20,944 research outputs found

    Method of neutralizing the corrosive surface of amine-cured epoxy resins

    Get PDF
    The corrosive alkaline surface layer of an epoxy resin product formed by the curing of the epoxy with an aliphatic amine is eliminated by first applying a non-solvent to remove most or all of the free unreacted amine and then applying a layer of a chemical reagent to neutralize the unused amine or amine functional groups by forming a substituted urea. The surface then may be rinsed with acetone and then with alcohol. The non-solvent may be an alcohol. The neutralizing chemical reagent is a mono-isocyanate or a mono-isothiocyanate. Preferred is an aromatic mono-isocyanate such as phenyl isocyanate, nitrophenyl isocyanate and naplthyl isocyanate

    Kinetic study of an on-chip isocyanate derivatization reaction by on-line nano-esi ms

    Get PDF
    A high-throughput method is presented for the study of reaction kinetics by nano- electrospray ionization mass spectrometry (nano-ESI MS). The reaction of propyl isocyanate (2), benzyl isocyanate (3), and toluene-2,4-diisocyanate (4) with 4-nitro-7- piperazino-2,1,3-benzoxadiazole (NBDPZ) (1) to yield the corresponding urea derivatives (5) was carried out in a continuous flow glass microchip. Real-time monitoring of the reactions was done by nano-ESI MS. Rate constants of 1.6 ␣ 104 M-1 min-1, 5.2 ␣ 104 M-1 min-1, and 2.5 ␣ 104 M-1 min-1 were determined for isocyanate 2, 3 and 4, respectively

    Flexible fire retardant polyisocyanate modified neoprene foam

    Get PDF
    Lightweight, fire resistant foams have been developed through the modification of conventional neoprene-isocyanate foams by the addition of an alkyl halide polymer. Extensive tests have shown that the modified/neoprene-isocyanate foams are much superior in heat protection properties than the foams heretofore employed both for ballistic and ablative purposes

    Thermally activated foaming compositions Patent

    Get PDF
    Storage stable, thermally activated foaming compositions for erecting and rigidizing mechanisms of thin sheet solar collector

    Thermal curing of an epoxy-anhydride system modified with hyperbranched poly(ethylene imine)s with different terminal groups

    Get PDF
    New hyperbranched polymers (HBP) have been synthesized by reaction of a poly(ethylene imine) with phenyl and t-butyl isocyanates. These HBPs have been characterized by 1H-NMR (nuclear magnetic resonance of hydrogen) and Fourier transform infrared spectroscopy. Their influence on the curing and properties of epoxy-anhydride thermosets has been studied by different techniques: differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetry (TG). The curing kinetics has been studied with DSC. Integral isoconversional method and the S ¿ esta´k–Berggren model have been used to determine the activation energy and the frequency factor. The kinetic parameters are very similar for all the studied systems at the middle stage of the process, but changes are observed at the beginning and at the end of the process when these modifiers are used. The HBPs reduce the glass transition temperature of the cured materials. In addition, from the DMA analysis it can be seen that the HBP modifier obtained from phenyl isocyanate hardly changes the storage modulus, but the obtained ones from t-butyl isocyanate decrease it. TG analysis reveals a decrease in the onset temperature of the degradation process upon addition of the HBPs.Postprint (author's final draft

    Fluorine containing polyurethane

    Get PDF
    A polyurethane polymer prepared by reacting a hydroxy-terminated polyformal with an organic diisocyanate is presented

    Rheological and Mechanical Gradient Properties of Polyurethane Elastomers for 3D-Printing with Reactive Additives

    Get PDF
    Polyurethane (PU) elastomers with their broad range of strength and elasticity are ideal materials for additive manufacturing of shapes with gradients of mechanical properties. By adjusting the mixing ratio of different polyurethane reactants during 3D-printing it is possible to change the mechanical properties. However, to guarantee intra- and inter-layer adhesion, it is essential to know the reaction kinetics of the polyurethane reaction, and to be able to influence the reaction speed in a wide range. In this study, the effect of adding three different catalysts and two inhibitors to the reaction of polyurethane elastomers were studied by comparing the time of crossover points between storage and loss modulus G′ and G′′ from time sweep tests of small amplitude oscillatory shear at 30°C. The time of crossover points is reduced with the increasing amount of catalysts, but only the reaction time with one inhibitor is significantly delayed. The reaction time of 90% NCO group conversion calculated from the FTIR-spectrum also demonstrates the kinetics of samples with different catalysts. In addition, the relation between the conversion as determined from FTIR spectroscopy and the mechanical properties of the materials was established. Based on these results, it is possible to select optimized catalysts and inhibitors for polyurethane 3D-printing of materials with gradients of mechanical properties.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Using micro-CT in the context of self-healing polymers

    Get PDF

    New cation-exchange membranes for hyperfiltration processes

    Get PDF
    A new route for the preparation of cation exchange membranes from polystyrene-polyisoprene-polystyrene (SIS) block copolymers has been studied, using N-chlorosulfonyl isocyanate. At temperatures of 0° to 20°C, N-chlorosulfonyl isocyanate reacts readily with the olefin group in polyisoprenes, resulting in a β-lactam-N-sulfonyl chloride group. Films of this product can be cast which are hydrolyzed afterwards with aqueous ammonia at room temperature to give a membrane with ionic sulfonate and neutral carbamoyl groups. Homogeneous membranes are prepared with an SIS block copolymer as starting material and with mole ratios of N-chlorosulfonyl isocyanate/isoprene between 15% and 45%. In hyperfiltration experiments at 40 atmospheres, both NaCl and Na2SO4 are rejected up to 82%, while fluxes of 0.25 to 0.30 cm3/cm2·hr are obtained. From permeation and hyperfiltration experiments, it is concluded that the weight fraction of membrane water has a large influence on the flux. The water content in the membrane during the hyperfiltration process is primarily determined by the applied pressure, the type of salt, and its concentration
    corecore