

Sinnott, R.O. (2003) Architecting specifications for test case generation.
In: Cerone, A. and Lindsay, P.A. (eds.) First International Conference on
Software Engineering and Formal Methods Proceedings: Brisbane,
Australia, September 22 to 27, 2003. IEEE Computer Society, Los
Alamitos, USA, pp. 24-32. ISBN 0769519490

http://eprints.gla.ac.uk/7292/

Deposited on: 18 September 2009

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Architecting Specifications for Test Case Generation
1

Richard Sinnott
National e-Science Centre

University of Glasgow
Scotland

ros@dcs.gla.ac.uk

1 This work was undertaken whilst the author was working as a consultant at Ericsson.

Abstract

The Specification and Description Language (SDL)

together with its associated tool sets can be used for
the generation of Tree and Tabular Combined

Notation (TTCN) test cases. Surprisingly, little

documentation exists on the optimal way to specify
systems so that they can best be used for the

generation of tests. This paper, elaborates on the

different tool supported approaches that can be taken
for test case generation and highlights their

advantages and disadvantages. A rule based SDL

specification style is then presented that facilitates the
automatic generation of tests.

Keywords: SDL, TTCN, Test Case Generation.

1. Introduction

The Specification and Description Language (SDL)

[1] is used in major corporations for different purposes.

We note that the acronym SDL is to be known as

Systems Design Language in future. On the one hand

SDL allows for abstract specifications to be made

which can aid in the capturing and understanding of

requirements for given products. Such abstract

descriptions are typically part of the early phases of

product development. On the other hand SDL allows

for more detailed implementation oriented

specifications to be described which capture very low

level design aspects. We note that these two areas of

application of SDL are not necessarily orthogonal, but

can be applied in an iterative development strategy.

SDL and its associated tool support also allow for the

automatic generation of tests, specifically tests given in

Tree and Tabular Combined Notation (TTCN) [2]. We

note that the acronym for TTCN has been changed by

the relevant standards bodies to Testing and Test

Control Notation due to the differences between

TTCN-2 and the new standard TTCN-3 [3]. In this

paper we consider only TTCN-2.

Relatively little literature exists on the optimal way

to architect specifications in order to best use them for

test case generation [7,8]. This paper summarises the

different possible approaches currently available for

test case generation (TCG) using the Telelogic TAU

SDL and TTCN tool environment [6], and then shows

how a specification style can be used to improve the

test generation process. A rule based specification style

is presented that helps to overcome some key issues in

the automatic generation of tests from SDL models.

The rest of the paper is structured as follows. Section

2 provides an account of SDL usage in the early phases

of product development. Section 3 presents the

application of SDL and its associated tools with

emphasis on test case generation. Section 4 focuses on

a specification styles that can be exploited by tools for

test case generation. Finally, conclusions on the work

are given in section 5.

2. Early Phase Development with SDL
Before we discuss how SDL and its associated tools

can optimally be applied in the early phases of product

development, it is worth clarifying exactly what is

meant by “early phases” as they pertain here. It could

be argued that even the most complex implementation

oriented SDL model falls into the general category of

early phases of product development, since we are

dealing primarily in the specification domain.

We regard early phase SDL models here as models

containing that level of specification which allows to

capture the “what of a product”, i.e. to capture the

basic functionality without specifying exactly how this

will be realized. Typically such models are used to

precisely capture and analyze requirements on the

expected functionality of the system. One indirect way

that such a classification can be ascertained is through

the intended usage of the SDL model. If the SDL

model is to be used for understanding the system to be

developed, then the model can generally be classified

as in the early phase category of product development.

If however, the model is to form the basis for the actual

product implementation, i.e. code will be generated

directly from the model which, once compiled etc will

represent the final product, then we should no longer

consider the model as being in the early phase of

product development. We refer to such implementation

oriented models as (surprisingly!) non-early phase.

The distinction between early phase and non-early
phase models has numerous repercussions on the

strategies for applying SDL and its associated toolsets.

It could be argued that TCG is only useful (or

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

meaningful!) if we consider early phase SDL models,

since tests generated from non-early phase models

only allow for some form of sanity check on the

associated test case generation or code generation tools

to be performed. Thus, if an SDL model is used to

generate tests and the same model is used to generate

the actual implementation then the subsequent

execution of the generated tests, serve no purpose other

than to check that the test case generation tool and

code generation tool function correctly – or at least that

they are consistent with one another. As a result, we

consider the application of SDL and its associated tools

here for early phase development only.

In addition, it is also useful to classify the role of

testing in these phases. It might be considered that

certain aspects related to the general testing process

itself are non-early phase, i.e. testing is typically done

once an existing implementation exists, as opposed to

when more abstract requirements capturing models are

being developed for example. Consideration of testing

in the early phases of product development is a crucial

part of the product development process however.

Knowledge of how to test a product should be a

fundamental part of the overall development of that

product. This knowledge can be in the form of general

understanding of how to test a given product or more

concretely through the explicit tests that a given

product is supposed to be able to handle.

3. Overview of TCG Approaches
To understand the impact of TCG on the

development of SDL specifications in early product

development it is necessary to have an understanding

of the different approaches that are taken by existing

tools. We present three approaches to TCG: simulation

based; MSC based and rule based TCG.

3.1 Simulation Based TCG
This approach is based upon the interactive

exploration of the behaviour of a given SDL model.

Tools such as TTCNlink [6] allow for the static

external information, i.e. the information used in

testing the external behaviour of the system, of the

SDL model to be automatically generated. For

example, points of control and observation (PCO),

abstract service primitives (ASP) or protocol data units

(PDU) as well as the data types associated with these

ASP/PDU’s can be generated automatically through

the external channels to the environment (PCOs); the

associated signals on those channels (ASPs/PDUs);

and the types of the parameters associated with those

signals respectively (ASP/PDU data types). Default

failure test case tables are also generated automatically.

The dynamic part of the test cases is then generated

through synchronizing test case tables (corresponding

to the test case being developed) with the SDL model

and interactively exploring the behaviour of the

specification. In order to create the dynamic part of the

tests, it is necessary to create constraints, i.e. the

values, associated with these data types on the input

signals from the SDL environment (TTCN send

events). We note that these values have to be manually

input and are not generated automatically. Once the

necessary constraints have been created, it is then

possible to perform the sending and receiving of TTCN

events/SDL signals respectively, i.e. generating the

dynamic part of the TTCN test suite.

The TTCN send events are automatically placed into

the associated table under development. Following

their reception and consumption by the SDL model,

the possible receive events generated through

exploring the state space of the model, i.e. the outputs

of the SDL system, are dynamically inserted into the

TTCN table being created. The constraints associated

with these receiving events are established dynamically

based upon the outputs from the SDL system.

3.1.1 Pros/Cons of Simulation Based TCG

This approach has numerous advantages for TCG.

Firstly, the tester has considerable flexibility in the

development of the test cases. That is, they can decide

which combinations of signals and data should be sent

to the system. It is also the case that the tests developed

correspond to valid traces of the SDL model.

From an SDL modellers perspective, this approach

does not require any significant specification styles or

conventions to be followed which TCG tools can

exploit. There are some limitations in the current tools

that the specifier should be aware of however, when

using this approach for TCG. For example, there are

some limitations on the data types, which can be

automatically generated from the SDL system, e.g. it

is problematic to generate tests from SDL models

where SDL process identifiers (PIds) are passed as

parameters in interactions with the environment.

The approach is not without its drawbacks however.

For example, the development of tests with this

approach is a laborious and time-consuming process.

This is especially so when the constraints associated

with the data are non-trivial or the SDL model has

numerous traces which representing valid and

interesting behaviours. This approach also requires that

the test creator has considerable knowledge of the

model, e.g. the test case creator may well have to know

the low level behaviour of the SDL model in order for

successful and meaningful tests to be generated. Such a

white box approach may not always be possible, e.g. if

the test case generator did not create the SDL model.

Another limitation with this approach is that it does

not allow for erroneous behaviours or erroneous data to

be handled; yet often these are very much of interest to

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

the tester when testing the robustness of the software.

Thus for example, “bad data” cannot be input since the

tools will not allow for this. Similarly, the behaviour of

the SDL model normally expresses desired behaviour,

e.g. an ordering of signals is implicitly given in the

model. Stimulating the model with signals that violate

this ordering will generally result in those signals

simply being dropped and no subsequent responses

being returned to the environment (the test case table).

Another issue with this approach is that it does not

allow for information related to how much of the

model has been explored. The tests generated might

just cover a subset of the overall behaviour of the SDL

model. Furthermore, this approach does not allow to

discover other interesting testing behaviours; either the

tester sends the appropriate messages together with the

appropriate data values and receives the appropriate

responses or not. The approach does not lend itself to

the automatic discovery of such new behaviours.

3.2 MSC based TCG
The primary idea behind this approach is to use

Message Sequence Charts (MSC) [4] to express the

dynamic behaviour of the test case and translate this

directly to TTCN. This approach is often used together

with other approaches. For example, it is often the case

that the static information associated with a test case,

e.g. the PCOs, ASP/PDU and data types are generated

from an SDL specification and the MSC then used to

produce the dynamic part of the test case.

This approach can be applied at various phases of

product development. One example of MSC based

TCG is the situation where requirements expressed

through MSC interaction scenarios are given without a

detailed SDL model and these MSC should be used to

produce test cases. In this case, a minimal SDL model

can be produced that is used to provide the static

testing information, e.g. via tools such as TTCNlink

discussed in section 3.1. The MSC can then be

translated to TTCN via appropriate tool support. This

minimal model will likely define the same external

interfaces as the real system, i.e. the same channels,

signals and data types will be supported; however, the

detailed specification of the SDL behaviour can be

omitted. Such a system would likely contain processes

with null behaviour for example.

Alternatively, a more rigorous application of MSC

based TCG would be to have a detailed SDL model

through which manually provided interaction scenarios

(given by MSCs) can be verified and subsequently

used to generate test cases. The rigour in this sense

stemming from the understanding of the system being

developed, i.e. it can be verified that the MSCs

represent valid system traces.

A third and arguably more powerful application of

MSC based TCG would be to have MSC generated

directly from an SDL model and subsequently

converted to TTCN. Through this approach, the MSC

are not expected to be provided manually as

requirements based interaction scenarios, but they can

be generated automatically from the model. We note

that this approach and the manually provided MSC

approach can and will likely be used in conjunction

with one another.

3.2.1 Pros/Cons of MSC Based TCG

Perhaps the greatest advantage with MSC based

TCG is the speed at which the tests can be generated.

Interaction scenarios as might be produced during

requirements analysis can be converted to tests cases

with minimal specification effort. Of course, one of the

requirements to achieve this are that the MSC

specifications are syntactically correct and the

associated minimal SDL specification correctly reflects

the static aspects of the system under development.

The approach can be applied at different phases of

the product development lifecycle. For example from

the early requirements capturing phase in which testing

aspects are also being considered, through to the later

phases where detailed models have been produced and

being used for TCG.

This approach is not without its drawbacks however.

The approach in combination with a minimal SDL

specification provides no guarantee that the interaction

scenario as given in the MSC is a valid interaction

scenario of the real system, nor does it allow for test

coverage to be ascertained. Manually producing MSC

based interaction scenarios whilst lending itself to a

broad understanding of system behaviour, rapidly

becomes unwieldy once detailed data considerations

are considered both from a specification point of view

as well as an understanding point of view, i.e. detailed

data aspects represented in an MSC make the MSC

more difficult to read and understand.

It could even be argued that MSC based TCG is not

actually TCG in its purest form. That is, it is not the

case that the MSCs are really being used to generate

test cases as such, but rather they are simply an

alternative representation of the test case behaviour.

Hence this approach is more a notation conversion

based approach rather than a TCG based approach.

Nevertheless, this approach can be used in conjunction

with other approaches and exploited by tools that allow

for MSCs to be generated automatically. One such

approach is rule-based TCG.

3.3 Rule Based TCG
Ideally an SDL model should be used directly for

test case generation which should allow for the detailed

behaviour of the model to be explored and used as a

basis for generation of test cases. There should ideally

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

be no need for manual intervention as is required for

simulation based TCG and to a lesser extent through

MSC based TCG. Rather, it should be possible for an

SDL specification to be provided and tool support

subsequently applied in generating tests with little or

no tester knowledge about the inner-workings of the

specification, i.e. black-box testing should be assumed.

The automatic generation of exhaustive tests from

(SDL) models is still very much an area of active

research. Given the complexity of realistic SDL

models and data, i.e. those models where test case

generation would be useful as opposed to minimal

proof of concept case studies, it is unlikely that a

solution for automatic and exhaustive TCG will be

achieved. State space explosion is an ever present

problem especially in the presence of complex

environment interactions with non-trivial data as is

typically the case in the telecommunication domain.

An alternative to exhaustive TCG based on rule

based TCG can also be applied. Before considering

this in detail however, it is worth considering the key

issues to be overcome with exhaustive TCG, since this

offers the most powerful and useful approach. There

are at least three key issues which have to be addressed

to perform automated TCG from an SDL model:

• avoiding the problem of state space explosion;

• identifying new and interesting system traces;

• dealing with erroneous behaviours and data.

To address these issues it is necessary that care and

foresight be applied in the development of the SDL

model. Specifically, the specification should be

developed in such a way that state space explosion

problems can either be minimized, or optimally,

avoided altogether; new and interesting system traces

can be discovered and recorded; erroneous behaviours

can be catered for. One way in which this can be

realized to a certain extent is through a rule based

specification approach.

Rule based specification development requires that

the specification be developed in a manner so that the

associated TCG tools can exploit it. More precisely,

the specification is written in such a manner that it is

possible to check for the satisfaction of assertions on

the state of the specification. Rules can be given which

allow for checking of these assertions during the

exploration of the behaviour of the SDL model. Rules

can for example, be provided which relate directly to

TCG and the key problems associated with automating

this, namely: avoiding state space explosion,

identifying new test purposes, dealing with erroneous

behaviours. We note here the importance of the “early

phase” role of SDL in the development process. That

is, dealing with the early phase development allows for

various modelling styles, e.g. rule based, to be applied

which may not always directly reflect the architecture

of the system under development.

Central to a rule based approach is the usage of SDL

observer processes. These can be used to check the

behaviour of the SDL model for certain conditions that

might be satisfied in a given state. When this is the

case, reports can be generated describing the way in

which this condition arose, e.g. the sequence of

interactions that resulted in the satisfaction of the

condition, i.e. the test purposes.

3.3.1 Pros and Cons of Rule Based TCG

Rule based TCG offers the most powerful means of

generating tests from an SDL model. It allows a

multitude of tests to be automatically generated with

minimal knowledge about the inner workings of the

SDL model itself. In principle, all that is required is

knowledge of the external inputs to the SDL model,

e.g. the signals and the values of the parameters that

should be sent to the system to allow for interesting

tests to be generated, and the rules that apply to the

model. We discuss this in more detail in section 4.3.

The approach is not without its drawbacks however.

It places more constraints on the SDL modeller to

ensure that the model is developed in such a way that

rules can be given and meaningfully handled. Also, it

is often the case that the specification is developed in

such a way so that specific tool functionality can be

exploited. Combining knowledge of tool capabilities

with the general design of the system itself adds to the

overall complexity in specification development.

Nevertheless this approach is arguably the most

powerful of the three documented here – where power

corresponds to the number of tests that can be

automatically generated directly from the model. To

demonstrate exactly how such rule based models might

be developed and exploited by tools we consider the

specification of a protocol (PS) and its combination

with a service (SeS). We note here, that the following

description is based upon a case study undertaken

within Ericsson related to commercial products under

development and as such a more precise description of

the protocol PS and service SeS used cannot be given.

The principles in how to produce a rule-based

specification style remain the same however, and are

largely independent of the protocol or service details.

4. Engineering Rule Based Specifications
A typical architecture of an SDL system used for

TCG is given in Figure 1, where the TCG System is

decomposed into several key parts/development phases

including:

• PS data (ASN.1) module

• Protocol Specification (PS) + data model

• Service Specification (SeS) + PS’

• Test Case Generation (TCG) + PS’’+SeS’

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

P S

P S ’S e S

P S ’’S e S ’T C G

 P S

D A T A

in h e rits

in h e ritsin h e r its

d e p e n d s

o n

d e p e n d s

o n

d e p e n d s

o n

d e p e n d s

o n

Figure 1: TCG Oriented Specification Architecture

We describe the contents of each of these

development phases in the following sections. One

thing worth noticing is the association relationship

between the protocol and the service specification

models. Protocols and services are commonly related

directly through inheritance based relationships.

Association relationships are useful when some

detailed decomposition of the service specification

might be required, which need not necessarily be

represented in the protocol specification or vice versa.

Similarly such association relationships are useful

when the necessary knowledge of the protocol or

service is not yet available, i.e. it is not known exactly

which behaviour will be inherited etc. Dealing with

inheritance based relationships typically implies

dealing with the inheritance of the associated structures

and decomposition of the inherited entities.

From an external, i.e. testing perspective, provided

appropriate guidelines are followed which we elaborate

upon shortly, there should be no distinction between

association or inheritance as the relationship between

protocol, service and in this case, TCG systems.

4.1 Early Phase Protocol Modelling Aspects
The PS protocol used in the case study is used to

support a wide variety of services. A key guideline

followed during the development of the SDL model of

PS, was that it should avoid having detailed data

dependent behaviour. Rather, the protocol was required

to carry various complex data structures, whose

detailed evaluation and processing would be

undertaken by the associated service, e.g. SeS. As

such, the PS model was developed so that it followed

the basic state machines given by the design

documents, but did not deal with the detailed

processing of the parameters passed into the model

from the environment. The ASN.1 data itself was

provided as one of the inputs to the specification

development and saved in a package (OIPMessages)

and used in the necessary specifications of PS and SeS.

The architecture of the PS itself was based upon the

separation from the originating and terminating sides

of a call is depicted in Figure 2.

Figure 2: Decomposition of the Protocol Specification

We note here that the signallist oip_mess contains

those messages defined in the ASN.1 package

OIPMessages. It is these communications via the

oip_mess signals that reflect the protocol behaviour as

described in the design documents for the PS.

Having a complete system for the protocol allows

investigation of the detailed behaviour of the protocol.

Thus for example, the PS could itself be validated to

ensure that it supported the necessary interaction

scenarios and had the appropriate functionality.

To validate the PS specification via model checking

or simulation requires inputs to be defined. Existing

model checking tools such as the Telelogic TAU

Validator [6] are able to generate certain values which

can be used for state space exploration, e.g. if a signal

carries a single integer parameter, the Validator will

generate 3 test values (-55,0,55) which can be used to

explore the state space of the specification. With more

complex data structures (as in PS) however, users have

to explicitly provide meaningful values with which to

explore the state space. In our case, given that the PS

simply forwards data means that trivial data inputs

could be provided, e.g. empty sequences. However, as

will be seen in section 4.3, consideration of the input

values for signals used to explore the state space of the

specification cannot always be treated so lightly and

will have marked effects on both the service behaviour

as well as the TCG possibilities.

We note that apart from supporting a certain

structuring, the PS was developed without any need to

follow other specification styles or features that could

be applied by tools to exploit TCG. That is, the

specification was a straightforward SDL model of two

state machines with complex data which was input and

forwarded to the associated state machine or

environment without being explicitly processed.

4.2 Early Phase Service Modelling Aspects
Once a protocol specification has been developed, i.e.

the upper level of Figure 1 has been realized, it can be

used in the development of a service specification. To

support this, the type information of the protocol

model should be saved as a package and used in the

description of the service model. Given that the PS was

developed with structuring reflecting the originating

and terminating sides of a call, the architecture of the

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

SeS service with the PS was developed to take this into

account as shown in Figure 3.

Figure 3: Architecture of SeS and PS

We note here that external interactions with the

SeS/PS system are based upon the signals contained in

the signallist oip_mess, which correspond to those

given in the ASN.1 input package. The internal

interactions between PS and SeS (request/indicators)

correspond to the ASN.1 signals defined in

OIPMessages appended with req or ind respectively.

The internal interactions between the SeS/PS system

also support handshaking between the SDL processes

representing the protocol and service, i.e. PIds are

exchanged between the protocol and service as part of

their initial internal behaviour and subsequently used

to ensure future interactions between the processes are

meaningful, e.g. checks on message senders/receivers

made. We note that handshaking is not necessary when

inheritance is used between protocol and service. This

handshaking along with the introduction of specific

procedures to be exploited by state space exploration

and hence by TCG are shown in Figure 4.

Figure 4: Service Handshaking and Procedures for TCG

Before discussing the details of the service

specification itself, we note that the two procedures

Not_impl and entry_idle have been introduced into the

specification especially for TCG purposes. Thus there

is no counterpart to these procedures in the design

documents or technical reports describing the

functionality of SeS/PS. We further note that these

procedures have a null behaviour.

Whilst the PS was largely based upon the PS design

documents, it was regarded as unrealistic, non-scalable

and impractical to specify completely the SeS service.

As a result the SeS developed, was based on a subset

of the overall service functionality described in the

design documents. This subset was chosen to

demonstrate a realistic TCG investigation.

An example of the behaviour selected is given in

Figure 5. Here procedures were called upon reception

of the appropriate signal from the PS system. Thus for

example, when the environment sent the signal IAM to

the originating side of the PS, this process would

forward the signal IAMind to the SeS, which in turn

would call the appropriate procedure to handle IAM.

Figure 5: SeS Behaviour and Calling of Procedures

It should be pointed out that the SDL behaviour here

is specified in such a way that it can be exploited for

rule based TCG. For example, when the procedure

handling the IAM invocation is made, three

possibilities exist (assuming the sender was from the

originating side and hence the first decision is true):

• the details associated with the IAMind message

(iamdata) passed to this procedure are correct – in

which case the procedure sends an IAMreq to the

terminating side and returns with OK;

• the details associated with the IAMind message

(iamdata) passed to this procedure are incorrect and

result in a specified erroneous behaviour – in which

case the procedure returns with DataNotOk;

• the details associated with the IAMind message

(iamdata) passed to this procedure are incorrect and

result in a non-specified erroneous behaviour - in

which case the procedure returns with NotOk;

The two erroneous cases given here, both result in

the Not_impl and entry_idle procedures being called.

As stated, in the SeS, these have a null behaviour,

however, this need not necessarily be the case as will

be shown in section 4.3.

As stated previously, it was the case that some

detailed behaviour specification based on the data

handling of SeS was to be supported. As such, it was

necessary that the SeS had behaviour which accessed

the input data, e.g. iamdata in Figure 5, and could

result in all three of the previous bullet points arising.

Given that the PS data was represented through pointer

lists referencing individual parameters, decomposing

the data access of the SeS was based on the knowledge

of the well-defined parameter ordering in the PS. Thus

for example, it is known that the pointer in the fifth

position in the list refers to the CalledPartyNumber.

This fact could be exploited by checking that the

pointer in the fifth position of the pointer list supplied

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

in the input data references something, i.e. it is greater

than zero, and if so the appropriate procedure was then

called to perform the checks needed on that parameter.

As stated, due to the complexity of the SeS, only a

subset of the behaviour (and hence data) described in

the design documents was selected. The example

chosen for the detailed modelling of the SeS was

focused upon behaviour which allowed to perform the

following with the input signals and data:

• passes information on as is

• modifies/discards information in the forward or

backward messages

• generates new information/messages

• releases the call and sets the appropriate End of

Selection (EOS) code

Typically, these design documents were very low

level and considered access and checking of the

individual bits or octets passed in. The applicability of

SDL for such modelling is considered in more detail in

section 4.3. An example of the SDL design based on

these low level requirements is shown in Figure 6

Figure 6: Detailed SDL Design of Requirements

We note that Figures 6 provides a model of the data

dependent behaviour of SeS which considers good and

bad data cases, i.e. the OK, NotOk and DataNotOk

cases can occur depending on the input data.

Having a complete system for the service and

associated protocol allows amongst other things to

investigate the detailed behaviour of the combined

service/protocol system. Thus for example, the SeS/PS

can themselves be validated to ensure that they

supported the necessary interaction scenarios and have

the appropriate functionality depending upon the

design documents and associated use case etc.

It should be pointed out that to simulate or validate

the SeS/PS system, i.e. via model checking and state

space exploration, requires inputs to be defined. The

values associated with these inputs need careful

consideration to allow for the interesting scenarios to

be discovered and investigated. Thus for example, in

the case given previously, it is necessary to provide

inputs which allow for all supported cases to be

explored. Hence in the case given here this implies that

the parameters associated with the IAM signal support

the investigation of the combinations of the

ForwardCallIndicator and the UserToUserIndicators
results, i.e. the OK and DataNotOk results should be

possible based upon the values of the parameters of the

different IAM signals that can be sent into the system.

We note that it is only the inputs that should be

considered and not the outputs. That is, for TCG the

specification should produce the necessary outputs

together with the associated parameter values. We also

note that the parameter values associated with the

outputs may well be different from the input values,

e.g. where the specification modifies the input data

before sending it to the environment.

As stated previously, existing model checking tools

are often able to generate certain values which can be

used for state space exploration. With more complex

data structures, however, users have to explicitly

provide meaningful values. In the case of the combined

SeS/PS, these meaningful values take special

significance. For example, if no value is supplied for

the ForwardCallIndicator parameter of the IAM

signal, then the tools will not generate tests showing

that a release is possible when a check on this

parameter is done. Similarly, if the

ForwardCallIndicator parameter has a value that does

not match the precise conditions that will result in a

release being issued because of this parameter, then no

release case will be generated.

4.3 Early Phase Test Case Generation
In principle, the SeS/PS system described in section

4.2 could be used directly for TCG since it represents

the model of the real system that we would like to

generated tests for, i.e. it is the model of the SeS/PS. It

is certainly the case that simulation based TCG

approaches as described in section 3.1 can be applied

to generate tests to this system. However, a better

approach is to automatically generate tests based upon

the satisfaction of rules. The SeS/PS itself does not

have any rules which could be applied directly. It did

however, allow for the placeholders for those rules to

be given. Specifically, the empty procedures Not_impl

and entry_idle were called at the appropriate places

depending on the input data.

To support a rule based automatic TCG approach,

observer processes are needed. The architecture of the

system which can be used for TCG is shown in Figure

7. We note here that this architecture includes the

specification of the SeS and the PS through packages.

In addition certain new channels are declared that

allow for control information to be used which can be

exploited for TCG.

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

Several points are worth noting here. Firstly the

Observer process need not be connected, e.g. via

channels, to the other processes in the specification.

Secondly, the two new channels ctrl_ps and ctrl_ses

are used purely to support erroneous tests in TCG. That

is, these channels and the signals that they carry do not

arise in the SeS/PS design documents.

Figure 7: System Architecture Suitable for Rule Based

Automatic TCG

The PS/SeS themselves are modified to allow for the

exploration of these error cases as shown in Figure 8.

Figure 8: Supporting PS Error Scenarios in TCG

Here the PS is modified so as to allow to investigate

the scenarios where certain signals should not be

possible in certain states. Thus in this example here, it

is the case that the Address Complete Message (ACM)

in state idle should be possible or not possible

depending upon whether the appropriate signal

(toggle_error_cases) is sent or not. We note that if this

signal is defined as being one of the possible inputs to

the specification, then both system traces will be

generated during TCG. Such an approach thus allows

for error cases to be supported in TCG as required in

section 3.3.

The rule based TCG approach can itself be realized

through the appropriate specification of Observer

processes. One example of an Observer process used to

support a rule based approach to TCG for the SeS/PS is

given in Figure 9. This Observer process allows to

monitor the SDL specification as the behaviour

develops and when certain conditions are matched

write an appropriate report. Specifically, the observer

process accesses the appropriate process identifiers for

the SeS (serv:1) and the originating/terminating sides

of the PS (orig:1/term:1). It then enters a state with an

associated continuous signal which checks that the SeS

(serv:1) is in state idle, and that certain variables have

particular values. When this is the case, a report is

written and the previous state is returned to.

Figure 9: Observer Process to Support TCG

These variables referred to here are defined in the

two procedures defined as placeholders in the SeS

which have been redefined for TCG purposes.

Specifically, the procedures Not_Impl and entry_idle
have been inherited and redefined for TCG purposes as

shown in Figures 10.

Figure 10: Refining SeS Procedures for TCG Purposes

These redefined procedures together with the

Observer process given in Figure 9 and the

specification style adopted for the SeS specification,

e.g. as depicted in Figures 5 and 6 provide an example

of a rule based specification style. The logic behind the

rules are presented within the Observer process. The

natural language description of these rules which are to

be used to generate tests can be given as follows:

Write a report when the SeS has returned to state idle

(implying the counter_idle=1) and the specification has not

reached an erroneous behaviour, i.e. Not_Impl has not

been called as this would make the bad_state variable

equal to true.

Through this approach, reports will be generated for

the valid legal traces of the specification, i.e. those that

allow for a sequence of interactions from the initial

(idle) state and returning to the same state. Hence as

required in section 3.3, new and interesting traces

(documented as reports which can subsequently be

converted via tool support to MSC diagrams) can be

automatically discovered.

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

In addition, to avoid the problem of state space

explosion, rules can be incorporated into the

appropriate tools that allow for the state space

explosion problem to be minimised. An example of a

rule given directly in the TAU Validator is: define-rule
serv:1->bad_state!=false. This rule will effectively

only explore the state space when the bad_state

variable is false. Put another way, whenever the

exploration of the model calls the Not_impl procedure

and thereby makes the bad_state variable equal to true,

the rule will immediately be enforced. The

interpretation of this enforcement is that the state space

exploration will stop at this point and backtrack to a

previous state, i.e. a state which led to this current one.

This pruning then results in a reduced state space being

explored and only interesting scenarios/traces of the

specification being considered. Through usage of such

“cut-off” procedures and the appropriate usage of

rules, a powerful mechanism to address the state

explosion problem can be achieved. We note that such

a constraint oriented specification style is applicable to

a multitude of systems where the problem of state

space explosion exists, and not only those where TCG

is of interest.

5. Conclusions
Testing is an activity that should be incorporated at

all stages of product development, from the early phase

product ideas right through to the final product

deployment. SDL is a language that can be applied

throughout the lifecycle of a products development.

SDL also allows generation of tests automatically.

One of the key issues to be addressed is how to use

SDL in the early phases of product development, and

at the same time allow generation of tests which can be

applicable to the product itself, where typically the

actual product is normally considered at a later time of

product development. To allow for this dichotomy to

be addressed an approach based upon detailed

specification in accompaniment with under

specification based upon rules has been shown. In

addition, we have demonstrated how following a

constraint oriented specification style and using

appropriate rules can aid in both the identification of

new and interesting traces of the system behaviour, as

well as avoiding the problem of state space explosion.

We note here that this combination of very detailed

specification together with under-specification through

rules which effectively cut-off unwanted state space

explorations, together offer powerful, complementary

features. Through these combined approaches, detailed

aspects of a product can be specified and unwanted

details abstract away from (hidden via rules). This then

enables tests to be generated focusing only upon some

subset of the overall product functionality. Put another

way, it is not necessary to specify the whole product

behaviour in SDL in order to generate tests for that

product. Rather, the most important product features

which should be tested should be specified in detail,

then rules applied to ensure that tests are generated

only based upon these interesting cases. In terms of

using SDL and its associated tools in the early phase of

product development, such an approach is of course

directly applicable and offers considerable advantages

to product development where issues related to testing

should be supported as early as possible.

Ideally an SDL model should be usable by anyone

for TCG, i.e. the person performing the TCG may not

necessarily be the person who created the SDL model.

Whilst a rule based approach avoids the test generator

having to have a detailed knowledge of all aspects of

the SDL behaviour, e.g. as is the case with simulation

based TCG as presented in section 3.1, the test

generator will likely need some help to understand how

to generate tests from some non-trivial SDL model. At

a minimum this information should include the signals

that should be sent into the system as well as the values

of the parameters that the signals carry, together with

any rules that should be applied to aid in the test case

generation process. Such information can easily be

documented along with the specification itself, e.g.

through the TAU Organizer interface.

Finally we note that the case study did allow

completely automatic generation of TTCN test cases

along with their associated constraints. Given the

nature of next generation telecommunication systems,

with single messages often having several hundred

complex parameters (the IAM message given above

179 extremely complex parameters), this approach

looks especially promising.

6. References
[1] Specification and Description Language (SDL 2000),

ITU-T Recommendation Z.100, Geneva.

[2] Tree and Tabular Combined Notation version 2 (TTCN-

2), European Telecommunications Standards Institute

(ETSI). Methods for Testing and Specification (MTS), ETSI

TR 100 000 V1.0.0 (1998-11).

[3] Testing and Test Control Notation version 3 (TTCN-3);

European Telecommunications Standards Institute (ETSI),

Methods for Testing and Specification (MTS); Part 1:

TTCN-3 Core, ETSI ES 201 873-1 V2.1.0 (2001-10).

[4] Message Sequence Charts (MSC 2000), ITU-T

Recommendation Z.120, Geneva.

[5] Abstract Syntax Notation One (ASN.1): Specification of

Basic Notation, IS-8824-1, ITU-T Recommendation X.680.

[6] TAU Users Manual, www.telelogic.com.

[7] Proceedings of Workshop on Formal Approaches to

Testing of Software, A Satellite Workshop of CONCUR'01,

Aalborg, Denmark, August 2001.

[8] Proceedings of Second IEEE Workshop on Industrial

Strength Formal Specification Techniques, Boca Raton,

Florida, October 1998.

Proceedings of the First International Conference on Software Engineering and Formal Methods (SEFM’03)

0-7695-1949-0/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITY OF GLASGOW. Downloaded on September 18, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

	citation_temp (2).pdf
	http://eprints.gla.ac.uk/7292/

