662 research outputs found

    Bidirectional PCA with assembled matrix distance metric for image recognition

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    EMG Signal Noise Removal Using Neural Netwoks

    Get PDF

    Transforming Feature Space to Interpret Machine Learning Models

    Full text link
    Model-agnostic tools for interpreting machine-learning models struggle to summarize the joint effects of strongly dependent features in high-dimensional feature spaces, which play an important role in pattern recognition, for example in remote sensing of landcover. This contribution proposes a novel approach that interprets machine-learning models through the lens of feature space transformations. It can be used to enhance unconditional as well as conditional post-hoc diagnostic tools including partial dependence plots, accumulated local effects plots, or permutation feature importance assessments. While the approach can also be applied to nonlinear transformations, we focus on linear ones, including principal component analysis (PCA) and a partial orthogonalization technique. Structured PCA and diagnostics along paths offer opportunities for representing domain knowledge. The new approach is implemented in the R package `wiml`, which can be combined with existing explainable machine-learning packages. A case study on remote-sensing landcover classification with 46 features is used to demonstrate the potential of the proposed approach for model interpretation by domain experts.Comment: 13 pages, 7 figures, 1 tabl

    Modelling and simulation of paradigms for printed circuit board assembly to support the UK's competency in high reliability electronics

    Get PDF
    The fundamental requirement of the research reported within this thesis is the provision of physical models to enable model based simulation of mainstream printed circuit assembly (PCA) process discrete events for use within to-be-developed (or under development) software tools which codify cause & effects knowledge for use in product and process design optimisation. To support a national competitive advantage in high reliability electronics UK based producers of aircraft electronic subsystems require advanced simulation tools which offer model based guidance. In turn, maximization of manufacturability and minimization of uncontrolled rework must therefore enhance inservice sustainability for ‘power-by-the-hour’ commercial aircraft operation business models. [Continues.

    Slowness learning for curiosity-driven agents

    Get PDF
    In the absence of external guidance, how can a robot learn to map the many raw pixels of high-dimensional visual inputs to useful action sequences? I study methods that achieve this by making robots self-motivated (curious) to continually build compact representations of sensory inputs that encode different aspects of the changing environment. Previous curiosity-based agents acquired skills by associating intrinsic rewards with world model improvements, and used reinforcement learning (RL) to learn how to get these intrinsic rewards. But unlike in previous implementations, I consider streams of high-dimensional visual inputs, where the world model is a set of compact low-dimensional representations of the high-dimensional inputs. To learn these representations, I use the slowness learning principle, which states that the underlying causes of the changing sensory inputs vary on a much slower time scale than the observed sensory inputs. The representations learned through the slowness learning principle are called slow features (SFs). Slow features have been shown to be useful for RL, since they capture the underlying transition process by extracting spatio-temporal regularities in the raw sensory inputs. However, existing techniques that learn slow features are not readily applicable to curiosity-driven online learning agents, as they estimate computationally expensive covariance matrices from the data via batch processing. The first contribution called the incremental SFA (IncSFA), is a low-complexity, online algorithm that extracts slow features without storing any input data or estimating costly covariance matrices, thereby making it suitable to be used for several online learning applications. However, IncSFA gradually forgets previously learned representations whenever the statistics of the input change. In open-ended online learning, it becomes essential to store learned representations to avoid re- learning previously learned inputs. The second contribution is an online active modular IncSFA algorithm called the curiosity-driven modular incremental slow feature analysis (Curious Dr. MISFA). Curious Dr. MISFA addresses the forgetting problem faced by IncSFA and learns expert slow feature abstractions in order from least to most costly, with theoretical guarantees. The third contribution uses the Curious Dr. MISFA algorithm in a continual curiosity-driven skill acquisition framework that enables robots to acquire, store, and re-use both abstractions and skills in an online and continual manner. I provide (a) a formal analysis of the working of the proposed algorithms; (b) compare them to the existing methods; and (c) use the iCub humanoid robot to demonstrate their application in real-world environments. These contributions together demonstrate that the online implementations of slowness learning make it suitable for an open-ended curiosity-driven RL agent to acquire a repertoire of skills that map the many raw pixels of high-dimensional images to multiple sets of action sequences

    Advances in Groupwise Image Registration

    Get PDF

    Representation Learning in Sensory Cortex: a theory

    Get PDF
    We review and apply a computational theory of the feedforward path of the ventral stream in visual cortex based on the hypothesis that its main function is the encoding of invariant representations of images. A key justification of the theory is provided by a theorem linking invariant representations to small sample complexity for recognition – that is, invariant representations allows learning from very few labeled examples. The theory characterizes how an algorithm that can be implemented by a set of ”simple” and ”complex” cells – a ”HW module” – provides invariant and selective representations. The invariance can be learned in an unsupervised way from observed transformations. Theorems show that invariance implies several properties of the ventral stream organization, including the eccentricity dependent lattice of units in the retina and in V1, and the tuning of its neurons. The theory requires two stages of processing: the first, consisting of retinotopic visual areas such as V1, V2 and V4 with generic neuronal tuning, leads to representations that are invariant to translation and scaling; the second, consisting of modules in IT, with class- and object-specific tuning, provides a representation for recognition with approximate invariance to class specific transformations, such as pose (of a body, of a face) and expression. In the theory the ventral stream main function is the unsupervised learning of ”good” representations that reduce the sample complexity of the final supervised learning stage.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216

    Advances in Groupwise Image Registration

    Get PDF
    corecore