
CUCS-140-84

DEVELOPMENT TOOLS

FOR

COMMUNICATION PROTOCOLS:

AN OVERVIEW

Nihal Nounou and 'iechiam Yemini
Department of Computer Science

Columbia University
New York. New York 10027

March 1984

ABSTRACT
This paper presents an overview of commonly used protocol development tools falling under

two c:ltegories: construction tools and validation tools. Construction tools are used to

develop protocols from specifications to working systems. They include tools for specification.

synthesis. and implementation. Validation toob are used to analyze protocols behavior.

Tht'Y include tools for formal \·erification. performance eV'duation and testing. For each

. toul. we t'x:1mine the key underlying issues. outline the m:tin appro:lches. :lod ,illustrate its

JPplj('~dion to a :'t'nd-and-wait protocol.

Table of Contents

Introduction
.) Specification \fethods
3 Protocol Synthesis
-1 Protocol Implementation ~1ethods
.) V erification ~fet hods
5 Performance evaluation
-; Testing
8 Conclusions

I. Proof of equations 6.2 and 6.3

1
1
3
4
5
i
8

10

16

II

List of Figures

Figure 1: A local view of a protocol la.yer 11
Figure 2: A protocol specification for the send-and-wait protocol (a) Sender (b) 12

Receiver (c) Medium
Figure 3: Service specification for the send-and-wait protocol 12
Figure 4: A reachability graph for the send-and-wait protocol 13
Figure 5: A modiried reachability graph for the send-and-wait protocol 13
Figure 6: Transfer time vs. arrival rate of the send-and-wait protocol 14
Figure 7: Logical architecture for testing 15
Figure 8: Physical architecture including the portable unit 15

1 Introduction

:\ communication protocol consists of a set of rules and a set of message formats Ilsed

for tr3.nsferring information among distributed processes in a computer network.
Comml1nic3.tion protocols (briefly protocols) involve processes that are distributed. concurrent.

time-dependent. asynchronous, and that communicate through an unreliable transmission

medium that could lose, duplicate, reorder. and/or corrupt messages. These render the
protocol design problem comp!ex.

The Internat.ional Standards Organization (ISO) proposed an Open System Interconnection

(OSI) standard protocol architecture [Zimm 811. in which each protocol layer (as depicted in
Fig. 1) provides services to the layers above. concealing the details of the lower layers. 'A

description of the exchange of primitive events between the protocol layer and the layers
above and belo :-- constitutes the service specification. The rules that descri-be how the

protocol layer en tities (also called mod ules, processes. or parties) provide these services are
referred to as the protocol specification. Specifically, a protocol specification describes

how the entities respond to commands from lower and upper layers. messages from other
peer entities. and internally initiated actions (e.g., timeouts). The code implementing the

procrollres constituting the protocol elltities is thr protocol implementation.

Protocol development typically follows three phases corresponding to the model above:
.;:frt·i('e dateT1lcnt, protocol design, and implementation. This phased development is

511pported by ('onstruction tools and validation tools. Construction tools are used for
51Jc('rssi\'e refinemt'nt of protocol description. They irrcll1de specification. synthesis and

implementation mcthods. Validation tools could be used at each phase to 'assess how the
protocol description at that phase rneets its dl'sign objectives (e.g. freedom of deadlock
beh:lvinr), They include form3.l verification, performance evallation and testing methods.

R('cl'ntly. there has been a growing interest (see for exampie [Ansa 8230, Boch 82, Yemi 83])

in bllilding de\'t'lopment environments that, integrate the various tools required throughout

'ht' protocol dewlopment process. An ideal development environment should encompass a
c()llIprt'IIl'nsive 5etof development tools, and a methodology for the application of these
!Ools. Therefore. a prime objective of this overview is to examine the complete set of

commonly l1sed protocol development tools.

The organization of this paper is as follows. In sections 2 through 4 we over'new
com:! fllcr ion tools. Sections .j through 7 are overviews of validation tools. Finally. in section

8 we conclude with few comments on protocol development environments.

2 Specification Methods
Experience has shown that protocols specified in an informal manner are error-prone (e.g.,
the specification of the X.21 interface [X.21 76]) due to the ambiguity and incompleteness of
the specifications [V.lest 7830]. Formal specifications are concise, complete,' unambiguous. and

can serve as the basis for other protocol development tool. Indeed, protocol development
tools are highly dependent on the specification method used. For example. a different

2

verificGtion method would be required if the specification method used In the protocol

environment is cbanged.

Key requirements of specification methods for protocols include:

1. Supporting modeling of concurrency.

2. Sllpporting modeling of nondetcrminism, which is required to represent either
nondeterministic behavior (e.g., a. communication medium could either lose or
transmit messages), or nondderministic mapping between events in the
specifications at different development phases (e.g., ~ user request in the service
specification might be realized by more than one behavior in the protocol
specification).

3. Allowing for the description of both local views (i.e .. describe each entity behavior
separately) and global views (i.e., the whole protocol layer behavior) of the
protocol, and the composition ot these local view into a global view. _ ~

-4. Supporting the specification of the timing requirements of protocols together with
their fnnctional requirements. The value of the time-out period, for example,
might greatly affect the behavior of retransmission protocols [Yemi 821.

;). Separating the specification of the protocol function from the specification of its
topology (how the distributed entities are connected together).' This feature is
especially valuable in specifying high-level protocols where the topology might vary
without influencing the function of the protocol.

6. Supporting the description of both the syntax (the allowed events and their order)
and semantics (the actions taken as a consequence of an event) of the protocol.

Con::ider. for example the following simple send-and-wait protocol. In this protocol. there
are three distribllted processes: a sender S, a receiver R, and a transmission medium

\1. Tht' operation of the protocol is as follows: the sender receives a new message m from a

~Ollrce C. sends it to the receiver through the medium which either delivers it to R or lose

it .. The sender waits for a time period T (time-out) for an acknowledgment a to arrive, upon

which it returns to its initial state waiting for another new message. The receiver process

waits for the new message m to arrive from the medium, after which it delivers it to a
destination D and then sends an acknowledgment a to the sender through the medium. It
is assumed, for simplicity, that the medium does not lose acknowledgments, and that the
timeout. is ideally set such that a timeout occurs only after a message is lost. Note that if
the send-and-wait protocol is at one protocol layer, then the source and destination would be
at the next higher layer and the medium represents the next lower layer.

Let us illustrate how the send-and-wait protocol can be specified using a simple specification

method: a pure finite state machine (FSM). A FSM consists of the following components:

1) finite set of states, 2) finite set of input commands, 3) finite set of outputs 4) transition
functions from (command X state) - state, and 5) an initial state. FSMs are a natural
choice for specifying protocol since protocols consist primarily of simple processing (reactions)
in response to different kinds of events (actions). Actions (reaction) could be commands
from (to) the upper protocol layer, messages from (to) the lower layer or internal events
from (to) peer entities in the same layer. A FSM responds to an input command according
to the input itself and the history of past inputs which is represented explicitly in terms of
states.

3

.\ FS~! specification of the send-and-wait protocol is shown in Fig. 2, where specifications of

the three local processes are given. In that figure, events with an overbar are send events
(output commands), events with an underbar are receive events (input commands) and

~ub~cripts are used such that for event ei,i' flow of data is from i to j. Non-deterministic

bd13yior. ~uch as the choice at state 3 of the sender between receiving a timeout or an

acknowledgment, is modeled by multiple output arcs from that state. Since this specification

dt';:cribe~ the operation of the different entities in'/olved in the protocol. then it is a protocol
spt'cificat ion. :\. service specification for the same protocol is shown in Fig. 3 in which the
sen'lce primitive events GET and DELIVER between the protocol system and its users

(source and destination processes) and their order are described.

For this simple protocol. FSM specifications prove to be adequate. Unfortunately, this is not
the case for more complex protocols. For example, FSM specifications of protocols that
invoh'e message sequence numbers (the send-and-wait protocol has a sequence "number

window of siz.e one) suffer from an explosion in the number of states. These problems are
typically addressed by schemes allowing more complex state and transitions descriptions.

Therefore, extensions of FS~1s , which we call state machines. allowing state variables and
constructs for expressing predicates and actions to be associated with transitions have been
introduced e.g. [Boch 77, 5chw 81, Divi 82] .

Other specification methods include: petri-nets-based methods which .allow modeling of
concurrency and interactions between the distributed processes [Dant 78, Symo 80, Ayac 81].
formal languages with their similarities to FS\!s [Teng 78], sequenc:e expressions which
5pecify only the valid protocol events and their order without any explicit mention of states

[Schi 81]. algebraic specifications in which the protocol system is specified in terms of

objects and operations on these objects [Muss 80, \1iln 80] temporal logic with its reasoning
about temporal properties required of a protocol execution as well as its static properties

[Schw 82], and procedural languages where the unit of specification is a procedure

containing detailed data declarations and computational statements [Good 82].

3 Protocol Synthesis
The job of composing a specification for a.n entire protocol system is rather comple.x in
nature. Also, formal verification of some important desirable properties of such specifications

han been shown to be generally undecidable (see [Bran 83]). Consequently. some research

has been directed towards synthesiz.ing complete specifications (i.e .. including specifications of

all the local entities involved) of protocols from incomplete ones and in some efforts the
produced specifications would be also guaranteed to be free from design errors. Key
variations among synthesis methods include the input specification(s) they accept _ and

whether they produce error-free output specification(s). However, they all take advantage of
the duality inheren~ in the interactions among the protocol entities where a message sent by
one local entity should be received at another local entity.

Let us briefly describe some of the protocol synthesis algorithms as they' are applied to the

send-and-wait protocol:

- Given the send events of the sender, receIver and medium entities, a. synthesis

4

algorithm finds the receive evenls in all three entities [Zafi 801 using a set of
production rules. This is done incrementally i.e., each time the designer enters a
srnd event. to the synthesis program. The produced specifications are guaranteed
to be free from certain design errors (such as deadlock).

_ Given the service specifications of a protocol system and the specifications of the
st'nder and medium processes (for example) a synthesis algorithm finds the
sperification of the remaining receiver process such that together with the sender
and medium they would produce the given service specification [Boch 83J.
However, the produced specification of . the re~eiver. might include redundant
t.ransitions and may reach deadlock when mteractlDg With the other two processes.

Given a global system specification (see Fig. 4 to be described in section 5.) and
a partition of the set of global events between the three local processes, a
synthesis algorithm finds the specification of each of the local processes such that
their interactions would produce the given global specification [Prin 82).

GOIJda et al [Goud 84] have also proposed a synthesis algorithm that accepts a FSM
~pe('ifi("ation of one process and produces specifications of this process (with some
modifications) and another interacting process that are free from some design errors.
However. t.he algorithm is limited to t.wo interacting processes and thus does not apply to
our model of the send-and-wait protocol.

4 Protocol Implementation Methods
A protocol implementation method is a. construction tool (a compiler in effect) that
transforms a protocol specification into au implementation. \Vhile first layer protocols and
po~~ibly second layer protocols in the ISO hierarchy are implemented in firmware, protocols
of b.yers 3 throlJgh i are implemented in software. For an example of the former, the
reader is referred to [Goud 76]. In this section we will limit our discussion to software
implementations.

The typical approach for implementing a FSM specification, as described in [Boch 82]' is to
implement it as a looping program, with each cycle of the loop executing a transition. The
loop would consist of a single large CASE (or a set of conditional statements) statement
with one case for each kind of input interaction, and for, each of these cases another CASE
statement would test the major state of the module and compute the next state accordingly.

Ideally, we would like to automate the implementation process so that both the effort
involved and the possibility of errors are minimized. This possibly depends not only on the
protocol specification method used, but also on the programming language used for
implementation, and the complexity of the protocol. State-transition-based specifications
(such as state machines and petri-net-based-models) lend themselves more easily than ~vent­
based spLcification (such as sequence expressions) to translations into implementation. This
is because ~pecirications for the former describe the flow of execution of a protocol step by
step, while specifications for the latter are concerned with the valid outcomes of the protocol
operation and not with how the outcomes are produced.

L'nfortunately, there are some issues involved in the implementation process that preclude
completely automated implementations. Human intervention in protocol implementations is

5

req'lired for two purposes. First. to add the implementation dependent parts (e.g. buffer

nun3gcment functions), and message coding which is necessarily omitted from the

specificat ions during the earlier phases because it is highly dependent on the implementation

language Ilsed and not of importance to the protocol developer in the service statement or

the protocol design phases. Second, the implementor often has to make certain choices
based on the specific protocol being implemented. For example, whether to implement the

protocol modules as part of the operating system or as cooperating user processes, and how
will the different modules interact : using shared memory, or using some kind of interrupt

mechanism.

5 Verification Methods
Protocol verification consists of logical proofs of first the correctness of each of _the _service,

prolocol, and implementation specification independently, and second, of the mappt'ng
between the service and the protocol specifications and between the' protocol and
implementation specifications. Proof of correctne~s ·of a specification constitutes proving the

validity of certain desirable properties (typically stated in predicate calculus) that would
assure its correct operation under all conditions, and proof of mapping constitutes of proving
that a specification at one level of abstraction correctly implements the specification at the
higher level.

To pro\'e that a specification is correct, one has to prove that it satisfies protocol safety
and liL'eness properties. Safety properties state the design objectives that a specification

must meet if the protocol ever achieves its goals and liveness properties state that the

specific:ition is guaranteed to achieve these goals. For example. an informal description of a

safety property S and a liveness property L for the send-and-wait protocol specification
could be

S the order of messages sent is the same the order
of the messages received.

L having received a new m, then retransmission
must continue until an acknowledgment is received
at the sender.

Safety and liveness properties are highly dependent on the protocol under consideration.
However. there are some general desirable properties that are common to any protocol.
These include:

- Deadlock-freedom (a liveness property) i.e. the protocol does not enter a state
from which there is no exit.

Completeness of the protocol 10 handling all situations that may arise during
execution.

- Progress (a liveness property) or absence of tempo-blocking where the protocol
enters an IOfinite cycle accomplishing no useful work.

- Stability i.e. the property that the protocol will return to a normal mode of
operation after an exceptional condition occurs.

6

Thr rrrt'lrbation :lpproach [West 78b) to verification takes FSM specifications of the local
protocol entities :lnd dt'rives a reachability graph. In tbis grapb, each node represents the
"t:tfrs of all the local entities, and ea.cb arc represents an entity event. Starting from the
ini'i~,1 st~te of the graph. interactions of the entities are examined by following all possible
W:1ys in which the initial stales and all subsequent slates can be perturbed. Each node that
thf' ~y:;:trm can rearh is checked ror deadlock and whether all entities are a.ble to receive in
their current state all events that can be sent to them. The whole graph can be then
cherked for progrt'ss and sta.bility.

The rearhability graph for the send-and-wait protocol is shown in Fig. 4. and the fact that
it was possible to produce the complete perturbation indicates deadlock-freedom and

.completeness. Also, the protocol is stable because it returns to its initial state after a finite
number of events. and there is no tempo-blocking (assuming a less than one loss probability
in the mE'dium).

To seE' how a deadlock behavior would be detected by this approach, consider removing the
timeout transition from the SendE'r process. Then, the system would deadlock at state 5 in
Fig. 4 if the medium loses a messagE'. Also, if the timeout value was too small. then we
wOllld have a tim~out transition from each of states 7 through 12 back to state 2 in Fig. 4,
and there would be a possibility of tempo-blocking due to any of these timeout loops. This
:::hows how protocols are time-dependent systems, and therefore verification of timing
requirem~nts shoilid be integrated with functional verification.

A critical disadvantage of the perturbation technique is the state explosion problem related
to FS\1 models. Symbolic eucution. another approach to verification. avoids this problem
by considering rhsses of states instead of single states [Bran 78). Also. although the
pert'Hbation approach is useful in verifying general properties, other approaches are required
to prov'e specific protocol properties such as properties Sand L given above for the send­
and wait protocol. These approaches include assertion-based methods to express and prove
Hoare/Floyd [Hoar 69. Floy 67) style safety assertions and temporal logic which has been
Ilsed successfully in proying both safety and liveness properties of protocols [Schw 82).

In assertion-based verification, global system are proved using already proven local assertions.
An assertion is a logical statement attached to a control point in the specification desc·ribing
the requirements of the system state at this point. Verifying an assertion means
demonstrating that it will always be true whenever the control point it is attached to is
reached. regardless of the exerution path taken to reach that point. For local assertions,
this is typically done by using inference rules which define the effect of each specification
construct on the assertions preceding it, and other proven assertions. The reader is referred
to [Sten 76] for an assertion-based verification of a generalized data transfer protocol (it
allows a window size of more than one) with a safety assertion similar to S given for the
send-and-wait protocol.

Formulat ing assertions and provlDg them require a great deal of user ingenuity. This
diffirulty could be partially alleviated by automating proof checking and employing induction
on the structure of the specification in building proofs [Muss 80, Divi 811.

i

Consider a service, protocol, and implementation specifications all proven to be correct, Still,
it h:l.3 to be shown that they all represent the same protocol. This is addressed by proof of
mapping which in the case of FSM specifications constitutes a static mapping between each
5tate at the higher level and the state(s) implementing it at the lower level, and a dynamic
mapping between each transition at the higher level and the sequence (possibly
nondeterministic) of transitions at the lower level. This could be done for the send-and-wait
protocol as follows: in Fig. 3 states 1 and 2 are implemented by states 1 and 8 in Fig. 4
respectively (static mapping), and events GET and DELIVER in Fig. 3 correspond to me,s
and ;;R,D in Fig. 4 (dynamic mapping) respectively.

6 Performance evaluation

Performance evaluation is concerned with the evaluation of performance meas1.ues 13uch as
delay, and throughput to indicate how well a protocol meets its functional requirements.

Delay in a data transfer protocol is defined as the time from the start of a message

transmission until the successful arrival of its acknowledgment. Throughput IS the
transmission rate of useful data between protocol entities (i.e.. excluding any control
information or retransmission required by the protocol).

In order to analyze the performance of a protocol, a representation of the protocol and a

representation of the communication medium are required. What parameters are required to
specify the medium? This depends primarily on the protocol layer under consideration since
the medium at a certain layer includes all the protocols of the lower layers. For example,
in the case of data link protocols (at layer 2), the following parameters of the medium are

required [Reis 82]: data rate, propagation delay, transmission-error process, topology, channel
operation (half or full duplex), arrival process, frame-length process, nodal processing power
and buffer space, These parameters are typically stochastic in nature.

The representation of the protocol depends on the performance evaluation approach adopted.
Two approaches are used: analysis, and simulation. Analysis proceeds to formulate and
solve a performance model of the protocol. There are two modeling approaches: formub.ting
a mathematical model of the protocol from first principles [Bux 8030], or extracting a
performance model from a formal specification of the protocol [Moll 81, Yemi 83]. Co~plex

protocols are usually difficult to model and analyze and therefore approximate models are
often used [Reis 82]. Another solution to complexity is to consider the simulation approach.
Protocol simulation is typically based upon either the protocol specification [Baue 81]' or

some implementation of the protocol [Bux 80b].

Let us see how the delay of the send-and-wait protocol can be computed using basic
probability laws and the protocol FSM specification as a description of its operat'ion.
Assume that the time involved in each transition of the reachability graph in Fig. 3 is an
exponentially distributed random variable, and a negligi~le delay at' both the sender and
receiver ends of the medium. Based on these assumptions and considering a single cycle
operation of the protocol. a modified reachability graph is shown in Fig. 5'. The problem can
be stated as follows: given a medium bandwidth of 9600 bits/sec (for terrestrial links),
mean message and acknowledgment lengths I of 1024 bits (therefore the mean transmission

8

time ts is 0.017st'c-/ml'ssage), bit error rate Pb of lo-b, mean propagation delay td of 0.013
':..er/nless3.ge, and mean timeout tT of I sec/message, evaluate the mean value oC delay d
between state 2 to 8 in Fig. 5.

Rec3.11 from section 1. our assumption that timeout only occurs after the medium has lost a
mes5age. this indic-:\tes that the probability oC timeout is the same as the probability of an
erroneous (taken a!' lost) message. Therefore, the probability of the timeout loop denoted by
p IS

p = 1 - (1 - Pb)/ 6.1

h· h . . I 1 - e-/Pb ·C / < < 1 W IC IS approxImate y I Pb

The mean delay is given by

Eldj = p/(l-p) (tT + t,) + 3t, +2td 6.2

= 0.357 sec/message

and the second moment of d is

6.3

= 0.09

Derivations of equat ions 5.2 and 6.3 are given in appendix I. Assume that message arrive at
state 2 in Fig. 5 with rate)., then the protocol's mean transfer time T which is the sum
of delay and a waiting time (a message has to wait in a queue if it arrives and the prot.ocol
system is still wait ing for an acknowledgment for a previously sent message) is given by the
Pollac-uk-Khinrhinl' formula [Klei 75J:

T = EldJ + (>-. E[d'2J)/(2[1-). E[dJ]) 5.4

In Fig. 5, we plot T versus). for various message lengths. As expected, T increases as).
IOcreases and the system becomes saturated when). approaches l/E[dJ. Also, as / increases T
increases due to the increases in transmission times and p.

7 Testing
Testing is a process of examlOlOg whether a protocol satisfies its functional requirements,
and measuring its performance. Consider a protocol implementation under test (IUT), the
most common [Ansa 82b, Rayn 82aJ testing approach consists of applying a set oC test
sequences to the IL:T placed in its normal network environment. The official center that is
conducting the testing would then provide some authorized certificate' (with some level of
confidence) when the testing process is successful indicating that the IUT could internetwork
with other standard protocol implementations. Next we will examine two key issues involved
in tl'::ting: the logical architecture used, and the test sequences that drive the IVT.

9

A Logical Architecture For Testing
Within the rramework or the ISO model, a. common logical testing architecture IS given ID

Fig. 7.

In this 3.rchitecture the peer protocol implementation (PPI) or the IUT is a combination of a
reierence implementation and a protocol-data-units generator (see Fig. i). The PPI at layer
:'>i together with reference implementations for layers 4,5, ... N-1 are located at the test center,

while the IUT is at the implementor's site. Both ends are connected to an X.25 network

which provides the rirst three network layers!. This testing configuration is referred to as
remote testing since the test center controls the tests remotely.

The protocol-data-units generator is responsible for generating correct N level service

reqllests, requests ror the generation or N-th level protocol errors, indications or undetected

:'\-th level protocol errors, and acts as an encoder and decoder of both valid and invalid

(:'\-1) service. The PPI and the protocol-data-units generator are driven by a test driver
(TD) at the testing center. The test responder (TR) is the software module which acts as

the user of the j\; service, and whose operation is totally predictable so that the results of

the tests depend only on t.he behavior of the IUT. The TD and TR communicate through a
non-standard protocol.

To be able to 3..5s~ss the IUT, it is necessary to test its response to erroneous and correct
req11ests across borh the j\; and :'>i-I interfaces. However, if the N-l service of the protocol

being tested is not end-ta-end (as in the case of the packet-level of the X.2,)), then it is not

possible to control it remotely. Thererore, a portable box is introduced between the

communication mt'dillm and the implementor's system (see Fig. 8) to detect any errors

introduced by the sub-network and introduce errors in it upon request from the testing
center.

Ideally, the testing process should be independent of the protocol beir;tg tested as much as

possible so that only minimum variations need to be made when a new protocol is tested.

This can be achieved by minimizing the protocol dependent parts or the architecture, and

automating the process of test sequences selection. The only part of the testing architecture

that needs be protocol dependent is the protocol-data-units generator, especially the part ror

testing normal and faulty N service. This dependency could be minimized by automating

that part or the generator such that it is derived rrom some specification or the protocol.

Remote testing could be used only to test complete protocol implementations. Alternatively,
in direct testing, a protocol representation could be a service, protocol. or implementation

specification. In this approach, the specification is tested in a simulated environment where

correct and faulty requests and responses across the Nand N-I interfaces are simulated and

the results compared with those of a. sta.ndard rererence specification.

Test Sequence Selection
.-\ test sequence is an input request to the JUT generated by the TD or TR. Test sequences

lOnly ~nd-to-end protocols above X.~5 are tested in such architectures

10

could be specified either as state tables, or using a test specification language that might be
then t.ranslated into state tables [Rayn 82b]. Testing is said to be camp/de if all the
possible requests that could be applied to the lUT are covered by the test sequences.
Unfortunat~ly, theoretical results [Piat 80] show that with no knowledge of the protocol
internal state the size (measured as the number of distinct sequential inputs applied to the
IL:T) of a complete test sequence has an upper bound of O(n"} where n is the size of the
state set of the protocol reference model. Otherwise, with an access to the protocol internal
state this figure comes down to O(n'}. These bounds could be very large for complex
protocols such as those involving sequence numbers.

However, there are other methods for near complete tests sequence selection. As an
example. we will use the tran"ition tour" [Sari 82] method to calculate a test sequence ror
the send-and-wait protocol. This method is used to derive test sequences from a protocol
specified formally as a state machine but using only its FSM part. A trarlsition tour
sequence is an input sequence starting at the initial state and covering all the tranSitIOns at
lea.st once. The length of the sequence for our protocol example (see Fig. 5) is 8 and the
sequence is given by

In general, the upper bound on the sequence length is q + (q-1Xn-l), where q is the number
of possible transitions. This is th'e worst case where a traversal of all (n-l) states is
required to include each transition in the test sequence .. This method detects all operation
errors (errors in the output function of the state machine), but it does not detect all
transfer errors (errors of the next state function).

8 Conel usions

\Ve have demonstrated in the previous sections how the various protocol development tools
are dependent on. the specification method used. Hence, in addition to the set of
requirements given in section 2, a specification method must exhibit other features to
facilitate the application of other development tools. These include:

1. Providing constructs for expressing desired properties of the protocol and thus
facilitating their automated formal verification.

2. Executability of the specification to facilitate the simulation of the specification,
and enhance the automation of the implementation process.

3. Providing constructs for expressing performance aspects to facilitate automated.
performance evaluation.

4. Supporting the clear definition of the interfaces between the protocol layer
concerned and the layers above and below to allow for separate testing of the
implementation of each protocol layer.

Future research is required for developing individual tools and automating them, building
integrated protocol environments with advanced human interfaces, and more experience in
applying these tools and environments to more protocol standards as they are developed
--both low level and high level protocols.

N+l LAYEi

N LAYER

N-l LAYEi

N USEi

PiOTOCOL

ENTITY

11

N SEiVICE

PEEi PiOTOCOL

N-l SEiVICE

MEDIUM

COiRESPONDENT N USEi

PIWTOCOL

ENTITY

N LAYEi INTERFACE

N-l LAYER INTERFACE

Figure 1: A local view of a protocol layer

Figure 2:

(a)

(b)

(c)

Figure 3:

12

A protocol specification for the send-and-wait protocol
(a) Sender (b) Receiver (c) Medium

DROP m

A service specification for the send-and-wait protocol

GET DELIVER

13

!TIc,s

a~f.S Drop m

Figure 4: :\ reachability graph for the sead-aad-wait protocol

Figure 5: :\ modified reachability graph for the send-and-wait protocol

14

sec.

1.3

e-..
::J 1 E
c-
:...
QI
tn
c:
t'3
w r-- 1= C.S K Bi

o
0.5 1 1.5 2.5]

r.'.essaqe rate).

r.lessage/sec.

Figure 6: Transfer time vs. arrival rate of the send-and-wait protocol

15

AT THE TESTING CENTER AT THE IMPLEMENTOR'S SITE

TD-Ii PROTOCOL

TD TR

N SERVICE

N PROTOCOL

PPI lUT

..
SLIGHTLY ENHANCED N SERVICE

N-l SERVICE

N-l PIlOTOCOL

\ N-l PROTOCOL N-l PROTOCOL

IMPLEMENTA TION IMPLEMENTATION I

N-2 SERVICE

I
L.nER N-2 COMMVNICATION CH .. \NNEL

I

Figure 7:

A T THE TESTING
I

CENTER I

\ I
\ I

Logical architecture for testing

/ AT THE ,

/ IMPLEMENTOR'S '
/

SITE
/

, , ,
TESTING COMMUNICATIONS PORTABLE IMPLEMENTOIl'S

CENTER ~ MEDIVM ~ BOX r SYSTEM

Figure 8: Physical architecture including the portable unit

16

I. Proof of equations 6.2 and 6.3

Since we are considering mean values, then we can add up sequentially composed event
times, and Eld] can be calculated by adding up the time for the timeout loop with the rest
of the event times. Let the total time spent in the loop be L and the time of a single loop

be t. Then,

For equation 6.2:

EILI i=n] = n elt]
and by using the theorem of total expectation, we get

ElL) = Eln] Elt]
slOce i has a modified geometric distribution, then

ElL] = p/l-p Elt]

but Elt]= tT + t s' therefore

ElL] = p/l-p (tT + t l)

and the mean delay is
Eld] = ElL] + 3ts + 2td

= p/l-p (tT + tl) + 3ts +2td

For equation 6.3: The second moment for D could be calculated by adding the second
moments of the sequentially composed event times (which is 2tj2 for event i because they are
exponentially distributed). The second moment of L is

EILZI i=n] = Var ILl i=nl. + (EILI i=n])2
= n Varlt] + n2 {Elt]?

l'sing the theorem of total moment, we get

EIL·~] = E[n] Varlt] + Eln2] (Elt])2
= p/l-p [E[t2]-(EltJ)2] + [(p+p2)/(l-pfl lElt])2
= p/l-p E[t2J + 2p2/0-p)2 (E[t]?

and the second moment of the delay is then given by

[Ansa 8::!a]

IAnsa 8:!bl

[Ayac 81]

[Baue 81]

[Boch ii]

[Boch 8~]

[Bo,;h 831

[Bran i8]

[Bran 831

[Bux 80al

[Bux 80bl

[Dant 781

17

J.Ansart, O.Rafiq. and V.Chari.
PDIL - Protocol Description and Implementation Language.
Proceedings of the Second IFIP lnternationall\l'orkshop on Protocol Specification.

Testing and 'v'erification , 1982.

J.Ansart.
GE:\cPI/A -A Protocol Independent System for Testing Protocol Implementation.
Proceedings of the Second IFIP International Workshop on Protocol Specification,

Test ing and Verificat ion, 1982.

J .. -\yache, P.Azema. J.Courtiat, ~1.Diaz and G.Juanole.
On the Applicability of Petri Net-Based ~lodels in Protocol Design and Verification.
Proceedings of the First International I;\1~'G/NPL Workshop: Protocol Testing

- Tou:ards Proo/'1 Vol. 1.:349-370. 1981.

W.Bauerfeld.
Description, Verification and Performance Prediction of Computer r--;etwork -Protocols.
Proceedings of the First International I.\U'G/NPL n'orkshop : Protocol Testing

- Towards Proa/'1 Vol.l.:253-270. 1981.

G.Bochmann and J.Gecsei.
A Unified \fethod for the Specifica.tion and Verification of Protocols.
In Proceedings of IFTP Congress, pages 229-234. August 8-12, 19i7.

G.Bochmann et 301.
Som~ Experience with the Use of Formal Specifications.
PrOCEEdings of the Second fFTP International Workshop on Protocol Specification,

Tr,oting and Verification, 1982.

G.Bo.·hmann and P.\lerlin.
On the Construction of Communication Protocols.
Ae.\[Transactions on Programming Languages and Systems VoI.5,:--;o.I:I-25, January.

1983.

D.Brand and W.Joyner.Jr.
V~riii.:ation of Protocols Using Symbolic Execution.
Computer Networks VoI.2:351-360, October, 1978.

D.Brand and P.Zafiropulo.
On Communicating Finite-State Machines.
Journal of the ACAt 30:433-445, April, 1983.

W.Bux.K.Kummerie. and H.Truong.
Balan.;ed HDLC Procedures: A Performance Analysis.
IEEE Transactions on Communications VoI.COM-28,No.(1l):1889-1898, November,

1980.

W.Bux and K.Kummerle.
HDLC Performance: Comparison of Normal Response Mode and Asynchronous

Balanced \lode of Operation.
In IEEE Proceedings of the NTC, pages 15.3.1-15.3.6. 1980.

A.Danthine and J.Bremer.
\todelling and Verification of End-to-End Transport' Protcols.
Computer Networks Vol.l:381-395. October, 1978.

IDivi 811

lDivi 821

[Floy Gil

lGood 8:?1

[Goud i5]

[Goud 841

lHoar 591

1\liln 801

[\1011 8 II

[\luss 80]

[Piat 801

[Prin 8:?]

18

B.Divito.
A \1echanical Vl!rification of the Alternating Bit Protocol.
Univ. of Tera~ at Austin ICSA-CMP-21. June, IgSl.

B.Divito.
V,rifi('(Jtion of Communications Protocols and Abatract Proceu Model~.
PhD thesis. l'niv. of Texas at Austin, August. Ig82.

R.Floyd.
Assigning Meanings to Programs.
Mathematical A"pec/~ of Computer Science 19:19·32. Ig57.

D.Good.
Th, Prna/ of a Di~tributfd SYlltem in Gyp~y.
Technical Report 3D, The l'niv. of Texas at Austin, September. 1982.

r-.f.Gouda and E.Manning.
Proto,=ol Machine: A Concise Formal Model and its Automatic Implementation.
In Proceedings of the Th ird ICeC. pages 346-350. 1975.

M.Gouda and Y. Yu.
Synthl?sis of Communicating Finite-State MAchines with guaranteed Progr~ss.
IEEE Transaction" on Comunication~ COM·32(7):779·788. july. 1984.

C.Hoare.
An AXlOmlltic Basis (or Computer Programming.
COl1Lmunil'ation,t 0/ the AC.\fVoI.l2.No.(1O):576-583, October. 1959.

L.KI"inrod.
Q,,,ufing SYl!tem".
\\'i!ry inlf'rscience, 1975.

R. \[iln~r.
A (',z!"lIlu., 0/ Communicating Systems.
Sr.rJng~r \·erlag. 1980.

\1.\foll.))'.
On tht:' Integration 0/ Dday and Throughput Measures in Di"tributed Proces"ing

.\I.,dd3.
PhD th .. sis, Cniv. of California Los Angeles, 1981.

D.Mu:iSl'r.
At.star-:-t data TypP. Specifi~ations in the AFFIRM System.
i freta..,- SE-5(1), January, 1980.

T.Piatkowski.
Remarks on ADCCP Validation and Testing Techniques.
/\'8S Trend" and Applications Sympo"ium . ~1ay 29, 1980.

R.Prinoth.
An .-\Igorit.hm t.o Constr'Jct Distributed Sy,tems From State·!l.1a~hines.
PrvcP.Cdings 0/ the Second IFfP 171ternationni Work,·hop on Prolvcol Specification,

Tc~ting and 1/n-i/icati(;n::!51·~82, ~tay. HlS:?

. - - .-

[Rayn 8~al

[Reis 8:21

[Sari 821

[Schi 81]

IS,~hw 81]

ISdn\' 8~]

[Stl'n 7Gj

[Symo 80]

I\\' ~5t 78a]

[We;;t 78[,]

19

D.Rayner.
A System for Testing Protocol Implementations.
ProcEedings of the Second IFIP International Workshop on Protocol Specification,

Testing Imd -Verification , 198~.

D.Rayner ed.
A System for Testing Protocol Implementations.
SPL Report DlTC 9/82, August, 198~.

~1.Reiser.

Perfromance Evaluation of Data Communication Systems.
Proceedings of the IEEE VoI.70,No.~.:171·196, Fe"ruary, 1982.

B.Sarikaya and G.Bochmann.
Some Experie nce with Test Sequence Generation for Protocols.
Proceedings of the Second IFTP [nternational WorkJhop on Protocol Specification.

Te8ting and l'('rification • 1982. -

S.Sc hi ndle r.
The OS:\ Project: Basic Concepts of Formal Specifica'tion Techniques and of RSPL.
Proceedings of the First International [SWG/NPL Workshop: Protocol Testing

. Towards Proof? Vol. 1.: 143-176. 1981.

D.Schwabe.
Fromal Technique! for the Specification and -Verification of Protocols.
PhD thpsis. lIniv. of California Los Angeies. April. 1981.

R,S"h\\'Htz and P.~1elliar-Smith.
From St:Jtf! \bchines to Temporal Logic: Specification ~fethods for Protocol Standards.
pr(),·, f ,til1g8 of the Second IFIP International Worbhop on Protocol Specification.

Tt .<ting and Verification • 198~.

;..:.st~nning.

;\ D:I t:l Tr:lnsfer Proto.:ol.
COI/I pu t cr X et works (1):99·110, 1976.

f..Symons.
Introdll,·tion to :--:umerical Petri 0:ets, a General Graphical \fodel of Concurrent

Proc~~5ing Systems.
Au"traliall Tdecommunication Research 14(1):~8-32. 1980.

A.Tpng and \1.Liu.
A Formal Approach to the Design and Implementation of l'.'etwork Communication

Proto·:ol.
In Proct'edillg8. CO .HPS,-\C. 1978.

C. \Vest and P .Zafiropluo.
Automated Validation of a Communications Protocol: the CCITT X.21

Recom mendation.
JB.\f J. Re.~. Dev. Vol.~:!.:--;o.(1):60-71. January. 1978.

C.\\·est.
:\n Automated Technique of Communications Protocol Validation ..
IEEE Tran~actions on Communications VoI.COM-26,:--;0.(8):1271- 1275, August. 1978.

IX.21 ifil

IYtmi 8~1

!Yemi 831

!Zafi 801

!Zimm 81\

20

Rtcommtndation X.21 (Rtvistd).
ccm (Int~ntltiontll Telegraph and Teltphone Connltative Committee), Geneva.

SUIJ't;~land • March. H~76.

Y,Yemini and J.Kurose.
Towards the Unification or the Functional and Perrormance Analysis or Protocols, or is

the Alternating-Bit Protocol Really Correct!
Procffding8 of the Second IFfP International Work8hop on Protocol Specification,

Te8ting and V~ification , 1982.

Y. Yemini and N. Nounou.
CUPID: A Protocol Develeopment Environment.
Procuding8 of the Third IFIP lnt~national Work.!hop on Protocol Specification,

Testing and V~ification , May, H183.
"

P.Zafiropulo, C.West, H.Rudin, D.Cowan, and D.Brand.
Towards Analyzing and Synthesizing Protocols.
IEEE Transaction8 on Communication8 VoI.COM- 28,No.(4):651-661, April, lQ80.

H.Zimmermann.
Progression or the OSI Rererence Model and it's Applications.
In Procffding8 of The NrC, pages F8.1.-F8.1.5. 1981.

