1,725 research outputs found

    Three-phase 4-wire isolated wind energy conversion system employing VSC with a T-connected transformer for neutral current compensation

    Get PDF
    This paper presents a voltage and frequency controller (VFC) for a 4-wire stand-alone wind energy conversion system (WECS) employing an asynchronous generator. The proposed VF controller consists of a three leg IGBT (Insulated Gate Bipolar Junction Transistor) based voltage source converter and a battery at its DC bus. The neutral terminal for the consumer loads is created using a Tconnected transformer, which consists of only two single phase transformers. The control algorithm of the VF controller is developed for the bidirectional flow capability of the active power and reactive power control by which it controls the WECS voltage and frequency under different dynamic conditions, such as varying consumer loads and varying wind speeds. The WECS is modeled and simulated in MATLAB using Simulink and PSB toolboxes. Extensive results are presented to demonstrate the capability of the VF controller as a harmonic eliminator, a load balancer, a neutral current compensator as well as a voltage and frequency controller

    Battery energy storage system based controller for a wind turbine driven isolated asynchronous generator

    Get PDF
    This paper presents an investigation of a voltage and frequency controller for an isolated asynchronous generator (IAG) driven by a wind turbine and supplying 3-phase 4-wire loads to the isolated areas where a grid is not accessible. The control strategy is based on the indirect current control of the VSC (voltage source converter) using the frequency PI controller. The proposed controller consists of three single-phase IGBT (Insulated Gate Bipolar Junction Transistor) based VSC, which are connected to each phase of the IAG through three single phase transformers and a battery at their DC link. The controller has the capability of controlling reactive and active powers to regulate the magnitude and frequency of the generated voltage, harmonic elimination, load balancing and neutral current compensation. The proposed isolated system is modeled and simulated in MATLAB using Simulink and PSB (Power System Block-set) toolboxes to verify the performance of the controller

    A voltage and frequency controller for stand alone pico hydro generation

    Get PDF
    This paper deals with a voltage and frequency (VF) controller for an isolated power generation system based on an asynchronous generator (AG) driven by a pico hydro turbine. The proposed controller is a combination of a static compensator (STATCOM) and an electronic load controller (ELC) for decoupled control of the reactive and active powers of the AG system to control the voltage and frequency respectively. The proposed generating system along with its VF controller is modeled in MATLAB using SIMULINK and PSB (Power System Block Sets) toolboxes. The performance of the controller is verified for the proposed system and feeding various types of consumer load such as linear/non-linear, balanced/unbalanced and dynamic loads

    Stand-alone wind energy conversion system with an asynchronous generator

    Get PDF
    This paper deals with a stand-alone wind energy conversion system (WECS) with an isolated asynchronous generator (IAG) and voltage and frequency (VF) control feeding three-phase four-wire loads. The reference generator currents are estimated using the instantaneous symmetrical component theory to control the voltage and frequency of an IAG system. A three-leg voltage source converter (VSC) with an isolated star/delta transformer is used as an integrated VSC. An integrated VSC with a battery energy storage system (BESS) is used to control the active and reactive powers of the WECS. The WECS is modeled and simulated in MATLAB using the Simulink and the Sim Power System (SPS) toolboxes. The proposed VF controller functions as a voltage and frequency regulator, a load leveler, a load balancer and a harmonic eliminator in the WECS. A comparison is made on the rating of the VSC with and without ac capacitors connected at the terminals of an IAG. Simulation and test results are presented to verify the control algorithm

    H-bridge VSC with a T-connected transformer for a 3-phase 4-wire voltage and frequency controller of an isolated asynchronous generator

    Get PDF
    This paper deals with a novel solid state controller (NSSC) for isolated asynchronous generator (IAG) feeding 3-phase 4-wire loads driven by constant power prime movers, such as uncontrolled pico hydro turbines. AC capacitor banks are used to meet the reactive power requirement of the asynchronous generator. The proposed NSSC is realized using a set of IGBTs (Insulated gate bipolar junction transistors) based current controlled 2-leg voltage source converter (CC-VSC) and a DC chopper at its DC bus, which keeps the generated voltage and frequency constant in spite of changes in consumer loads. The neutral point of the load is created using a T-configuration of the transformers. The IAG system is modeled in MATLAB along with Simulink and PSB (power system block set) toolboxes. The simulated results are presented to demonstrate the capability of isolated generating system consisting of NSSC and IAG driven by uncontrolled pico hydro turbine and feeding 3-phase 4-wire loads

    Alone Self-Excited Induction Generators

    Get PDF
    In recent years, some converter structures and analyzing methods for the voltage regulation of stand-alone self-excited induction generators (SEIGs) have been introduced. However, all of them are concerned with the three-phase voltage control of three-phase SEIGs or the single-phase voltage control of single-phase SEIGs for the operation of these machines under balanced load conditions. In this paper, each phase voltage is controlled separately through separated converters, which consist of a full-bridge diode rectifier and one-IGBT. For this purpose, the principle of the electronic load controllers supported by fuzzy logic is employed in the two-different proposed converter structures. While changing single phase consumer loads that are independent from each other, the output voltages of the generator are controlled independently by three-number of separated electronic load controllers (SELCs) in two different mode operations. The aim is to obtain a rated power from the SEIG via the switching of the dump loads to be the complement of consumer load variations. The transient and steady state behaviors of the whole system are investigated by simulation studies from the point of getting the design parameters, and experiments are carried out for validation of the results. The results illustrate that the proposed SELC system is capable of coping with independent consumer load variations to keep output voltage at a desired value for each phase. It is also available for unbalanced consumer load conditions. In addition, it is concluded that the proposed converter without a filter capacitor has less harmonics on the currents

    AN EFFECTIVE CONTROL OF AN ISOLATED INDUCTION GENERATOR SUPPLYING DC LOAD FOR WIND POWER CONVERTING APPLICATIONS

    Get PDF
    Purpose. The aim of this paper is to perform a simple and robust control method based on the well-known sliding control approach for a self-excited induction generator supplying an isolated DC load; this adopted technique does not require much computation and could be easily implemented in practice. In this context, the present work will begin with a mathematical development of this control technique and its application to the self-excited induction generator case. For this purpose, the machine provides the produced active power to the load through a static PWM converter equipped with a single capacitor on the DC side. In order to insure the output DC-bus voltage regulation with respect to the load-power demands and the rotor speed fluctuations, the required stator currents references are computed by considering the reactive power required for the machine core magnetization, the induced voltages through the stator windings and the active power set value obtained from the corresponding sliding mode DC-bus voltage controller. Regarding the nonlinearity of the DC-bus voltage mathematical model and the discontinuity characterizing the converter-machine behavior association, the sliding mode strategy will constitute a perfect tool to sizing the controller structure with high control performances. Results of simulation carried out to demonstrate the proposed control validity are presented.Целью данной статьи является разработка простого и надежного метода управления, основанного на хорошо известном подходе к управлению скольжением для асинхронного генератора с самовозбуждением, питающего изолированную нагрузку постоянного тока; данный принятый метод не требует больших объемов вычислений и может быть легко реализован на практике. В этом контексте данная работа начинается с развития математических основ этого метода управления и его применения в случае асинхронного генератора с самовозбуждением. Для этого машина подает произведенную активную мощность в нагрузку через статический ШИМ-преобразователь, оснащенный единственным конденсатором на стороне постоянного тока. Чтобы обеспечить регулирование выходного напряжения шины постоянного тока с учетом требований к нагрузке и колебаниям скорости вращения ротора, требуемые токи статора рассчитываются с учетом реактивной мощности, необходимой для намагничивания сердечника машины, наведенных напряжений в обмотках статора и заданного значения активной мощности, полученного из соответствующего контроллера напряжения шины постоянного тока в режиме скольжения. Что касается нелинейности математической модели напряжения  шины постоянного тока и неоднородности, характеризующей поведение системы «преобразователь-машина», стратегия скользящего режима будет представлять собой идеальный инструмент для определения размеров конструкции контроллера с высокими характеристиками управления. Для демонстрации обоснованности предлагаемого метода контроля, приведены результаты выполненного моделирования

    An effective control of an isolated induction generator supplying DC load for wind power converting applications

    Get PDF
    The aim of this paper is to perform a simple and robust control method based on the well-known sliding control approach for a self-excited induction generator supplying an isolated DC load; this adopted technique does not require much computation and could be easily implemented in practice. In this context, the present work will begin with a mathematical development of this control technique and its application to the self-excited induction generator case. For this purpose, the machine provides the produced active power to the load through a static PWM converter equipped with a single capacitor on the DC side. In order to insure the output DC-bus voltage regulation with respect to the load-power demands and the rotor speed fluctuations, the required stator currents references are computed by considering the reactive power required for the machine core magnetization, the induced voltages through the stator windings and the active power set value obtained from the corresponding sliding mode DC-bus voltage controller. Regarding the nonlinearity of the DC-bus voltage mathematical model and the discontinuity characterizing the converter-machine behavior association, the sliding mode strategy will constitute a perfect tool to sizing the controller structure with high control performances. Results of simulation carried out to demonstrate the proposed control validity are presented.Целью данной статьи является разработка простого и надежного метода управления, основанного на хорошо известном подходе к управлению скольжением для асинхронного генератора с самовозбуждением, питающего изолированную нагрузку постоянного тока; данный принятый метод не требует больших объемов вычислений и может быть легко реализован на практике. В этом контексте данная работа начинается с развития математических основ этого метода управления и его применения в случае асинхронного генератора с самовозбуждением. Для этого машина подает произведенную активную мощность в нагрузку через статический ШИМ-преобразователь, оснащенный единственным конденсатором на стороне постоянного тока. Чтобы обеспечить регулирование выходного напряжения шины постоянного тока с учетом требований к нагрузке и колебаниям скорости вращения ротора, требуемые токи статора рассчитываются с учетом реактивной мощности, необходимой для намагничивания сердечника машины, наведенных напряжений в обмотках статора и заданного значения активной мощности, полученного из соответствующего контроллера напряжения шины постоянного тока в режиме скольжения. Что касается нелинейности математической модели напряжения шины постоянного тока и неоднородности, характеризующей поведение системы «преобразователь-машина», стратегия скользящего режима будет представлять собой идеальный инструмент для определения размеров конструкции контроллера с высокими характеристиками управления. Для демонстрации обоснованности предлагаемого метода контроля, приведены результаты выполненного моделирования

    Performance analysis of a residential wind- turbine dual-stator winding synchronous reluctance generator with armature reaction effect

    Get PDF
    Abstract : The electric generators in residential wind-turbine drivetrains do not only require high ratio power per mass, high efficiency and good overload capabilities, but they also require less volume and quick dynamic responses during severe loading, start-ups, shut-downs and during emergency stops. This paper deals with the analysis of a three-phase dual stator-winding synchronous reluctance generator (DSWSynRG) for residential wind-turbine drivetrains. The performance of the DSWSynRG is evaluated by means of 2D Finite Element Analysis (FEA), and the armature reaction effects are accounted for in the analysis of the generator performance parameters. The stator of the DSWSynRG has two magnetically coupled three-phase windings (main and auxiliary), distributed in 36 slots. The auxiliary (excitation) winding provides the most needed q-axis magnetic flux for voltage generation in the main (armature) winding. The DSWSynRG has rated and peak powers of 5.5 kW and 7 kW respectively. From the FEA results, it is evident that the armature reaction has a magnetizing effect for both resistive and inductive load. The results also evidenced that the effect of armature reaction is more distortional for inductive than resistive load
    corecore