839 research outputs found

    A PWM Controlled IGBT based VSCS with a Battery Energy Storage System for an Isolated Wind-Hydro Hybrid System Using Cage Generators

    Get PDF
    This paper presents a Pulse WidthModulation (PWM) controlled Insulated Gate Bipolar Transistor (IGBT) based Voltage SourceConverters (VSCs) with a battery energy storagesystem (BESS) for an isolated wind-hydro hybridsystem using two squirrel cage induction generators(SCIG) or simply two cage generators, one driven bya variable speed wind turbine and another driven bya constant power hydro turbine. The proposed systemhas a battery energy storage system (BESS) at themiddle of two back –to-back connected pulse widthmodulation (PWM) controlled insulated-gate-bipolar–transistor (IGBT) based voltage source converters(VSCs).The main objectives of the control algorithmfor the VSCs are to achieve the maximum powerpoint tracking (MPPT) through rotor speed control ofa wind turbine driven SCIG at machine side (orgeneration side) and to control the magnitude andfrequency of the load voltage at load side( or hydropower generation side). The proposed system has afacility to bidirectional real and reactive power flow,by which it controls the magnitude and frequency ofthe load voltage. The control techniques with windhydrohybrid power is modeled and simulated inMATLAB 2009a environment using Simulink andSim Power System set tool boxes. The proposedsystem studied under various load conditions withdifferent input wind speeds

    Provision of Frequency Response from Wind Farms: A Review

    Get PDF
    Renewable sources of energy play a key role in the process of decarbonizing modern electric power systems. However, some renewable sources of energy operate in an intermittent, non-dispatchable way, which may affect the balance of the electrical grid. In this scenario, wind turbine generators must participate in the system frequency control to avoid jeopardizing the transmission and distribution systems. For that reason, additional control strategies are needed to ensure the frequency response of variable-speed wind turbines. This review article analyzes diverse control strategies at different levels which are aimed at contributing to power balancing and system frequency control, including energy storage systems.This research was funded by the Basque Government, through the project EKOHEGAZ (ELKARTEK KK-2021/00092), Diputación Foral de Álava (DFA) through the project CONAVANTER, and UPV/EHU through the project GIU20/063

    The role of storage in emerging country scenarios

    Get PDF
    AbstractDespite the electrical energy scenarios are quite different between industrialized countries and emerging and developing ones, for both contexts, energy storage systems could play a key role in the next future. Specifically, in emerging and developing countries, energy storage systems may allow a cost-effective exploitation of renewable sources in order to cope with energy security for centralized energy systems, but mainly to become a building block of rural electrification by off-grid power systems. In this paper a short overview of energy storage systems within the emerging and developing countries scenarios is reported. Specifically the paper provides a description of the typical configuration for batteries within off-grid systems and an overview of the typical economic models for batteries applications and the regulatory frameworks when off-grid applications are introduced. Finally the description of an experimental project in rural area of Tanzania points out the peculiar characteristics of batteries application in off-grid applications

    Modeling, Simulation and Control of Wind Diesel Power Systems

    Get PDF
    Wind diesel power systems (WDPSs) are isolated microgrids that combine diesel generators (DGs) with wind turbine generators (WTGs). Often, WDPS are the result of adding WTGs to a previous existing diesel power plant located in a remote place where there is an available wind resource. By means of power supplied by WTGs, fuel consumption and CO2 emissions are reduced. WDPSs are isolated power systems with low inertia where important system frequency and voltage variations occur. WDPS dynamic modeling and simulation allows short-term simulations to be carried out to obtain detailed electrical variable transients so that WDPS stability and power quality can be tested. This book includes papers on several subjects regarding WDPSs: the main topic of interest is WDPS dynamic modeling and simulation, but related areas such as the sizing of the different WDPS components, studies concerning the control of WDPSs or the use of energy storage systems (ESSs) in WDPSs and the benefits that ESSs provide to WDPS are also discussed. The book also deals with related AC isolated microgrids, such as wind-hydro microgrids or wind-photovoltaic-diesel microgrids

    Techno-economic analysis of an off-grid micro-hydrokinetic river system as a remote rural electrification option

    Get PDF
    Thesis (M. Tech. (Electrical Engineering )) - Central University of Technology, Free State, 2014Remote rural electrification via grid-extension is a challenging solution due to high connection costs and low electricity consumption rate. As a result, it is difficult to recover the initial investment costs. Therefore, electrification is made possible by means of the commonly used off-grid approaches such as solar, wind, diesel generator and conventional micro-hydro. However, owing to non-continuous availability of sunlight and wind, high cost of diesel fuel, and requirements for construction of diversion weirs, these off-grid approaches might not offer a cost-effective and reliable solution to low income rural residents. There are many rural communities throughout the world without access to grid electricity and with access to flowing water. An off-grid micro-hydrokinetic river (MHR) system is one of the promising technologies to be used in remote rural areas with flowing water. It can bring sustainable improvement to their quality of life due to its high energy density and minimal environmental impact. This technology is still in the development stage and there is a lack of application, especially in rural areas. Hence, this study investigates the current status of MHR technology in rural applications. To demonstrate the economic feasibility of an off-grid MHR system, a rural site with multiple energy sources within South Africa has been used. The economic benefit offered by this proposed system at the selected site is compared to the economic benefits offered by other commonly used standalone systems such a solar, wind and diesel generator (DG). This economic comparison has been performed by making use of a Hybrid Optimization Model for Electric Renewable (HOMER) simulation tool. Grid extension has also been used as a comparison method for obtaining an economical distance between grid lines and the remote rural site. The results highlighted the acceptable economic performance of the MHR system. Finally, most of the available modelling and simulation tools for mechanical and electrical systems are not equipped with hydrokinetic modules. Hence, an MHR system model has been developed in MATLAB/Simulink in order to study its dynamic performance as submitted to variable water resource. Its performance has then been compared to the performance of a wind system counterpart for generating the same amount of electrical power. This proved/verified that the proposed system can generate electricity markedly cheaper than a wind system even in areas with adequate wind resource within South Africa

    Impact Of Wind Farms With Energy Storage On Transient Stability

    Get PDF
    Today’s energy infrastructure will need to rapidly expand in terms of reliability and flexibility due to aging infrastructure, changing energy market conditions, projected load increases, and system reliability requirements. Over the few decades, several states in the U.S. are now requiring an increase in wind penetration. These requirements will have impacts on grid reliability given the inherent intermittency of wind generation and much research has been completed on the impact of wind on grid reliability. Energy storage has been proposed as a tool to provide greater levels of reliability; however, little research has occurred in the area of wind with storage and its impact on stability given different possible scenarios. This thesis addresses the impact of wind farm penetration on transient stability when energy storage is added. The results show that battery energy storage located at the wind energy site can improve the stability response of the system

    Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time

    Get PDF
    Traditionally, inertia in power systems has been determined by considering all the rotating masses directly connected to the grid. During the last decade, the integration of renewable energy sources, mainly photovoltaic installations and wind power plants, has led to a significant dynamic characteristic change in power systems. This change is mainly due to the fact that most renewables have power electronics at the grid interface. The overall impact on stability and reliability analysis of power systems is very significant. The power systems become more dynamic and require a new set of strategies modifying traditional generation control algorithms. Indeed, renewable generation units are decoupled from the grid by electronic converters, decreasing the overall inertia of the grid. ‘Hidden inertia’, ‘synthetic inertia’ or ‘virtual inertia’ are terms currently used to represent artificial inertia created by converter control of the renewable sources. Alternative spinning reserves are then needed in the new power system with high penetration renewables, where the lack of rotating masses directly connected to the grid must be emulated to maintain an acceptable power system reliability. This paper reviews the inertia concept in terms of values and their evolution in the last decades, as well as the damping factor values. A comparison of the rotational grid inertia for traditional and current averaged generation mix scenarios is also carried out. In addition, an extensive discussion on wind and photovoltaic power plants and their contributions to inertia in terms of frequency control strategies is included in the paper.This work was supported by the Spanish Education, Culture and Sports Ministry [FPU16/04282]

    Flywheel energy storage and dump load to control the active power excess in a wind diesel power system

    Get PDF
    Wind Diesel Power Systems (WDPS) are isolated microgrids which combine Wind Turbine Generators (WTGs) with Diesel Generators (DGs). The WDPS modelled in this article is composed of a DG, a WTG, consumer load, Dump Load (DL) and a Flywheel Energy Storage System (FESS). In the Wind-Diesel (WD) mode both the DG and WTG supply power to the consumers. The WDPS is simulated in the WD mode in the case that the WTG produced power exceeds the load consumption. This WTG excess power case is simulated in the subcases of DL and FESS turned off, only-DL and only-FESS. Simulations for the DL and FESS-off case show that the WTG excess power leads to a continuous system frequency increase, so that the tripping of the WTG Circuit Breaker (CB) is required to guarantee the WDPS power supply continuity. Simulations for the only-DL/only-FESS cases show that commanding the DL/FESS to consume controlled power, so that the required DG power to balance the system active power is positive, enables the DE speed governor to regulate the system frequency. Furthermore, the frequency and voltage variations in the DL/FESS cases are moderate and there is no need to trip the WTG-CB, so that the WDPS reliability and power quality are greatly improved. Additionally, the only-FESS case obtains better WDPS relative stability than the only-DL case
    corecore