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ABSTRACT 
This paper presents an overview of commonly used protocol development tools falling under 

two c:ltegories: construction tools and validation tools. Construction tools are used to 

develop protocols from specifications to working systems. They include tools for specification. 

synthesis. and implementation. Validation toob are used to analyze protocols behavior. 

Tht'Y include tools for formal \·erification. performance eV'duation and testing. For each 

. toul. we t'x:1mine the key underlying issues. outline the m:tin appro:lches. :lod ,illustrate its 

JPplj('~dion to a :'t'nd-and-wait protocol. 
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1 Introduction 

:\ communication protocol consists of a set of rules and a set of message formats Ilsed 

for tr3.nsferring information among distributed processes in a computer network. 
Comml1nic3.tion protocols (briefly protocols) involve processes that are distributed. concurrent. 

time-dependent. asynchronous, and that communicate through an unreliable transmission 

medium that could lose, duplicate, reorder. and/or corrupt messages. These render the 
protocol design problem comp!ex. 

The Internat.ional Standards Organization (ISO) proposed an Open System Interconnection 

(OSI) standard protocol architecture [Zimm 811. in which each protocol layer (as depicted in 
Fig. 1) provides services to the layers above. concealing the details of the lower layers. 'A 

description of the exchange of primitive events between the protocol layer and the layers 
above and belo .... :-- constitutes the service specification. The rules that descri-be how the 

protocol layer en tities (also called mod ules, processes. or parties) provide these services are 
referred to as the protocol specification. Specifically, a protocol specification describes 

how the entities respond to commands from lower and upper layers. messages from other 
peer entities. and internally initiated actions (e.g., timeouts). The code implementing the 

procrollres constituting the protocol elltities is thr protocol implementation. 

Protocol development typically follows three phases corresponding to the model above: 
.;:frt·i('e dateT1lcnt, protocol design, and implementation. This phased development is 

511pported by ('onstruction tools and validation tools. Construction tools are used for 
51Jc('rssi\'e refinemt'nt of protocol description. They irrcll1de specification. synthesis and 

implementation mcthods. Validation tools could be used at each phase to 'assess how the 
protocol description at that phase rneets its dl'sign objectives (e.g. freedom of deadlock 
beh:lvinr), They include form3.l verification, performance evallation and testing methods. 

R('cl'ntly. there has been a growing interest (see for exampie [Ansa 8230, Boch 82, Yemi 83]) 

in bllilding de\'t'lopment environments that, integrate the various tools required throughout 

'ht' protocol dewlopment process. An ideal development environment should encompass a 
c()llIprt'IIl'nsive 5etof development tools, and a methodology for the application of these 
!Ools. Therefore. a prime objective of this overview is to examine the complete set of 

commonly l1sed protocol development tools. 

The organization of this paper is as follows. In sections 2 through 4 we over'new 
com:! fllcr ion tools. Sections .j through 7 are overviews of validation tools. Finally. in section 

8 we conclude with few comments on protocol development environments. 

2 Specification Methods 
Experience has shown that protocols specified in an informal manner are error-prone (e.g., 
the specification of the X.21 interface [X.21 76]) due to the ambiguity and incompleteness of 
the specifications [V.lest 7830]. Formal specifications are concise, complete,' unambiguous. and 

can serve as the basis for other protocol development tool. Indeed, protocol development 
tools are highly dependent on the specification method used. For example. a different 



2 

verificGtion method would be required if the specification method used In the protocol 

environment is cbanged. 

Key requirements of specification methods for protocols include: 

1. Supporting modeling of concurrency. 

2. Sllpporting modeling of nondetcrminism, which is required to represent either 
nondeterministic behavior (e.g., a. communication medium could either lose or 
transmit messages), or nondderministic mapping between events in the 
specifications at different development phases (e.g., ~ user request in the service 
specification might be realized by more than one behavior in the protocol 
specification ). 

3. Allowing for the description of both local views (i.e .. describe each entity behavior 
separately) and global views (i.e., the whole protocol layer behavior) of the 
protocol, and the composition ot these local view into a global view. _ ~ 

-4. Supporting the specification of the timing requirements of protocols together with 
their fnnctional requirements. The value of the time-out period, for example, 
might greatly affect the behavior of retransmission protocols [Yemi 821. 

;). Separating the specification of the protocol function from the specification of its 
topology (how the distributed entities are connected together).' This feature is 
especially valuable in specifying high-level protocols where the topology might vary 
without influencing the function of the protocol. 

6. Supporting the description of both the syntax (the allowed events and their order) 
and semantics (the actions taken as a consequence of an event) of the protocol. 

Con::ider. for example the following simple send-and-wait protocol. In this protocol. there 
are three distribllted processes: a sender S, a receiver R, and a transmission medium 

\1. Tht' operation of the protocol is as follows: the sender receives a new message m from a 

~Ollrce C. sends it to the receiver through the medium which either delivers it to R or lose 

it .. The sender waits for a time period T (time-out) for an acknowledgment a to arrive, upon 

which it returns to its initial state waiting for another new message. The receiver process 

waits for the new message m to arrive from the medium, after which it delivers it to a 
destination D and then sends an acknowledgment a to the sender through the medium. It 
is assumed, for simplicity, that the medium does not lose acknowledgments, and that the 
timeout. is ideally set such that a timeout occurs only after a message is lost. Note that if 
the send-and-wait protocol is at one protocol layer, then the source and destination would be 
at the next higher layer and the medium represents the next lower layer. 

Let us illustrate how the send-and-wait protocol can be specified using a simple specification 

method: a pure finite state machine (FSM). A FSM consists of the following components: 

1) finite set of states, 2) finite set of input commands, 3) finite set of outputs 4) transition 
functions from (command X state) - state, and 5) an initial state. FSMs are a natural 
choice for specifying protocol since protocols consist primarily of simple processing (reactions) 
in response to different kinds of events (actions). Actions (reaction) could be commands 
from (to) the upper protocol layer, messages from (to) the lower layer or internal events 
from (to) peer entities in the same layer. A FSM responds to an input command according 
to the input itself and the history of past inputs which is represented explicitly in terms of 
states. 
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.\ FS~! specification of the send-and-wait protocol is shown in Fig. 2, where specifications of 

the three local processes are given. In that figure, events with an overbar are send events 
(output commands), events with an underbar are receive events (input commands) and 

~ub~cripts are used such that for event ei,i' flow of data is from i to j. Non-deterministic 

bd13yior. ~uch as the choice at state 3 of the sender between receiving a timeout or an 

acknowledgment, is modeled by multiple output arcs from that state. Since this specification 

dt';:cribe~ the operation of the different entities in'/olved in the protocol. then it is a protocol 
spt'cificat ion. :\. service specification for the same protocol is shown in Fig. 3 in which the 
sen'lce primitive events GET and DELIVER between the protocol system and its users 

(source and destination processes) and their order are described. 

For this simple protocol. FSM specifications prove to be adequate. Unfortunately, this is not 
the case for more complex protocols. For example, FSM specifications of protocols that 
invoh'e message sequence numbers (the send-and-wait protocol has a sequence "number 

window of siz.e one) suffer from an explosion in the number of states. These problems are 
typically addressed by schemes allowing more complex state and transitions descriptions. 

Therefore, extensions of FS~1s , which we call state machines. allowing state variables and 
constructs for expressing predicates and actions to be associated with transitions have been 
introduced e.g. [Boch 77, 5chw 81, Divi 82] . 

Other specification methods include: petri-nets-based methods which .allow modeling of 
concurrency and interactions between the distributed processes [Dant 78, Symo 80, Ayac 81]. 
formal languages with their similarities to FS\!s [Teng 78], sequenc:e expressions which 
5pecify only the valid protocol events and their order without any explicit mention of states 

[Schi 81]. algebraic specifications in which the protocol system is specified in terms of 

objects and operations on these objects [Muss 80, \1iln 80] temporal logic with its reasoning 
about temporal properties required of a protocol execution as well as its static properties 

[Schw 82], and procedural languages where the unit of specification is a procedure 

containing detailed data declarations and computational statements [Good 82]. 

3 Protocol Synthesis 
The job of composing a specification for a.n entire protocol system is rather comple.x in 
nature. Also, formal verification of some important desirable properties of such specifications 

han been shown to be generally undecidable (see [Bran 83]). Consequently. some research 

has been directed towards synthesiz.ing complete specifications (i.e .. including specifications of 

all the local entities involved) of protocols from incomplete ones and in some efforts the 
produced specifications would be also guaranteed to be free from design errors. Key 
variations among synthesis methods include the input specification(s) they accept _ and 

whether they produce error-free output specification(s). However, they all take advantage of 
the duality inheren~ in the interactions among the protocol entities where a message sent by 
one local entity should be received at another local entity. 

Let us briefly describe some of the protocol synthesis algorithms as they' are applied to the 

send-and-wait protocol: 

- Given the send events of the sender, receIver and medium entities, a. synthesis 
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algorithm finds the receive evenls in all three entities [Zafi 801 using a set of 
production rules. This is done incrementally i.e., each time the designer enters a 
srnd event. to the synthesis program. The produced specifications are guaranteed 
to be free from certain design errors (such as deadlock). 

_ Given the service specifications of a protocol system and the specifications of the 
st'nder and medium processes (for example) a synthesis algorithm finds the 
sperification of the remaining receiver process such that together with the sender 
and medium they would produce the given service specification [Boch 83J. 
However, the produced specification of . the re~eiver. might include redundant 
t.ransitions and may reach deadlock when mteractlDg With the other two processes. 

Given a global system specification (see Fig. 4 to be described in section 5.) and 
a partition of the set of global events between the three local processes, a 
synthesis algorithm finds the specification of each of the local processes such that 
their interactions would produce the given global specification [Prin 82). 

GOIJda et al [Goud 84] have also proposed a synthesis algorithm that accepts a FSM 
~pe('ifi("ation of one process and produces specifications of this process (with some 
modifications) and another interacting process that are free from some design errors. 
However. t.he algorithm is limited to t.wo interacting processes and thus does not apply to 
our model of the send-and-wait protocol. 

4 Protocol Implementation Methods 
A protocol implementation method is a. construction tool (a compiler in effect) that 
transforms a protocol specification into au implementation. \Vhile first layer protocols and 
po~~ibly second layer protocols in the ISO hierarchy are implemented in firmware, protocols 
of b.yers 3 throlJgh i are implemented in software. For an example of the former, the 
reader is referred to [Goud 76]. In this section we will limit our discussion to software 
implementations. 

The typical approach for implementing a FSM specification, as described in [Boch 82]' is to 
implement it as a looping program, with each cycle of the loop executing a transition. The 
loop would consist of a single large CASE (or a set of conditional statements) statement 
with one case for each kind of input interaction, and for, each of these cases another CASE 
statement would test the major state of the module and compute the next state accordingly. 

Ideally, we would like to automate the implementation process so that both the effort 
involved and the possibility of errors are minimized. This possibly depends not only on the 
protocol specification method used, but also on the programming language used for 
implementation, and the complexity of the protocol. State-transition-based specifications 
(such as state machines and petri-net-based-models) lend themselves more easily than ~vent
based spLcification (such as sequence expressions) to translations into implementation. This 
is because ~pecirications for the former describe the flow of execution of a protocol step by 
step, while specifications for the latter are concerned with the valid outcomes of the protocol 
operation and not with how the outcomes are produced. 

L'nfortunately, there are some issues involved in the implementation process that preclude 
completely automated implementations. Human intervention in protocol implementations is 
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req'lired for two purposes. First. to add the implementation dependent parts (e.g. buffer 

nun3gcment functions), and message coding which is necessarily omitted from the 

specificat ions during the earlier phases because it is highly dependent on the implementation 

language Ilsed and not of importance to the protocol developer in the service statement or 

the protocol design phases. Second, the implementor often has to make certain choices 
based on the specific protocol being implemented. For example, whether to implement the 

protocol modules as part of the operating system or as cooperating user processes, and how 
will the different modules interact : using shared memory, or using some kind of interrupt 

mechanism. 

5 Verification Methods 
Protocol verification consists of logical proofs of first the correctness of each of _the _service, 

prolocol, and implementation specification independently, and second, of the mappt'ng 
between the service and the protocol specifications and between the' protocol and 
implementation specifications. Proof of correctne~s ·of a specification constitutes proving the 

validity of certain desirable properties (typically stated in predicate calculus) that would 
assure its correct operation under all conditions, and proof of mapping constitutes of proving 
that a specification at one level of abstraction correctly implements the specification at the 
higher level. 

To pro\'e that a specification is correct, one has to prove that it satisfies protocol safety 
and liL'eness properties. Safety properties state the design objectives that a specification 

must meet if the protocol ever achieves its goals and liveness properties state that the 

specific:ition is guaranteed to achieve these goals. For example. an informal description of a 

safety property S and a liveness property L for the send-and-wait protocol specification 
could be 

S the order of messages sent is the same the order 
of the messages received. 

L having received a new m, then retransmission 
must continue until an acknowledgment is received 
at the sender. 

Safety and liveness properties are highly dependent on the protocol under consideration. 
However. there are some general desirable properties that are common to any protocol. 
These include: 

- Deadlock-freedom (a liveness property) i.e. the protocol does not enter a state 
from which there is no exit. 

Completeness of the protocol 10 handling all situations that may arise during 
execution. 

- Progress (a liveness property) or absence of tempo-blocking where the protocol 
enters an IOfinite cycle accomplishing no useful work. 

- Stability i.e. the property that the protocol will return to a normal mode of 
operation after an exceptional condition occurs. 
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Thr rrrt'lrbation :lpproach [West 78b) to verification takes FSM specifications of the local 
protocol entities :lnd dt'rives a reachability graph. In tbis grapb, each node represents the 
"t:tfrs of all the local entities, and ea.cb arc represents an entity event. Starting from the 
ini'i~,1 st~te of the graph. interactions of the entities are examined by following all possible 
W:1ys in which the initial stales and all subsequent slates can be perturbed. Each node that 
thf' ~y:;:trm can rearh is checked ror deadlock and whether all entities are a.ble to receive in 
their current state all events that can be sent to them. The whole graph can be then 
cherked for progrt'ss and sta.bility. 

The rearhability graph for the send-and-wait protocol is shown in Fig. 4. and the fact that 
it was possible to produce the complete perturbation indicates deadlock-freedom and 

.completeness. Also, the protocol is stable because it returns to its initial state after a finite 
number of events. and there is no tempo-blocking (assuming a less than one loss probability 
in the mE'dium). 

To seE' how a deadlock behavior would be detected by this approach, consider removing the 
timeout transition from the SendE'r process. Then, the system would deadlock at state 5 in 
Fig. 4 if the medium loses a messagE'. Also, if the timeout value was too small. then we 
wOllld have a tim~out transition from each of states 7 through 12 back to state 2 in Fig. 4, 
and there would be a possibility of tempo-blocking due to any of these timeout loops. This 
:::hows how protocols are time-dependent systems, and therefore verification of timing 
requirem~nts shoilid be integrated with functional verification. 

A critical disadvantage of the perturbation technique is the state explosion problem related 
to FS\1 models. Symbolic eucution. another approach to verification. avoids this problem 
by considering rhsses of states instead of single states [Bran 78). Also. although the 
pert'Hbation approach is useful in verifying general properties, other approaches are required 
to prov'e specific protocol properties such as properties Sand L given above for the send
and wait protocol. These approaches include assertion-based methods to express and prove 
Hoare/Floyd [Hoar 69. Floy 67) style safety assertions and temporal logic which has been 
Ilsed successfully in proying both safety and liveness properties of protocols [Schw 82). 

In assertion-based verification, global system are proved using already proven local assertions. 
An assertion is a logical statement attached to a control point in the specification desc·ribing 
the requirements of the system state at this point. Verifying an assertion means 
demonstrating that it will always be true whenever the control point it is attached to is 
reached. regardless of the exerution path taken to reach that point. For local assertions, 
this is typically done by using inference rules which define the effect of each specification 
construct on the assertions preceding it, and other proven assertions. The reader is referred 
to [Sten 76] for an assertion-based verification of a generalized data transfer protocol (it 
allows a window size of more than one) with a safety assertion similar to S given for the 
send-and-wait protocol. 

Formulat ing assertions and provlDg them require a great deal of user ingenuity. This 
diffirulty could be partially alleviated by automating proof checking and employing induction 
on the structure of the specification in building proofs [Muss 80, Divi 811. 
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Consider a service, protocol, and implementation specifications all proven to be correct, Still, 
it h:l.3 to be shown that they all represent the same protocol. This is addressed by proof of 
mapping which in the case of FSM specifications constitutes a static mapping between each 
5tate at the higher level and the state(s) implementing it at the lower level, and a dynamic 
mapping between each transition at the higher level and the sequence (possibly 
nondeterministic) of transitions at the lower level. This could be done for the send-and-wait 
protocol as follows: in Fig. 3 states 1 and 2 are implemented by states 1 and 8 in Fig. 4 
respectively (static mapping), and events GET and DELIVER in Fig. 3 correspond to me,s 
and ;;R,D in Fig. 4 (dynamic mapping) respectively. 

6 Performance evaluation 

Performance evaluation is concerned with the evaluation of performance meas1.ues 13uch as 
delay, and throughput to indicate how well a protocol meets its functional requirements. 

Delay in a data transfer protocol is defined as the time from the start of a message 

transmission until the successful arrival of its acknowledgment. Throughput IS the 
transmission rate of useful data between protocol entities (i.e.. excluding any control 
information or retransmission required by the protocol). 

In order to analyze the performance of a protocol, a representation of the protocol and a 

representation of the communication medium are required. What parameters are required to 
specify the medium? This depends primarily on the protocol layer under consideration since 
the medium at a certain layer includes all the protocols of the lower layers. For example, 
in the case of data link protocols (at layer 2), the following parameters of the medium are 

required [Reis 82]: data rate, propagation delay, transmission-error process, topology, channel 
operation (half or full duplex), arrival process, frame-length process, nodal processing power 
and buffer space, These parameters are typically stochastic in nature. 

The representation of the protocol depends on the performance evaluation approach adopted. 
Two approaches are used: analysis, and simulation. Analysis proceeds to formulate and 
solve a performance model of the protocol. There are two modeling approaches: formub.ting 
a mathematical model of the protocol from first principles [Bux 8030], or extracting a 
performance model from a formal specification of the protocol [Moll 81, Yemi 83]. Co~plex 

protocols are usually difficult to model and analyze and therefore approximate models are 
often used [Reis 82]. Another solution to complexity is to consider the simulation approach. 
Protocol simulation is typically based upon either the protocol specification [Baue 81]' or 

some implementation of the protocol [Bux 80b]. 

Let us see how the delay of the send-and-wait protocol can be computed using basic 
probability laws and the protocol FSM specification as a description of its operat'ion. 
Assume that the time involved in each transition of the reachability graph in Fig. 3 is an 
exponentially distributed random variable, and a negligi~le delay at' both the sender and 
receiver ends of the medium. Based on these assumptions and considering a single cycle 
operation of the protocol. a modified reachability graph is shown in Fig. 5'. The problem can 
be stated as follows: given a medium bandwidth of 9600 bits/sec (for terrestrial links), 
mean message and acknowledgment lengths I of 1024 bits (therefore the mean transmission 
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time ts is 0.017st'c-/ml'ssage), bit error rate Pb of lo-b, mean propagation delay td of 0.013 
':..er/nless3.ge, and mean timeout tT of I sec/message, evaluate the mean value oC delay d 
between state 2 to 8 in Fig. 5. 

Rec3.11 from section 1. our assumption that timeout only occurs after the medium has lost a 
mes5age. this indic-:\tes that the probability oC timeout is the same as the probability of an 
erroneous (taken a!' lost) message. Therefore, the probability of the timeout loop denoted by 
p IS 

p = 1 - (1 - Pb)/ 6.1 

h· h . . I 1 - e-/Pb ·C / < < 1 W IC IS approxImate y I Pb 

The mean delay is given by 

Eldj = p/(l-p) (tT + t,) + 3t, +2td 6.2 

= 0.357 sec/message 

and the second moment of d is 

6.3 

= 0.09 

Derivations of equat ions 5.2 and 6.3 are given in appendix I. Assume that message arrive at 
state 2 in Fig. 5 with rate )., then the protocol's mean transfer time T which is the sum 
of delay and a waiting time (a message has to wait in a queue if it arrives and the prot.ocol 
system is still wait ing for an acknowledgment for a previously sent message) is given by the 
Pollac-uk-Khinrhinl' formula [Klei 75J: 

T = EldJ + (>-. E[d'2J)/(2[1-). E[dJ]) 5.4 

In Fig. 5, we plot T versus ). for various message lengths. As expected, T increases as ). 
IOcreases and the system becomes saturated when ). approaches l/E[dJ. Also, as / increases T 
increases due to the increases in transmission times and p. 

7 Testing 
Testing is a process of examlOlOg whether a protocol satisfies its functional requirements, 
and measuring its performance. Consider a protocol implementation under test (IUT), the 
most common [Ansa 82b, Rayn 82aJ testing approach consists of applying a set oC test 
sequences to the IL:T placed in its normal network environment. The official center that is 
conducting the testing would then provide some authorized certificate' (with some level of 
confidence) when the testing process is successful indicating that the IUT could internetwork 
with other standard protocol implementations. Next we will examine two key issues involved 
in tl'::ting: the logical architecture used, and the test sequences that drive the IVT. 
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A Logical Architecture For Testing 
Within the rramework or the ISO model, a. common logical testing architecture IS given ID 

Fig. 7. 

In this 3.rchitecture the peer protocol implementation (PPI) or the IUT is a combination of a 
reierence implementation and a protocol-data-units generator (see Fig. i). The PPI at layer 
:'>i together with reference implementations for layers 4,5, ... N-1 are located at the test center, 

while the IUT is at the implementor's site. Both ends are connected to an X.25 network 

which provides the rirst three network layers!. This testing configuration is referred to as 
remote testing since the test center controls the tests remotely. 

The protocol-data-units generator is responsible for generating correct N level service 

reqllests, requests ror the generation or N-th level protocol errors, indications or undetected 

:'\-th level protocol errors, and acts as an encoder and decoder of both valid and invalid 

(:'\-1) service. The PPI and the protocol-data-units generator are driven by a test driver 
(TD) at the testing center. The test responder (TR) is the software module which acts as 

the user of the j\; service, and whose operation is totally predictable so that the results of 

the tests depend only on t.he behavior of the IUT. The TD and TR communicate through a 
non-standard protocol. 

To be able to 3..5s~ss the IUT, it is necessary to test its response to erroneous and correct 
req11ests across borh the j\; and :'>i-I interfaces. However, if the N-l service of the protocol 

being tested is not end-ta-end (as in the case of the packet-level of the X.2,)), then it is not 

possible to control it remotely. Thererore, a portable box is introduced between the 

communication mt'dillm and the implementor's system (see Fig. 8) to detect any errors 

introduced by the sub-network and introduce errors in it upon request from the testing 
center. 

Ideally, the testing process should be independent of the protocol beir;tg tested as much as 

possible so that only minimum variations need to be made when a new protocol is tested. 

This can be achieved by minimizing the protocol dependent parts or the architecture, and 

automating the process of test sequences selection. The only part of the testing architecture 

that needs be protocol dependent is the protocol-data-units generator, especially the part ror 

testing normal and faulty N service. This dependency could be minimized by automating 

that part or the generator such that it is derived rrom some specification or the protocol. 

Remote testing could be used only to test complete protocol implementations. Alternatively, 
in direct testing, a protocol representation could be a service, protocol. or implementation 

specification. In this approach, the specification is tested in a simulated environment where 

correct and faulty requests and responses across the Nand N-I interfaces are simulated and 

the results compared with those of a. sta.ndard rererence specification. 

Test Sequence Selection 
.-\ test sequence is an input request to the JUT generated by the TD or TR. Test sequences 

lOnly ~nd-to-end protocols above X.~5 are tested in such architectures 
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could be specified either as state tables, or using a test specification language that might be 
then t.ranslated into state tables [Rayn 82b]. Testing is said to be camp/de if all the 
possible requests that could be applied to the lUT are covered by the test sequences. 
Unfortunat~ly, theoretical results [Piat 80] show that with no knowledge of the protocol 
internal state the size (measured as the number of distinct sequential inputs applied to the 
IL:T) of a complete test sequence has an upper bound of O(n"} where n is the size of the 
state set of the protocol reference model. Otherwise, with an access to the protocol internal 
state this figure comes down to O(n'}. These bounds could be very large for complex 
protocols such as those involving sequence numbers. 

However, there are other methods for near complete tests sequence selection. As an 
example. we will use the tran"ition tour" [Sari 82] method to calculate a test sequence ror 
the send-and-wait protocol. This method is used to derive test sequences from a protocol 
specified formally as a state machine but using only its FSM part. A trarlsition tour 
sequence is an input sequence starting at the initial state and covering all the tranSitIOns at 
lea.st once. The length of the sequence for our protocol example (see Fig. 5) is 8 and the 
sequence is given by 

In general, the upper bound on the sequence length is q + (q-1Xn-l), where q is the number 
of possible transitions. This is th'e worst case where a traversal of all (n-l) states is 
required to include each transition in the test sequence .. This method detects all operation 
errors (errors in the output function of the state machine), but it does not detect all 
transfer errors (errors of the next state function). 

8 Conel usions 

\Ve have demonstrated in the previous sections how the various protocol development tools 
are dependent on. the specification method used. Hence, in addition to the set of 
requirements given in section 2, a specification method must exhibit other features to 
facilitate the application of other development tools. These include: 

1. Providing constructs for expressing desired properties of the protocol and thus 
facilitating their automated formal verification. 

2. Executability of the specification to facilitate the simulation of the specification, 
and enhance the automation of the implementation process. 

3. Providing constructs for expressing performance aspects to facilitate automated. 
performance evaluation. 

4. Supporting the clear definition of the interfaces between the protocol layer 
concerned and the layers above and below to allow for separate testing of the 
implementation of each protocol layer. 

Future research is required for developing individual tools and automating them, building 
integrated protocol environments with advanced human interfaces, and more experience in 
applying these tools and environments to more protocol standards as they are developed 
--both low level and high level protocols. 
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I. Proof of equations 6.2 and 6.3 

Since we are considering mean values, then we can add up sequentially composed event 
times, and Eld] can be calculated by adding up the time for the timeout loop with the rest 
of the event times. Let the total time spent in the loop be L and the time of a single loop 

be t. Then, 

For equation 6.2: 

EILI i=n] = n elt] 
and by using the theorem of total expectation, we get 

ElL) = Eln] Elt] 
slOce i has a modified geometric distribution, then 

ElL] = p/l-p Elt] 

but Elt]= tT + t s' therefore 

ElL] = p/l-p (tT + t l ) 

and the mean delay is 
Eld] = ElL] + 3ts + 2td 

= p/l-p (tT + tl) + 3ts +2td 

For equation 6.3: The second moment for D could be calculated by adding the second 
moments of the sequentially composed event times (which is 2tj2 for event i because they are 
exponentially distributed). The second moment of L is 

EILZI i=n] = Var ILl i=nl. + (EILI i=n])2 
= n Varlt] + n2 {Elt]? 

l'sing the theorem of total moment, we get 

EIL·~] = E[n] Varlt] + Eln2] (Elt])2 
= p/l-p [E[t2]-(EltJ)2] + [(p+p2)/(l-pfl lElt])2 
= p/l-p E[t2J + 2p2/0-p)2 (E[t]? 

and the second moment of the delay is then given by 
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