28,071 research outputs found

    Multiplicities of Noetherian deformations

    Full text link
    The \emph{Noetherian class} is a wide class of functions defined in terms of polynomial partial differential equations. It includes functions appearing naturally in various branches of mathematics (exponential, elliptic, modular, etc.). A conjecture by Khovanskii states that the \emph{local} geometry of sets defined using Noetherian equations admits effective estimates analogous to the effective \emph{global} bounds of algebraic geometry. We make a major step in the development of the theory of Noetherian functions by providing an effective upper bound for the local number of isolated solutions of a Noetherian system of equations depending on a parameter ϵ\epsilon, which remains valid even when the system degenerates at ϵ=0\epsilon=0. An estimate of this sort has played the key role in the development of the theory of Pfaffian functions, and is expected to lead to similar results in the Noetherian setting. We illustrate this by deducing from our main result an effective form of the Lojasiewicz inequality for Noetherian functions.Comment: v2: reworked last section, accepted to GAF

    Bounds on the number of connected components for tropical prevarieties

    No full text
    For a tropical prevariety in Rn given by a system of k tropical polynomials in n variables with degrees at most d, we prove that its number of connected components is less than k+7n−

    Solving Degenerate Sparse Polynomial Systems Faster

    Get PDF
    Consider a system F of n polynomial equations in n unknowns, over an algebraically closed field of arbitrary characteristic. We present a fast method to find a point in every irreducible component of the zero set Z of F. Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our development we also obtain new explicit formulae for the exact number of isolated roots of F and the intersection multiplicity of the positive-dimensional part of Z. Finally, we present a combinatorial construction of non-degenerate polynomial systems, with specified monomial term structure and maximally many isolated roots, which may be of independent interest.Comment: This is the final journal version of math.AG/9702222 (``Toric Generalized Characteristic Polynomials''). This final version is a major revision with several new theorems, examples, and references. The prior results are also significantly improve

    On the cyclicity of weight-homogeneous centers

    Get PDF
    Let W be a weight-homogeneous planar polynomial differential system with a center. We find an upper bound of the number of limit cycles which bifurcate from the period annulus of W under a generic polynomial perturbation. We apply this result to a particular family of planar polynomial systems having a nilpotent center without meromorphic first integral.Comment: 13 pages, no figure

    On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem

    Full text link
    We prove that the number of limit cycles generated by a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing tangential Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection (Gauss-Manin connection) with a quasiunipotent monodromy group.Comment: Final revisio

    Stable Complete Intersections

    Full text link
    A complete intersection of n polynomials in n indeterminates has only a finite number of zeros. In this paper we address the following question: how do the zeros change when the coefficients of the polynomials are perturbed? In the first part we show how to construct semi-algebraic sets in the parameter space over which all the complete intersection ideals share the same number of isolated real zeros. In the second part we show how to modify the complete intersection and get a new one which generates the same ideal but whose real zeros are more stable with respect to perturbations of the coefficients.Comment: 1 figur
    corecore