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Bidirectional PCA With Assembled Matrix
Distance Metric for Image Recognition
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Abstract—Principal component analysis (PCA) has been very
successful in image recognition. Recent research on PCA-based
methods has mainly concentrated on two issues, namely: 1) feature
extraction and 2) classification. This paper proposes to deal
with these two issues simultaneously by using bidirectional PCA
(BD-PCA) supplemented with an assembled matrix distance
(AMD) metric. For feature extraction, BD-PCA is proposed, which
can be used for image feature extraction by reducing the dimen-
sionality in both column and row directions. For classification, an
AMD metric is presented to calculate the distance between two
feature matrices and then the nearest neighbor and nearest feature
line classifiers are used for image recognition. The results of the
experiments show the efficiency of BD-PCA with AMD metric in
image recognition.

Index Terms—Face recognition, feature extraction, image
recognition, nearest feature line, palm print recognition, principal
component analysis (PCA).

I. INTRODUCTION

PRINCIPAL component analysis (PCA) or PCA-based ap-
proaches have been very successful in image representa-

tion and recognition. In 1987, Sirovich and Kirby used PCA to
represent human faces [1], [2]. Subsequently, Turk and Pentland
proposed a PCA-based face recognition method, eigenfaces [3].
PCA has now been widely investigated and has been success-
fully applied to other image recognition tasks [4]–[6].

Despite the great success of PCA, some issues remain that
deserve to be further investigated. First, because of the small
sample size (SSS) problem, PCA is prone to be overfitted to
the training set. Although no researchers have pointed out this
problem directly, it can be addressed using some PCA-based
approaches, such as (PC)2A [7], [8], 2DPCA [9]–[11], and
modular PCA [12]. The drawbacks of these approaches are that
(PC)2A alleviates the overfitting problem simply by blurring an
image with an intrinsic low-dimensional image while 2DPCA
and modular PCA introduce a much higher feature dimension
than classical PCA [9], [10], [12]. Further work is thus required
to solve the overfitting problem while avoiding the high feature
dimension problem.

A second area requiring further investigation is the design
of classifiers based on the PCA feature. One general classifier
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is the nearest neighbor (NN) classifier using the Euclidean
distance measure. Other distance measures such as angle-based
and Mahalanobis distance measures have been studied to fur-
ther improve recognition performance [13]–[16]. Recently, the
nearest feature line (NFL) classifier is introduced to eliminate
the performance deterioration of NN caused by the reduction
of prototypes [17]. Most recently, other variants or extensions
of NFL have been investigated in [18]–[21]. Although previous
studies of NN have shown that distance measures greatly affect
recognition accuracy, with reference to NFL, distance measures
have been little investigated.

This paper simultaneously investigates these two issues.
First, to circumvent the overfitting problem, we propose a
bidirectional PCA (BD-PCA) method that at the same time
avoids the high feature dimension problem. Second, we present
an assembled matrix distance (AMD) metric to calculate the
distance between two feature matrices and then apply the AMD
metric in the implementation of NN and NFL classifiers.

The organization of this paper is as follows. Section II
investigates the classical PCA’s overfitting problem and briefly
reviews relevant previous work in addressing it. Section III
presents a BD-PCA image feature extraction method and pro-
poses an AMD metric. This section also introduces the im-
plementation of NN and NFL classifiers. Section IV presents
the results of experiments using the Olivetti Research Labora-
tory (ORL) face database and the PolyU palm print database.
Section V offers our conclusion.

II. OVERFITTING PROBLEM OF PCA

A. Overfitting Problem

When applied to image recognition, due to the SSS problem,
the classical PCA is apt to be overfitted to the training set. As
a statistical method, the classical PCA’s statistical meaning is
problematic when the sample data dimension is much higher
than the number of samples. To prove this, we carried out a
series of experiments using the ORL database [22].

The ORL database contains 400 facial images of 40 persons
with ten images per individual. All the images are taken against
a dark homogeneous background but vary in sampling time,
light conditions, facial expressions, facial details (glasses/no
glasses), scale, and tilt. The size of these gray images is
112 × 92 [22]. Fig. 1 shows the ten images of one person.

We use the normalized mean square error (mse) to evaluate
the overfitting problem. One statistical characteristic of PCA
is that the mse between random vector x and its subspace
projection is minimal [23]. Thus, the difference of mse on
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Fig. 1. Ten images of an individual in the ORL face database.

the training set and the testing set indicates the degree of
overfitting. If PCA is overfitted to the training set, the mse on
the training set would be much lower than on the testing set.

Given the first L principal components (PCs), we define the
PCA projector as WL = [ϕ1, ϕ2, . . . , ϕL]. A vector x is then
transformed into PCA subspace by

y = WT
L(x − x). (1)

The reconstructed vector x̃ can be represented as

x̃ = x + WLy = x + WLWT
L(x − x). (2)

The normalized mse on the training set msetrain
L is then

defined as

msetrain
L =

∑
i

∥∥xtrain
i − x̃train

i

∥∥2

∑
i

∥∥xtrain
i − xtrain

∥∥2 (3)

where xtrain
i is the ith training sample, x̃train

i is the recon-
structed vector of xtrain

i , and xtrain is the mean vector of all
training samples. Similarly, we can calculate the normalized
mse on the testing set msetest

L .
We choose the first five images of each person for training,

while the remaining five images are used for testing. Thus,
we obtain a training set of 200 images and a testing set of
200 images. We then calculate msetrain

L and msetest
L for a given

WL, as shown in Fig. 2. We can observe that the difference
between msetest

L and msetrain
L would increase with the increase

of L, and the difference could be up to 20% when L = 100. The
great difference between msetrain

L and msetest
L indicates that the

classical PCA is overfitted to the training set.

B. Previous Work in Solving the PCA Overfitting Problem

To date, no researchers have directly pointed out the classical
PCA overfitting problem, yet some PCA-based methods have
been proposed to deal with it. In the following, we survey
three representative approaches, namely, 1) (PC)2A [7], [8],
2) 2DPCA [9]–[11], and 3) modular PCA [12], [24], [25].

Fig. 2. PCA’s normalized mse on the training set and the testing set as a
function of feature dimension.

1) (PC)2A: (PC)2A adopted an image preprocessing plus
PCA mechanism [7]. Given an m × n image I(x, y), Wu and
Zhou define its vertical and horizontal integral projections by

Vp(x) =
1
n

n∑
y=1

I(x, y) (4)

Hp(y) =
1
m

m∑
x=1

I(x, y). (5)

Then, the projection map Mp(x, y) is defined by

Mp(x, y) =
Vp(x)H(y)

I
(6)

where I is the average intensity of the image. We then obtain
Iα(x, y), the projection-combined version of I(x, y) with com-
bination parameter α, i.e.,

Iα(x, y) = (1 − α)I(x, y) + αMp(x, y). (7)

Finally, classical PCA is performed on the projection-combined
version of I(x, y).

Since the projection map Mp(x, y) is generated by the
vertical and horizontal integral projections Vp(x) and Hp(x),
the intrinsic dimension of Mp(x, y) should be less than (m +
n − 1) [7]. Iα(x, y) is a mixture of high-dimensional I(x, y)
and low-dimensional Mp(x, y). The employment of Iα(x, y) in
PCA can thus alleviate the overfitting problem. We considered
that this is the reason for the better recognition performance of
(PC)2A over classical PCA.
2) 2DPCA: As we shall now show, 2DPCA is a row PCA

that regards an m × n image matrix as an m-set of 1 × n row
vectors. Let {X1,X2, . . . ,XN} be a training set of N images.
The image total scatter matrix Gt in [9] and [10] is defined by

Gt =
1
N

N∑
i=1

(Xi − X)T (Xi − X) (8)
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where Xi denotes the ith image and X denotes the global
mean of all images. By representing Xi as an m-set of 1 × n
row vectors

Xi =




x1
i

x2
i...

xm
i


 (9)

the image total scatter matrix Gt can be rewritten as

Gt =
1
N

N∑
i=1

m∑
j=1

(
xj

i − xj
)T (

xj
i − xj

)
(10)

where xj
i and xj

i denote the jth row of Xi and X, respectively.
We can define the row total scatter matrix Srow

t as the scatter
matrix of all the row vectors as

Srow
t =

1
Nm

N∑
i=1

m∑
j=1

(
xj

i − x
)T (

xj
i − x

)
(11)

where x is the mean vector of all row vectors in X. Comparing
(10) with (11), the computation of Gt and Srow

t is almost the
same except for the substitution of x for xj

i and the addition
of the constant 1/m. Consequently, we argue that 2DPCA is
actually a variant of row PCA.

2DPCA treats an image as m 1 × n row vectors and performs
PCA on all row vectors in the training set. In 2DPCA, the
actual vector dimension is n, the actual sample size is mN , and
n � mN . Thus, the SSS problem is solved. Despite its ad-
vantages, 2DPCA still suffers from the high feature dimension
problem (one typical dimension in [9] is 8 × 112). Yang pro-
posed solving this problem with a 2DPCA plus PCA method,
but the 2DPCA + PCA strategy would reintroduce the SSS
problems.
3) Modular PCA: In modular PCA, an image is divided into

n1 subimages and PCA is performed on all these subimages
[12]. Given an m × n image I(x, y), these subimages can be
represented as

Iij(k, l) = I

(
m√
n1

(i − 1) + k,
n√
n1

(j − 1) + l

)
(12)

where Iij denotes the vertical ith and horizontal jth subimages.
Since modular PCA divides an image into a number of

subimages, the actual vector dimension in modular PCA will
be much lower than in classical PCA. The number of training
vectors used in modular PCA is much higher than the number
used in classical PCA. Thus, modular PCA can be used to solve
the overfitting problem.

Modular PCA, however, still has some problems. One is how
to determine the number of subimages. For example, Toygar
and Acan proposed dividing an image into five horizontal
subimages [24], and Chen proposed a 5 × 5 and 5 × 3 partitions
of an image [25]. Another problem is that the feature dimension
will increase as we increase of the number of subimages.

In summary, none of these three methods provide an entirely
satisfactory solution to the overfitting problem. (PC)2A merely

alleviates the overfitting problem by using a intrinsic low-
dimensional image to blur the original image. 2DPCA and
modular PCA both solve the overfitting problems by reducing
the dimensionality and by increasing the training vectors yet
introduce the high feature dimension problem. Finally, 2DPCA
can be regarded as a special case of modular PCA where each
row of the original image is regarded as a subimage.

III. BD-PCA WITH AMD METRIC

In this section, we first propose a BD-PCA method to solve
the overfitting problem and then present an AMD metric and
apply it to the NN or NFL classifiers.

A. BD-PCA

In classical PCA, an m × n image X should be mapped into
a high-dimensional mn × 1 vector x in advance, and then a
dPCA × 1 feature vector y of x (dPCA � mn) is obtained by

y = WT
pcax (13)

where Wpca is the PCA projector. BD-PCA, however, is a
straightforward image projection technique where a kcol × krow

feature matrix Y of an m × n image X (kcol � m, krow � n)
can be obtained by

Y = WT
colXWrow (14)

where Wcol is the column projector and Wrow is the row
projector. BD-PCA has at least two advantages over PCA. First,
being a straightforward image projection technique, BD-PCA
does not require mapping an image X to an image vector
x. Second, BD-PCA-based feature extraction generally has
a lower computational requirement than PCA-based feature
extraction. PCA requires m × n × dPCA multiplications, while
BD-PCA requires m × n × krow + m × kcol × krow multipli-
cations. Since, in general, krow < dPCA, BD-PCA-based fea-
ture extraction is computationally more efficient than PCA.

We next present our method for calculating Wcol and Wrow.
Let {X1,X2, . . . ,XN} be a training set of N images. By
representing the ith image matrix Xi as an m-set of 1 × n row
vectors, the row total scatter matrix Srow

t is defined by

Srow
t =

1
Nm

N∑
i=1

(X2 − X)T (X2 − X) (15)

where X is the mean matrix of all training images. We choose
the row eigenvectors corresponding to the first krow largest
eigenvalues of Srow

t to construct the row projector

Wrow =
[
wrow

1 ,wrow
2 , . . . ,wrow

krow

]
. (16)

By treating an image matrix Xi as an n-set of m × 1 column
vectors

Xi =
[
x1

i , x2
i , . . . ,x

n
i

]
(17)
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we define the column total scatter matrix

Scol
t =

1
Nn

N∑
i=1

(X2 − X)(X2 − X)T . (18)

We then choose the first kcol column eigenvectors correspond-
ing to the first kcol largest eigenvalues of Scol

t to construct the
column projector

Wcol =
[
wcol

1 ,wcol
2 , . . . ,wcol

kcol

]
. (19)

Note that BD-PCA is a generalization of Yang’s 2DPCA.
2DPCA can be regarded as a special BD-PCA with Wcol = Im,
where Im denotes an m × m identity matrix [10].

B. AMD Metric

Distance measures seriously affect the recognition perfor-
mance of the NN classifier. This motivates us to investigate
distance measures subsequent to extracting the BD-PCA feature
matrix. The distance of two feature matrices can be calculated
using either a vector-based or matrix-based method. In a vector-
based method, a feature matrix is first mapped to a vector
and then a vector-based distance measure is used. In a matrix-
based method, the distance between two feature matrices can
be directly computed. In fact, given a vector-based distance
measure, we could find an equivalent matrix-based distance
measure to calculate the distance. For example, it is easy to
prove the equivalence of the Euclidean distance (vector) and
the Frobenius distance (matrix) [26]. Thus, we only investigate
the matrix-based distance measure.
Definition 1: Given two feature matrices A = (aij)kcol×krow

and B = (bij)kcol×krow , the AMD distance dAMD(A,B) is
defined as

dAMD(A,B) =


krow∑

j=1

(
kcol∑
i=1

|aij − bij |p1

) p2
p1




1
p2

,

(p1, p2 > 0). (20)

Definition 2: A matrix norm on R
kcol×krow is a function f :

R
kcol×krow → R with the properties [26]

f(A) ≥ 0, A ∈ R
kcol×krow(f(A) = 0 ⇔ A = 0)

f(A + B) ≤ f(A) + f(B), A,B ∈ R
kcol×krow

f(αA) ≤ |α|f(A), α ∈ R,A ∈ R
kcol×krow . (21)

Theorem 1: The function ‖x‖p = (
∑

i |xi|p)1/p is a vector
norm [26].
Theorem 2: The function ‖A‖AMD = (

∑krow
j=1 (

∑kcol
i=1 ×

(|aij |)p1)p2/p1)1/p2 is a matrix norm.
Proof: It can be easily proved that

‖A‖AMD ≥ 0

‖A‖AMD =0 ⇔ A = 0

‖αA‖AMD = |α|‖A‖AMD.

Next, we shall prove ‖A + B‖AMD ≤ ‖A‖AMD + ‖B‖AMD.
From Theorem 1

‖A + B‖AMD =


krow∑

j=1

(
kcol∑
i=1

|aij − bij |p1

) p2
p1




1
p2

≤


krow∑

j=1

(∥∥∥a(j)
∥∥∥

p1

+
∥∥∥b(j)

∥∥∥
p1

)p2




1
p2

.

From Theorem 1, the function g(a)=
∑krow

j=1 (‖a(j)‖p1)
p2)1/p2 ,

(a = [‖a(1)‖p1 , . . . ,‖a(krow)‖p1 ]
T ) is a vector norm. Let b =

[‖b(1)‖p1 , . . . , ‖b(krow)‖p1 ]
T


krow∑

j=1

(∥∥∥a(j)
∥∥∥

p1

+
∥∥∥b(j)

∥∥∥
p1

)p2




1
p2

= g(a + b) ≤ g(a) + g(b)

=


krow∑

j=1

(∥∥∥a(j)
∥∥∥

p1

)p2




1
p2

+


krow∑

j=1

(∥∥∥b(j)
∥∥∥

p1

)p2




1
p2

=


krow∑

j=1

(
kcol∑
i=1

ap1
ij

) p2
p1




1
p2

+


krow∑

j=1

(
kcol∑
i=1

bp1
ij

) p2
p1




1
p2

= ‖A‖AMD + ‖B‖AMD .

So ‖A + B‖AMD ≤ ‖A‖AMD + ‖B‖AMD, and ‖A‖AMD is a
matrix norm. �
Definition 3: A metric in R

kcol×krow is a function f :
R

kcol×krow × R
kcol×krow → R with the properties [27]

f(A,B) ≥ 0,A,B ∈ R
kcol×krow

f(A,B) = 0 ⇔ A = B

f(A,B) = f(B,A)

f(A,B) ≤ f(A,C) + f(C,B). (22)

Theorem 3: dAMD(A,B) is a distance metric.
Proof: The function ‖A‖AMD is a matrix norm, and it is

easy to prove that dAMD(A,B) = ‖A − B‖AMD is a distance
metric derived from the matrix norm ‖A‖AMD. �

Corollary 1: The Frobenius distance measure [26]

dF (A,B) = (
∑krow

j=1

∑kcol
i=1(aij − bij)2)

1/2
is a special case of

the AMD metric with p1 = p2 = 2.
Corollary 2: The Yang distance measure [10] dY (A,B) =∑krow
j=1 (

∑kcol
i=1(aij − bij)2)

1/2
is a special case of AMD metric

with p1 = 2 and p2 = 1.
Next, we shall prove that when using an NN classifier based

on the AMD metric with p1 = 2, 2DPCA is equivalent to
BD-PCA with kcol = m. It is easy to deduce the correctness
of this statement from the proof of the following theorem.
Theorem 4: Given an m × n image X, 2DPCA extracts the

feature matrix A by A = XWrow and BD-PCA extracts the
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feature matrix B by B = WcolXWrow = WcolA. If p1 = 2
and Wcol = [wcol

1 ,wcol
2 , . . . ,wcol

m ], the matrices A and B have
the same AMD norms, i.e., ‖A‖AMD = ‖B‖AMD.

Proof: From the definition of the AMD norm, we

calculate ‖A‖AMD = (
∑krow

j=1 (
∑m

i=1(aij)2)p2/2)
1/p2 and

‖B‖AMD = (
∑krow

j=1 (
∑m

i=1(bij)2)p2/2)
1/p2

. First, we shall
prove

∑m
i=1(aij)2 =

∑m
i=1(bij)2, i.e.,

m∑
i=1

(bij)2 = bT
j bj ,

(
bj = [b1j , . . . , bij , . . . , bmj ]T

)

= (Wcolaj)T (Wcolaj)

×
(
aj = [a1j , . . . , aij , . . . , amj ]T

)
= aT

j

(
WT

colWcol

)
aj

= aT
j aj (Wcol is a complete orthogonal

basis of mD space)

=
m∑

i=1

(aij)2.

Because
∑m

i=1(aij)2 =
∑m

i=1(bij)2, it is obvious that
‖A‖AMD = ‖B‖AMD. �

C. Classifiers

We use two classifiers for image recognition, namely: 1) NN
and 2) NFL classifiers. In the NN classifier, the feature matrix
is classified as belonging to the class with the nearest template.
Given all the templates {Mcl, 1 ≤ c ≤ C, 1 ≤ l ≤ nc} and the
query feature Y, the NN rule can be expressed as

d(Y,Mĉl̂) = min
{1≤c≤C,1≤l≤nc

d(Y,Mcl) ⇒ Y ∈ wĉ (23)

where C is the number of classes, nc is the number of templates
in class wc, and d(Y,Mcl) denotes the distance between
Y and Mcl.

NFL, an extension of NN, can extend the representative
capacity of templates by using linear interpolation and extra-
polation [17]. Given two templates Mcl and Mck, the distance
between the feature point Y and the feature line MclMck is
defined as

d(Y,MclMck) = d(Y,Yp) (24)

where Yp = Mcl + µ(Mck − Mcl) and µ = (Y − Mcl) ×
(Mck − Mcl)/(Mck − Mcl)×(Mck − Mcl). Then, NFL de-
termines the class wĉ of the query feature Y according to

d(Y,Mĉl̂Mĉk̂) = min
{1≤c≤C,1≤l<k≤nc

d(Y,MclMck)⇒Y∈wĉ.

(25)

Fig. 3. Comparison of the reconstruction capability of PCA, 2DPCA, and
BD-PCA. (a) and (e) Original images. (b) and (f) Reconstructed images by
PCA. (c) and (g) Reconstructed images by 2DPCA. (d) and (h) Reconstructed
images by BD-PCA.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate BD-PCA with AMD metric (BD-PCA-AMD),
we used two image databases, namely: 1) the ORL face data-
base and 2) the PolyU palm print database. For each data-
base, we investigate the effect of BD-PCA-AMD parameters
and compare the error rates obtained using different distance
measures.

A. Experimental Results on the ORL Database

In order to test BD-PCA-AMD, a series of experiments are
carried out using the ORL database. First, we give an intuitive
illustration of the reconstruction capability of BD-PCA. Then,
we evaluate the capability of BD-PCA to solve the overfitting
problem. We also evaluate the efficacy of the AMD metric and
compare the recognition performance of BD-PCA-AMD with
that of PCA and 2DPCA.

In the first set of experiments, we compare the reconstruc-
tion capability of PCA, 2DPCA, and BD-PCA. PCA-based
reconstruction always involves the determination of feature
dimensions. For PCA reconstruction, we evaluate the recon-
structed training images based on 50, 100, 150, and 199 PCs,
and find that the reconstruction quality is satisfactory when
the number of PCs arrives at 100. For simplicity, we do not
show these reconstructed images. For 2DPCA reconstruction,
we evaluate the reconstructed images based on 5, 10, 15, and
20 row eigenvectors, and find that the reconstruction quality
is satisfactory when the number of row eigenvectors krow

arrives at 10. For BD-PCA reconstruction, we first let krow =
10 according to the reconstruction evaluation on 2DPCA. We
then compare the reconstructed images based on 10, 15, 20,
and 30 column eigenvectors, and find that the reconstruction
quality is satisfactory when kcol = 20. Thus, we determine the
feature dimensions of PCA, 2DPCA, and BD-PCA. The feature
dimension of 2DPCA is 112 × 10 = 1120, much higher than
that of BD-PCA (20 × 10 = 200) and of PCA (100).

Fig. 3 shows two original images and their reconstructed
images by PCA, 2DPCA, and BD-PCA. Fig. 3(a) is an original
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Fig. 4. BD-PCA’s normalized mse on the training set and the testing set as a
function of feature dimension.

image from the training set. Satisfactorily reconstructed images
in Fig. 3(a) can be obtained using all of these three methods, as
shown in Fig. 3(b)–(d). Fig. 3(e) is an image from the testing
set and its reconstructed images are shown in Fig. 3(f)–(h). The
quality of the reconstructed image by PCA deteriorates greatly,
while both 2DPCA and BD-PCA can obtain a satisfactory
reconstruction quality.

In the second set of experiments, we use the normalized
mse to evaluate BD-PCA’s capability to solve the overfitting
problem. Given a column projector Wcol and a row projector
Wrow, an image X is mapped into its BD-PCA representation

Y = WT
col(X − X)Wrow. (26)

The reconstructed image X̃ can then be represented as

X̃ = X + WcolYWT
row. (27)

Then, the normalized mse on the training set msetrain can be
defined as

msetrain =

∑
i

∥∥∥Xtrain
i − X̃train

i

∥∥∥2

F∑
i

∥∥∥Xtrain
i − X

train
∥∥∥2

F

(28)

where Xtrain
i is the ith training image matrix, X̃train

i is the

reconstructed image of Xtrain
i , and X

train
is the mean matrix

of all training images. Similarly, we can define the normalized
mse on the testing set as msetest.

Using the method discussed in Section II-A to construct
the training set and the testing set, we calculate msetrain and
msetest, as shown in Fig. 4. For simplicity, we let the number
of the row eigenvectors krow equal the number of column
eigenvectors kcol and thus the dimension of the feature matrix
L = k2

row. From Fig. 4, the difference of msetrain and msetest

is very small. Thus, BD-PCA can solve the overfitting problem.
In all the following experiments, we randomly choose np

images of each person for training, resulting in a training set

of 40 × np images and a testing set of 40(10 − np) images
with no overlap between the two sets. To reduce the variation of
recognition results, an average error rate (AER) is adopted by
calculating the mean of error rates over 20 runs.

In the third set of experiments, we study the effect of BD-
PCA-AMD parameters. In BD-PCA-AMD, there are four para-
meters (krow, kcol, p1, p2). A cross-validation strategy is used
to determine these parameters. In our experiments, we run BD-
PCA-AMD 40 times. Each time we construct a training set and
a testing set. The first 20 runs are used to determine the values
of these parameters that correspond to the lowest AER. After
parameter selection, we use the AER of the other 20 runs to
evaluate recognition performance.

Since it is very difficult to determine these four parameters at
the same time, we adopt a stepwise selection strategy. We pre-
fix kcol to its maximum (p1 = 2, p2 = 1) and try to find the opti-
mal krow value, as shown in Fig. 5(a). After the determination of
krow = 4, we pre-fix krow to its optimal value (p1 = 2, p2 = 1)
and try to find the optimal kcol value, as shown in Fig. 5(b).
After the determination of kcol = 18 and krow = 4, we pre-fix
kcol and krow to its optimal values and study the effect of p1

and p2 on AER, as shown in Fig. 5(c). Stimulated by the study
on PCA-based distance measure, we consider only two possible
values for p1, 1 and 2. Thus, we determine the values of these
four parameters (krow = 4, kcol = 18, p1 = 2, p2 = 0.25).

After the determination of BD-PCA-AMD parameters,
Table I compares the AER obtained using the Frobenius, the
Yang, and the AMD distance measures on another 20 runs. The
AMD metric achieves the lowest AER for NN. NFL with AMD
measure also achieves a lower AER than NFL using the other
two distance measures. In the following experiments, BD-PCA-
NN denotes BD-PCA with AMD using the NN classifier and
BD-PCA-NFL denotes BD-PCA with AMD using NFL.

Fig. 6 depicts the AER with different np values. An inter-
esting point to note is that the improvement of BD-PCA-NFL
over BD-PCA-NN is very small when the number of training
samples np ≥ 7. This observation indicates that the recognition
performance of NN would be comparable to that of NFL when
there are sufficient templates for each class.

In the fourth set of experiments, we carry out a comparative
study of PCA and BD-PCA with np = 5. Fig. 7 plots the
error rates of 20 runs obtained using PCA and BD-PCA, while
Table II lists the AER and standard deviation (std.) of each
method. For both NN and NFL, BD-PCA has a lower AER and
standard deviation than PCA. For NN, the AER of BD-PCA is
about 0.597 of that of PCA, and for NFL the AER of BD-PCA
is about 0.577 of that of PCA.

In the fifth set of experiments, we compare the recognition
performance of 2DPCA and BD-PCA with np = 5. Fig. 8 plots
the error rates of 20 runs obtained using 2DPCA and BD-PCA,
while Table II shows the AER and standard deviation of each
method. We can observe that for the NN classifier the AER
obtained using BD-PCA is about 0.813 of that obtained using
2DPCA, and for NFL is about 0.818. The standard deviation
of BD-PCA is very close to that of 2DPCA for both NN
and NFL. In addition, the feature dimension of BD-PCA is
18 × 4 = 72, much lower than the feature dimension of 2DPCA
(112 × 4 = 448).
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Fig. 5. Plots of the AERs over the variation of BD-PCA-AMD parameters.
(a) AERs versus the number of row eigenvectors. (b) AERs versus the num-
ber of column eigenvectors. (c) AERs versus the value of p2 with p1 = 1
and p1 = 2.

TABLE I
COMPARISON OF AERs OBTAINED USING DIFFERENT DISTANCE

MEASURES AND CLASSIFIERS ON THE ORL DATABASE

Fig. 6. Comparison of AER obtained using NN and NFL classifiers obtained
using different numbers of training samples.

Fig. 7. Plots of error rates for each run.

TABLE II
COMPARISON OF AERs OBTAINED USING PCA, 2DPCA, BD-PCA,

FISHERFACES, AND D-LDA ON THE ORL DATABASE

In the last set of experiments, the performance of BD-PCA
is compared with that of other appearance-based methods
with np = 5. We implement two LDA-based methods, namely:
1) Fisherfaces [28] and 2) D-LDA [29]. Table II compares the
AERs obtained using Fisherfaces, D-LDA, and BD-PCA. As
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Fig. 8. Plots of error rates for each run.

Fig. 9. Six palm print images of a palm in the PolyU palm print database.

references, we also compare the AER of BD-PCA with some
reported results of other appearance-based methods on the ORL
database. The error rate is 4.05 for Ryu’s SHC method [19],
3.85 for Wang’s CLSRD [20], 3.0 for Yang’s complete PCA +
LDA [30], 4.2 for Lu’s DF-LDA [31], 4.9 for Liu’s NKFDA
[32], 4.2 for Song’s LMLP [33], and 4.15 for Zheng’s ELDA
method [34]. The reported results are obtained on the average
of different number of runs. Compared with these results,
BD-PCA is very competitive.

B. Experimental Results on the PolyU Palm Print Database

Palm print sampling is low cost, nonintrusive, and the palm
print contains stable structural features, making palm print
recognition the object of considerable recent research interest
[35]. In this section, we use the PolyU palm print database
[36] to further evaluate BD-PCA-AMD. The PolyU palm print
database contains 600 grayscale images of 100 different palms
with six samples for each palm. Six samples from each of
these palms were collected in two sessions, where the first three
samples were captured in the first session and the other three in

Fig. 10. Plots of the error rates over the variation of BD-PCA-AMD para-
meters. (a) Error rates versus the number of row eigenvectors. (b) Error rates
versus the number of column eigenvectors. (c) Error rates versus the value of
p2 with p1 = 1 and p1 = 2.
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TABLE III
COMPARISON OF ERROR RATES OBTAINED USING DIFFERENT DISTANCE

MEASURES ON THE PolyU PALM PRINT DATABASE

TABLE IV
COMPARISON OF ERROR RATES OBTAINED USING DIFFERENT

METHODS ON THE PolyU PALM PRINT DATABASE

the second session. The average interval between the first and
the second session was two months.

In our experiments, a subimage of each original palm print
was cropped to the size of 128 × 128 and preprocessed with
histogram equalization. Fig. 9 shows six palm print images of
one palm. For the PolyU palm print database, we choose the
first three samples of each palm for training, thus using the
300 images captured in the first session as the training set and
the 300 images captured in the second session as the testing set.

We adopt a stepwise strategy to determine the BD-PCA-
AMD parameters, as shown in Fig. 10. The optimal parameters
are then determined as krow = 19, kcol = 17, p1 = 1, p2 = 0.5.
Table III compares the error rates obtained using different
distance measures. The AMD metric achieves the lowest error
rates for both NN and NFL classifiers.

Table IV compares the error rates obtained using Eigenfaces,
Fisherfaces, D-LDA, 2DPCA, and BD-PCA. The error rate of
BD-PCA-NFL is 1.33, much lower than that obtained using the
other four methods.

V. CONCLUSION

In this paper, we propose a BD-PCA with the AMD measure
method (BD-PCA-AMD) for image recognition. The proposed
method has some significant advantages. First, BD-PCA is
directly performed on the image matrix, while classical PCA
requires mapping an image matrix to a high-dimensional vector
in advance. Second, BD-PCA can circumvent the overfitting
problem associated with classical PCA. Third, the feature di-
mension of BD-PCA is much less than that of 2DPCA. We
additionally present an AMD metric to reflect the fact that
the BD-PCA feature is a matrix and apply the AMD metric
to further improve the recognition performance of NN and
NFL classifiers. BD-PCA can achieve an AER of 3.55 using
the ORL with five training images of each person for the NN
classifier, and 2.70 for the NFL classifier. On the PolyU palm
print database, BD-PCA-NN achieved an error rate of 1.67 and
BD-PCA-NFL achieved an error rate of 1.33.
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