180 research outputs found

    Solid NURBS Conforming Scaffolding for Isogeometric Analysis

    Get PDF
    This work introduces a scaffolding framework to compactly parametrise solid structures with conforming NURBS elements for isogeometric analysis. A novel formulation introduces a topological, geometrical and parametric subdivision of the space in a minimal plurality of conforming vectorial elements. These determine a multi-compartmental scaffolding for arbitrary branching patterns. A solid smoothing paradigm is devised for the conforming scaffolding achieving higher than positional geometrical and parametric continuity. Results are shown for synthetic shapes of varying complexity, for modular CAD geometries, for branching structures from tessellated meshes and for organic biological structures from imaging data. Representative simulations demonstrate the validity of the introduced scaffolding framework with scalable performance and groundbreaking applications for isogeometric analysis

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    Isogeometric Approximation of Variational Problems for Shells

    Get PDF
    The interaction of applied geometry and numerical simulation is a growing field in the interplay of com- puter graphics, computational mechanics and applied mathematics known as isogeometric analysis. In this thesis we apply and analyze Loop subdivision surfaces as isogeometric tool because they provide great flexibility in handling surfaces of arbitrary topology combined with higher order smoothness. Compared with finite element methods, isogeometric methods are known to require far less degrees of freedom for the modeling of complex surfaces but at the same time the assembly of the isogeo- metric matrices is much more time-consuming. Therefore, we implement the isogeometric subdivision method and analyze the experimental convergence behavior for different quadrature schemes. The mid-edge quadrature combines robustness and efficiency, where efficiency is additionally increased via lookup tables. For the first time, the lookup tables allow the simulation with control meshes of arbitrary closed connectivity without an initial subdivision step, i.e. triangles can have more than one vertex with valence different from six. Geometric evolution problems have many applications in material sciences, surface processing and modeling, bio-mechanics, elasticity and physical simulations. These evolution problems are often based on the gradient flow of a geometric energy depending on first and second fundamental forms of the surface. The isogeometric approach allows a conforming higher order spatial discretization of these geometric evolutions. To overcome a time-error dominated scheme, we combine higher order space and time discretizations, where the time discretization based on implicit Runge-Kutta methods. We prove that the energy diminishes in every time-step in the fully discrete setting under mild time-step restrictions which is the crucial characteristic of a gradient flow. The overall setup allows for a general type of fourth-order energies. Among others, we perform experiments for Willmore flow with respect to different metrics. In the last chapter of this thesis we apply the time-discrete geodesic calculus in shape space to the space of subdivision shells. By approximating the squared Riemannian distance by a suitable energy, this approach defines a discrete path energy for a consistent computation of geodesics, logarithm and exponential maps and parallel transport. As approximation we pick up an elastic shell energy, which measures the deformation of a shell by membrane and bending contributions of its mid-surface. BĂ©zier curves are a fundamental tool in computer-aided geometric design. We extend these to the subdivision shell space by generalizing the de Casteljau algorithm. The evaluation of BĂ©zier curves depends on all input data. To solve this problem, we introduce B-splines and cardinal splines in shape space by gluing together piecewise BĂ©zier curves in a smooth way. We show examples of quadratic and cubic BĂ©zier curves, quadratic and cubic B-splines as well as cardinal splines in subdivision shell space

    A generalized finite element formulation for arbitrary basis functions : from isogeometric analysis to XFEM

    Get PDF
    Many of the formulations of cm-rent research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non-linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from the analysis, resulting in a formulation that can be implemented within the traditional structure of a finite clement program but that permits the use of arbitrary sets of basis functions that are defined only through the input file. Elements ranging from a traditional linear four-node tetrahedron through a higher-order element combining XFEM and isogeometric analysis may be specified entirely through an input file without any additional programming. Examples of this framework to applications with Lagrange elements, isogeometric elements, and XFEM basis functions for fracture are presented

    Efficient quadrature rules for subdivision surfaces in isogeometric analysis

    Get PDF
    We introduce a new approach to numerical quadrature on geometries defined by subdivision surfaces based on quad meshes in the context of isogeometric analysis. Starting with a sparse control mesh, the subdivision process generates a sequence of finer and finer quad meshes that in the limit defines a smooth subdivision surface, which can be of any manifold topology. Traditional approaches to quadrature on such surfaces rely on per-quad integration, which is inefficient and typically also inaccurate near vertices where other than four quads meet. Instead, we explore the space of possible groupings of quads and identify the optimal macro-quads in terms of the number of quadrature points needed. We show that macro-quads consisting of quads from one or several consecutive levels of subdivision considerably reduce the cost of numerical integration. Our rules possess a tensor product structure and the underlying univariate rules are Gaussian, i.e., they require the minimum possible number of integration points in both univariate directions. The optimal quad groupings differ depending on the particular application. For instance, computing surface areas, volumes, or solving the Laplace problem lead to different spline spaces with specific structures in terms of degree and continuity. We show that in most cases the optimal groupings are quad-strips consisting of (1Ă—n)(1\times n) quads, while in some cases a special macro-quad spanning more than one subdivision level offers the most economical integration. Additionally, we extend existing results on exact integration of subdivision splines. This allows us to validate our approach by computing surface areas and volumes with known exact values. We demonstrate on several examples that our quadratures use fewer quadrature points than traditional quadratures. We illustrate our approach to subdivision spline quadrature on the well-known Catmull-Clark scheme based on bicubic splines, but our ideas apply also to subdivision schemes of arbitrary bidegree, including non-uniform and hierarchical variants. Specifically, we address the problems of computing areas and volumes of Catmull-Clark subdivision surfaces, as well as solving the Laplace and Poisson PDEs defined over planar unstructured quadrilateral meshes in the context of isogeometric analysis

    Control vectors for splines

    Get PDF
    Traditionally, modelling using spline curves and surfaces is facilitated by control points. We propose to enhance the modelling process by the use of control vectors. This improves upon existing spline representations by providing such facilities as modelling with local (semi-sharp) creases, vanishing and diagonal features, and hierarchical editing. While our prime interest is in surfaces, most of the ideas are more simply described in the curve context. We demonstrate the advantages provided by control vectors on several curve and surface examples and explore avenues for future research on control vectors in the contexts of geometric modelling and finite element analysis based on splines, and B-splines and subdivision in particular.This is the final published manuscript. It is available from Elsevier in Computer-Aided Design here: http://www.sciencedirect.com/science/article/pii/S0010448514001973

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study
    • …
    corecore