Abstract

We prove that the number of limit cycles generated by a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing tangential Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection (Gauss-Manin connection) with a quasiunipotent monodromy group.Comment: Final revisio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019
    Last time updated on 27/12/2021