier (or public key)
and trust is selected (lines 12-18). The selection value of the
trusted leaderMBTLeader is incremented (line 19). The deposit
of the selected leader is stored as an escrow amount to prevent
malicious behavior (line 20).

Algorithm 5 presents the process of selection of K
validators. The value for K can be selected at the time of
implementation. Initially, no trusted validators are selected
(line 2). The validators are sorted in descending order
according to the trust value σ , and the first K validators of
highest trust values are selected (lines 3-12). It is ensured that
a leader cannot serve as a trusted validator in the same round.
The selection value VBVa of every trusted validator is updated
(line 13). The deposit vdVa of each selected validator is stored
in block-chain to prevent malicious behavior (line 14).

The update trust process is described in Algorithm 6.
When the leader’s block is accepted by the network, then
its number of activities mbTLeader is incremented (line 2),
it gets the block generation reward (lines 3-4) and gains its
escrowed deposit (line 5). The number of missesmsM\TLeader
of management nodes other than the leader node is updated
(line 6). The number of activities vbTValidators of trusted
validators is incremented (line 7). The validators get the

VOLUME 10, 2022 8171

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

Algorithm 4: Pseudocode of leader selection.

1 Leader_Selection(M)
2 let TLeader = M0
3 MSTLeader = MSTLeader + 1
4 x = 1
5 while (x < len M)
6 MSx = MSx + 1
7 if (ηTLeader > ηMx)
8 x++
9 else if (ηTLeader < ηMx)
10 TLeader = Mx
11 x++
12 else if (ηTLeader == ηMx)
13 if (Hash(TLeader.GetMId(), ηTLeader) >
14 Hash(Mx .GetMId(), ηMx))
15 TLeader = Mx
16 x++
17 else
18 x++
19 MBTLeader = MBTLeader + 1
20 Escrow(mdTLeader)

Algorithm 5: Pseudocode of validators selection.

1 Validators_Selection(V, K)
2 len(TValidators) = 0
3 a = 0, b = 1
4 while (a < len V − 1 && Va!= TLeader &&
5 len(TValidators) ≤ K)
6 while (b < len V && Vb!= TLeader)
7 if (σVa ≥ σVb)
8 b++
9 else

10 Swap(Va, Vb)
11 b++
12 TValidators = TValidators ∪ Va
13 VBVa = VBVa + 1
14 Escrow(vdVa)
15 a++

block validation reward (lines 8-9). The escrowed deposit of
validators is returned (line 10).

C. PROPERTIES AND ATTACKS
In this work, we have defined security and trust properties,
i.e., safety, fault tolerance, trusted leader, and trusted
validators to prevent security attacks, such as blockchain fork,
selfishmining, and invalid block insertion. The properties and
attacks are defined below.
Definition 1 (Safety): The consensus protocol is safe if

all the nodes of network eventually reach the same
decision.

Algorithm 6: Pseudocode of updating trust and deposit.

1 UpdateTrustAndDeposit()
2 mbTLeader = mbTLeader + 1
3 greward← RemoveEscrow(d_c/total_shares)
4 BlockGReward(greward)
5 DepositReturned(RemoveEscrow(mdTLeader))
6 msM\TLeader = msM\TLeader + 1
7 vbTValidators = vbTValidators + 1
8 vreward← RemoveEscrow(d_c/total_shares)
9 BlockVReward(TValidators, vreward)

10 DepositReturned(RemoveEscrow(vdTValidators))

Definition 2 (Fault Tolerance): The consensus protocol is
fault tolerant if all the honest nodes eventually accept the
same block even in the presence of malicious nodes.
Definition 3 (Trusted Leader): In every round of consen-

sus protocol, a management node having the highest trust
value is selected eventually.
Definition 4 (Trusted Validators): In every round of con-

sensus protocol, validator nodes that have the highest trust
values are eventually selected.
Definition 5 (Blockchain Fork): It represents a state of the

blockchain in which nodes have different views about the
blockchain state. The network nodes may receive more than
one block at the same time.
Definition 6 (Selfish Mining):Miners secretly mine blocks

to earn rewards. The selfish miners release the blocks to the
public when they get a longer chain.
Definition 7 (Invalid Block Insertion): The blocks that

disobey network rules are known as invalid blocks.
A malicious leader tries to add invalid blocks in the
blockchain.

D. THREAT MODEL
To introduce an effective attack against the STBC consensus
protocol, an attacker needs to compromise more than 1/3 of
network nodes. A malicious leader and a validator can pose
several threats which can affect the working of the consensus
process. If there are multiple nodes mining at the same
time then blockchain can fork, therefore, in the proposed
consensus protocol, a unique leader is selected in every round
to propose a block to prevent blockchain fork. Malicious
nodes may try to mine blocks secretly and broadcast to the
network nodes. To avoid this situation, it is ensured that only
the trusted leader can execute the block propose and broadcast
process and all the nodes add the block of a trusted leader
in their ledger in each round. A malicious leader may try
to add an invalid block in the blockchain, but the consensus
protocol prevents its addition by adding no block. The deposit
of a leader is stored in the blockchain to avoid malicious
behavior. If a leader remains honest then the escrowed deposit
is returned, otherwise, the deposit is slashed away. Moreover,
it also loses its trust and it becomes very difficult for the

8172 VOLUME 10, 2022

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

malicious leader to become the leader again. This incentivises
the leader to behave honestly.

Malicious validators may refuse to vote for transactions
or blocks to prevent the addition of the correct blocks. This
situation can occur only if more than 1/3 of the validators are
malicious. To avoid this situation, the selected validatorsmust
also submit a deposit to the blockchain. If the correct block
cannot be added to blockchain due to malicious validators
then the validators not only lose the trust but also the escrowed
deposit which incentivises validators to behave honestly.
Further, it becomes difficult for these nodes to become
trusted validators again. Further, if the consensus process
is localized among some fixed nodes then it can lead to
centralization. Therefore, the trust model for the selection
of a leader and validators is designed in such a way that it
prevents centralization. For the selection of a trusted leader
and validators, activity rate is utilized in addition to deposit
ratio to restrict rich nodes from dominating the network.
Missed rate is also introduced in the selection of a leader so
that the nodes waiting to become leaders also get a chance.
This ensures fairness and decentralization in the protocol.

V. FORMAL SPECIFICATION OF CONSENSUS PROTOCOL
This section presents the formal model of the STBC
consensus protocol using CSP#. In the formal model, the
structure of blocks and the blockchain is defined at an abstract
level and our main focus is to model the communication
among nodes to achieve the consensus.

A. CONSENSUS PROTOCOL
The consensus protocol is defined as a process (line 3) which
involves four nodes represented as PNodes (line 1) where
node i∈PNodes. The number of transactions to be included in
a block is defined as T (line 2). All the steps of the consensus
protocol are described in detail. In a distributed environment,
all the nodes execute a sequence of processes of consensus
protocol in parallel.

1. #define PNodes 4;
2. #define T 2;
3. Consensus_ Protocol() =

(‖ i : {0..PNodes− 1}@
(NodeInitialization(); PerformTransactions();
Selection(); VoteForTransactions(T , i);
ProposeAndBroadcast(i); VoteToBlock(i);
isValidBlockchain(); AddBlock(i);
UpdateTrustAndDeposit()));
NextRound();

B. NODES INITIALIZATION
Firstly, the nodes are initialized having unique identifiers,
with sufficient deposit, number of activities, and number
of misses (line 4). There are three types of nodes, i.e.,
management nodes, provider nodes, and consumer nodes. All
these nodes can serve as validator nodes.

4.NodeInitialization() = (MngNode1(0, 20, 0, 0);
MngNode2(1, 30, 0, 0); ProvNode1(2, 15, 0);

ProvNode2(3, 20, 0); ConsNode1(4, 10, 0);
ConsNode2(5, 30, 0); ConsNode3(6, 20, 0));

MngNode1 is defined as a management node (line 5).
The first parameter represents the identifier of the node.
The deposit, number of activities, and number of misses
are described in the second, third, and fourth parameters
respectively. Firstly, a guard statement is specified in which it
is checked that the node has a positive identifier, has sufficient
deposit, and that the number of activities and misses lies
between the minimum and maximum range (line 5.1). If the
guard evaluates to true then the new management node is
added (line 5.2). As a management node can serve as a
validator, therefore, it is also included in the validator nodes.
The behavior ofMngNode2 is similar toMngNode1, therefore
it is marked as ‘‘. . .’’ for simplicity (line 6).

5. MngNode1(id, deposit, numActivities, numMisses) =
5.1. [id >= 0 && deposit >= minDeposit &&

deposit <= maxDeposit &&
numActivities >= minNumActivities &&
numActivities <= maxNumActivities &&
numMisses >= minNumMisses &&
numMisses <= maxNumMisses]

5.2. add1 {var m1 = new ManagementNode(id, deposit,
numActivities, numMisses);
managementNodes.Add(m1);

validatorNodes.AddNode(new ValidatorNode(id,
deposit, numActivities, numMisses, m1)); } → Skip;

6.MngNode2(id, deposit, numActivities, numMisses) = . . .
ProvNode1 is described as a provider node (line 7). It is
defined by an identifier, deposit, and number of activities.
Provider nodes can also participate in validation. ProvNode2
(line 8) is similar to ProvNode1.

7. ProvNode1(id, deposit, numActivities) =
7.1. [id >= 0 && deposit >= minDeposit &&
deposit <= maxDeposit &&
numActivities >= minNumActivities
&& numActivities <= maxNumActivities]
7.2. add3 { var v1 = new ProviderNode(id, deposit,
numActivities); providerNodes.Add(v1);
validatorNodes.AddNode(new ValidatorNode(id,
deposit, numActivities, v1)); } → Skip;
8. ProvNode2(id, deposit, numActivities) = . . .

ConsNode1, ConsNode2 and ConsNode3 are defined as
consumer nodes similar to provider nodes (lines 9-11).

9. ConsNode1(id, deposit, numActivities) = . . .
10. ConsNode2(id, deposit, numActivities) = . . .
11. ConsNode3(id, deposit, numActivities) = . . .

C. PERFORM TRANSACTIONS
When the nodes become part of the system they perform
transactions for the execution of tasks (line 12). The
transactions of a post, receive, perform, evaluate, accept,
reject, and finish a task are described.

12. PerformTransactions() =
PostTask(consumerNode, 30); ReceiveTask(
providerNode); PerformTask(providerNode);
EvaluateTask(consumerNode); (AcceptTask(
consumerNode) � RejectTask(consumerNode));
FinishTask(providerNode);

VOLUME 10, 2022 8173

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

The post task transaction is specified as a process that takes
a node vl and deposit as input (line 15). The input node
should be a consumer node and initially, its state should be
not_post . The deposit should exist between the minimum
and maximum range (line 15.1). If the guard condition is
satisfied then the state of the task changes to post . The
consumer escrows the deposit in the blockchain. The number
of consumer activities is updated (lines 15.2).

13. var state= [not_ post, post, receive, perform, evaluate,
taccept, treject, finish];
14. var task_ state = state[0];
15. PostTask(vl, deposit) =
15.1. [vl == consumerNode && task_ state == state[0]

&& deposit >= minDeposit &&
deposit <= maxDeposit]

15.2. post_ task {task_ state = state[1];
escrowC = consumerNode.SubmitDeposit(deposit);
blockchain.SetEscrowAmount(escrowC);
consumerNode.UpdateNumActivities(1); } → Skip;

When the task is posted it is received by the provider and
the state changes from post to receive. This is described by
the process ReceiveTask (line 16).

16. ReceiveTask(vl) = [vl == providerNode &&
task_ state == state[1]]

16.1. receive_ task {task_ state = state[2]; } → Skip;
When the provider receives the task then he performs the task
and the state of the task changes to perform (line 17).

17. PerformTask(vl) = [vl == providerNode &&
task_ state == state[2]]

17.1. perform_ task {task_ state = state[3]; } → Skip;
After the task is performed by the provider, then the consumer
evaluates it (line 18).

18. EvaluateTask(vl) = [vl == consumerNode &&
task_ state == state[3]]

18.1. evaluate_ task {task_ state = state[4]; } → Skip;
The consumer can accept or reject the task (lines 19-20). If it
is accepted then its state changes to accept (line 19.1).

19. AcceptTask(vl) = [vl == consumerNode &&
task_ state == state[4]]

19.1. accept_ task {task_ state = state[5]; } → Skip;
If the task is rejected then its state changes to reject and the
consumer gets a proportion of the escrow amount (line 20).

20. RejectTask(vl) = [vl == consumerNode &&
task_ state == state[4]]

20.1. reject_ task {task_ state = state[6];
blockchain.RemoveEscrowAmount(escrowC/
numShares); consumerNode.AddDeposit(escrowC/
numShares); } → Skip;

When the task is accepted by the provider then its state is
changed to finished (line 21.1). The provider gets the task
payment and the number of activities are updated.

21. FinishTask(vl) = [vl == providerNode &&
task_ state == state[5]]

21.1. task_ finish {task_ state = state[7];
blockchain.RemoveEscrowAmount(escrowC/numShares);
providerNode.AddDeposit(escrowC/numShares);
providerNode.UpdateNumActivities(1) } → Skip;

D. SELECTION
The consensus protocol starts with the selection of leader and
validators (line 22). There should exist somemanagement and

validator nodes in the network to execute the selection, and
their selection executes in parallel to save time.

22. Selection() = [managementNodes.GetLength() > 0
&& validatorNodes.GetLength() > 0]
(LeaderSelection() ‖ SelectValidator(K));

1) LEADER SELECTION
The leader selection algorithm is executed by each node in
parallel in a distributed environment. It is assumed that all
the nodes should have exactly the same inputs to achieve
synchronous agreement [63]. It is ensured using a flooding
algorithm in [63]. Otherwise, disagreement may occur. Given
the same input, each node chooses exactly the same leader.
In case of a tie among the nodes of the same trust values,
an approach similar to the work presented in [62] is used
in this work to avoid this situation. Following this approach,
if any two management nodes have the same trust values then
a management node with the smaller hash value of identifier
and trust is selected.

The process of selection of a trusted leader is specified
as LeaderSelection (line 23). Firstly, a temporary leader is
selected and its participation value is incremented (lines
23.1-23.4). The participation value of all other management
nodes involved in leader selection is incremented. The deposit
ratio, activity rate, and missed rate of all management nodes
are compared, and the node having the highest trust value
is selected as a leader (lines 23.5-23.7). In case, if the
management nodes have the same trust values, then the
above-described approach is used to select one leader for
the current round (lines 23.8-23.11). The selection value of
the leader is incremented (line 23.12). The selected leader
submits the deposit in the blockchain (lines 23.13-23.16).

23. LeaderSelection() = leaderSelection{
23.1. var index = 0;
23.2. mn1 = managementNodes.GetNode(index);
23.3. tempLeader = mn1;
23.4. tempLeader .UpdateNumParticipated(1);
23.5. while(index < managementNodes.GetLength()−1) {

mn2 = managementNodes.GetNode(index + 1);
mn2.UpdateNumParticipated(1);
var depositRatio1 = tempLeader .GetDeposit()/

managementNodes.GetTotalDeposit();
var activityRate1 = tempLeader .GetNumActivities()

/ tempLeader .GetNumSelected();
var missedRate1 = tempLeader .GetNumMisses()/

tempLeader .GetNumParticipated();
var depositRatio2 = mn2.GetDeposit()/

managementNodes.GetTotalDeposit();
var activityRate2 = mn2.GetNumActivities()/

mn2.GetNumSelected();
var missedRate2 = mn2.GetNumMisses()/

mn2.GetNumParticipated();
23.6. if (((depositRatio1 + activityRate1 +

missedRate1)/3) > ((depositRatio2 +
activityRate2 + missedRate2)/3)){
index = index + 1; }

23.7. else if (((depositRatio1 + activityRate1 +
missedRate1)/3) < ((depositRatio2 +
activityRate2 + missedRate2)/3)){
tempLeader = mn2;
index = index + 1; } }

8174 VOLUME 10, 2022

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

23.8. else if (((depositRatio1 + activityRate1 +
missedRate1)/3) == ((depositRatio2 +
activityRate2 + missedRate2)/3)){

if ((tempLeader .computeHash(tempLeader .
GetMId(), (depositRatio1 + activityRate1 +
missedRate1)/3)) > (mn2.computeHash(mn2.
GetMId(), (depositRatio2 + activityRate2 +
missedRate2)/3))) { tempLeader = mn2;

index = index + 1; }
else { index = index + 1; } } }

23.9. selectedLeader = tempLeader;
23.10. leaderSelected = 1;
23.11. selectedLeader .SetRound(rd);
23.12. selectedLeader .UpdateNumSelected(1);
23.13. escrowL = selectedLeader .
23.14. SubmitDeposit(selectedLeader .GetDeposit());
23.15. blockchain.SetEscrowAmount(escrowL);
23.16. selectedLeader .SetDeposit(0); } → Skip;

2) VALIDATORS SELECTION
The trusted validators selection process is specified as
SelectValidator (line 24). The deposit ratio and activity rate of
all validator nodes are compared and the first k nodes having
the highest trust values are selected as trusted validators
(lines 24.1-24.6). The selection value of the trusted validator
is incremented (lines 24.7-24.8). The selected trusted val-
idators submit the deposit to the blockch-ain in an escrow
account (lines 24.9-24.11). The record of selected trusted
validators is maintained (lines 24.12-24.13).

24. SelectValidator(k) = selectkval{
24.1. var index1 = 0;
24.2. var index2 = 1;
24.3. while(index1 < validatorNodes.GetLength()− 1 &&

index1 < k) {
24.4. while(index2 < validatorNodes.GetLength()) {

vn1 = validatorNodes.GetNode(index1);
vn2 = validatorNodes.GetNode(index2);
var depositRatio1 = vn1.GetDeposit()/
validatorNodes.GetTotalDeposit();
var activityRate1 = vn1.GetNumActivities()/
vn1.GetNumSelected();
var depositRatio2 = vn2.GetDeposit()/
validatorNodes.GetTotalDeposit();

var activityRate2 = vn2.GetNumActivities()/
vn2.GetNumSelected();

24.5. if (((depositRatio1 + activityRate1)/2) >=
((depositRatio2 + activityRate2)/2)){
validatorNodes.SetNode(index1, vn1);
validatorNodes.SetNode(index2, vn2);
index2++; }

24.6. else { validatorNodes.SetNode(index1, vn2);
validatorNodes.SetNode(index2, vn1);
index2++; } }

24.7. var tn = validatorNodes.GetNode(index1);
24.8. tn.UpdateNumSelected(1);
24.9. escrowV = tn.SubmitDeposit(tn.GetDeposit());
24.10. blockchain.SetEscrowAmount(escrowV);
24.11. tn.SetDeposit(0);
24.12. trustedValidatorNodes.AddNode(tn);
24.13. index1++; } valSelected = 1; } → Skip;

E. VOTE AND BROADCAST TRANSACTIONS
After the process of selection, the leader has to prepare
the block and for this purpose, the transactions that receive

maximum votes from validators are required. The procedure
Vote ForTransactions is specified at line 25. This process
takes a number of transactions, and a validator as input. The
number of transactions to vote for should be greater than zero
and less than or equal to the maximum number of transactions
(line 25.1). Otherwise, no transaction is available to vote for
(line 25.2). Before the voting process, a leader and validators
must be selected, otherwise, no transaction can be selected
for the voting process (line 25.1).

25. VoteForTransactions(t, vl) =
25.1. [t > 0 && t <= maxTransactions]

([leaderSelected == 1 && valSelected == 1]
selection_ end → voteTrans(t, vl) �
[leaderSelected == 0 ‖ valSelected == 0]
no_ transaction_ selected → Skip) �

25.2. [t < 0] no_ transaction_ to_ vote → Skip;
The voting process is described in procedure voteTrans

(line 26). It is a sequence of three processes. In the first
process, every trusted validator selects t transactions from
pending transactions to vote for and the transactions proposal
of every trusted validator is prepared (lines 26.2-26.3).
In the second process, VoteToTransaction_a, the transactions
proposals are validated and each trusted validator vote for it
(lines 27-30). The third process describes the broadcasting
and receiving of votes among validator nodes for transaction
proposals (lines 26.4-26.7). A node will not broadcast or
accept a block if the vote flag is zero. In this process, different
communications channels are used, hence, the definition
differs slightly for every node but the logical behavior
remains the same.

26. voteTrans(t, vl) = vote.t {
26.1. var index1 = 0;
26.2. while(index1 < trustedValidatorNodes.

GetLength()− 1) {
tvn = trustedValidatorNodes.GetNode(index1);
index1++; var index2 = 0;

26.3. while(index2 < pendingTransactions.GetLength()
− 1 && index2 < t && vl == tvn.GetVId()) {
tran1 = pendingTransactions.Get(index2);
tTransactions.Set(index2, tran1); index2++; }
transactionsProposals.Set(index1,
new TransactionProposal(tTransactions,
new TransactionSignature(index2))); } } →

26.4. ([vl == 0] VoteToTransaction_ 0(); (
([voteflag0 == 1] (ch01!tempTVote0 → Skip ‖
ch02!tempTVote0→ Skip ‖ ch03!tempTVote0→
Skip) � [voteflag0 == 0] Skip) ‖

([voteflag1 == 1] ch10?y { tvotes0.Add(y) } →
Skip �[voteflag1 == 0] Skip) ‖
([voteflag2 == 1] ch20?y { tvotes0.Add(y) } →
Skip � [voteflag2 == 0] Skip) ‖
([voteflag3 == 1] ch30?y { tvotes0.Add(y) } →
Skip �[voteflag3 == 0] Skip)) �

26.5. [vl == 1] VoteToTransaction_ 1(); . . .
26.6. [vl == 2] VoteToTransaction_ 2(); . . .
26.7. [vl == 3] VoteToTransaction_ 3(); . . .

In every procedure of VoteToTransaction_a (lines 27-30),
the transaction proposal is validated and voted accordingly.
If the voting behavior of a node is honest then it votes for the
transactions honestly, otherwise, the node having malicious

VOLUME 10, 2022 8175

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

intent does not vote for the transactions. It is mentioned that
all transactions have similar behavior.

27. VoteToTransaction_ 0() =
validateTProposal.0 {
tempTProposal0 = transactionsProposals.Get(0);
tempProposedTransaction0 = tempTProposal0.
GetTransactions();
if (voteBehaviour[0] == Honest_ Vote) {
tempTVote0 = new TransactionVote(
tempProposedTransaction0, tsignature0);
tempTVote0.updateVotes(1); }
else if (voteBehaviour[0] == No_ Vote) {

voteflag0 = 0} tvotes0.Add(tempTVote0); } → Skip;
28. VoteToTransaction_ 1() = . . .
29. VoteToTransaction_ 2() = . . .
30. VoteToTransaction_ 3() = . . .

In order to get the transactions with maximum votes, the
process TransWithMaxVotes is specified (line 31). It requires
t number of transactions as input. All the transactions that
gain votes are checked and the first t transactions that receive
maximum votes are recorded.

31. TransWithMaxVotes(t) = trans {
31.1. while(index1 < votedTransactions.GetLength()− 1

&& index1 < t) {
31.2. while(index2 < votedTransactions.GetLength()) {

tran1 = votedTransactions.Get(index1);
tran2 = votedTransactions.Get(index2);

31.3. if (tran1.getVotes() >= tran2.getVotes()){
votedTransactions.Set(index1, tran1);
votedTransactions.Set(index2, tran2);
index2++; }

31.4. else { votedTransactions.Set(index1, tran2);
votedTransactions.Set(index2, tran1);
index2++; }

31.5. maxVotedTransactions.Set(index1, tran1);
31.6. index1++; } } } → Skip;

F. PROPOSE AND BROADCAST BLOCK
After getting transactions that gain maximum votes, the block
can be proposed. The block propose and broadcast procedure
is described in line 32. If the leader is selected for the round,
the block b can be proposed (line 32.1). Firstly, an empty
block is acquired from the locked blocks as the proposed
block. The peek block of the blockchain is made the previous
block of the current block to be proposed. The block is
then proposed having information about the block index,
leader of the block, previous block hash, and maximum voted
transactions and is added in blocks proposals. If a node is
the leader of the current round then it broadcasts the block
to validators, otherwise, it receives the proposed block (lines
32.2-32.6). The same procedure is repeated for other blocks.

32. ProposeAndBroadcast(b) =
32.1. [selectedLeader .GetRound() == b] proposeBlock.b
{ proposedBlock = lockedBlocks.Get(b);
if (proposedBlock.GetBlockHash() == initialHash)
{ prevBlock = blockchain.GetPeekBlock();
proposedBlock = new Block(b, selectedLeader,
prevBlock.GetBlockHash(),
maxVotedTransactions); }

blocksProposals.SetProposal(b, new BlockProposal
(proposedBlock, new BlockSignature(b))) } →

32.2. (([b == 0] (ch01!blocksProposals.GetProposal(b)

→ Skip ‖ ch02!blocksProposals.GetProposal(b)
→ Skip ‖ ch03!blocksProposals.GetProposal(b)
→ Skip) �[b == 1] . . . [b == 2] . . . [b == 3] . . .

32.6. [b == 0] (ch10?y → {blocksProposals.
SetProposal(b, y)} → Skip � ch20?y →
{blocksProposals.SetProposal(b, y)} → Skip �
ch30?y → {blocksProposals.SetProposal(b, y)}

→ Skip)�[b == 1] . . . [b == 2] . . . [b == 3] . . .
After receiving the block, the validators vote for the block.
The block voting process VoteToBlock is specified at line 33.
It takes the block index b as input. It is a sequence of two
processes and it is preceded by an event propose_end to
ensure that the propose phase has ended (line 33.1). The
first process VoteToBlock_ a() validates the block proposal
and accordingly votes for the block (lines 34-37). In the
second process, the votes are broadcast and received among
the validator nodes (line 33.1). If the vote flag is zero, a node
will not broadcast or accept the vote for the block. The same
process is followed for all the blocks (lines 33.2-33.4).

33. VoteToBlock(b) =
33.1. [b == 0] propose_ end → VoteToBlock_ 0(); (

([voteflag0 == 1] (ch01!tempBVote0 → Skip ‖
ch02!tempBVote0→ Skip ‖ ch03!tempBVote0
→ Skip) � [voteflag0 == 0] Skip) ‖
([voteflag1 == 1] ch10?y { bvotes0.Add(y) } →
Skip � [voteflag1 == 0] Skip) ‖
([voteflag2 == 1] ch20?y { bvotes0.Add(y) } →
Skip � [voteflag2 == 0] Skip) ‖
([voteflag3 == 1] ch30?y { bvotes0.Add(y) } →
Skip � [voteflag3 == 0] Skip)) �

33.2. [b == 1] propose_ end → VoteToBlock_ 1(); . . .
33.3. [b == 2] propose_ end → VoteToBlock_ 2(); . . .
33.4. [b == 3] propose_ end → VoteToBlock_ 3(); . . .

In every process of VoteToBlock_a (lines 34-37), the
malicious behavior is introduced. Firstly, the block proposal
is validated and then voted on accordingly. If a node is honest
then it votes for the block honestly, otherwise, does not vote.

34. VoteToBlock_ 0() =
34.1. validateProposal.0 {

tempProposal0 = blocksProposals.GetProposal(0);
tempProposedBlock0 = tempProposal0.GetBlock();
var invalidBlock = blockchain0.
ContainsBlock(tempProposedBlock0);

34.2 if (invalidBlock) {tempProposedBlock0 = new Block(); }
34.3. if (voteBehaviour[0] == Honest_ Vote) {

tempBVote0 = new BlockVote(tempProposedBlock0.
GetBlockHash(), bsignature0);
tempBVote0.updateVotes(1); }

34.4. else if (voteBehaviour[0] == No_ Vote)
{voteflag0 = 0} bvotes0.Add(tempBVote0); }
→ Skip;

35. VoteToBlock_ 1() = . . .
36. VoteToBlock_ 2() = . . .
37. VoteToBlock_ 3() = . . .

G. BLOCKCHAIN VALIDITY
After receiving enough votes, the block can be added to
the blockchain. Before adding the block, the validity of
the blockchain is checked, specified as isValidBlockchain
(line 38). The validity of the blockchain is checked by
comparing the recorded and computed hash for every current
and previous block (lines 38.1-38.5).

8176 VOLUME 10, 2022

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

38. isValidBlockchain() = validBlockchain{
38.1. var index = blockchain.GetHeight();
38.2. while (index <= blockchain.GetHeight() &&

index >= 2){
curBlock = blockchain.GetBlock(index);
prevBlock = blockchain.GetBlock(index − 1);

38.3. if (curBlock.GetBlockHash() ! =
curBlock.computeHash()){ v = Not_ Valid; }

38.4. if (curBlock.GetPrevHash() ! =
prevBlock.GetBlockHash()){ v = Not_ Valid; }

38.5. else if (curBlock.GetBlockHash() ==
curBlock.computeHash() &&
curBlock.GetPrevHash() ==
prevBlock.GetBlockHash()){
v = valid; index −−; } } } → Skip;

H. ADDING BLOCK IN BLOCKCHAIN
The process of block addition is specified as AddBlock
(line 39). For every block, firstly it is ensured that the
blockchain is valid (line 39.1). If the block receives votes
from a majority of the validators then it is added to the
blockchain. Same process is repeated for every block (lines
39.2-39.4).

39. AddBlock(b) =
39.1. [b == 0 && v == valid] addtoBChain.b {

tempProposedBlock0 = bvotes0.
GetBlockWithMajorityVotes(MajorityValidators);
if (tempProposedBlock0.GetBlockHash() ! =

initialHash && untrustedLeader == false) {
blockchain0.AddBlock(tempProposedBlock0) }
} → Skip �

39.2. [b == 1 && v == valid] . . .
39.3. [b == 2 && v == valid] . . .
39.4. [b == 3 && v == valid] . . .

I. UPDATE TRUST VALUES AND DEPOSIT
At the end of the consensus protocol, trust values are updated
(line 40). If the block is successfully added to blockch-
ain then the leader’s number of activities is incremented,
the leader gets the block generation reward and the escrow
amount is returned (lines 40.1-40.2, 41-43). Similarly, the
number of misses of participating management nodes are
updated, the validators number of activities are incremented,
they receive the block validation reward and their escrow
deposit is returned (lines 40.2, 44-47). If the proposed block is
not successfully added to the blockchain then the leader and
validators lose trust (lines 40.3, 48-49). The leader deposit,
the number of activities, and misses are set to zero. Similarly,
the validators’ deposit and number of activities are set to zero.

40. UpdateTrust() =
40.1. [blockchain0.ContainsBlock(tempProposedBlock0) ‖

blockchain1.ContainsBlock(tempProposedBlock1)
‖ blockchain2.ContainsBlock(tempProposedBlock2)
‖ blockchain3.ContainsBlock(tempProposedBlock3)]

40.2. (UpdateLNumActivities(1);
GetBlockGReward(escrowC/numShares);
LDepositReturned(escrowL);

UpdatePMNumMisses(1);UpdateVNumActivities(1);
GetBlockVReward();TVDepositReturned(); Skip)�

40.3. [!(blockchain0.ContainsBlock(tempProposedBlock0))
‖!(blockchain1.ContainsBlock(tempProposedBlock1))
‖!(blockchain2.ContainsBlock(tempProposedBlock2))
‖!(blockchain3.ContainsBlock(tempProposedBlock3))
] maliciousLeader → LLoseTrustAndDeposit() �
maliciousValidators → VLoseTrustAndDeposit();

The UpdateLNumActivities process increases the number of
activities of the leader by input l (line 41).

41. UpdateLNumActivities(l) = update {selectedLeader .
UpdateNumActivities(l)} → Skip;

In GetBlockGReward , the block reward is removed from the
blockchain and added in the account of leader (line 42).

42. GetBlockGReward(deposit) = getdep {blockchain.
RemoveEscrowAmount(deposit);
selectedLeader .AddDeposit(deposit)} → Skip;

The LDepositReturned process specifies that the leader’s
escrowed deposit is added in its account (line 43).

43. LDepositReturned(deposit) = getdep {blockchain.
RemoveEscrowAmount(deposit);
selectedLeader .AddDeposit(deposit)} → Skip;

In UpdatePMNumMisses process, it is specified that if a
management node is not a leader then its number of misses
are updated (line 44).

44. UpdatePMNumMisses(m) = update {
while(index < managementNodes.GetLength()− 1){

mn1 = managementNodes.GetNode(index);
if (mn1 ! = selectedLeader &&

mn1.GetNumMisses() < maxNumMisses){
mn1.UpdateNumMisses(m); }
index ++; } } → Skip;

The UpdateVNumActivities process describes that the num-
ber of activities of all the trusted validators are incremented
(line 45).

45. UpdateVNumActivities(a) = update {
while(index < trustedValidatorNodes.GetLength()− 1)
{ tvn = trustedValidatorNodes.GetNode(index);
tvn.UpdateNumActivities(a);
index ++; } } → Skip;

In GetBlockVReward , it is described that the validators get
the block validation reward from the deposit submitted by the
consumer (line 46).

46. GetBlockVReward() = vreward {
while(index < trustedValidatorNodes.GetLength()− 1)
{ tvn = trustedValidatorNodes.GetNode(index);
blockchain.RemoveEscrowAmount((escrowC/
numShares)/trustedValidatorNodes.GetLength());
tvn.AddDeposit((escrowC/numShares)/
trustedValidatorNodes.GetLength());
index ++; } } → Skip;

The TVDepositReturned process defines that the escrowed
deposit of the validators is returned (line 47).

47. TVDepositReturned() = tvdep {
while(index < trustedValidatorNodes.

GetLength()− 1) {
tvn = trustedValidatorNodes.GetNode(index);
escrowV = tvn.GetEscrow();
blockchain.RemoveEscrowAmount(escrowV);
tvn.AddDeposit(escrowV); index ++; }} → Skip;

The LLoseTrustAndDeposit defines that the leader’s number
of activities, misses and deposit are set to zero (line 48).

VOLUME 10, 2022 8177

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

48. LLoseTrustAndDeposit() = ltrust {
selectedLeader .SetNumActivities(0);
selectedLeader .SetNumMisses(0);
selectedLeader .SetDeposit(0); } → Skip;

The validators’ number of activities and deposit are set to zero
in VLoseTrustAndDeposit process (line 49).

49. VLoseTrustAndDeposit() = vltrust {
while(index < trustedValidatorNodes.
GetLength()− 1) {
tvn = trustedValidatorNodes.GetNode(index);
tvn.SetNumActivities(0);
tvn.SetDeposit(0); index ++; } } → Skip;

J. NEXT ROUND
In order to move the consensus protocol to the next round, the
nextRound process is specified (line 50). If the current round
is less than the maximum number of rounds then the current
round is incremented. All the necessary variables are cleared
and the consensus protocol starts again.

50. NextRound() =
[rd < maxRounds] nextround { rd ++;
lockedBlocks.Clear();
bvotes0.Clear(); bvotes1.Clear(); bvotes2.Clear();
bvotes3.Clear();
tvotes0.Clear(); tvotes1.Clear(); tvotes2.Clear();
tvotes3.Clear();
managementNodes.Nullify(selectedLeader);
validatorNodes.Nullify(trustedValidatorNodes);
blockchain.Nullify(proposedBlock);
} → Consensus_ Protocol() �
[rd >= maxRounds] Skip;

VI. RESULTS AND ANALYSIS
We have verified our formal model of the proposed consensus
protocol under normal and byzantine environments using the
PAT model checker. We have defined five variations of our
consensus protocol. The first two variations are defined with
different numbers of malicious nodes with a threat factor of
no vote (lines 51-52). The next two variations are specified
with different numbers of malicious nodes but the voting
behavior is defined as honest (lines 53-54). The fifth variation
of consensus protocol simulates the behavior of an untrusted
leader (lines 55-56). After the selection process, an untrusted
leader is introduced which can try to add a block in the
blockchain.

51. Consensus_ Protocol_ With_ Minority_ Malicious_
No_ Vote() = IntroduceMaliciousNodes(Minority_
Nodes, No_ Vote); Consensus_ Protocol();

52. Consensus_ Protocol_ With_ Majority_ Malicious_
No_ Vote() = IntroduceMaliciousNodes(Majority_
Nodes, No_ Vote); Consensus_ Protocol();

53. Consensus_ Protocol_ With_ Minority_ Malicious_
Honest_ Vote() = IntroduceMaliciousNodes(Minority
Nodes, Honest Vote);Consensus_ Protocol();

54. Consensus_ Protocol_ With_ Majority_ Malicious_
Honest_ Vote() = IntroduceMaliciousNodes(Majority
_ Nodes, Honest_ Vote); Consensus_ Protocol();

55. Consensus_ Protocol_ With_ Untrusted_ Leader() =
(‖ i : {0..PNodes− 1}@(NodeInitialization();
PerformTransactions(); Selection(); IntroduceUntr −
ustedLeader(); VoteForTransactions(T , i);

ProposeAndBroadcast(i); VoteToBlock(i);
isValidBlockchain(); AddBlock(i);
UpdateTrustAndDeposit())); NextRound();

56. IntroduceUntrustedLeader() = {
selectedLeader = untrustedLeaderNode;
untrustedLeader = true; } → Skip;

LTL is used to specify the desired properties. The
properties are represented as assertions in Table 3. We have
verified general properties, as well as security properties,
under normal and byzantine environments. The verification
of properties under a byzantine environment shows that the
proposed model is fault tolerant.

A. DEADLOCK-FREE
A deadlock-free formal model is described as there does not
occur a situation where a node has to wait for another node
for an activity. The PAT model checker is used to query
deadlock in the formal model. We have specified assertions
and verified that the consensus protocol is deadlock-free in
both normal and byzantine environments as shown in Table 3.
The assertion A1 for the normal environment is specified
below and for the byzantine environment, the assertions
A2-A6 are presented in Table 3.

A1. #assert Consensus_ Protocol() deadlockfree;

B. CONSENSUS
Consensus is defined using #define as every node of the
network must agree on the same block and add that block to
its copy of the blockchain. It is specified as the peek block of
each node’s chain should be the same.

#define Consensus (!blockchain0.IsEmpty() &&
blockchain0.GetPeekBlock() ==
blockchain1.GetPeekBlock() &&

blockchain1.GetPeekBlock() ==
blockchain2.GetPeekBlock() &&

blockchain2.GetPeekBlock() ==
blockchain3.GetPeekBlock());

LTL formulas are specified as assertions to verify that the
formal model eventually reaches consensus or not in normal
and byzantine environments. The assertion A7 for reaching
consensus in the normal environment is specified below and
for the byzantine environment, A8-A12 are represented in
Table 3. The symbol |H is read as satisfies. It can be noted
in Table 3 that the model does not reach consensus when the
majority of nodes are malicious and they do not vote (A9 in
Table 3). It is also observed that when an untrusted leader
is added in the network then consensus cannot be reached
(A12 in Table 3). This does not show that the consensus
protocol is vulnerable but it is preferred that network nodes
add no block in their ledger rather than adding a malicious
block.

A7. #assert Consensus_ Protocol() |H ♦ Consensus;

C. NO BLOCKCHAIN FORK
No blockchain fork can be assured when all nodes record the
same proposed block in their blockchain. All nodes have a
same view about the blockchain state.

#define No_ Blockchain_ Fork (!blockchain0.IsEmpty() &&
proposedBlock == blockchain0.GetPeekBlock() &&

8178 VOLUME 10, 2022

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

TABLE 3. Results for verification of security and trust properties against the formal model.

proposedBlock == blockchain1.GetPeekBlock() &&
proposedBlock == blockchain2.GetPeekBlock() &&
proposedBlock == blockchain3.GetPeekBlock());

LTL formulas are specified below to verify that eventually
no blockchain fork is ensured. Table 3 shows that the model
ensures that a blockchain fork cannot occur in the normal
environment as specified by an LTL formula A13 below and
when the minority of nodes are malicious or byzantine nodes
vote honestly as defined in Table 3 by LTL formulas A14 and
A16-A17. The model does not satisfy this property when the
majority of nodes are malicious and they do not vote (A15 in
Table 3), and also when an untrusted leader is introduced into
the network (A18 in Table 3). When the property is violated,
then the proposed block cannot be added to the ledger of
nodes but a fork does not occur.

A13. #assert Consensus_ Protocol() |H
♦ No_ Blockchain_ Fork;

D. NO SELFISH MINING
No selfish mining is ensured when a leader of a peek block
of every copy of the blockchain is the same. It shows
that only the block of a single leader is added to the
blockchain.

#define No_ Selfish_ Mining (!blockchain0.IsEmpty() &&
blockchain0.GetBlockLeader(blockchain0.GetPeekBlock())
== blockchain1.GetBlockLeader(blockchain1.
GetPeekBlock()) && blockchain1.GetBlockLeader(
blockchain1.GetPeekBlock()) == blockchain2.
GetBlockLeader(blockchain2.GetPeekBlock()) &&
blockchain2.GetBlockLeader(blockchain2.GetPeekBlock())
== blockchain3.GetBlockLeader(blockchain3.
GetPeekBlock()));

LTL formulas are described to verify that there is no
selfishmining in the protocol. The LTL formulaA19 specified
below is verified in the normal environment. In the byzantine
environment, when the minority of nodes are malicious
or byzantine nodes vote honestly, then the LTL formulas
A20, A22-A23 shown in Table 3 are verified. However,
when the majority of nodes become malicious and they do
not vote for the block or an untrusted leader is added in
the network then A21 and A24 exhibited in Table 3 are
violated.

A19. #assert Consensus_ Protocol() |H
♦ No_ Selfish_ Mining;

E. NO INVALID BLOCK INSERTION
It is defined as in each round of consensus protocol there
should not be any invalid (duplicate) block submitted by
malicious leaders in the copy of blockchain of a node.

#define No_ Invalid_ Block_ Insertion (rd > 0 &&
!blockchain0.ContainsDuplicateBlocks() &&
!blockchain1.ContainsDuplicateBlocks() &&
!blockchain2.ContainsDuplicateBlocks() &&
!blockchain3.ContainsDuplicateBlocks());

The LTL formulas are specified to describe that the protocol
and its variations satisfy eventually no invalid block insertion
property. A25 is specified below for normal conditions while
A26-A30 are defined in Table 3 for byzantine conditions.
Table 3 shows that all the variations of consensus protocol
satisfy this property.

A25. #assert Consensus_ Protocol() |H
♦ No_ Invalid_ Block_ Insertion;

F. SAFETY
The safety property is defined as all the nodes reach the same
decision. It means that all the nodes must agree on adding the
same block. It can be ensured when there are no blockchain
fork and no selfish mining attacks.

#define Safety No_ Blockchain_ Fork &&
No_ Selfish_ Mining;

The LTL formulas are described to verify that the protocol
satisfies eventually safety property under normal and byzan-
tine conditions. When the majority of the nodes become
malicious and they adopt no voting behavior or an untrutsed
leader is involved in the network then assertions A33 and
A36 presented in Table 3 are not satisfied. The rest of the
assertions A31 presented below and A34-A35 represented in
Table 3 are verified.

A31. #assert Consensus_ Protocol() |H ♦ Safety;

G. FAULT TOLERANCE
In each round, a common block will be accepted by all honest
nodes even in the existence of some malicious nodes. This
property is specified as reaching consensus. It is described
below by an LTL formula A37 for normal conditions and
LTL formulas A38-A42 are defined in Table 3 for byzantine
environment. Its behavior is similar to the consensus property
as shown in Table 3.

VOLUME 10, 2022 8179

Deadlock- F ◊ Con- F ◊ No_Blo- F ONo_sel- F ◊ No_invalid_ F ◊ Safety
F ◊Fault_ F ◊Trusted_ F ◊Trusted_

Assertions free sensus ckchain_ Fork fish_mining block_insertion Tolerance leader validators

#assert Consensus_ Protocol() Al:Yes A7: Yes Al3:Yes A19: Yes A25: Yes A31:Yes A37: Yes A43: Yes A48: Yes

#assert Consensus_ Protocol_ With_ Minority_ Malicious_ No_ Vote() A2:Yes A8:Yes Al4:Yes A20: Yes A26: Yes A32: Yes A38: Yes A44: Yes A49: Yes

#assert Consensus_ Protocol_ With_ Majority_ Malicious_ No_ Vote() A3:Yes A9:No A15:No A21:No A27: Yes A33: No A39: No A45: Yes A50: Yes

#assert Consensus_ ProtocoL With_ Minority_ Malicious_ HonesL Vote() A4:Yes AlO: Yes A16:Yes A22: Yes A28: Yes A34: Yes A40: Yes A46: Yes A51:Yes

#assert Consensus_ ProtocoL With_ Majority_ Malicious_ HonesL Vote() A5:Yes All: Yes Al7:Yes A23: Yes A29: Yes A35: Yes A41:Yes A47: Yes A52: Yes

#assert Consensus_ Protocol_ With_ Untrusted_ Leader() A6:Yes A12:No AIS:No A24: No A30: Yes A36: No A42: No - -

Yes : Property satisfied No : Property not satisfied - : Property not analyzed

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

FIGURE 5. Verification time for safety.

FIGURE 6. Verification time for fault tolerance.

#define Fault_ Tolerance Consensus;
A37. #assert Consensus_ Protocol() |H ♦Fault_ Tolerance;

H. TRUSTED LEADER
In every round of consensus, a trusted leader is selected. The
LTL formulas are specified to verify that eventually a trusted
leader is selected. A43 is described below for the normal
environment and A44-A47 for the byzantine environment are
shown in Table 3. Table 3 represents that all the formulas are
satisfied.

#define trustedLeader (rd >= 0 && leaderSelected ==
1);
A43. #assert Consensus_ Protocol() |H ♦ trustedLeader;

I. TRUSTED VALIDATORS
The trusted validators are selected in every round of
consensus protocol. LTL formulas are used to specify that
eventually trusted validators are selected. A48 is defined
below for the normal environment and A49-A52 are described
for the byzantine environment in Table 3. This property
is verified for all the variations of consensus protocol as
presented in Table 3.

#define trustedValidators(rd >= 0 && valSelected == 1);
A48. #assert Consensus_Protocol() |H ♦ trustedValidators;

J. ANALYSIS OF THE PROTOCOL
We have performed the formal verification of the desired
properties against the STBC protocol on an Intel i5-7200U

FIGURE 7. Verification time for trusted leader.

FIGURE 8. Verification time for trusted validators.

2.5 GHz CPU with 8 GB of memory, running Windows
10 and PAT version 3.5.1. The results of verification time
(in seconds) of safety, fault tolerance, trusted leader, and
trusted validators are presented in Figures 5, 6, 7, and 8
respectively. The number of nodes is represented on the
horizontal axis and the verification time in seconds is shown
on the vertical axis. The nodes involved are service con-
sumers, service providers, blockchain management nodes,
and validator nodes. When the properties are satisfied, it is
analyzed that the verification time increases continuously
with the increased count of nodes. In case of violation
of a property, the verification time remains close to zero.
For example, for the safety property, Figure 5 shows the
assertions A31, A32, A34, and A35 are satisfied, therefore, the
verification time increases continuously with the increased
count of nodes. However, the assertions A33 and A36 are
not satisfied, therefore, the verification time remains close to
zero. Similarly, the verification time of fault tolerance, trusted
leader, and trusted validators properties increases with the
increased count of nodes. Similar behavior is observed for
the verification time of deadlock, consensus, no blockchain
fork, no selfish mining, and no invalid block insertion
properties.

We have performed formal verification for a limited
number of nodes in the network. However, the proposed

8180 VOLUME 10, 2022

IEEE Access·

-+-A31 -+-A32 -+-A33 -+-A34 -+-A35 -+-A36

450
~400
~350
.§ 300
"';;; 250
~ 200
~ 150
·.: 100
~ 50

0
5 6 7 8

Number of nodes

---A37 ---A38 A39 ---A40 ---A41 ---A42

500
450

~400

j !~~
] 250

~ 200
·.: 150
~ 100

50
0

6 7

Number of nodes
8

9

9

160

140

3 120

] 100

= iJ 80

e 60 = ·.:
~ 40

20

0

270

240
3210
" 6 180
.: = 150 = i 120
"' 90 !e
~ 60

30

0

5

5

-+-A43 -+-A44 -+-A45 -+-A46 -+-A47

6 7

Number of nodes

8

-+-A48 -+-A49 -+-A50 -+-A51 -+-A52

6 7

Number of nodes
8

9

9

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

protocol itself is generic, and it can work for an arbitrary
number of nodes. The noticeable point is that the verification
time increases continuously with the increased count of
nodes. With many nodes, an issue of state explosion may
occur, which is one of the limitations of the model checking
approach [33]. These limitations are outside the scope of
this work. In the future, we plan to improve the efficiency
of our model using different techniques, such as symbolic
model checking with binary decision diagrams, partial order
reduction, counterexample-guided abstraction refinement,
and bounded model checking.

VII. CONCLUSION AND FUTURE WORK
Secure and Trustworthy Blockchain-based Crowdsourcing
consensus protocol is a formally verified consensus protocol,
which ensures safety, fault tolerance, trusted leader, and
trusted validator properties. It prevents security attacks, e.g.,
blockchain fork, selfish mining, and invalid block insertion.
The proposed consensus protocol is energy-efficient as
a single leader proposes a block in each round of the
protocol. The trust model ensures fairness and decentral-
ization because the waiting nodes also get a chance to
become leaders. Ensuring the correctness of a consensus
protocol has significant importance because the failure of
a consensus protocol can lead to disastrous consequences.
Therefore, to mitigate the associated risks, we have used
a formal methods-based technique, i.e., model checking,
which is automatic and effective to increase the formal
model’s confidence of correctness. We have used CSP#
for the formal specification of the consensus protocol. The
security and trust properties are formally specified using LTL
formulas. The PAT model checker is utilized to ensure the
correctness of the formal specification against the specified
properties.

At present, we have done model checking of our formal
model for small number of nodes. For large number of nodes,
state explosion can occur which will be addressed in future
using different techniques such as symbolic model checking
with binary decision diagrams, partial order reduction,
counterexample-guided abstraction refinement and bounded
model checking. The future work will consider failure
or unavailability of nodes. Formal verification of further
security properties, e.g., persistence and liveness, against the
formalmodel will be done.Wewill do the performance analy-
sis of the proposed consensus protocol using simulation tech-
niques in addition to formal verification to get benefit of both
approaches.

REFERENCES

[1] T. S. Sindlinger, ‘‘Crowdsourcing: Why the power of the crowd is driving
the future of business,’’ Amer. J. Health-Syst. Pharmacy, vol. 67, no. 18,
pp. 1565–1566, Sep. 2010.

[2] G. Paolacci, J. Chandler, and P. G. Ipeirotis, ‘‘Running experiments
on Amazon mechanical Turk,’’ Judgment Decis. Making, vol. 5, no. 5,
pp. 411–419, 2010.

[3] S. Hornung, D. M. Rousseau, J. Glaser, P. Angerer, and M. Weigl,
‘‘Beyond top-down and bottom-upwork redesign: Customizing job content
through idiosyncratic deals,’’ J. Organizational Behav., vol. 31, nos. 2–3,
pp. 187–215, Feb. 2010.

[4] A. Todolí-Signes, ‘‘The end of the subordinate worker: Sharing economy,
on-demand economy, crowdsourcing, uber economy and other ways of
outsourcing,’’ SSRN Electron. J., pp. 5–11, Dec. 2015.

[5] M. T. Riccardi, ‘‘The power of crowdsourcing in disaster response
operations,’’ Int. J. Disaster Risk Reduction, vol. 20, pp. 123–128,
Dec. 2016.

[6] S. Chandra, R. T. Naik, and J. Jimenez, ‘‘Crowdsourcing-based traffic
simulation for smart freight mobility,’’ Simul. Model. Pract. Theory,
vol. 95, pp. 1–15, Sep. 2019.

[7] W. Liu, X.Wang, andW. Peng, ‘‘Secure remote multi-factor authentication
scheme based on chaotic map zero-knowledge proof for crowdsourcing
Internet of Things,’’ IEEE Access, vol. 8, pp. 8754–8767, 2020.

[8] Downdetector.Wikipedia Down? Current Status and Problems. Accessed:
Jan. 18, 2019. [Online]. Available: https://down
detector.com/status/wikipedia

[9] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, ‘‘Keep your
promise: Mechanism design against free-riding and false-reporting in
crowdsourcing,’’ IEEE Internet Things J., vol. 2, no. 6, pp. 562–572,
Dec. 2015.

[10] D. MEYER. Elance and Odesk Hit by DDoS. Accessed: Jul. 28, 2020.
[Online]. Available: https://gigaom.com/2014/03/18/elance-hit-by-major-
ddos-attack-downing-service-for-many-freelancers/

[11] M. Isaac, K. Benner, and S. Frenkel. Uber Hid 2016 Breach, Paying Hack-
ers to Delete Stolen Data. Accessed: Jul. 28, 2020. [Online]. Available:
https://www.nytimes.com/2017/11/21/technology/uber-hack.htm

[12] A. Baur, ‘‘Crowdsourced formal verification: A business case analysis
toward a human-centered business model,’’ Naval Postgraduate School,
Monterey, CA, USA, Tech. Rep. 0704-0188, 2015.

[13] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’
Tech. Rep., 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[14] F. Saleh, ‘‘Blockchain without waste: Proof-of-stake,’’ Rev. Financial
Stud., vol. 34, no. 3, pp. 1156–1190, 2021.

[15] A. Kiayias, A. Russell, B. David, and R. Oliynykov, ‘‘Ouroboros: A
provably secure proof-of-stake blockchain protocol,’’ in Proc. Annu. Int.
Cryptol. Conf. Springer, 2017, pp. 357–388.

[16] X. Fu, H.Wang, and P. Shi, ‘‘A survey of blockchain consensus algorithms:
Mechanism, design and applications,’’ Sci. China Inf. Sci., vol. 64, no. 2,
pp. 1–15, Feb. 2021.

[17] S. Zhang and J.-H. Lee, ‘‘Analysis of the main consensus protocols of
blockchain,’’ ICT Exp., vol. 6, no. 2, pp. 93–97, Jun. 2020.

[18] J. Zou, B. Ye, L. Qu, Y. Wang, M. A. Orgun, and L. Li, ‘‘A Proof-of-
Trust consensus protocol for enhancing accountability in crowdsourcing
services,’’ IEEE Trans. Services Comput., vol. 12, no. 3, pp. 429–445,
May 2019.

[19] X. Zhu, Y. Li, L. Fang, and P. Chen, ‘‘An improved proof-of-trust consensus
algorithm for credible crowdsourcing blockchain services,’’ IEEE Access,
vol. 8, pp. 10187–102177, 2020.

[20] W. Feng and Z. Yan, ‘‘MCS-chain: Decentralized and trustworthy mobile
crowdsourcing based on blockchain,’’FutureGener. Comput. Syst., vol. 95,
pp. 649–666, Jun. 2019.

[21] S. Zhu, Z. Cai, H. Hu, Y. Li, and W. Li, ‘‘ZkCrowd: A hybrid blockchain-
based crowdsourcing platform,’’ IEEE Trans. Ind. Informat., vol. 16, no. 6,
pp. 4196–4205, Jun. 2020.

[22] D. Ongaro and J. Ousterhout, ‘‘In search of an understandable consensus
algorithm,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2014,
pp. 305–319.

[23] D.Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and T. Anderson,
‘‘Planning for change in a formal verification of the raft consensus
protocol,’’ in Proc. 5th ACM SIGPLAN Conf. Certified Programs Proofs,
Jan. 2016, pp. 154–165.

[24] K. Zheng, Y. Liu, C. Dai, Y. Duan, and X. Huang, ‘‘Model checking PBFT
consensus mechanism in healthcare blockchain network,’’ in Proc. 9th Int.
Conf. Inf. Technol. Med. Educ. (ITME), Oct. 2018, pp. 877–881.

[25] W. Y. M. M. Thin, N. Dong, G. Bai, and J. S. Dong, ‘‘Formal analysis of a
proof-of-stake blockchain,’’ inProc. 23rd Int. Conf. Eng. Complex Comput.
Syst. (ICECCS), Dec. 2018, pp. 197–200.

[26] J. Yoo, Y. Jung, D. Shin, M. Bae, and E. Jee, ‘‘Formal modeling and
verification of a federated byzantine agreement algorithm for blockchain
platforms,’’ in Proc. IEEE Int. Workshop Blockchain Oriented Softw. Eng.
(IWBOSE), Feb. 2019, pp. 11–21.

VOLUME 10, 2022 8181

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

[27] K. Chaudhary, A. Fehnker, J. van de Pol, andM. Stoelinga, ‘‘Modeling and
verification of the bitcoin protocol,’’ 2015, arXiv:1511.04173.

[28] J. Garay, A. Kiayias, and N. Leonardos, ‘‘The bitcoin backbone protocol:
Analysis and applications,’’ in Proc. Annu. Int. Conf. Theory Appl.
Cryptogr. Techn. Berlin, Germany: Springer, 2015, pp. 281–310.

[29] T.McGhin, K.-K. R. Choo, C. Z. Liu, andD.He, ‘‘Blockchain in healthcare
applications: Research challenges and opportunities,’’ J. Netw. Comput.
Appl., vol. 135, pp. 62–75, Jun. 2019.

[30] L. Cocco, A. Pinna, and M. Marchesi, ‘‘Banking on blockchain: Costs
savings thanks to the blockchain technology,’’Future Internet, vol. 9, no. 3,
p. 25, Jun. 2017.

[31] A. K. Kar and L. Navin, ‘‘Diffusion of blockchain in insurance industry: An
analysis through the review of academic and trade literature,’’ Telematics
Informat., vol. 58, May 2021, Art. no. 101532.

[32] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.-N. Liu, Y. Xiang,
and R. H. Deng, ‘‘CrowdBC: A blockchain-based decentralized framework
for crowdsourcing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 6,
pp. 1251–1266, Jun. 2019.

[33] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, ‘‘Model checking
and the state explosion problem,’’ in Proc. LASER Summer School Softw.
Eng. Berlin, Germany: Springer, 2011, pp. 1–30.

[34] S. King and S. Nadal, ‘‘Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,’’ Tech. Rep., Aug. 2012, vol. 19, p. 1.

[35] P. Vasin. (2014). Blackcoin’s Proof-of-Stake Protocol v2. [Online].
Available: https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf

[36] F. Schuh and D. Larimer. (2017). Bitshares 2.0: General
Overview. Accessed: Jun. 2017. [Online]. Available:
http://docs.bitshares.org/downloads/bitshares-general.pdf

[37] H. Sukhwani, J. M. Martinez, X. Chang, K. S. Trivedi, and A. Rindos,
‘‘Performance modeling of PBFT consensus process for permissioned
blockchain network (Hyperledger Fabric),’’ in Proc. IEEE 36th Symp.
Reliable Distrib. Syst. (SRDS), Sep. 2017, pp. 253–255.

[38] E. Buchman, ‘‘Tendermint: Byzantine fault tolerance in the age of
blockchains,’’ Ph.D. dissertation, Univ. Guleph, Guelph, ON, Canada,
2016.

[39] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, ‘‘A survey of distributed
consensus protocols for blockchain networks,’’ IEEE Commun. Surveys
Tuts., vol. 22, no. 2, pp. 1432–1465, 2nd Quart., 2020.

[40] W. Feng, Z. Yan, L. T. Yang, and Q. Zheng, ‘‘Anonymous authentication on
trust in blockchain-based mobile crowdsourcing,’’ IEEE Internet Things J.,
early access, Aug. 24, 2020, doi: 10.1109/JIOT.2020.3018878.

[41] L. Sun, Q. Yang, X. Chen, and Z. Chen, ‘‘RC-chain: Reputation-based
crowdsourcing blockchain for vehicular networks,’’ J. Netw. Comput.
Appl., vol. 176, Feb. 2021, Art. no. 102956.

[42] Y. Yu, S. Liu, L. Guo, P. L. Yeoh, B. Vucetic, and Y. Li, ‘‘CrowdR-
FBC: A distributed fog-blockchains for mobile crowdsourcing reputation
management,’’ IEEE Internet Things J., vol. 7, no. 9, pp. 8722–8735,
Sep. 2020.

[43] L. Tan, H. Xiao, X. Shang, Y. Wang, F. Ding, and W. Li, ‘‘A blockchain-
based trusted service mechanism for crowdsourcing system,’’ in Proc.
IEEE 91st Veh. Technol. Conf. (VTC-Spring), May 2020, pp. 1–6.

[44] M. Nguyen, Q. Bai, and J. Yu, ‘‘A blockchain-based trust model for
crowd environments,’’ in Proc. Australas. Comput. Sci. Week Multiconf.,
Feb. 2020, pp. 1–7.

[45] S. Zhu, H. Hu, Y. Li, and W. Li, ‘‘Hybrid blockchain design for privacy
preserving crowdsourcing platform,’’ in Proc. IEEE Int. Conf. Blockchain
(Blockchain), Jul. 2019, pp. 26–33.

[46] N. Sukhija, E. Bautista, M. Moore, and J.-G. Sample, ‘‘Employing
blockchain technology for decentralized crowdsourced data access and
management,’’ in Proc. IEEE SmartWorld, Ubiquitous Intell. Comput.,
Adv. Trusted Comput., Scalable Comput. Commun., Cloud Big Data
Comput., Internet People Smart City Innov. (SmartWorld/SCALCOM/UIC/
ATC/CBDCom/IOP/SCI), Aug. 2019, pp. 268–273.

[47] Y. Lu, Q. Tang, and G. Wang, ‘‘ZebraLancer: Private and anonymous
crowdsourcing system atop open blockchain,’’ in Proc. IEEE 38th Int.
Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018, pp. 853–865.

[48] Y. Guo, H. Xie, Y. Miao, C. Wang, and X. Jia, ‘‘FedCrowd: A
federated and privacy-preserving crowdsourcing platform on blockchain,’’
IEEE Trans. Services Comput., early access, Oct. 14, 2020, doi:
10.1109/TSC.2020.3031061.

[49] C. Zhang, Y. Guo, H. Du, and X. Jia, ‘‘PFcrowd: Privacy-preserving
and federated crowdsourcing framework by using blockchain,’’ in
Proc. IEEE/ACM 28th Int. Symp. Quality Service (IWQoS), Jun. 2020,
pp. 1–10.

[50] X. Xu, Q. Liu, X. Zhang, J. Zhang, L. Qi, and W. Dou, ‘‘A blockchain-
powered crowdsourcing method with privacy preservation in mobile envi-
ronment,’’ IEEE Trans. Comput. Social Syst., vol. 6, no. 6, pp. 1407–1419,
Dec. 2019.

[51] Y. Wu, S. Tang, B. Zhao, and Z. Peng, ‘‘BPTM: Blockchain-based
privacy-preserving task matching in crowdsourcing,’’ IEEE Access, vol. 7,
pp. 45605–45617, 2019.

[52] M. Kadadha, R. Mizouni, S. Singh, H. Otrok, and A. Ouali, ‘‘ABCrowd
an auction mechanism on blockchain for spatial crowdsourcing,’’ IEEE
Access, vol. 8, pp. 12745–12757, 2020.

[53] L. Gao, T. Cheng, and L. Gao, ‘‘Tswcrowd: A decentralized task-select-
worker framework on blockchain for spatial crowdsourcing,’’ IEEEAccess,
vol. 8, pp. 220682–220691, 2020.

[54] J. Wang, G. Sun, Y. Gu, and K. Liu, ‘‘ConGradetect: Blockchain-based
detection of code and identity privacy vulnerabilities in crowdsourcing,’’
J. Syst. Archit., vol. 114, Mar. 2021, Art. no. 101910.

[55] S. Rasool, M. Iqbal, T. Dagiuklas, Z. Ul-Qayyum, and S. Li, ‘‘Reli-
able data analysis through blockchain based crowdsourcing in mobile
ad-hoc cloud,’’ Mobile Netw. Appl., vol. 25, no. 1, pp. 153–163,
Feb. 2020.

[56] M. Sivaram, G. Rathee, R. Rastogi, M. T. Quasim, and H. Saini,
‘‘A resilient and secure two-stage ITA and blockchain mechanism in
mobile crowd sourcing,’’ J. Ambient Intell. Hum. Comput., vol. 11,
pp. 1–14, Nov. 2020.

[57] S. Wang, A. F. Taha, and J. Wang, ‘‘Blockchain-assisted crowdsourced
energy systems,’’ in Proc. IEEE Power Energy Soc. Gen. Meeting
(PESGM), Aug. 2018, pp. 1–5.

[58] S. Wang, A. F. Taha, J. Wang, K. Kvaternik, and A. Hahn, ‘‘Energy
crowdsourcing and peer-to-peer energy trading in blockchain-enabled
smart grids,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 8,
pp. 1612–1623, Aug. 2019.

[59] H. Ma, E. X. Huang, and K.-Y. Lam, ‘‘Blockchain-based mechanism for
fine-grained authorization in data crowdsourcing,’’ Future Gener. Comput.
Syst., vol. 106, pp. 121–134, May 2020.

[60] K. Nelaturu, J. Adler, M. Merlini, R. Berryhill, N. Veira, Z. Poulos, and
A. Veneris, ‘‘On public crowdsource-basedmechanisms for a decentralized
blockchain oracle,’’ IEEE Trans. Eng. Manag., vol. 67, no. 4, pp. 1–15,
Nov. 2020.

[61] Y. Ding, Z. Chen, F. Lin, and C. Tang, ‘‘Blockchain-based credit and
arbitration mechanisms in crowdsourcing,’’ in Proc. 3rd Int. Symp. Auto.
Syst. (ISAS), May 2019, pp. 490–495.

[62] J. Yu, D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo, ‘‘RepuCoin:
Your reputation is your power,’’ IEEE Trans. Comput., vol. 68, no. 8,
pp. 1225–1237, Aug. 2019.

[63] J. Aspnes, ‘‘Notes on theory of distributed systems,’’ 2020,
arXiv:2001.04235.

HAMRA AFZAAL received the B.S.C.S. and
M.S.C.S. degrees from the Department of Com-
puter Science, COMSATS University Islamabad
(CUI), Sahiwal, Pakistan. She is currently pur-
suing the Ph.D. degree with Information Tech-
nology University, Lahore, Pakistan. She joined
the Department of Computer Science, CUI, as a
Lecturer, in 2016. Her research interests include
blockchain, consensus protocols, wireless sensor
and actor networks, and formal modeling and
verification using formal methods.

8182 VOLUME 10, 2022

IEEE Access·

http://dx.doi.org/10.1109/JIOT.2020.3018878
http://dx.doi.org/10.1109/TSC.2020.3031061

H. Afzaal et al.: Formal Modeling and Verification of Blockchain-Based Crowdsourcing Consensus Protocol

MUHAMMAD IMRAN (Member, IEEE) received
the Ph.D. degree in information technology from
University Teknologi PETRONAS, Malaysia,
in 2011. He has 15 years of tertiary level teaching
experience in Pakistan, Malaysia, Saudi Arabia,
and Australia. He is currently a Senior Lecturer
with the School of Science, Engineering and
Information Technology, Federation University
Australia. Previously, he worked at King Saud
University (KSU), Saudi Arabia, as an Assistant

and Associate Professor, from 2011 to 2021. He has taught diverse
courses, including computer networks, network protocols & algorithms,
data science, information security, E-business, data structures, and operating
systems. He is also the Founding Leader of the Wireless Networks and
Security (WINS) Research Group, KSU, from 2013 to 2021. His research
is financially supported by several national and international grants. He has
completed a number of international collaborative research projects with
reputable universities. He has published more than 300 research articles
in peer-reviewed, highly-reputable international conferences (90), journals
(198), editorials (15), book chapter (one), and two edited books. Many
of his research articles are among the highly cited and most downloaded.
He has been listed among top 100 researchers by the Thomson Reuters
(Web of Science) based on the number of citations earned in the last
five years in the computer science and information systems category. His
research has been cited more than 9,0000 with H-index of 47, and i-10
index of 156 (Google Scholar). His research interests include mobile and
wireless networks, the Internet of Things, big data analytics, cloud/edge
computing, and information security. He has received a number of awards
and fellowships. He served as an Editor-in-Chief for European Alliance for
Innovation (EAI) Transactions on Pervasive Health and Technology and
an Associate Editor for IEEE Communications Magazine. He is serving
as an Associate Editor for top ranked international journals, such as IEEE
NETWORK, IEEE FUTURE GENERATION COMPUTER SYSTEMS, and IEEE ACCESS.
He served/serving as a Guest Editor for about two dozen special issues
in journals, such as IEEE Communications Magazine, IEEE Wireless
Communications Magazine, IEEE FUTURE GENERATION COMPUTER SYSTEMS,
IEEE ACCESS, and IEEE COMPUTER NETWORKS. He has been involved in
about 100 peer-reviewed international conferences and workshops in various
capacities, such as the chair, the co-chair, and a technical program committee
member. He has been consecutively awarded with the Outstanding Associate
Editor of IEEE ACCESS, in 2018 and 2019, besides many others.

MUHAMMAD UMAR JANJUA received the
Ph.D. degree from Cambridge University. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, Information Technol-
ogy University (ITU), Lahore, Pakistan, where he
is also the Director of the Blockchain Research
Laboratory. From 2008 to 2017, he worked
at Microsoft Corporation, as a Software Engi-
neer, with the Windows Security Research and
Development Group. He has been the primary

developer in preparing several mitigation packages for the entire Win-
dows ecosystem. His research interests include static analysis, program
verification and synthesis, big data security, and applied cryptography.

SARADA PRASAD GOCHHAYAT received the
M.Tech. degree in signal processing from IIT
Guwahati, India, in 2010, and the Ph.D. degree in
communication engineering from the Indian Insti-
tute of Science, India, in 2016. From 2016 to 2018,
he was a Postdoctoral Fellow with the Department
of Mathematics, University of Padua, Italy. He is
currently a Postdoctoral Fellow with the Virginia
Modeling, Analysis and Simulation Center, Suf-
folk, VA, USA, and an Adjunct Faculty with Old

Dominion University, Norfolk, USA. His research interests include security
and privacy in distributed computing and networks, especially in the IoT,
cloud computing, and blockchain.

VOLUME 10, 2022 8183

IEEEAccess·

•••

	Formal Modeling and Verification of a Blockchain-Based Crowdsourcing Consensus Protocol
	Original Publication Citation

	Formal Modeling and Verification of a Blockchain-Based Crowdsourcing Consensus Protocol

