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Abstract

This thesis deals with advances in groupwise image registration. Image regis-
tration remains an important task in medical image analysis. Whereas most
methods are designed for the registration of two images (pairwise registration),
there is an increasing interest in simultaneously aligning more than two images
using groupwise registration given the increasing availability of medical imaging
data, both at the individual and the population level. Groupwise image regis-
tration has shown promise in a number of applications dealing with large quan-
tities of data, among others to increase registration accuracy and robustness,
to improve the transformation smoothness and to reduce the methodological
bias compared to pairwise registrations. However, directly comparing group-
wise registrations to conventional repeated pairwise registrations is difficult due
to several confounding factors impacting the algorithm. In this thesis, as a first
contribution, we rigorously evaluate two registration methodologies in several
experiments and investigate the differences in performance. Secondly, we fill
a gap in current literature on efficient (dis)similarity measures for multimodal
groupwise image registration. These two contributions are distributed over four
chapters.

In Chapter 3, we investigate several registration approaches for the align-
ment of CT and MRI acquisitions of the mandible in patients with oral squamous
cell carcinoma. A comparison is made between rigid and non-rigid approaches
with symmetric and asymmetric transformation strategies. The results suggest
improved performance in terms of registration accuracy for a symmetric trans-
formation strategy compared to an asymmetric approach, however, the differ-
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ences were not statistically significant (p=0.054). For this clinical application,
we conclude that a rigid registration method is the recommended approach.

In Chapter 4, an investigation is performed on different template images
for groupwise registrations based on mutual information. Here, template images
are employed as a representative image to compare every image in the group to
(in terms of its (dis)similarity). We show that the entropy of the template image
can have a counter-intuitive contribution to the global dissimilarity value. Addi-
tionally, we show that equivalent performance in terms of registration accuracy
can be achieved between groupwise and repeated pairwise approaches.

In Chapter 5, a novel similarity measure is introduced for multimodal
groupwise registration. The conditional template entropy measures the negated
average of the pairwise conditional entropy of each image of the group and a
template image, which is constructed based on principal component analysis.
We show improved or equivalent performance in terms of accuracy compared to
other state-of-the-art (dis)similarity measures for multimodal groupwise regis-
tration and repeated pairwise registration. Furthermore, groupwise registration
vastly outperform repeated pairwise registration in terms of transitive error,
a measure which can be interpreted as a measure for the consistency of the
transformations in a groupwise setting.

In Chapter 6, to further improve on the efficiency of multimodal groupwise
registration, we propose a novel dissimilarity measure which is especially adept
at registering large groups of images. The dissimilarity measure is formulated
as the second smallest eigenvalue of the generalized eigenvalue problem posed
in the description of Laplacian eigenmaps. We show little dependence of the
measure in terms of computation time with respect to the number of images
in the group, and equivalent or improved performance in terms of registration
accuracy compared to state-of-the-art groupwise (dis)similarity measures.

To summarize, in this work we evaluate groupwise approaches compared to
repeated pairwise approaches and show mostly equivalent performance in terms
of registration accuracy and robustness and an improved transitivity for group-
wise registration. Furthermore, we recommend to use the proposed dissimilarity
measure based on Laplacian eigenmaps for large groups of images given its supe-
rior or equivalent registration accuracy compared to other measures but superior
scaling in terms of execution time with respect to the number of images in the
group.
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Samenvatting

Deze thesis behandelt ontwikkelingen in groepsgewijze beeldregistratie. Beel-
dregistratie blijft een relevante en belangrijke taak bij medische beeldanalyse.
Daar waar de meeste methoden ontwikkelt zijn voor de registratie van twee
beelden (paarsgewijze registratie), is er een groeiende interesse in de gelijktijdige
alignatie van meer dan twee beelden. Dit omwille van de groeiende beschik-
baarheid van medische beelden, zowel op een individueel niveau als op het
niveau van een bevolking. Groepsgewijze registratie behaalde reeds beloftevolle
resultaten in applicaties met grote hoeveelheden aan data, onder andere om de
registratie nauwkeurigheid en robuustheid te verhogen, de plausibiliteit van de
resulterende transformatie te verhogen en om methodologische bias te vermin-
deren vergeleken met paarsgewijze registraties. Echter, de directe vergelijking
maken tussen paarsgewijze en groepsgewijze registraties is moeilijk omwille van
verscheidene confounding variabelen die de algoritmes bëınvloeden. In deze the-
sis, als een eerste contributie, vergelijken we de twee registratie methodologieën
rigoureus met elkaar in verscheidene experimenten en onderzoeken we hun ver-
schillen. Als tweede contributie onderzoeken we efficiënte metrieken voor multi-
modale groepsgewijze registratie. Deze twee contributies zijn verdeeld over vier
hoofdstukken.

In Hoofdstuk 3 onderzoeken we verschillende registratiemethodes voor de
alignatie van CT en MRI acquisities van de mandibula voor patiënten met oraal
plaveiselcelcarcinoom. Een vergelijking is opgesteld tussen rigide en niet-rigide
methoden met een symmetrische en asymmetrische transformatiestrategie. De
resultaten suggereren een verbetering in termen van registratienauwkeurigheid
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voor de symmetrische strategie, echter de verschillen zijn niet statistisch sig-
nificant. Voor deze klinische applicatie, concluderen we dat een rigide regis-
tratiemethode de aanbevolen manier is.

In Hoofdstuk 4 voeren we een onderzoek uit naar verschillende template-
beelden voor groepsgewijze registratie op basis van mutuele informatie. Hier
worden template-beelden gebruikt als een representatief beeld om elk beeld in
de groep mee te vergelijken (in termen van de registratiemetriek). we tonen dat
de entropie van het template-beeld een contra-intuitieve bijdrage kan leveren bij
de totale metriekwaarde. Verder tonen we dat gelijkaardige resultaten behaald
worden in termen van registratienauwkeurigheid wanneer we groepsgewijze en
herhalende paarsgewijze methoden vergelijken.

InHoofdstuk 5 introduceren we een nieuw metriek voor multimodale groeps-
gewijze registratie. De conditionele template entropie meet het negatieve gemid-
delde van de paarsgewijze conditionele entropie van elk beeld in de groep met een
template beeld, geconstrueerd met behulp van principale component analyse.
We tonen aan dat deze nieuwe metriek verbeterde of gelijkaardige registratien-
auwkeurigheid oplevert in vergelijking met andere metrieken voor multimodale
groepsgewijze registratie en herhalende paarsgewijze registratie. In termen van
transitiviteit, een maat die kan gëınterpreteerd worden als een maat voor de
consistentie van de transformaties voor een groep van beelden, tonen we dat
groepsgewijze registraties een meerwaarde hebben vergeleken met herhalende
paarsgewijze registraties.

In Hoofdstuk 6 gaan we verder met het verbeteren van de efficiëntie van
multimodale groepsgewijze registraties en stellen we een nieuwe metriek voor
die toegespitst is op de registratie van grote groepen van beelden. De metriek is
opgesteld als de tweede kleinste eigenwaarde van het gegeneralizeerd eigenwaar-
denprobleem geponeerd binnen de context van Laplaciaanse eigenmappen. We
tonen dat de benodigde rekentijd voor de voorgestelde metriek amper afhanke-
lijk is van de hoeveelheid beelden die geregistreerd moeten worden. Verder
tonen we gelijkaardige of verbeterde registratienauwkeurigheid in vergelijking
met andere groepsgewijze metrieken.

Ter conclusie, in dit werk evalueren we groepsgewijze registratiemethoden
ten opzichte van herhalende paarsgewijze registraties en we demonstreren voor-
namelijk gelijkaardige resultaten in termen van registratienauwkeurigheid en
robuustheid en verbeterde resultaten in termen van transiviteit voor groeps-
gewijze registraties. Verder ontwerpen we een nieuwe metriek voor groepsgewi-
jze multimodale registratie gebaseerd op Laplaciaanse eigenmappen en raden
we zijn verder gebruik aan. Dit omwille van zijn verbeterde of gelijkaardige
resultaten in termen van registratienauwkeurigheid in vergelijking met andere
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resultaten in termen van registratienauwkeurigheid in vergelijking met andere

5

metrieken, maar superieure schaling van zijn computationele rekentijd in functie
van het aantal beelden in de groep.
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Image registration is the process of finding the set of transformations which
most optimally aligns a corresponding set of images (see Fig. 1.1). It is typically
formulated as an optimization problem where an objective function is minimized
or maximized with respect to the sought-after transformations.

(a) (b)

(c) (d) (e)

Figure 1.1: Top - (a) and (b) are two images of the same object which are
misaligned and require registration. Bottom - the two images overlayed, (c)
after an initial translation, (d) followed by a rotation, (e) and a scaling.

Medical images stand in sharp contrast to images we come across in our every-
day life. Medical imaging deals primarily with volumetric acquisitions where
the voxel size is quantified in physical coordinates. Where the former property
increases the complexity of algorithms due to scalability issues, the latter prop-
erty allows for a better initialization of the alignment problem and reduces the
complexity of the registration task by reducing the degrees of freedom. Addi-
tionally, the imaging modalities available in the medical field differ vastly from
those available in other research fields, where the optical spectrum is typically
the main focus. Medical imaging include technologies using electromagnetic
waves, spanning a large range of frequencies (from long wavelengths in mag-
netic resonance imaging to short wavelengths in computed tomography) and
acoustic waves (in ultrasound). A complete overview of the medical imaging
modalities would lead us too far and the reader is referred to Bushberg and
Boone (2011); Cobbold (2006) and Hsieh et al. (2009) for a thorough review.
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(a) (b) (c) (d)

Figure 1.2: Medical images of the brain in a subject with a malignant lesion.
(a) A computed tomography (CT) acquisition. (b) A magnetic resonance (MR)
acquisition. (c) A fusion image overlaying the CT and MR acquisition prior to
registration. (d) A fusion image overlaying the CT and MR acquisition after
registration is performed.

When applied to medical imaging, image registration is coined biomedical
image registration. By aligning two images to the same frame of reference, it
allows physicians to quantitatively compare the image intensities at the same
anatomical location in two different medical images, for example to measure
tumor growth, lung ventilation or bone porosity. Those images could differ in
terms of subject, acquisition date, acquisition time and/or imaging modality.
Since the subject is not positioned in exactly the same manner in these two
images and the object of interest may differ in size and shape, such a quantitative
comparison can be difficult without prior alignment (see Fig. 1.2). In addition
to guiding or aiding physicians in making better decisions, image registration
might also be needed as a preprocessing step in an (semi-) automatic image
analysis pipeline that requires an image to be aligned to a template or atlas
image. We provide the following overview of applications of biomedical image
registration, which is undoubtedly incomplete given the vast number of works.

Image registration can be used to perform follow-up analyses or comparisons
for disease progression or treatment assessment (Brock et al., 2006; Charlton
et al., 2010; Giesel et al., 2009; Giles et al., 2014; Gorbunova et al., 2008; Lynch
et al., 2001; Nishiyama et al., 2015; Staring et al., 2007; Van Assche et al.,
2007). In treatment planning, numerous applications can be found for radio-
therapy planning (Foskey et al., 2005; Ireland et al., 2007; Leibfarth et al., 2013;
Lu et al., 2006; Mackie et al., 2003; Nishioka et al., 2002; König et al., 2016;
Oh and Kim, 2017) or image guided surgery (Gerber et al., 2014; Huang et al.,
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2005; Pennec et al., 2003; Risholm et al., 2011). Images from which quantitative
parameter maps, such as diffusion or perfusion maps, can be extracted, could
require or benefit from prior image registration (Galbán et al., 2012; Hallack
et al., 2014; Guyader et al., 2015; Ng et al., 2011). In computational anatomy,
where the shape and geometry of anatomy is studied, image registration plays
a key role to build the manifolds on which the anatomies reside (Adaszewski
et al., 2013; Joshi et al., 2004; Ma et al., 2008; Miller et al., 2009). Image reg-
istration can also be employed to perform atlas-based segmentation, where an
intensity atlas image is registered to a target image of interest onto which the
corresponding annotated labeled atlas image is subsequently mapped (Aljabar
et al., 2009; Bustamante et al., 2015; Cabezas et al., 2011; Isgum et al., 2009;
Makropoulos et al., 2017; Michopoulou et al., 2009). Additionally, fusing or
combining multiple images into a new image with improved quality (James and
Dasarathy, 2014; Nemec et al., 2010; Wang and Ma, 2008) and image mosaicing
or stitching (Ceranka et al., 2018; Wachinger et al., 2007, 2008) is often per-
formed with image registration as well. Clearly, biomedical image registration
remains an active area of research (see Fig. 1.3).

Reviews or surveys on medical image registration could provide the reader
with a more complete overview of the works (Pluim et al., 2003; Zitova and
Flusser, 2003; Sotiras et al., 2013; Oliveira and Tavares, 2014).
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Figure 1.3: Yearly number of publications with “image registration” in the title
or abstract in the Pubmed database, sorted by year.
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1.2 Image registration in other fields

Image registration also holds value in other areas of research dealing with images.
The following overview illustrates its widespread use.

In Krish et al. (2015), image registration is used to match partial to full fin-
gerprints to perform automated fingerprint identification in the field of forensic
science. Brown et al. (2008) imaged and digitally reassembled wall painting seg-
ments with image registration in the field of archaeology. In palaeography, the
study of ancient and historical handwriting, image registration was employed
to construct a deformable model which is subsequently used to date birch bark
manuscripts (Sidorov, 2018). Furthermore, in augmented reality, image registra-
tion can be used to automate construction progress monitoring (Golparvar-Fard
et al., 2009). Image registration has numerous applications in computer vision,
it can be used to improve the quality and resolution of images (Irani and Pe-
leg, 1991), to generate active shape or appearance models (Cootes et al., 1995,
2001) or to perform panoramic image stitching or mosaicing (Szeliski et al.,
2007). Also in remote sensing a large number of applications exist, such as the
quantification of land cover change (Dewan and Yamaguchi, 2009; Shalaby and
Tateishi, 2007), to locate landslide locations (Cheng et al., 2004) or to perform
image fusion (Simone et al., 2002).

1.3 Objectives of this thesis

Biomedical image registration, more often than not, deals with two images,
meaning one image being registered to another image and this process is typi-
cally referred to as pairwise image registration. When more than two images are
available the pairwise procedure is typically repeated. Here, one image is consid-
ered as a privileged image and all other images are registered to this privileged
image. However, it might be beneficial to register all of them simultaneously, a
process typically referred to as groupwise registration. This approach is the main
subject of this work. Such an approach has been shown to carry both qualitative
and quantitative advantages compared to a repeated pairwise approach. Quali-
tatively, a groupwise approach works generically for any number of images, does
not require experiments to determine the ‘best’ privileged image and avoids the
associated bias with such choice. Quantitatively, a groupwise approach can lead
to improved accuracy, reliability or robustness (Cootes et al., 2004; Wachinger
et al., 2007; Vandemeulebroucke et al., 2011; Wu et al., 2011; Yigitsoy et al.,
2011; Huizinga et al., 2016; Royuela-del Val et al., 2016), increased smooth-
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ness (Metz et al., 2011; Huizinga et al., 2016), reduced transitivity error (Geng
et al., 2009; Metz et al., 2011; Polfliet et al., 2018) and enhanced downstream
analysis in the image processing pipeline (Hamrouni et al., 2011; Huizinga et al.,
2016; Sanz-Estébanez et al., 2017).

This work deals with advances in groupwise image registration and aims to
accomplish two objectives. First, we will compare groupwise registrations to
repeated pairwise registration in several experiments and evaluate their differ-
ences in terms of registration accuracy and transitivity. Secondly, we will pro-
pose novel methodologies to tackle multimodal groupwise registration efficiently,
i.e. groupwise image registrations where not all included images originate from
the same modality. This is achieved by applying techniques from the field of
dimensionality reduction.

In the following chapter we will provide a methodological basis of biomedical
image registration upon which we can situate our contributions and findings.



CHAPTER 2

Biomedical image registration
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2.1 Formal definition

We start by formally defining image registration as an optimization problem:

(
Û1, . . . , Ûn

)
= arg min

(U1,...,Un)
C (R1, . . . , Rn;U1, . . . ,Un) , (2.1)

where C is the cost function which evaluates the misalignment of the image rep-
resentations, Ri, given the displacement fields, Ui. Ri is the employed represen-
tation for the underlying discrete image and Ui : Ω ⊂ Rd → Rd is the displace-
ment field that maps the physical coordinates from the common d-dimensional
reference domain, Ω, to a vector-valued displacement.

Note that recently some works formulate image registration as a function
approximation task based on a learning algorithm (Balakrishnan et al., 2019;
Sokooti et al., 2017). Obviously, in such approaches Eq. 2.1 does not hold. In
this work, we will not deal with such approaches and revisit them later in the
discussion.

2.2 Image registration approaches

Biomedical image registration algorithms can be categorized based on a number
of aspects or criteria of the algorithm or the images it is trying to register. In
this section we will provide an overview of possible categorizations. Note that
the overview is not complete and categorizations are also possible based on
properties other than those listed here. Furthermore, some registration schemes
apply a combination of different properties and as such could be labeled as
hybrid approaches.

The most important categorization that we will make is based on the number
of images that require alignment as it is the main focus of this work. It will be
tackled in section 2.3

2.2.1 Parametric and non-parametric transformations

Parametric and non-parametric registration approaches refer to the parame-
terization of the sought-after displacement field. Non-parametric approaches
attempt to estimate the deformation or displacement field, Ui, in Eq. (2.1) in
each voxel or pixel directly. Some of the best known non-parametric approaches
include the demons algorithm and its diffeomorphic equivalent (Thirion, 1998;
Vercauteren et al., 2009).
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Parametric approaches, however, derive the displacement field from a trans-
formation function, Tµ, parameterized by µ. As such, instead of optimizing the
displacement field directly, an optimization is performed over the transforma-
tion parameters, µ. We can rewrite Eq. (2.1) to reflect this parameterization
as

µ̂ = arg min
µ

C (R1, . . . , Rn; Tµ1 , . . . , Tµn) . (2.2)

Herein is Tµi : Ω ⊂ Rd → Ωi ⊂ Rd the transformation that maps the coordinates
from the common reference domain, Ω, to the domain of the ith image, Ωi, and
µi are the parameters that define Tµi . For the optimization, µ is defined as a
vector formed by the concatenation of all separate transformation parameters,
µi.

This work, specifically, only deals with parametric transformation models.
As such, we will employ Eq. (2.2) to describe the remaining registration prob-
lems. All deformable transformations employed in this work are based on B-
splines (Rueckert et al., 1999). They were chosen for their compact support and
the associated computational advantages. It should be noted that B-splines
produce smooth and continuous deformations which might not be suitable in
certain applications where sliding motion is present (thoracic motion) or where
certain structures vanish (removal of a organ). Alternatives for B-splines as
a parametric deformable transformations model exist (Bookstein, 1989; Ristic
and Brujic, 1997), but were not investigated.

2.2.2 Intensity-based and feature-based registration

Registration methods can be subdivided based on the representation that is
employed for the images, Ri. Feature-based methods typically require two steps.
First, the feature maps are calculated for the discrete images, which results in
an abstraction for each image as a set of feature points (see Fig. 2.1), where the
employed representation per image, Ri, becomes a set of d-dimensional points,
fi. Note that it is also possible to extract feature lines or areas from an image.
Second, these sets of feature points are matched to each other minimizing some
suitable cost function.

µ̂ = arg min
µ

C (f1, . . . , fn; Tµ1 , . . . , Tµn) . (2.3)

The main advantage of such feature-based methods is the computation time
which is significantly reduced compared to intensity-based methods. Often used
feature extractors are SIFT or SURF (Lowe, 2004; Bay et al., 2008).
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(a) (b)

Figure 2.1: T1 and T2 weighted MRI images of the brain for which the SIFT
points are extracted and highlighted in red. Images taken from Cocosco et al.
(1997)

In intensity-based registration, an image is represented as an intensity func-
tion defined over a continuous domain. This intensity function can be obtained
by interpolating the discrete image. Here, the image representation, Ri, be-
comes a function, Ii : Ωi ⊂ Rd → R:

µ̂ = arg min
µ

C (I1, . . . , In; Tµ1 , . . . , Tµn) . (2.4)

No abstraction of the image is constructed and all image information remains
available during the registration process.

In this work, only intensity-based registration is tackled and we will continue
to use Eq. (2.4) hereafter.

2.2.3 Stochastic and deterministic optimization

As image registration is typically defined as an optimization problem (the “arg
min” part in Eq. 2.4), we could also categorize different registration schemes
based on their optimization strategy. In a deterministic optimization scheme
the resulting transformation is fully determined by the initialization of the reg-
istration. More specifically for intensity-based registration, a fixed number of
samples are taken from the intensity function representing the images at, typ-
ically, predetermined coordinates to calculate the (dis)similarity measures. As
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a result, the registration result is reproducible but might be biased due to the
choice of initialization.

In stochastic optimization some form of randomness is introduced to the
optimization. Such optimization is reported to be more robust to local optima
and require less regularization (Klein et al., 2007; Sun et al., 2017). In intensity-
based image registration this randomness is often achieved by randomly sam-
pling a sparse subset of the image domain. Specifically in low-contrast regions of
the images, the use of state-of-the-art deterministic approaches that assume the
entire image domain is sampled, such as quasi-Newton and nonlinear conjugate
gradient methods, may lead to unrealistic deformation fields due to the aggres-
sive deformation field updates applied in each iteration. However, such issues
could be alleviated with the use of a regularization term in the cost function
optimization.

In this work, we only deal with stochastic optimization.

2.2.4 Monomodal and multimodal images

Biomedical images come in a vast range of modalities such as x-ray imaging,
(cone-beam) computed tomography, ultrasound, positron emitted tomography
and, magnetic resonance imaging amongst others. When all considered images
in the registration problem are of the same modality, the registration is referred
to as a monomodal registration. If at least two images of different modalities
are to be registered, it is a multimodal registration. When performing intensity-
based multimodal image registration, care should be taken to select suitable
(dis)similarity measures (defined in the cost function, C, in Eq 2.4) which can
handle differences in the intensity distributions1. The most common examples
of such measures are the (normalized) mutual information or the correlation
ratio (Maes et al., 1997; Wells et al., 1996; Studholme et al., 1999; Roche et al.,
1998a). Furthermore, multimodal imaging not only impacts the intensity dis-
tribution between two images of the same anatomical structure, it could also
highlight physiological differences (such as cancerous tissue in PET imaging),
significantly increasing the registration complexity.

In this work, we deal with a three image modalities: computed tomography
(CT), magnetic resonance imaging (MRI) and positron emission tomography
(PET).

1Note that this might even be necessary for monomodal registration. For example in the
case of magnetic resonance images, where image intensities are typically not calibrated.
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(a) (b)

Figure 2.2: Registration of three images, employing two different transformation
strategies. (a) All images are registered to the native space of one of the images
in the set. (b) The images are registered to some artificial midspace.

2.2.5 Symmetric and asymmetric transformation strate-
gies

Inherently, image registration as defined in Eq. 2.4 is an underdetermined prob-
lem. An infinite number of solutions for the set of transformations exist that
align a set of images. For example, take one such solution and add a con-
stant translation to every transformation in the set, resulting in a new set of
transformations. This new set is equivalent to the initial set, as the same align-
ment is achieved. In practice, this degeneracy is broken either by setting one of
the transformations in the set to zero (and registering all images to the native
space of this image, referred to as an asymmetric strategy) or by forcing the
transformations to some artificial or synthetic midspace (see Fig. 2.2). Several
approaches can be followed to define this midspace (Balci et al., 2007; Metz
et al., 2011; Joshi et al., 2004; Aganj et al., 2017) and are typically referred to
as being symmetric, since the bias of choosing a ‘reference’ image to which all
transformations are defined is removed. Part of this bias can be quantified in the
transitivity of the transformations and will be discussed in later chapters. Ad-
ditionally, symmetric registrations have been shown to be more accurate (Aganj
et al., 2017).

Note that the choice of transformation strategy is independent of the number
of images in the registration.
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2.3 Pairwise and groupwise registration

The difference between pairwise and groupwise registration can be defined in
two ways. Typically, it is defined based on the cardinality of the set of images
for which alignment is needed. When the cardinality of that set of images is
equal to two, the approach is typically referred to as a pairwise registration:

µ̂ = arg min
µ

C (I1, I2; Tµ1 , Tµ2) . (2.5)

When three of more images are considered simultaneously, the approach is
referred to as a groupwise registration. Note that in this work we only recognize
approaches where the group of images in the registration is considered simul-
taneously in a global optimization as groupwise approaches. Approaches where
three or more images are registered among each other in a pairwise manner are
considered separately as repeated pairwise approaches.

Alternatively, it is possible to view groupwise registration as approaches
for which the cardinality of the set of images does not need to be predefined
and would theoretically work for any number of images. As such, pairwise
registration can be studied as a special case of groupwise registration for which
the cardinality of the set is predefined to be equal to two.

In recent years the increasing availability of imaging for an individual pa-
tient, for distinct pathologies and even across an entire population of patients
has driven the interest in groupwise registration. In applications such as atlas
construction (Joshi et al., 2004; Fletcher et al., 2009; Wu et al., 2011; Serag
et al., 2012; Wu et al., 2016), multi-atlas based segmentation (Bhatia et al.,
2007; Makropoulos et al., 2017), longitudinal population analysis (Davis et al.,
2010; Huizinga et al., 2018) and spatiotemporal motion estimation (Metz et al.,
2011; Yigitsoy et al., 2011; Royuela-del Val et al., 2016) groupwise registration
is at the core of the methodological contribution. The unbiased estimation it
can offer is most critical for population analyses, where an unbiased estimation
of the population is essential, or in spatiotemporal motion estimation, where the
simultaneous knowledge of multiple transformations restricts the registration to
physically plausible solutions only.
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2.4 Registration strategies for three or more im-
ages

We will consider three strategies to register three or more images. First, the
simplest approach would be to select one image in the set as a privileged image
and perform pairwise registrations to this privileged image with every other
image in the set. The transformation between two arbitrary images can be
found by inverting and composing the transformations obtained in the pairwise
registrations. Note that such a strategy introduces a bias in the registration
result, as the choice of the privileged image significantly impacts its behavior.
This privileged image need not necessarily be the same as the reference image
in the asymmetric transformation strategy defined in 2.2.5, but often is.

Secondly, when an implicit order of the images is available in the set (as is
the case for dynamic acquisitions of the heart or lungs) it might be beneficial
to register the first image to the second image, the second image to the third
image and so on (in a pairwise manner). The transformation between two
arbitrary images in the set is achieved by sequentially composing all intermediate
transformations, potentially leading to compounding errors.

These first two methods can be considered as repeated pairwise approaches,
as all transformations are optimized separately in a different pairwise registra-
tion. Herein, each pairwise registration only employs part of all image infor-
mation in the group. Take as an example the registration of three hypothetical
image modalities in Fig. 2.3. Registering image Fig. 2.3(a) and Fig. 2.3(b) would
be impossible since they do not share any information that can be employed to
register the images. However, including all images in a groupwise registration
could provide enough common salient features such that the optimal alignment
of Fig. 2.3(a) and (b) is achieved through aligning both of them with (c).

Where repeated pairwise approaches perform a set of registrations using two
images in every registration, a groupwise approach only performs one registra-
tion using all images simultaneously. This offers two main advantages. First,
bias is reduced since all transformations and images carry equal weight in the
registration. Secondly, all images are employed simultaneously which could po-
tentially aid the registration in terms of robustness and accuracy. Note that
groupwise approaches are typically combined with symmetric transformation
models discussed in section 2.2.5 to further reduce the bias in the registration
algorithm.
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Figure 2.3: (a)-(c): Images of different modalities. Pairwise registration between
(a) and (b) would be impossible. However, (c) might provide the additional
information to properly align images (a) and (b) in a groupwise registration.

2.5 Situating this thesis

The work that was performed in the context of this thesis deals with advances
in groupwise image registration. Groupwise registration has shown promise in
a number of applications to increase registration accuracy, reliability or robust-
ness, increased smoothness, reduced transitivity error and enhanced downstream
analysis in the image processing pipeline. We compare groupwise registrations
to repeated pairwise registration in several experiments and evaluate their dif-
ferences in terms of registration accuracy and transitivity. Secondly, we fill a gap
in current literature on efficient measures for multimodal groupwise registration.

These contributions are subdivided in four chapters. Thereafter we conclude
with a general discussion and future perspectives.

In Chapter 2 we investigate the added value of a symmetric (compared to
an asymmetric) transformation strategy on the registration accuracy when reg-
istering two images. These experiments were performed specifically to clearly
distinguish between both registration approaches controlling for all other pos-
sible variables such as the (dis)similarity measure and optimization strategies.
A multimodal registration is performed in patients with oral squamous cell car-
cinoma where imaging, one computed tomography and one magnetic resonance
image, was acquired of the head and neck region for surgical planning purposes.

For groupwise registration, an interesting class of (dis)similarity measures
exists where the measure is expressed as the average of all pairwise compari-
sions between every image in the group and a template image. This allows the
computational complexity of the algorithm to scale linearly with the number of
images in the group. In Chapter 3, we investigate the influence of different
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template images in groupwise similarity measures based on mutual information
for monomodal data of the lungs (CT) and multimodal data of the brain (CT-
MRI-PET). Additionally, an initial comparison is performed between repeated
pairwise and groupwise registration based on the registration accuracy.

Building on the collected insights, we propose a novel groupwise similarity
measure, the conditional template entropy, in Chapter 4. Herein, the similar-
ity is measured as the average of the conditional entropy between every image
in the group and a template image based on principal component analysis.
Registrations were performed on monomodal data of the lungs (CT) and mul-
timodal data of the brain (CT-MR-PET) and head and neck (MR, MR-CT). A
comparison is carried out between repeated pairwise and groupwise registration
approaches, with the registration accuracy and transitivity as the validation
measures.

For huge groups of images, even a linearly scaling algorithm might be too
computationally expensive, taking multiple days to perform a single registra-
tion. In Chapter 5, we focus on a scalable alternative and propose a novel
dissimilarity measure based on Laplacian Eigenmaps, a non-linear dimension-
ality reduction technique. The proposed measure is compared against other
state-of-the-art groupwise measures in terms of the registration accuracy and
computation time in registrations performed on clinical multimodal data of the
knee (MR) and brain (MR). Additionally, we perform experiments to investigate
the effect the number of images has on the registration accuracy, transformation
smoothness and computational time.

Finally, in Chapter 6, we discuss future research directions and summarize
the findings in this thesis.



CHAPTER 3

Registration of magnetic resonance and computed
tomography images in patients with oral squamous cell

carcinoma for three-dimensional virtual planning of
mandibular resection and reconstruction

Abstract

The aim of this study is to present and evaluate an automated method for registration
of magnetic resonance imaging (MRI) and computed tomography (CT) or cone beam
CT (CBCT) images in the mandibular region for patients with oral squamous cell
carcinoma (OSCC). Registered MRI and (CB)CT could facilitate the 3D virtual plan-
ning of surgical guides employed for the resection and reconstruction of OSCC with
mandibular invasion. MRI and (CB)CT images were collected retrospectively from 19
patients. MRI images were sequentially aligned with (CB)CT images employing a rigid
registration approach (stage 1), a rigid registration approach using a mandibular mask
(stage 2), and two non-rigid registration approaches (stage 3). Registration accuracy
was quantified by the mean target registration error (mTRE), calculated over a set of
landmarks annotated by two observers. Stage 2 achieved the best registration result
with a mTRE of 2.5± 0.7mm, which was comparable to the inter- and intra-observer
variabilities of landmark placement in MRI. Stage 2 was significantly better aligned
compared to all approaches in stage 3. In conclusion, this study demonstrated that
rigid registration with the use of a mask is an appropriate image registration method
for aligning MRI and (CB)CT images of the mandibular region in patients with OSCC.

Based upon: Polfliet, M., Hendriks, M.S., Guyader, J.-M., ten Hove, I., Mast, H., Van-
demeulebroucke, J., van der Lugt, A., Wolvius, E.B., & Klein, S. (2021). Registration of
magnetic resonance and computed tomography images in patients with oral squamous cell
carcinoma for three-dimensional virtual planning of mandibular resection and reconstruction.
International Journal of Oral and Maxillofacial Surgery..
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3.1 Introduction

Oral squamous cell carcinoma (OSCC) is the sixth most common cancer world-
wide. The overall 5-year survival rate of patients with OSCC is less than 50%
and has not shown significant improvement over the last decades, despite ad-
vances in treatment modalities (Binahmed et al., 2007; Carvalho et al., 2005;
Nieberler et al., 2016; Shah and Gil, 2009; Safi et al., 2017).

Segmental mandibular resection and reconstruction with a free vascularized
osseocutaneous flap is currently the recommended treatment for OSCC invad-
ing the mandible (Succo et al., 2015). The main goal of surgical treatment is to
obtain tumor free resection margins, with acceptable remaining function (chew-
ing, swallowing and speaking) and physical appearance. Achieving tumor free
resection margins is challenging, but crucial for disease control and survival (Bi-
nahmed et al., 2007; Nieberler et al., 2016; Smits et al., 2018; Kademani et al.,
2005; Kreppel et al., 2011; Barroso et al., 2018; Dillon et al., 2015; Varvares
et al., 2015). Recently, inadequate resection margins were found in 20% of
the bone resections which negatively impacted the 5-year survival rate of pa-
tients (Binahmed et al., 2007; Nieberler et al., 2016; Smits et al., 2018). The
inability to intra-operatively distinguish tumor from healthy bone tissue during
resection is the most common cause for such inadequate margins (Barroso et al.,
2018). Additionally, a re-resection of positive margins in a second operation is
not desirable, due to technical difficulties and has a negative effect on the sur-
vival of the transplant(Dillon et al., 2015). During resection, tumor free surgical
margins are the only prognostic factor that the surgeon can control(Dillon et al.,
2015).

The state-of-the-art mandibular reconstruction method is based on preoper-
ative three-dimensional (3D) virtual surgical planning using 3D printed surgical
guides (Varvares et al., 2015; Tarsitano et al., 2015; Cornelius et al., 2016).
Herein, the patient undergoes the necessary imaging, after which the surgeon
virtually defines the cutting planes and plans the resection and subsequent re-
construction. Thereafter, the surgical guides are printed and the virtual plan-
ning is translated to the surgical procedure. Mandibular and fibular cutting
guides have shown to provide a better fit of the fibula parts resulting in re-
duction of surgical time. However, accurate 3D virtual planning of the surgical
cutting guides remains essential in order to achieve complete resection.

Current 3D virtual planning is based on computed tomography (CT) or cone
beam CT (CBCT) images, which offer detailed information on bone geometry
and cortical bone destruction but do not provide accurate information on bone
marrow involvement and perineural spread of the tumor. In recent years, mag-
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netic resonance imaging (MRI) is increasingly used for diagnostic purposes due
to its better visualization of tumor tissue, mandibular bone marrow involvement
and perineural spread along the interior alveolar nerve (Nieberler et al., 2016;
Li et al., 2014a,b; Blatt et al., 2016).

The uncertainty about the location of tumor boundaries in the 3D virtual
planning based on (CB)CT acquisitions could be eliminated by including MRI
aquisitions (Dong et al., 2011). Overlaying or fusing these MRI and (CB)CT
images before the preoperative virtual planning could aid the performing sur-
geon in defining the surgical guides and subsequent reconstruction thanks to
a more accurate determination of the osteotomy location and a better under-
standing of the surrounding structures. The integration of fused CT and MRI
imaging in clinical practice of mandibular resection planning has been shown
to be a safe and accurate alternative (Kraeima et al., 2018). However, due to
a different orientation and position of the mandible in the MRI and (CB)CT
acquisitions, an image registration method is required to establish the spatial
correspondences between the different images.

The aim of this work is to present and evaluate an automated method to
perform image registration of MRI and (CB)CT in the mandibular region in
patients with oral squamous cell carcinoma, which could subsequently be inte-
grated in a pipeline for virtually planning of mandibular resections and recon-
structions.

3.2 Materials and methods

3.2.1 Dataset

The study was reviewed and approved by the local medical ethics review com-
mittee (MEC-2016-143), and performed in accordance with national and inter-
national legislation. The need for informed consent was waived owing to the
retrospective and anonymized nature of the study. Preoperative 3D MRI and
(CB)CT scans of the head-and-neck region were collected retrospectively from
19 patients diagnosed between 2014 and 2016 with untreated primary OSCC
with invasion of the mandible. The images were anonymized prior to process-
ing. The MRI scans were acquired with a Spin Echo T1-weighted sequence.
The in-plane voxel size of MRI was between 0.4 x 0.4 and 0.5 x 0.5 mm2 and
slice thickness was between 3 and 4 mm. Echo time (TE) ranged from 10.8 to
13.6 ms, the repetition time (TR) from 416 to 689 ms, and the flip angle (FA)
was 90, 111 or 160 degrees. CT imaging in-plane voxel size ranged from 0.3
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x 0.3 mm2 to 0.5 x 0.5 mm2 and slice thickness from 0.3 to 0.6 mm. CBCT
imaging in-plane voxel size was 0.3 x 0.3 mm2 and slice thickness was 1 mm.
The mean time between the MRI and (CB)CT scans was 9 days (2-23 days, SD:
5.3). No pre- or post-processing was applied to the images and they remained
unmodified for the registration.

3.2.2 Registration

We investigated an automated image registration method to align the MRI with
the (CB)CT images; herein the alignment is achieved in three stages. In the first
stage, an initial rigid alignment was estimated. Thereafter a more refined rigid
alignment was estimated focused around the mandible. In the third and final
stage, a deformable alignment was performed, for which different approaches
were compared. In all stages we used an automated intensity-based 3D reg-
istration framework (elastix) (Klein et al., 2010) based on the maximization
of mutual information (Thévenaz and Unser, 2000) using a stochastic gradient
descent optimization method (Klein et al., 2009b).

In the first stage, two consecutive registrations were performed to achieve
an initial rigid alignment. First, a global translation was estimated, since the
MRI images needed to be roughly aligned to the (CB)CT image domain. Sub-
sequently, a rigid registration was carried out, estimating both translations and
rotations (parameterized by Euler angles).

In the second stage, the initial rigid alignment was fine-tuned by restricting
the focus of the algorithm on a 3D region of interest encompassing the mandible,
manually drawn in the (CB)CT image. As such, all image information outside
of the region of interest is ignored and potential registration difficulties due to
pose or appearance changes could be alleviated. The mandibular mask was
drawn slice by slice, using open-source ITK-SNAP software (Yushkevich et al.,
2006).

In the third stage, we evaluated whether the alignment could be refined
further using a non-rigid (or deformable) registration to compensate for any
geometric distortions in the MRI images (Chang and Fitzpatrick, 1992). A
parametric B-spline free-form deformation model was employed, and (isotropic)
control point spacings of 64, 32, and 16 mm were evaluated (Rueckert et al.,
1999). Furthermore, two different approaches for the deformable registration
were compared: a) an asymmetric approach with the (CB)CT image as the
fixed (or target, reference) image and the MRI as the moving (or template,
source) image; and b) a symmetric approach were both images were registered
to a common mid-space (Bhatia et al., 2004). Results from literature suggest
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that symmetric registration techniques can lead to improved registration accu-
racy and inverse-consistency (Aganj et al., 2017; Lorenzi et al., 2013), which
are especially critical for treatment planning (Rivest-Hénault et al., 2015). All
stages are illustrated in Fig. 3.1. The three registration stages are executed in
a consecutive manner. The registration result after stage 1 was employed to
initialize the registration in stage 2. The registration result after stage 2 was
employed to initialize the registration in stage 3, where either approach 3a or
approach 3b was taken.

3.2.3 Evaluation

Registration accuracy in the mandibular region was evaluated in terms of mean
target registration error (mTRE), by computing the Euclidean distance between
corresponding landmarks in MRI and (CB)CT and then averaging it over all
landmarks (Fitzpatrick and West, 2001). An extensive landmark set was de-
signed with 39 anatomical reference points in order to evaluate the registration
error for the entire mandible specifically. The set consisted of 22 landmarks
placed at the roots of each lower tooth (for the molars, both roots were consid-
ered as landmarks) and 17 anatomical reference points on the mandible. The
set of landmarks is described in detail in Table 3.1 and Fig. 3.2. Due to tumor
invasion in the bone or removed tooth elements, not all landmarks from the
dataset could be annotated for all images.

The landmarks were annotated manually in each MRI and (CB)CT acqui-
sition by two researchers (M.S.H., J.-M.G.) who were trained in advance. The
reliability of each landmark was investigated by calculating the interobserver
variability for both MRI and (CB)CT images separately. In addition, one ob-
server (M.S.H.) repeated the annotation of all landmarks, to enable the assess-
ment of the intraobserver variability. Intra- and interobserver variability were
quantified by calculating the Euclidean distance (similar to the mTRE) between
corresponding landmarks of the same and different observer, respectively.

If the interobserver variability for a landmark was greater than 5 mm, the
landmark was excluded (when applicable both for left and right sides). Af-
ter exclusion of the unreliable landmarks, the mTRE was calculated for each
registration stage to assess the registration accuracy.

3.2.4 Statistical analysis

Two statistical analyses were performed. First, a comparison was performed
between the stage that performed best (with the lowest mTRE) and all other
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Figure 3.1: The proposed three-stage registration method to align MRI with
(CB)CT images in the mandibular region. In the first stage, an initial rigid
alignment was estimated. Thereafter, in the second stage, a more refined rigid
alignment focused around the mandible was estimated. In the third (and final)
stage two approaches for deformable alignment were investigated side-by-side,
an asymmetric (3a) and a symmetric approach (3b). Note that, unlike the
schematic 2D illustrations in this figure, all registrations were performed com-
pletely in the 3D space.
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Table 3.1: Description of the anatomical landmarks on the teeth and the
mandible.

Abbreviation Landmark Description
t31, t32, t33, t34,
t35, t36, t37, t38,
t41, t42, t43, t44,
t45, t46, t47, t48

Teeth of the
third and fourth
quadrant.

22 landmarks of the teeth; the
molars (36, 37, 38, 46, 47, 48)
have two roots.

A Menthon The most inferior point of the
mandibular symphysis.

B Mental Foramen Foramen located on the anterior
side of the mandible.

C Gonion A point defined as the
mandibular angle, representing
the intersection of the lines of the
posterior ramus and the inferior
border of the mandible.

D Mandibular
foramen

Foramen located on the internal
surface on the ramus.

E Coronoid process The tip of the coronoid process
F Left Condylion Leftmost aspect of the condylar

head.
G Right Condylion Rightmost aspect of the condylar

head.
H Top Condylion Top of the condylar head.
I Mandibular

notch
Notch located at the most
superior point of the ramus,
which separates the coronoid
process anteriorly and the
condyloid process posteriorly.
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Figure 3.2: Tooth and mandibular evaluation landmarks. The purple and the
blue landmarks indicate the apex of the teeth and the anatomical positions of
the mandible, respectively. These 39 landmarks correspond with the landmarks
described in Table 3.1. Landmark D is not illustrated in this figure, because this
landmark is behind the field-of-view. Note that the 3D model shown here was
only generated for illustration purposes; during annotation of the landmarks,
the original (CB)CT and MR acquisitions were used, inspecting image slices in
three orthogonal planes (axial, sagittal, coronal).

registration stages. Secondly, in the third stage a comparison was performed
between the asymmetric and symmetric approach for each spacing of the control
points (64mm, 32mm and 16 mm). A two-sided Wilcoxon signed rank test at a
significance level of 0.05 was used to evaluate the differences in the distribution
of the mTRE.

3.3 Results

The interobserver variability for the landmarks Gonion (C) and Coronoideus (I)
was greater than 5 mm (6.5 mm and 6.0 mm, respectively). These landmarks
on both sides of the mandible were therefore excluded in the calculation of the
mTRE and the observer variabilities. On average, 20 landmarks per patient
remained to calculate the mTRE.

The inter- and intraobserver variability (mean±SD over all subjects) for
landmark placement were found to be 2.4± 0.7 mm and 2.0± 0.5 mm, respec-
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Figure 3.3: Boxplots representing the distributions of the inter- and intraob-
server variabilities for CT and MRI and of the mTRE values for each regis-
tration stage. The square brackets between two connected boxplots indicate
statistical significance at a level of 0.05.

tively, for MR images and 1.5± 0.8 mm and 1.0± 0.3 mm for (CB)CT images.
After rigid registration in stage 1, the mTRE (mean±SD over all subjects)

was 3.1 ± 1.8 mm. After rigid registration with the use of a mask around the
mandible (stage 2), the mTRE was 2.5 ± 0.7 mm. After asymmetric non-rigid
registration (stage 3a) with B-spline control point spacings of 64, 32, and 16 mm,
the mTREs were 3.6±1.1 mm, 3.4±1.1 mm, and 3.3±1.2 mm, respectively. In
the symmetric non-rigid registration (stage 3b) the mTRE values were found to
be 3.5±1.2 mm, 3.3±1.2 mm, and 3.1±1.3 mm. Fig. 3.3 shows the distributions
of mTRE over all subjects for each registration stage, as well as the inter- and
intraobserver variability.

Compared to stage 2, which yielded the lowest average mTRE, stage 3
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Figure 3.4: This figure illustrates the result of the registration of MRI and CT
images after stage 2 of a representative case (subject 8). In three randomly
selected slices, the mandible was segmented in the registered MR images and
overlaid in red with the corresponding CT images. These results were combined
in a 3D rendering with the segmented skull and mandible from the CT images.
The gap in the front represents tumor tissue which is invading the mandible in
and around the anterior part of the mandible.

produced significantly different mTRE values (3a, 64mm: W=5, p< 0.001;
3a, 32mm: W=2, p< 0.001; 3a, 16mm: W=6, p< 0.001; 3b, 64mm: W=3,
p< 0.001; 3b, 32mm: W=15, p= 0.001; 3b, 16mm: W=26, p= 0.005). No sig-
nificant differences were found between stage 1 and stage 2 (W=47, p= 0.054)
or between stage 3a and stage 3b (64mm: W=59, p= 0.147; 32mm: W=69,
p= 0.294; 16mm: W=48, p= 0.059). A representative case illustrates the result
of the registration of MRI and CT images after stage 2 in Fig. 3.4.

Regarding computation time, stage 1 required 266 ± 65 s to complete, and
stage 2 required an additional 131 ± 37 s. Stage 3a required an additional
285± 48 s, 288± 34 s and 294± 51 s, for 64mm, 32mm and 16mm, respectively,
whereas in stage 3b those computations required 1138 ± 140 s, 1234 ± 139 s



3.4. DISCUSSION 33

and 1356± 151 s. All experiments were performed single-threaded on the local
university CPU cluster.

3.4 Discussion

Our study shows that the rigid registration with a mask (stage 2) is the rec-
ommended method for registering MRI and (CB)CT images in the mandibular
region. Stage 2 achieved a lower mTRE compared to stage 1 although the dif-
ference was not significant (p=0.054). However, the localized focus in stage 2
should generalize better to other patients and be more robust to outliers. We
have provided a protocol for applying the recommended method in the appendix.

In this work two approaches for deformable registration were applied. A
conventional asymmetric approach where the (CB)CT image was employed as
the fixed image and the MRI image as the moving image (stage 3a) and a
symmetric approach where the images were registered to a common reference
system (stage 3b). Although the differences were not statistically significant,
stage 3b achieved a marginal improvement compared to stage 3a for all con-
trol point spacings of 64, 32 and 16 mm. Furthermore, the registration error
of all approaches in stage 3 was significantly higher than the error in stage 2.
As such, our results indicate that non-rigid registration (stage 3) has no added
value in this application. Thanks to the large number of landmarks (35 after
exclusion), the mTRE could be reliably estimated. This was even the case for
patients for which not all landmarks could be annotated, e.g. cases where tooth
elements were extracted, cases with bone invasion by tumor, and cases with a
landmark outside the field-of-view. The inter- and intraobserver variability of
landmark annotations in (CB)CT images were consistent with those reported
in literature (Ludlow et al., 2009; Lagravère et al., 2010). Furthermore, the
mTRE achieved by the best registration method (stage 2: 2.5 mm) was sim-
ilar to the inter- and intraobserver variabilities for MRI images (2.4 mm and
2.0 mm, respectively). As such, lower mTRE values based on the landmarks
employed in this study can hardly be expected. Note that a recent landmark
accuracy study in MR images found a lower inter- and intraobserver variabil-
ity (Juerchott et al., 2020). However, this difference can be explained by the
considerably lower slice thickness (0.53 mm vs. at least 3mm in our study)
employed therein. Based on the inter- and intraobserver variabilities, the Go-
nion and Coronoideus landmarks were excluded; their annotations most likely
were hindered by the poor delineation and fuzzy boundaries of the landmark
location (Williams and Richtsmeier, 2003). Note that several other evaluation
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methodologies for registration accuracy exist, such as the Euclidean distance be-
tween centroids, overlap measures and surface distances of manually segmented
anatomical structures (Murphy et al., 2011a; Rohlfing, 2011). Here, we opted
for manual landmark annotations, since a relatively large number of well-defined
landmarks could be identified, allowing a reliable estimation of mTRE, while
manual segmentation would have been much more time-consuming.

To our knowledge, data regarding registration of MRI and (CB)CT images
of the head-and-neck region are scarce. Previous studies (Kraeima et al., 2015;
Fortunati et al., 2014; Leibfarth et al., 2013; du Bois dAische et al., 2007; Web-
ster et al., 2009) found registration errors in the range of 1.7-3.3 mm in datasets
of 4-16 patients. None of these studies have focused specifically on the mandible,
hindering a thorough comparison with our study. However, the results of these
studies suggest that the achieved mTRE of 2.5 mm (for stage 2) indicates a
state-of-the-art error level.

Fortunati et al. (2015) suggested that patient immobilization during imaging
leads to better registration of the MRI and (CB)CT images of the head-and-neck
region. Their study found a registration error of 7.0 mm without immobiliza-
tion and a registration error of 1.9 mm with immobilization. Implementation
of immobilization equipment in our specific application might not add value in
clinical practice, since a competitive mTRE of 2.5 mm was already achieved
without immobilization. Moreover, rigorous immobilization of the mandible
would be challenging, and likely not comfortable for the patient. The mandibu-
lar mask used in stage 2 was drawn manually around the mandible in each slice
of the (CB)CT images. Although the mask does not have to be delineated very
precisely (it just serves to indicate an approximate region of interest), this man-
ual interaction step may not be desirable in clinical practice. Development of
a robust semi-automated or even fully automated segmentation (Egger et al.,
2018) is therefore recommended to accelerate this step. We refer the reader to
a recent review of such methodologies for a full overview (Wallner et al., 2019).

Although we used the open-source Elastix software to implement the image
registrations in this study, other (open-source or commercial) softwares that
implement similar registration algorithms based on maximization of mutual in-
formation could have been used as well. Some well-known open-source examples
include NiftyReg (Modat et al., 2010) and ITKv4/ANTS (Avants et al., 2014).
After proper configuration, these tools are expected to achieve similar registra-
tion accuracy.

Correct determination of the osteotomy location depends on several factors
(e.g. the waiting time between imaging and surgery, the process of the trans-
lation from 3D virtual planning to the patient, the accurate placement of the
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include NiftyReg (Modat et al., 2010) and ITKv4/ANTS (Avants et al., 2014).
After proper configuration, these tools are expected to achieve similar registra-
tion accuracy.

Correct determination of the osteotomy location depends on several factors
(e.g. the waiting time between imaging and surgery, the process of the trans-
lation from 3D virtual planning to the patient, the accurate placement of the
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cutting guide during surgery, the length of the fibula reconstruction, relation
of the the tumor to the mental nerve and the remaining teeth), which could
independently contribute to positive resection margins. For example, several
studies have shown that CBCT results in less accurate 3D planning models than
CT (van Baar et al., 2018). When the proposed registration method would be
translated into clinical practice, image registration errors have to be considered
in conjunction with all other sources of errors. In this work no clinical outcome
criteria such as the resection margin, the frequency of revising the surgical guide
during planning or frequency of local tumor progression were employed as it en-
tails a retrospective study. A randomized clinical trial is needed to reveal the
added value of registered MRI and CB(CT) in virtual planning of mandibular
resection and reconstruction.

3.5 Conclusion

This study presented an image registration method for aligning MRI and (CB)CT
images of the mandibular region in patients with OSCC. We showed that rigid
registration within a region of interest drawn around the mandible is the rec-
ommended registration method for the alignment of MRI and (CB)CT images
in the mandibular region.
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CHAPTER 4

The Pythagorean averages as template images in efficient
groupwise registration

Abstract

Many applications in medical image processing can benefit from robust and unbiased
groupwise registration. However, no obvious solution is available for multimodal reg-
istration problems involving a large number of images. A technique that is frequently
applied calculates the sum of the pairwise similarities between a template image and
all the images in the group. This allows the algorithm to scale linearly with respect
to the number of images involved. Typically the arithmetic average is used as the
template image, which has been shown to be a poor choice. We present geometric and
harmonic averaging as an alternative and validate their performance in experiments
on intrasubject dynamic acquistions of the lung (CT) as a monomodal use-case and
intrasubject acquisitions of the brain CT-MR-PET) as a multimodal use-case. These
experiments show an increased robustness and accuracy compared to the arithmetic
average.

Based upon: Polfliet, M., Klein, S., Huizinga, W., De Mey, J., & Vandemeulebroucke, J.
(2016). The Pythagorean averages as group images in efficient groupwise registration. In 2016
IEEE 13th International Symposium on Biomedical Imaging (ISBI) (pp. 1261-1264). IEEE.
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4.1 Introduction

Many applications in medical image processing can benefit from robust and
unbiased groupwise registration. Population analyses, motion estimation across
temporal sequences or perfusion analysis in dynamic contrast-enhanced sequences
are some examples. With the possibility of a large number of images present
in these sequences, scalability of the approach is an important property. For
multimodal images, efficient and scalable (dis)similarity measures are lacking.

Applying entropy-based measures, such as mutual information, directly to
groupwise registration leads to a joint probability space whose size increases
exponentially with respect to the number of images involved. Its application is
limited by the sparsity herein, effectively suffering from the curse of dimension-
ality. Several authors have tried solving this by approximating the probability
density functions (PDFs), but eventually falling to sparsity as well when more
images were added.

An interesting class of (dis)similarity measures iteratively calculates a group
or template image and determines the global (dis)similarity as the sum of the
pairwise (dis)similarities between every image in the group and this template
image (Bhatia et al., 2007). This leads to an approach with a linearly increasing
computational complexity with respect to the number of images in the group,
thereby making its application to problems with a large number of images feasi-
ble. The template image is typically chosen to be the arithmetic average image.

However, arithmetic averaging in the context of multimodal data is not opti-
mal, given the potential scale and range differences in intensities. Furthermore,
it has been shown that the sharpness of the template image can have an impact
on the robustness and accuracy of the registration (Wu et al., 2011).

In this work we investigate two novel similarity measures for multimodal
groupwise registration in which the geometric and harmonic averages are calcu-
lated as the template images. The proposed measures evaluated in intrasubject
dynamic acquistions of the lung (CT) as a monomodal use-case and intrasubject
acquisitions of the brain CT-MR-PET) as a multimodal use-case and compared
to other state-of-the-art measures.
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4.2 Materials and methods

4.2.1 Groupwise registration

Groupwise registration can be defined as an optimization problem of n trans-
formations which align n images in a group such that

µ̂ = arg min
µ

C (I1, . . . , In; Tµ1 , . . . , Tµn) . (4.1)

Herein is Tµi : Ω ⊂ Rd → Ωi ⊂ Rd the transformation that maps the coordinates
from the common reference domain, Ω, to the domain of the ith image, Ωi, and
µi are the parameters that define Tµi . For the optimization, µ is defined as a
vector formed by the concatenation of all separate transformation parameters,
µi. Ii : Ωi ⊂ Rd → R is the continuous intensity function associated to the ith

image for which we assumed an interpolation scheme and C the cost function or
objective value of the registration problem.

The cost function C is commonly given by a weighted sum of a (dis)similarity
measure, S or D, and a regularizer R

C = D + λR , (4.2)

where λ is the weight associated to the regularizer.

4.2.2 Registration measures

Similar to Bhatia et al. (2007) we extended pairwise mutual information, SMI ,
to the arithmetic average mutual information

SAAMI (I1, . . . , In; Tµ1 , . . . , Tµn) =
1

n

n∑

i=1

SMI

(
Ii ◦ Tµi , I

A
µ

)
, (4.3)

with I
A
µ the voxel-wise arithmetic average intensity image as the template image

defined as

I
A
µ (x) =

1

n

n∑

i=1

Ii ◦ Tµi (x) (4.4)

and SMI the pairwise mutual information and ◦ refers to the composition of
two functions.
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Note that an analogous measure for mono-modal registration was previously
proposed, the sample variance (SV)(Bhatia et al., 2007), and is in essence the
groupwise extension of the pairwise mean squared differences (MSD) measure

DSV (I1, . . . , In; Tµ1 , . . . , Tµn) =
1

n

n∑

i=1

DMSD

(
Ii ◦ Tµi , I

A
µ

)
, (4.5)

Wu et al. (2011) demonstrated that sharpness of the template image is of great
importance for DSV . The influence of the sharpness of the image has not been
investigated for multimodal groupwise registration derived from mutual infor-
mation. Consider the pairwise mutual information SMI in Eq. (4.3) defined
as

SMI

(
Ii ◦ Tµi , Iµ

)
= H (Ii ◦ Tµi) +H

(
Iµ
)
−H

(
Ii ◦ Tµi , Iµ

)
, (4.6)

where H is the (joint) entropy of the image(s). The influence of the sharpness of
the template image can be intuitively understood considering the toy example
in Fig. 4.1. Eleven black and white images (Fig. 4.1(a)) are progressively shifted
along the horizontal axis. Contrary to pairwise registration where the entropy of
the two images stays relatively constant, in groupwise registration the entropy
of the template image can vary significantly. Closer to alignment, the sharpness
of the template image is typically increased which leads to a decrease in the
entropy of the template image as can be seen in Fig. 4.2(c). The behavior
of this term is counter productive and can challenge the convergence of the
optimization by effectively cancelling out the positive contribution of the joint
entropy to the global mutual information measure.

Additionally, when dealing with multimodal registration problems it is com-
mon that images exhibit different intensity ranges and scales which arithmetic
averaging handles very poorly. This effect may be reduced through prepro-
cessing techniques such as normalizing the intensities between 0 and 1, using
z-scores or histogram equalization.

In this work we will investigate the voxel-wise geometric and harmonic av-
erage as template images, instead of the arithmetic average, given as

I
G
µ (x) = n

√√√√
n∏

i=1

I ′i ◦ Tµi (x) (4.7)
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(a)

(b)

(c)

(d)

Figure 4.1: Toy example in which eleven black-and-white images are initially
misaligned. (a) A single black-and-white image. (b) The arithmetic average
image, (f) The geometric average image and (g) The harmonic average image
at maximal misalignment.

I
H
µ (x) =

n
n∑

i=1

1
I′
i◦Tµi (x)

=

n
n∏

i=1
I ′i ◦ Tµi (x)

n∑
i=1

n∏
j=1,j ̸=i

I ′j ◦ Tµj (x)
. (4.8)

and their utility when used as the geometric and harmonic average mutual
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Figure 4.2: Toy example with eleven black-and-white images. (a) The value
of the average mutual information, (b) the average entropy of all images in
the group, (c) the average entropy of the template image and (d) the average
joint entropy of the images in the group with the template image for different
translations.

information (GAMI, HAMI)

SGAMI (I1 ◦ Tµ1 , . . . , In ◦ Tµn) =
n∑

i=1

SMI

(
Ii ◦ Tµi , I

G
µ

)
(4.9)

SHAMI (I1 ◦ Tµ1 , . . . , In ◦ Tµn) =
n∑

i=1

SMI

(
Ii ◦ Tµi , I

H
µ

)
(4.10)

The multiplication in Eq. (4.7) and (4.8) handles range and scale differences
better than the summation in Eq. (4.4). I ′i was obtained using a linear inten-
sity mapping to avoid negative values. Additionally, since the geometric and
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harmonic averages accentuate low intensities they are more specific and only
structures in overlap in all images will be represented in the template image.
This specificity leads to a sharper template image. GAMI and HAMI show the
desired optimization behavior in Fig. 4.2.

The proposed measures were implemented in the registration packages elastix
and did not introduce any computational overhead compared to arithmetic av-
eraging. The registrations were performed with an adaptive stochastic gradient
descent and multiresolution scheme (Klein et al., 2009b).

4.2.3 Thoracic 4D CT

As a monomodal test-case we applied the proposed similarity measures to 4D-
CT data which were taken from the POPI and DIR-LAB datasets (Vandemeule-
broucke et al., 2011; Castillo et al., 2009)(Fig. 4.3). They contained respectively
6 and 10 patients with ground-truth annotations of anatomical landmarks. The
quality of the registration was expressed as the groupwise target registration
error (gTRE) with respect to the first image in the sequence

gTRE (µ) =
1

n

n∑

i̸=r

1

|Pi|

|Pi|∑

j

||Ti,r (pi,j)− pr,j || (4.11)

Herein is r the index of the reference image for the calculation of the gTRE,
Pi the set of landmarks in the ith image and |Pi| is the cardinality of that set.
Ti,r is the transformation that maps the coordinates from the ith image to the
reference image and pi,j the jth landmark from the ith image. || · || refers to the
length of the enclosed vector.

A deformable transformation model was used to align the images based on
cubic B-splines with a final control point spacing of 12.0 mm. Lung masks were
obtained as described by Vandemeulebroucke et al. (2011). We compared a
total of two pairwise (dis)similarity measures (DMSD and SMI) and four group-
wise measures (DSV , SAAMI , SGAMI and SHAMI). The pairwise registrations
were performed with the first image in the group (the inspiration image) as a
reference. As a regularizer we used the pairwise and groupwise bending energy
(GBE)

RGBE (Tµ1 , . . . , Tµn) =
1

|S|
∑

x∈S

1

n

n∑

i=1

d∑

l,m=1

(
∂2Tµi(x)

∂xl∂xm

)2

. (4.12)

Herein is d the dimension of the images and x the coordinate samples take from
the set, S, which was drawn from the image domain and |S| is the cardinality
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of that set. The weights for the regularizer were determined empirically to best
fit each specific metric, noise level and transformation. Note that it is possible
to start this empirical search at a best-guess value dependent on the noise level
of the images (Vishnevskiy et al., 2016). All other registration hyperparameters
were kept constant across the different (dis)similarity measures

(a) (b) (c)

Figure 4.3: (a - c) Three of the ten phases used in the Thoracic 4D CT experi-
ment

(a) (b) (c)

(d) (e)

Figure 4.4: (a) CT image, (b) MR-PD image, (c) MR-T1 image, (d) MR-T2
image and (e) PET image used in the RIRE experiment.

4.2.4 RIRE

We performed multimodal experiments using the RIRE dataset which contains
18 patients with between three and five modalities (CT, PET, MR-T1, MR-T2
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and MR-PD, Fig. 4.4) (West et al., 1997). Fiducial markers and a stereotac-
tic frame allowed to determine anatomical landmarks which were employed to
calculate the gTRE in our experiments.

To allow for a better convergence two rigid transformations were applied.
First, a transformation with three translational degrees of freedom followed by
a transformation with three additional rotational degrees of freedom. Given
the multimodality of the data we compared one pairwise similarity measure
(SMI) and three groupwise measures (SAAMI , SGAMI and SHAMI). Since it is
clear that SAAMI will fail to obtain a representative template image given the
range differences present in the data, we chose to normalize all images in our
experiments between 0 and 1 prior to registration.

4.3 Results and discussion

4.3.1 Thoracic 4D CT

The results for the experiments on the 4D-CT data can be found in Table 4.1.
It can be seen that there is no difference in the results for SAAMI , SGAMI

and SHAMI . We postulate that this is due to the three Pythagorean averages
returning the same value when all elements in the set over which is averaged
are identical. For monomodal data in perfect alignment, the three averages
should return the same image and thus the convergence near the global minimum
becomes the same. It can be seen that entropy based similarity measures (SMI ,
SAAMI , SGAMI and SHAMI) performed best. Groupwise registrations took
approximately twice as long to run compared to pairwise registrations.

Table 4.1: Results for the registration of the 4D CT of the lungs. The values,
expressed in mm, correspond to the groupwise target registration error (gTRE)

Method Mean ± stdev Median/max
MSD 1.25 ± 0.29 1.18/1.80
MI 1.21 ± 0.25 1.17/1.60
SV 1.32 ± 0.40 1.22/2.43
AAMI 1.21 ± 0.25 1.18/1.61
GAMI 1.21 ± 0.25 1.18/1.61
HAMI 1.21 ± 0.24 1.18/1.61
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Table 4.2: Results for the registration of the RIRE dataset. The values in the
second and third column, expressed in mm, correspond to the groupwise target
registration error (gTRE). In the fourth column the number of misregistrations
are reported

Method Mean ± stdev Median/max Misregs
MI 2.34 ± 0.81 2.18/4.30 0
AAMI 3.47 ± 1.85 2.85/7.50 2
GAMI 2.47 ± 0.61 2.42/3.55 0
HAMI 2.69 ± 1.27 2.65/6.85 0

4.3.2 RIRE

The results of the experiments on the RIRE dataset can be found in Table 4.2.
The registration was considered to be a misregistration when the gTRE of a
patient was more than 8mm, which corresponds to the largest voxel spacing of
the images under study following Tomaževič et al. (2012). This occurred for
SAAMI in patient 008 and patient 105. These patients were excluded in the
statistical analysis for all measures to allow for a fair comparison.

In addition to leading to two misregistrations when employing SAAMI , the
gTRE is worse. The results seem to confirm that arithmetic averaging (even
after normalizing the data) is not suitable for multimodal registration. Although
the results for SHAMI appear to be slightly worse, this is mainly caused by a
single outlier, and needs to be investigated further.

4.4 Conclusion

In this work we presented two novel groupwise similarity measures for multi-
modal data based on the geometric and harmonic average as a template image.
Experiments on a monomodal dataset containing intrasubject thoracic 4D-CT
acquisitions showed no difference compared to arithmetic averaging, while ex-
periments on a multimodal dataset containing intrasubject acquisitions of the
brain showed both improved accuracy and robustness. We concluded that arith-
metic averaging is not suitable for multimodal data in groupwise registrations.
The limitation of current work is its application on a limited number of datasets
and modalities. Further work is needed to validate the proposed methodology
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on other modalities.
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CHAPTER 5

Intrasubject multimodal groupwise registration with the
conditional template entropy

Abstract

Image registration is an important task in medical image analysis. Whereas most
methods are designed for the registration of two images (pairwise registration), there
is an increasing interest in simultaneously aligning more than two images using group-
wise registration. Multimodal registration in a groupwise setting remains difficult,
due to the lack of generally applicable (dis)similarity measure. In this work, a novel
similarity measure for such groupwise registration problems is proposed. The measure
calculates the average of the conditional entropy between each image in the group and a
representative template image constructed iteratively using principal component anal-
ysis. The proposed measure is validated in extensive experiments on synthetic and
intrasubject clinical image data, which included monomodal data of the lungs (CT)
and multimodal data of the brain (CT-MR-PET) and head and neck (MR, MR-CT).
These experiments showed equivalent or improved registration accuracy compared to
other state-of-the-art (dis)similarity measures and improved transformation consis-
tency compared to pairwise mutual information.

Based upon: Polfliet, M., Klein, S., Huizinga, W., Paulides, M. M., Niessen, W. J., & Vande-
meulebroucke, J. (2018). Intrasubject multimodal groupwise registration with the conditional
template entropy. Medical image analysis, 46, 15-25.
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5.1 Introduction

Biomedical image registration is the process of spatially aligning medical images,
allowing for an accurate and quantitative comparison. An increasing number of
image analysis tasks calls for the alignment of multiple (more than two) images.
Examples include the joint analysis of tissue properties using multi-parametric
MRI (Huizinga et al., 2016; Wells et al., 2015), spatio-temporal motion esti-
mation from dynamic sequences (Metz et al., 2011; Vandemeulebroucke et al.,
2011), atlas construction (Fletcher et al., 2009; Joshi et al., 2004; Wu et al.,
2011) and population analyses (Geng et al., 2009).

One approach to perform such a registration task would be to take one im-
age in the group as a reference and register all other images to this reference
in a repeated pairwise manner. However, such an approach has two distinct
shortcomings. First, the choice of the reference image inherently biases the
resulting transformations and subsequent data analysis towards the chosen ref-
erence. Secondly, only a fraction of the total information available within the
group of images is used in each pairwise registration, possibly leading to sub-
optimal results.

An alternative is to perform a groupwise registration in which all trans-
formations are optimized simultaneously. Transformations are expressed with
respect to a common reference space, thereby removing the need for choosing
a particular reference image, and the bias associated with that choice. Addi-
tionally, a global cost function simultaneously takes into account all information
in the group of images. In this work we will address such groupwise similarity
measures for multimodal registration problems.

Multimodal intensity-based pairwise registration is commonly solved using
mutual information (MI) (Collignon et al., 1995; Viola and Wells III, 1995;
Wells et al., 1996), since it assumes a stochastic relationship between the two
images to be registered. Extending MI to groupwise registration leads to a
high-dimensional joint probability density function with an exponentially in-
creasing number of histogram bins. Sparsity becomes a major concern as the
number of images grows larger and limits the application to small groups of
images (Wachinger and Navab, 2013).

A number of alternatives have been proposed to perform multimodal group-
wise registration. Orchard and Mann (2010) proposed to use a Gaussian mix-
ture model instead of histograms to approximate the joint probability density
functions and Spiclin et al. (2012) approximated the joint probability density
functions with a nonparametric approach based on a hierarchical intensity-space
subdivision scheme. However, both approaches remain limited by the sparsity
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high-dimensional joint probability density function with an exponentially in-
creasing number of histogram bins. Sparsity becomes a major concern as the
number of images grows larger and limits the application to small groups of
images (Wachinger and Navab, 2013).

A number of alternatives have been proposed to perform multimodal group-
wise registration. Orchard and Mann (2010) proposed to use a Gaussian mix-
ture model instead of histograms to approximate the joint probability density
functions and Spiclin et al. (2012) approximated the joint probability density
functions with a nonparametric approach based on a hierarchical intensity-space
subdivision scheme. However, both approaches remain limited by the sparsity
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in the joint intensity space and perform poorly for large groups of images.
Alternatively, one could represent the intensities as a graph and relate the

length of such a graph to the entropy of the images (Hero et al., 2002). Such an
approach requires a computationally expensive optimization for the construc-
tion of the graph and is not continuously differentiable, making gradient-based
optimization difficult.

Zöllei et al. (2005) proposed the use of a voxelwise stack entropy. Herein,
the intensities of all separate images in the group at a given sampled coordinate
are grouped into a one-dimensional probability density distribution. For each
sampled coordinate, the entropy is calculated and summed. However, for a low
number of images in the group, the probability density functions are sparse
which limits its use to larger groups of images.

Wachinger et al. (2007) proposed to accumulate all pairwise estimates of
mutual information for all possible pairs of images in the group under consider-
ation. Such an approach leads to a computation time which is proportional to
the square of the number of images, making its application to larger groups of
images increasingly difficult.

Joshi et al. (2004) developed an interesting dissimiliarity measure where
the mean squared differences is used as a pairwise dissimiliarity measure to
compare every image in the group to the voxel-wise average image. Herein
the average image is updated in each iteration. They applied the method to
monomodal brain atlas construction and it has also been applied to thoracic 4D
CT data (Metz et al., 2011) and 4D ultrasound of the liver (Vijayan et al., 2014).
The approach carries a number of advantages, such as the linear scaling of the
computational complexity with respect to the number of images in the group
and the possibility to parallelize the algorithm, making it feasible for both small
and large groups of images. Bhatia et al. (2007) proposed to use the normalized
mutual information (Studholme et al., 1999) as a pairwise similarity measure and
the average image as a template image on monomodal intersubject data. The
measure was termed the average normalized mutual information and has been
used (together with the average mutual information) in subsequent literature
as a similarity measure for multimodal groupwise registrations (Ceranka et al.,
2018; Hallack et al., 2014; Huizinga et al., 2016; Polfliet et al., 2016, 2017).
However, the use of the average image as the template image might not be
appropriate in multimodal data with intensities of varying scales, ranges and
contrast.

In this work a novel similarity measure, the conditional template entropy
(CTE), is introduced for multimodal groupwise registration based on this prin-
ciple of pairwise similarity with respect to a template image. Following the
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original formulation by Joshi et al. (2004), we first design a suitable pairwise
measure to be used in the comparison of the template image and every image
in the group. Afterwards we investigate the use of a template image based on
principal component analysis.

Given the linear scaling of the computational complexity, the proposed simi-
larity measure can be applied to a wide range of intrasubject multimodal group-
wise registration problems, for both small and large groups of images, and can
be used as a general purpose measure. The proposed measure is validated in ex-
tensive experiments on synthetic and intrasubject clinical data, demonstrating
equivalent or improved registration accuracy compared to other state-of-the-art
methods and improved transformation consistency compared to pairwise MI.

5.2 Materials and methods

5.2.1 Pairwise registration

In pairwise registration, a target (moving, floating) image is registered to a
reference (fixed, source) image. The transformation Tθ : ΩR ⊂ Rd → ΩT ⊂ Rd,
parameterized by θ, needs to be determined that maps coordinates from the
reference image domain, ΩR, to the target image domain, ΩT (Fig. 5.1(a)). The
registration can be defined as an optimization (minimization) problem

θ̂ = arg min
θ

C (IR, IT ; Tθ) . (5.1)

Here, are IT : ΩT ⊂ Rd → R and IR : ΩR ⊂ Rd → R the intensity functions
of the target and reference image. C is the cost function or objective value
of the registration problem, which is often represented as a weighted sum of a
(dis)similarity measure, S or D, and a regularization term, R, such that

C = D + λR , (5.2)

in which λ is the weight for the regularization.

5.2.2 Mutual information

In the pairwise approach, mutual information (MI) (Collignon et al., 1995; Viola
and Wells III, 1995; Wells et al., 1996) is defined as

SMI (IR, IT ; Tθ) = H (IR) +H (IT ◦ Tθ)−H (IR, IT ◦ Tθ) . (5.3)
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(a)

(b)

Figure 5.1: Graphical illustration for (a) a pairwise registration and (b) a group-
wise registration.
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Here, H(·) and H(·, ·) refer to, respectively, the marginal and joint entropy of
the marginal and joint intensity distributions, often calculated via normalized
histograms. In Eq. (5.3), the first term expresses the complexity of the reference
image and the second term is the entropy of the target image mapped onto the
reference, which favors transformations that map onto complex parts of the
target image. The final term expresses the complexity of the shared or common
relationship between the reference and target image. It is maximized when the
(statistical or stochastic) relationship is stronger and thus less complex (Wells
et al., 1996).

Following Maes et al. (1997), MI can be rewritten in terms of the conditional
entropy (CE)

SMI (IR, IT ◦ Tθ) = H (IR)−H (IR|IT ◦ Tθ) . (5.4)

The conditional entropy H (A|B) describes the amount of information that re-
mains in a random variable A once the random variable B is known. With the
entropy of the reference image being independent of the transformation param-
eters, maximization of the negated conditional entropy and maximization of the
mutual information lead to equivalent solutions of the registration problem.

5.2.3 Groupwise registration

In groupwise registration we consider a group of n images for which the trans-
formations to a common reference frame are unknown. We can consider the
following optimization (minimization) problem to determine these transforma-
tions:

µ̂ = arg min
µ

C (I1, . . . , In; Tµ1 , . . . , Tµn) , (5.5)

where Tµi : Ω ⊂ Rd → Ωi ⊂ Rd the transformation that maps the coordinates
from the common reference domain, Ω, to the domain of the ith image, Ωi, and
µi are the parameters that define Tµi (Fig. 5.1(b)). For the optimization, µ is
defined as a vector formed by the concatenation of all separate transformation
parameters, µi. Ii : Ωi ⊂ Rd → R is the continuous intensity function associated
to the ith image.

5.2.4 Template construction

Joshi et al. (2004) proposed the following formulation for monomodal groupwise
registration, in which both the transformation parameters and a template image
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are optimized

µ̂, Ĵ = arg min
µ,J

1

n|S|

n∑

i=1

∑

x∈S

(Ii ◦ Tµi (x)− J (x))2 , (5.6)

with J the continuous intensity function of a template image, x the coordinate
samples drawn from the image domain and S the set of these samples. The
template image can be interpreted as being the image that is most similar to
the other images in the group in terms of the mean squared differences. For a
given value of the transform parameters, the optimization with respect to the
template image J was solved analytically to be the average image

J (x) = Iµ (x) =
1

n

n∑

i=1

Ii ◦ Tµi (x) . (5.7)

As such, the registration problem in Joshi et al. (2004) is reduced to

µ̂ = arg min
µ

1

n|S|

n∑

i=1

∑

x∈S

(
Ii ◦ Tµi (x)− Iµ (x)

)2
. (5.8)

5.2.5 The conditional template entropy

In this work, a novel similarity measure for multimodal groupwise registration
is proposed, based on this paradigm in which similarity of the group of images is
measured with respect to an iteratively updated template image. Considering
the interpretation of the entropy terms given in Section 5.2.2, we propose to
measure similarity using the negated joint entropy of each image in the group
with the template image, favoring transformations for which the template ex-
plains the group of images well; and the marginal entropies of each image in
the group, encouraging transformations that map onto complex parts of the
images in the group. Note that this is equivalent to a formulation based on the
conditional entropy:

µ̂, Ĵ = arg max
µ,J

1

n

n∑

i=1

H (Ii ◦ Tµi)−H (J, Ii ◦ Tµi)

= arg max
µ,J

− 1

n

n∑

i=1

H (J |Ii ◦ Tµi) .

(5.9)
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Observing the resulting measure, one can notice the resemblance with a for-
mulation based on mutual information. The difference lies in the absence of
the marginal entropy of the template image, H(J). As we will demonstrate,
this term counteracts the alignment of the group of images. A representative
template image is likely to grow sharper when converging towards the optimal
registration solution, leading to a reduced complexity of its intensity distribu-
tion and a decrease in the marginal entropy, which is opposite of the desired
optimization behavior. The proposed method based on conditional entropy as
shown in Eq. (5.9) eliminates this problem.

To find the appropriate template image, we revisit Eq. (5.6) where the tem-
plate image could be obtained analytically as the average image. Unfortunately,
Eq. (5.9) cannot be solved analytically with respect to the template image, J ,
for a given set of transformations if the trivial solution of a constant template
image with a single intensity is excluded. Hypothetically, one could set up an
optimization scheme where the template image is predefined by a functional
relationship and weights corresponding to the images in the group. Herein, the
optimization of the transformation parameters could be alternated with the op-
timization of the weights for the template image. Such nested optimization is
error-prone and costly, and undesirable in this context.

Alternatively, instead of maximizing Eq. (5.9), we propose a more pragmatic
approach which maximizes the variance in the template image. By defining J as
the linear combination of the images in the group, principal component analysis
(PCA) can be used to find the weights associated to the images.

PCA defines a linear transformation from a given high-dimensional space
to a low-dimensional subspace whilst retaining as much variance as possible.
In this work, PCA is performed with each sampled coordinate as a separate
observation and the different images in the group corresponding to different
features. The transformation to the 1-dimensional subspace along which the
most variance is observed, is given by the eigenvector associated with the largest
eigenvalue. As such, the elements of this eigenvector can serve as the weights
for the construction of the template image.

J (x) = IPCA
µ (x) =

n∑

i=1

vi,µ Ii ◦ Tµi (x) . (5.10)

Here, vµ is the eigenvector associated with the largest eigenvalue and the sub-
script µ is added to show its dependence on the transformation parameters. This
template image, based on the principal component of the PCA, will hereafter
be referred to as the principal component image.
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Maximizing the variance in the template image carries a number of advan-
tages over simple averaging. First, no need exists to preprocess the images with
different intensity ranges (to avoid a single image overpowering the template)
as it is inherently robust to such range differences. Secondly, assuming a quasi-
linear relationship exists between the images, a maximization of the variance
leads to a maximization of the contrast-to-noise ratio. Consider the case when
the group of images is misaligned. This leads to smaller weights associated to
those images that are more misaligned (due to a low correlation with the other
images) and, subsequently, reduced noise in the template image (Melbourne
et al., 2007). Similarly, when the images in the group are close to or at align-
ment, images with high noise content (due to acquisition settings or artefacts)
will contribute less to the template image, resulting in improved contrast-to-
noise ratio in the template image compared to simple averaging. Finally, PCA
is robust to regions of interest where inversion of contrast occurs. This takes
place in contrast enhanced imaging where a tumour might appear hypodense ini-
tially and hyperdense after contrast agent uptake, or in longitudinal pediatric
brain MR imaging due to cortical organization and myelination of the white
matter. Here, simple averaging could reduce the contrast-to-noise ratio of the
template image in these regions of contrast inversion. PCA, on the other hand,
is able to assign negative weights to certain images in the group. As a result,
regions where contrast inversion takes place could propagate into the template
image with higher contrast.

Combining Eq. (5.9) and (5.10) leads to a novel similarity measure, the
conditional template entropy (CTE), where similarity is expressed as the sum
of the conditional entropy between every image in the group and the principal
component image:

SCTE (I1, . . . , In; Tµ1 , . . . , Tµn) = − 1

n

n∑

i=1

H
(
IPCA
µ |Ii ◦ Tµi

)
. (5.11)

5.2.6 Optimization

The proposed similarity measure was implemented as part of the software pack-
age elastix (Klein et al., 2010) and is publicly available. An adaptive stochas-
tic gradient descent was employed to minimize the cost function (Klein et al.,
2009b). As such, the negated form of Eq. (5.11) is used, to allow a minimization
to take place. The derivative of the proposed measure with respect to µ was
determined following the approach of Thévenaz and Unser (2000) in which B-
splines were used as a Parzen windowing function such that the joint probability
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density functions pi between the template image and the ith image in the group
become

pi (ι,κ;µ) = α
∑

x

[
βm

(
ι

ϵPCA
−

IPCA
µ (x)

ϵPCA

)
βm

(
κ

ϵi
− Ii (Tµi (x))

ϵi

)]
.

(5.12)
Here, α is a normalization factor to obtain a density function, ϵ is related to
the width of the histogram bin and βm is a B-spline function of the order of
m. ι and κ are the discretized intensities corresponding to the template image
and images in the group, respectively. With B-splines fulfilling the partition of
unity constraint (Thévenaz and Unser, 2000), we have

∑

ι∈LPCA

∑

κ∈Li

∂pi (ι,κ;µ)

∂µ
= 0 ∀i , (5.13)

where LPCA and Li are the discrete sets of intensities associated with the prin-
cipal component and the ith image. This leads to

∂SCTE

∂µ
= − 1

n

n∑

i=1

∑

ι∈LPCA

∑

κ∈Li

∂pi (ι,κ;µ)

∂µ
log

pi (ι,κ;µ)

pIi (κ;µ)
(5.14)

With pIi (κ;µi) the probability density function of the ith image. In Appendix
A the derivative of the principal component image with respect to the transfor-
mation parameters is given.

5.2.7 Transformation degeneracy

Given the degeneracy of estimating n transformations for n images with an arbi-
trary global transformation, we chose to constrain our transformation following
Bhatia et al. (2004) with

1

n

n∑

i=1

Tµi(x) = x, ∀x , (5.15)

i.e the sum of all transformations is the identity, effectively registering the group
of images to the space for which the sum of the deformations at every coordinate
is equal to zero. With Rosen’s Gradient Projection Method (Luenberger, 1973)
this is solved by setting

∂C
∂µi

′
=

∂C
∂µi

− 1

n

n∑

j=1

∂C
∂µj

. (5.16)
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and using this projected gradient in the stochastic gradient descent optimization.

5.2.8 Regularization

Following Geng et al. (2009) we used a groupwise regularization term, the group-
wise bending energy (GBE)

RGBE (Tµ1 , . . . , Tµn) =
1

|S|
∑

x∈S

1

n

n∑

i=1

d∑

l,m=1

∣∣∣
∣∣∣
∂2Tµi(x)

∂xl∂xm

∣∣∣
∣∣∣
2
. (5.17)

Herein, d is the spatial dimension of the images. Regularization was performed
in all clinical experiments with a deformable transformation model.

5.3 Data and experiments

A total of six experiments were conducted with two on synthetic data and four
on clinical intrasubject data. Herein, the proposed conditional template entropy
(SCTE) was compared to the average mutual information (SAMI)

SAMI (I1, . . . , In; Tµ1 , . . . , Tµn)

=
1

n

n∑

i=1

[
H
(
Iµ
)
+H (Ii ◦ Tµi)−H

(
Iµ, Ii ◦ Tµi

) ]
.

(5.18)

Furthermore, two auxiliary similarity measures were implemented to investi-
gate complementary advantages of the proposed methodology, respectively the
advantage of using the conditional entropy (SCE)

SCE (I1, . . . , In; Tµ1 , . . . , Tµn)

= − 1

n

n∑

i=1

H
(
Iµ|Ii ◦ Tµi

)
,

(5.19)

and the advantage of using the principal component image (SPC)

SPC (I1, . . . , In; Tµ1 , . . . , Tµn)

=
1

n

n∑

i=1

[
H
(
IPCA
µ

)
+H (Ii ◦ Tµi)−H

(
IPCA
µ , Ii ◦ Tµi

) ]
.

(5.20)
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For the clinical data, the four previously discussed groupwise similarity mea-
sures were used in addition to the PCA2 measure proposed in Huizinga et al.
(2016) and pairwise MI (Eq. 5.3) as a baseline for comparison. PCA2 was pro-
posed for the registration of images for which the intensity distribution could
be represented into a low-dimensional subspace and is given as

DPCA2 (I1, . . . , In; Tµ1 , . . . , Tµn) =
n∑

i=1

iλi . (5.21)

Herein, λi refers to the ith eigenvalue of the correlation matrix of the images
in the group in decreasing order. In Huizinga et al. (2016) it was subsequently
validated on monomodal and quantitative MRI image data for which such a
low-dimensional subspace exists. PCA2 can be thus considered as a specialist
dissimilarity measure specifically designed to register such images. To demon-
strate the more generic nature of the proposed methodology, CTE was compared
to PCA2 for both quantitative MRI and multimodal image data.

All registrations were performed in an intrasubject manner and the images
were normalized by z-scoring to allow for a fair comparison to the similarity
measures employing the average image. In the pairwise registration of a group
of images, one image (the first in the sequence) was chosen as a reference to
which all others were mapped. Note that other strategies for choosing the refer-
ence image in pairwise registrations for a group exist, such as the pre-contrast
image in dynamic contrast enhanced sequences Kim et al. (2011), the end-
expiration in 4D CT (Saito et al., 2009) or the mid-way image in computational
anatomy (Reuter et al., 2010).

As the optimization strategy, interpolation algorithm, random sampler and
transformation model is equivalent for all (dis)similarity measures, any differ-
ence in results can be solely attributed to the use of a different (dis)similarity
measure.

The proposed methods were validated with two validation criteria. First,
the groupwise target registration error (gTRE)

gTRE (µ) =
1

n

n∑

i̸=r

1

|Pi|

|Pi|∑

j

||Ti,r (pi,j)− pr,j || (5.22)

was used as a measure for the accuracy of the registration with ground truth an-
notations of certain anatomical landmarks in the images. In Eq. (5.22), r is the
index of the reference image, Pi the collection of landmarks in the ith image, Ti,r
the transformation that maps the coordinates from the ith image to the reference
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Figure 5.2: Composition of Tµr and T −1
µi

to obtain Ti,r

image and pi,j the jth landmark from the ith image. In a groupwise setting Ti,r
was determined through the composition of the forward transformation, that
maps the coordinates from the common reference space to the reference image,
with the inverse transformation, that maps the coordinates from the ith image
to the common reference space: Ti,r = Tµr ◦ T −1

µi
(Fig. 5.2) (Metz et al., 2011).

To allow for a fair comparison between pairwise and groupwise registrations, all
validation measurements were performed in the same reference space, i.e. the
same image which was chosen as a reference in the pairwise registrations.

Secondly, we computed the transitivity error (Christensen et al., 2006; Metz
et al., 2011) to assess the quality of the transformation

Tra (µ) =
1

|S|
∑

x∈S

n∑

i

n∑

l ̸=i

||Ti,r (x)− Ti,l (Tl,r (x)) || . (5.23)

The transitivity error measures the transitive property of the transformations in
a group of images and can be interpreted as a measure for the consistency of the
transformations in a groupwise setting. For repeated pairwise registrations the
use of different reference images is required to measure the transitivity. The bias
associated with the choice of a reference image will influence the results, whereas
in groupwise registration, all transformations are estimated simultaneously and
are inherently transitive (when the inverse transformation is available). As the
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Table 5.1: The regularization weights used for each (dis)similarity measure and
clinical dataset.

Thoracic 4D CT Carotid MR Head&Neck RIRE
PCA2 500 100 2×106 -
MI 0.02 50 100 -
AMI 0.05 100 2000 -
PC 0.2 100 2000 -
CE 0.01 100 5000 -
CTE 0.2 100 5000 -

inverse is approximated iteratively and the source for the transitivity error in
the groupwise methods, no comparisons are made among the groupwise mea-
sures based on the transitivity error. The maximum transitivity error of the
groupwise methods is reported and compared to the transitivity error of the
pairwise method.

The cost function hyperparameters (the number of histogram bins and reg-
ularization weight) were chosen such that they optimized the mean gTRE per
dataset. The different regularization weights are reported in Table 5.1. Due
to the arbitrary sign of the projection vector for the principal component im-
age, the number of histogram bins (used to calulate the entropy) are at least
doubled compared to the number of histogram bins in registrations using the
average image. Other optimization hyperparameters such as the spatial sam-
ples in the stochastic optimizer and the number of iterations were set to their
default value. All registration hyperparameters in pairwise registrations were
kept equal to those in the groupwise approach.

Results for the gTRE were compared in a pairwise manner among all (dis)-
similarity measures (totaling 64 comparisons). The Wilcoxon signed-rank test
was used for significance testing at a significance level of 0.05 adjusted by the
Bonferroni correction for multiple comparisons.

5.3.1 Black&White

To investigate the effect the entropy term of the template image has on the
optimization, an experiment was performed on synthetic data. Eleven identical
black-and-white images were progressively and simultaneously translated along
the horizontal axis and the (dis)similarity measures values were computed. A
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Table 5.2: Summary of the registration parameters used in the experiments.
Two values are reported for the number of histogram bins, separated by a for-
ward slash. The first value reflects the number of bins used in pairwise registra-
tion and groupwise registrations based on the average image. The second value
gives the number of bins used in groupwise registrations based on the principal
component image. Values separated with a backward slash indicate multiple
settings within the applied optimization strategy.

Dataset Histogram
bins

Resolutions Grid
spacing

Spatial
samples

Iterations

Multimodal
Cubes

32/96 2 6.0 2048 2000

Thoracic 4D
CT

48/96 4 12.0 2048 2000\4000

Carotid MR 48/128 2 8.0 2048 2000
Head&Neck 64/144 2 64.0 2048 2000
RIRE 48/128 5\2 - 2048 2000

mask was used to keep the sampling domain constant. Fig. 5.3 shows a single
black-and-white image and the average image of the group of images when they
are at maximal displacement (15 mm).

5.3.2 Multimodal cubes

To further investigate registration accuracy, 100 registrations were performed
on a group of six images (256 × 256 × 256 voxels) each containing two cubes,
one surrounding the other. The intensities of the cubes and the backgrounds
were set at random intensities to simulate a multimodal setting (Fig. 5.4). For
each group of images a random set of deformable transformations was generated
with a grid spacing of 8×8×8 voxels. The gTRE of the corners of the cubes was
used to quantify the registration accuracy.

5.3.3 Thoracic 4D CT

Thoracic 4D CT data (Fig. 5.5) was taken from the publicly available POPI
and DIR-LAB datasets which include, respectively, 6 and 10 sequences of 10
respiratory phases each (Castillo et al., 2009; Vandemeulebroucke et al., 2011).
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(a)

(b)

Figure 5.3: (a) A single black-and-white image (b) Average image of the group
at their maximal misalignment.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5.4: (a-f) A single slice of the six cubes used in the Multimodal Cubes
experiment. (g) The average image and (h) the principal component image at
alignment.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: (a - c) Three of the ten phases used in the Thoracic 4D CT experi-
ment. The images differ mainly in the position of the diaphragm and structures
in the lungs due to breathing. (d) The average image at misalignment. (e)
The principal component at misalignment. (f) Absolute difference image of the
average and principal component image. Note that the largest differences occur
in regions where motion is present (e.g. the diaphragm and trachea). The im-
age contrast is optimized for the range of intensities present in each individual
image.

Thoracic 4D CT data is often considered as monomodal data. However, minor
intensity changes can occur due to changes in the voxel density in the lungs
associated with the inhalation and exhalation of air (Sarrut et al., 2006) leading
several authors to employ adapted or multimodal (dis)similarity measures for
lung registration (Murphy et al., 2011b).

The POPI dataset contains three patients with 100 manually identified land-
marks in the lungs for every breathing phase and three patients with 100 land-
marks in end-inspiration and end-expiration phases with an inter-rater error
of 0.5±0.9 mm. In the DIR-LAB dataset, all patients have 300 landmarks in
the lungs for the inspiration and expiration phases and 75 in the four phases
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: (a-c)Three of the five images used in the Carotid MR experiment.
(d) The average image at misalignment. (e) The principal component at mis-
alignment. (f) Absolute difference image of the average and principal component
image. Note that the largest differences occur either at borders of structures
due to motion, indicated by red arrows, or in homogeneous regions due to the
multimodal nature of the data, indicated by a green arrow. The image contrast
is optimized for the range of intensities present in each individual image.

in between and an intra-rater error between 0.70 and 1.13 mm. Accuracy of
the registration was determined using the gTRE with respect to the inspiration
phase, the first image in the dynamic series.

A deformable registration was performed using cubic B-splines with a final
grid spacing of 12.0 mm. Lung masks were used and obtained following (Van-
demeulebroucke et al., 2012). For each resolution level 2000 iterations were
performed, except for the last resolution where 4000 iterations were allowed.
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(a) (b) (c)

Figure 5.7: (a) CT image, (b) MR-T1 image and (c) MR-T2 image used in the
Head&Neck experiment.

(a) (b) (c)

(d) (e)

Figure 5.8: (a) CT image, (b) MR-PD image, (c) MR-T1 image, (d) MR-T2
image and (e) PET image used in the RIRE experiment.

5.3.4 Carotid MR

MR image sequences were acquired of the carotid artery by Coolen et al. (2015).
The acquisitions were performed with a gradient echo MRI sequence for different
flip angles and TE preparation times (Fig. 5.6). Each sequence consisted of five
images and was performed for eight patients. The bifurcation of both carotid
arteries was identified for each patient and consequently used as a landmark in
the validation of the registration.

For this data we performed a deformable registration with cubic B-splines
and a final grid spacing of 8.0 mm. van ’t Klooster et al. (2013) has shown that
a deformable registration is needed in such acquisitions of the carotid arteries.
Masks around the carotid arteries were used as region of interest for registration.
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5.3.5 Head&Neck

As part of radiotherapy planning, 22 patients underwent a CT, MR-T1 and
MR-T2 imaging protocol of the head and neck region (Fortunati et al., 2014,
2015; Verhaart et al., 2014)(Fig. 5.7). In each acquisition between 15 to 21
landmarks were used to quantify the registration accuracy in terms of gTRE.
The intra-rater variability of the landmarks was approximately 1mm.

Prior to registration, all images were resampled to the smallest voxel spacing
present in the group of images. A deformable transformation was used in two
resolution levels using cubic B-splines with a final grid spacing of 64.0 mm, as
suggested by Fortunati et al. (2014).

5.3.6 RIRE

The RIRE dataset (West et al., 1997) includes 18 patients with up to five differ-
ent imaging modalities of the brain (Fig. 5.8). All 18 patients had at least three
of the following modalities available: CT, PET, MR-T1, MR-T2, MR-PD. Fidu-
cial markers and a stereotactic frame were used to determine the ground truth
transformations for CT to MR and PET to MR. Four to ten landmarks were
available for each patient as a ground truth for the registrations and their tar-
get registration error was computed through the webform of the RIRE project,
where rigid displacements between acquisitions were assumed.

To increase the robustness of the optimization, a two-step approach is used.
First, a translation is optimized and used as an initialization for a second full
rigid transformation with three translational and three rotational degrees of
freedom. The registration was performed with five and two resolution levels,
respectively. Similar to the Head&Neck dataset, preprocessing was performed
by resampling the images in the group to the smallest voxel spacing.

The registration hyperparameters for the different experiments are summa-
rized in Table 5.2.

5.4 Results

5.4.1 Synthetic data

The behavior of the similarity measures and its separate entropy components
in the Black&White experiment are shown in Fig. 5.9 as a function of the
translation. The Black&White experiment shows that the measure behavior
of SAMI and SPC is equal to the behavior of the entropy of the images in the
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Figure 5.9: Results for the Black&White experiment where 11 black-and-white
images were progressively and simultaneously translated. (a) The similarity
measure values. (b) The average of the entropies of the images in the group.
(c) The entropy of the template image. (d) The average of the joint entropies.

group. The contribution of the entropy of the template image completely cancels
out the contribution of the joint entropy in SAMI and SPC as can be seen in
Fig. 5.9(c-d). The resulting optimization is only driven by the complexity of
the images in the group and not by their shared relationship.

The results for the Multimodal Cubes experiment are shown in Fig. 5.10.
When comparing the similarity measures, SCTE (1.71±0.11 mm) significantly
outperformed all other entropy-based groupwise measures (2.80±0.32 mm, 2.73±
0.34 mm and 1.74±0.11 for SAMI , SPC and SCE respectively).
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Figure 5.10: Boxplots for the results of the Multimodal Cubes experiment.
Significant differences between two methods are indicated with black bars below
the boxplots.

5.4.2 Clinical data

Results for the gTRE in experiments on clinical data are visualized with boxplots
in Fig. 5.11&5.12.

For the experiments on the Thoracic 4D CT and Carotid MR datasets
(Fig. 5.11), no statistically significant differences were observed in terms of
gTRE for the investigated information-based measures. In Fig. 5.13, we visual-
ized the deformation fields generated by the groupwise (dis)similarity measures
for the thoracic 4D CT. Qualitatively, it is difficult no notice any difference
between them.

In the Head&Neck experiment (Fig. 5.12) the best results are achieved by
SCTE with a gTRE of 2.74± 1.17mm performing significantly better compared
to SAMI , SPC and DPCA2.

Pairwise SMI performed best in the RIRE experiment (Fig. 5.12) with a
gTRE of 2.29± 0.72mm (SCTE , 2.33± 0.57mm), but no significant differences
were found compared to the other entropy-based measures. DPCA2 performs
worst, with the differences being statistically significant. A group of images was
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Figure 5.11: Boxplots for the results of the Thoracic 4DCT and Carotid MR
experiment. Significant differences between two methods are indicated with
black bars below the boxplots.

found to be misregistered following Tomaževič et al. (2012) when the gTRE is
larger than the largest voxel spacing in the images. No misregistrations were
obtained for SCTE , SCE and SMI whereas SAMI and SPC misregistered two
patients and DPCA2 misregistered 14 patients.

In all four experiments on clinical data, pairwise MI performed worst in terms
of transitivity, whereas the transitivity error for groupwise measures reduced to
(close to) zero (Table 5.3).

In Table 5.4, the values are given for the average runtime of the experiments
performed in this work. The use of the conditional entropy does not induce
an extra computational burden, whereas the use of the principal component
images does. This discrepancy originates from an additional loop over the sam-
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Figure 5.12: Boxplots for the results of the Head&Neck and RIRE experiment.
Significant differences between two methods are indicated with black bars above
the boxplots. Note the logarithmic scale on the y-axis.
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(a) PCA2 (b) AMI (c) CE

(d) PC (e) CTE

Figure 5.13: Sagittal slice of the Thoracic 4D CT dataset overlayed with the
resulting deformation field for the different measures under study, obtained from
registrations where the field of view was limited to the lungs.

pled coordinates, needed to perform the PCA and determine the weights of the
eigenvector. Note that for more complex registrations with a regularizer, the
additional computation time is relatively small compared to the total cost.

5.5 Discussion

Results on the Thoracic 4D-CT and Carotid MR dataset showed equivalent
performance of the proposed methodology compared to other state-of-the-art
methods in terms of registration accuracy.

The results for the Multimodal Cubes, Head&Neck and RIRE results were
consistent. In all three datasets the accuracy improved for the proposed formu-
lation compared to SAMI , and the improvement was found to be statistically
significant in the former two experiments. Throughout these experiments the
behavior of the auxiliary (dis)similarity measures SCE and SPC was also consis-
tent. Using the conditional entropy instead of mutual information led to a large
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Table 5.3: Average transitivity errors for the clinical datasets. For the group-
wise approaches, the maximum average transitivity error among all groupwise
methods is reported. The values are given in mm.

Thoracic 4D CT Carotid MR Head&Neck RIRE
MI 5.65× 10−1 2.68× 10−1 2.14 1.47
Groupwise
approaches

< 3.39× 10−2 < 7.66× 10−3 < 1.85× 10−2 0

Table 5.4: Average runtime for the registrations in the different experiments.
The values are given in minutes.

Multimodal
Cubes

Thoracic 4D
CT

Carotid MR Head&Neck RIRE

PCA2 - 212 28 20 4
AMI 22 238 31 23 7
CE 22 252 31 23 7
PC 26 248 36 36 54
CTE 26 276 36 36 55

improvement, while using the principal component image improved the accu-
racy modestly. The combination of both contributions led to the best results
in all three experiments compared to other groupwise (dis)similarity measures.
As expected, the PCA2 measure performed poorly in multimodal registrations
where a quantitative model or low-dimensional subspace does not exist.

In all experiments based on clinical data, the transitivity of the resulting
transformations was compared to SMI for groupwise approaches. These results
emphasize the added value of the implicit reference space in multimodal group-
wise registration. Whereas a pairwise approach has to perform two separate
registrations with different reference images to obtain a concatenated trans-
formation, in a groupwise approach all transformations are evaluated simul-
taneously and with a substantially lower transitivity error. These results are
consistent with previous findings in monomodal data (Geng et al., 2009; Metz
et al., 2011).

In summary, for experiments based on images where no or modest changes in
intensity distributions are present (‘Thoracic 4D-CT’ and ‘Carotid MR’), CTE
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(a) (b) (c) (d) (e) (f) (g)

Figure 5.14: (a) CT image, (b) MR-PD image, (c) MR-T1 image, (d) MR-T2
image, (e) PET image, (f) average image and (g) principal component image
when only the subregion of the ventricles is sampled for the RIRE experiment.

showed comparable performance to previously proposed groupwise methods and
pairwise MI. In experiments with strongly varying intensity distributions (‘Mul-
timodal Cubes’, ‘Head&Neck’ and ‘RIRE’), CTE showed superior performance
to previously proposed groupwise methods and performed on par to pairwise
MI, with little to no transitivity error.

Fig. 5.5(f) and 5.6(f) highlight the differences in the average and principal
component images. Herein, the absolute difference image between the average
and principal component image is given in the ‘Thoracic 4D CT’ and ‘Carotid
MR’ dataset, respectively, for a single patient. Herein, the largest differences
occur in regions where the motion is greatest near moving structures or edges.
This is consistent with previous work, where the principal component image
was used to separate motion present in the images (Feng et al., 2016; Hamy
et al., 2014; Melbourne et al., 2007). For multimodal registrations, the benefit
of PCA over averaging can be seen by considering cases in which images with
an inverted intensity profile are merged into the template image, as shown in
Fig. 5.4(g-h) and Fig. 5.14. For the ‘Multimodal Cubes’ experiment, PCA lead
to an increase of the contrast-to-noise ratio from 7.4 to 32.5 compared to simple
averaging. Fig. 5.14 shows the average and principal component image when
applied to the ventricles for an arbitrary patient in the RIRE dataset. With
the T2 modality having an inverted intensity profile, the principal component
image is able to retain the contrast in the template image. In the average image
the intensities cancel out and the ventricles are poorly visible.

Two limitations should be stated with respect to current work. Firstly, only
intrasubject data has been employed. Intersubject data is characterized by
greater variability of intensity profiles and morphology, and has been reported
to considerably increase the complexity of groupwise registration (Hamm et al.,
2009; Tang et al., 2009). It remains to be verified how CTE would perform
when confronted with such data.
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Secondly, in this work a methodology was used where the images are de-
formed and compared to the template image in the implicit reference system.
However, previous work has shown that deforming the template image to the
images in the group suits a generative model better (Allassonnière et al., 2007;
Ma et al., 2008). In methodologies where the template is deformed to the
images in the group, no need exists to constrain the transformations to the av-
erage deformation space (Eq. 5.16). This was shown to be advantageous, as
such constraints could exclude some legitimate results (Aganj et al., 2017). We
expect the proposed measure to perform equally well in such frameworks as it
is independent of the transformations that were used.

5.6 Conclusion

In this work we proposed a novel similarity measure for intrasubject multi-
modal groupwise registration, the conditional template entropy. The proposed
measure was evaluated in experiments based on synthetic and clinical intrasub-
ject data and showed equivalent or improved registration accuracy compared
to other state-of-the-art (dis)similarity measures and improved transformation
consistency compared to pairwise mutual information. These improvements
were achieved mainly by the use of the conditional entropy, whereas the use of
the principal component image contributed modestly in our experiments.
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Eq. (5.10) and repeated here

IPCA
µ (x) =

n∑

i=1

vi,µ Ii ◦ Tµi (x) = vT
µI (x) . (5.24)

Herein, I (x) is the column vector representing all image intensities across the
group for a given sampled coordinate. The derivative becomes

∂IPCA
µ (x)

∂µ
=

∂vT
µ

∂µ
I (x) + vT

µ
∂I (x)

∂µ
, (5.25)

Following de Leeuw (2007) for the derivative of an eigenvector:

∂vµ

∂µ
= − (C − eI)+

∂C

∂µ
vi,µ , (5.26)

with C the correlation matrix of the intensities, similar to Huizinga et al. (2016),
I the identity matrix, e the eigenvalue associated with vµ and + the notation for
the Moore-Penrose inverse (de Leeuw, 2007). The derivative of the correlation
matrix is given as

∂C

∂µ
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(5.27)

Herein, M refers to the data matrix with the intensities of the images, M is
the matrix with the average image intensity repeated along its columns, Σ is
the diagonal matrix with the standard deviations of the images intensities as
its diagonal elements. All notations correspond to those found in Huizinga
et al. (2016) and we have ignored the derivative of the average image intensities
likewise.
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CHAPTER 6

Laplacian eigenmaps as a dissimilarity measure in
multimodal groupwise registration

Abstract

In this work we propose a novel dissimilarity measure for multimodal groupwise reg-
istration based on Laplacian eigenmaps, a non-linear dimensionality reduction tech-
nique. Dissimilarity in the group of images is expressed as the magnitude of the
Fiedler eigenvalue, the second generalized eigenvalue of the Laplacian of the graph
constructed in the joint intensity space. The proposed methodology, combined with
a stochastic gradient descent, allows for an efficient simultaneous registration of large
groups of images. Furthermore, it can capture non-linear relationships, and alleviates
issues often associated to entropy-based similarity measures due to bias fields in the
images and sparsity in the joint intensity space. Experiments were performed on four
datasets to validate the proposed methodology, one based on synthetic data, one on
simulated data and two on clinical multimodal image data of the brain (MR) and
knee (MR). Herein we show improved or equivalent performance compared to other
state-of-the-art groupwise (dis)similarity measures in terms of registration accuracy,
in addition to an efficient scaling of the computational complexity.

Based upon: Polfliet, M., Klein, S., Niessen, W. J., & Vandemeulebroucke, J. Laplacian
Eigenmaps as a Dissimilarity Measure in Multimodal Groupwise Registration.
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6.1 Introduction

Groupwise image registration has numerous applications, such as atlas con-
struction (Fletcher et al., 2009; Joshi et al., 2004; Serag et al., 2012; Wu et al.,
2011, 2016), multi-atlas based segmentation (Bhatia et al., 2007; Makropoulos
et al., 2017), longitudinal population analysis (Davis et al., 2010; Huizinga et al.,
2018) and spatiotemporal motion estimation (Metz et al., 2011; Royuela-del Val
et al., 2016; Yigitsoy et al., 2011). However, registering groups of biomedical
images with differences in the intensity distribution, due to anatomical changes
or different acquisition protocols, remains challenging. Such multimodal group-
wise registrations require suitable (dis)similarity measures which are capable of
handling the intensity differences and are applicable to both small and large
groups of images. Whereas pairwise multimodal registration is typically based
on mutual information (Maes et al., 1997; Wells et al., 1996), its extension to
groupwise registration, multivariate mutual information, is not straightforward.
Using normalized histograms to estimate the entropy, leads to an exponentially
increasing number of histogram bins. Herein, sparsity is of major concern and
the images that can be registered using such an approach are limited to a small
group.

A number of methods have been proposed to alleviate or circumvent the issue
of sparsity in the joint intensity space. One can approximate the probability dis-
tribution differently using Gaussian clusters (Studholme and Cardenas, 2004)
or Gaussian mixture models (Orchard and Mann, 2010). However, these ap-
proaches remain subject to sparsity in the joint intensity space for large groups.
Alternatively, entropic graphs provide an estimation for the entropy without
calculating the probability distribution (Neemuchwala et al., 2006). Herein,
the entropy is estimated based on some length descriptor of a graph (minimal
spanning tree length, k-nearest neighbors graph length, ...) in the joint in-
tensity space. Other authors avoided the need to calculate high-dimensional
joint entropies and compared every image in the group with every other im-
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approach has exclusively been applied to monomodal images (Balci et al., 2007;
Warfield et al., 2002) and has not been validated for multimodal registration.
Additionally, sparsity occurs when the number of images in the group is low.

In this work we propose a novel dissimilarity measure for multimodal group-
wise registration in which we represent a joint intensity relationship in
n-dimensional intensity space (where n is the number of images in the group)
using manifold learning, a technique for non-linear dimensionality reduction.
Dimensionality reduction attempts to reduce high-dimensional data in the ob-
servable space to low-dimensional data in the latent space while minimizing the
loss of information. It is typically performed in the context of machine learn-
ing as a feature extraction step. Non-linear dimensionality reduction assumes
that the data lies on or close to a low-dimensional manifold embedded in the
high-dimensional space. It attempts to find the manifold onto which the high-
dimensional data is best reduced. Several methodologies have been proposed to
perform manifold learning, including local linear embedding (Roweis and Saul,
2000), isomap (Tenenbaum et al., 2000) and Laplacian eigenmaps (Belkin and
Niyogi, 2003). We present a novel dissimilarity measure for groupwise multi-
modal registration based on the Laplacian eigenmaps algorithm, given its effi-
ciency (Azampour et al., 2014) and similar interpretability to principal compo-
nent analysis (Sharma et al., 2009). The measure is expressed as the magnitude
of the second generalized eigenvalue from the Laplacian. Every sampled co-
ordinate can be considered as an observation or sample in the joint intensity
space and the dimension to be embedded is the group dimension, e.g. the cross-
sectional dimension in population analysis, the temporal dimension in motion
analysis or the multimodal dimension in multi-parametric MRI.

Dimensionality reduction algorithms have previously been applied to image
registration and a short overview is provided. We highlight some key differences
between the different algorithms and differentiate between two groups, those
where the dimensionality reduction is applied to the spatial dimensions and
those where it is applied to the group dimension.

First we will discuss spatial methods. In Wachinger and Navab (2012) and
Azampour et al. (2014) a manifold of image patches was built using Lapla-
cian eigenmaps where the dimensionality of the observable space was equal
to the volumetric size of the image patches. An image patch with a size of
three by three by three pixels would result in a 27-dimensional space to be
reduced. The manifold was used to obtain a structural representation of mul-
timodal images, allowing the resulting structural images to be registered with
a monomodal (dis)similarity measure. Similarly, Guerrero et al. (2011) used
Laplacian eigenmaps to localize landmarks based on image patches. The struc-
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tural representation, obtained from the dimensionality reduction, could then be
employed to predict the displacements. Aforementioned approaches, together
with Baumgartner et al. (2014); Lombaert et al. (2014); Piella (2014); Zimmer
et al. (2019), applied a dimensionality reduction algorithm where the dimen-
sionality of the observable space was defined by the spatial size of the image or
image patches.

For the group methods, Melbourne et al. (2007) and Polfliet et al. (2018)
applied principal component analysis (PCA) to the group dimension to build
template images, these images were then compared in a pairwise manner to
the other images in the group with the cross-correlation and the conditional
entropy, respectively. In all previously discussed methods, dimensionality re-
duction was performed as part of a multi-step approach where it typically was
employed as a preprocessing to extract features or an improved intensity rep-
resentation. Huizinga et al. (2016), on the other hand, proposed to use PCA,
a linear dimensionality reduction technique, to register groups of quantitative
MRI images. Herein, PCA was applied on the group dimension and it was as-
sumed that more variance in the intensity correlation matrix can be explained by
its first few eigenvalues when the images are closer to alignment. As a result, the
eigenvalues themselves could be employed as an intensity-based (dis)similarity
measure.

In this work we propose a novel dissimilarity measure for multimodal group-
wise registration based on Laplacian eigenmaps, which does not require any pre-
or postprocessing and we ensure its tractability through the use of a stochastic
optimization approach. The proposed measure is evaluated in four datasets and
compared to state-of-the-art multimodal groupwise (dis)similarity measures.
Two datasets include synthetic or simulated data and two datasets include clini-
cal intersubject data. This work extends our previous conference paper (Polfliet
et al., 2017) presented at SPIE, Medical Imaging 2017. Compared to the con-
ference paper, this work includes a method for automated hyperparameter es-
timation, experiments on new datasets, timing and smoothness results, and a
hyperparameter robustness experiment. Additionally, we have investigated how
different (dis)similarity measures behave as a function of the number of images.
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6.2 Material and methods

6.2.1 Groupwise registration

In groupwise registration we consider a group of n images for which the transfor-
mations to a common reference frame are unknown. The following optimization
problem can be considered to determine these transformations:

µ̂ = arg min
µ

C (I1, . . . , In; Tµ1 , . . . , Tµn) , (6.1)

where C is the cost function, typically defined as the weighted sum of a dissim-
ilarity measure, D, and a regularizer, R. The dissimilarity measure evaluates
the misalignment of the transformed images, Ii ◦ Tµi . Tµi : Ω ⊂ R3 → Ωi ⊂ R3

is the transformation that maps the coordinates from the common reference
domain, Ω, to the domain of the ith image, Ωi, and µi are the parameters that
define Tµi . For the optimization, µ is defined as a vector formed by the con-
catenation of all separate transformation parameters, µi. Ii : Ωi ⊂ R3 → R
is the continuous intensity function of the ith image assuming an appropriate
interpolation scheme on the discrete image.

The cost function in Eq. (6.1) is typically calculated over a finite number,
s, of coordinate samples, xj ∈ Ω and for each sample (j = 1 . . . s) and image
(i = 1 . . . n) the intensity value Ii (Tµi (xj)) is computed. These intensity values
can be represented by a single s × n matrix M . We will denote the column
vector mi as the ith column and the row vector mj as the jth row of the matrix
M .

6.2.2 Laplacian eigenmaps

Laplacian eigenmaps (LE), originally proposed by Belkin and Niyogi (2003), is
a technique commonly employed to perform manifold learning and its procedure
can be subdivided in three steps. In the context of image registration formulated
in Eq. (6.1), these steps are given as:

1. Construct an undirected simple graph in which every row mj of the s×n
matrix M is an n-dimensional node (or vertex) in the graph spanning
the joint intensity space. Each node is connected with an edge to its
neighbours, determined by a nearest neighbour search.
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Figure 6.1: Joint intensity space with 2048 coordinate samples, s, for a group
of images including a CT, MR-T1 and PET (a) before and (b) after alignment.
The color coding represents the value of the first coordinate in the embedded
manifold of the samples, i.e. v1. When the images are aligned, the spatial
samples are less dispersed in the joint intensity space and they more closely
conform to an intensity relationship which can be represented by, in this case,
a one-dimensional manifold.

2. Construct the s× s weight matrix, W , where

Wab =

{
0 if a, b are not connected

e−
||ma−mb||2

t if a, b are connected
(6.2)

Herein, t is a scalar hyperparameter of the procedure and referred to as
the diffusion time. The diffusion time is discussed in further detail in
Sec. 6.2.5

3. Embed the manifold into a lower dimension by optimally preserving the
locality, i.e. the distance between the nodes, in the graph with respect to
a suitable objective function.

Let vj be such a mapping of mj onto a 1-dimensional line. The third step in
the algorithm is then achieved by minimizing the following objective function

1

2

∑

a,b

(
va − vb

)2
Wab = vTLv , (6.3)
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where L = D−W is the Laplacian of the graph and D the diagonal matrix of
the graph with its elements Daa =

∑
b
Wab. The minimization in Eq. (6.3) with

respect to v, under the constraint vTDv = 1 to remove the arbitrary scaling,
can be reduced to a generalized eigenvalue problem

Lv = λDv . (6.4)

6.2.3 LE-based dissimilarity measure

We propose to use the Laplacian eigenmaps algorithm to model the (quasi-)
manifold originating from the intensities of multimodal images in the joint in-
tensity space. Specifically, the second smallest eigenvalue, λ1, (the smallest
eigenvalue is equal to zero) of the eigenvalue problem posed in Laplacian eigen-
maps can be used as a dissimilarity measure which needs to be minimized,

DLE = λ1 . (6.5)

More commonly known as the Fiedler eigenvalue or the algebraic connectivity,
the properties of this eigenvalue and associated eigenvector have been studied
extensively in graph theory (Fiedler, 1973). Historically the magnitude of the
algebraic connectivity was used to express the connectivity and robustness of the
graph, where a lower value for the eigenvalue corresponds to a lower connectivity
in the graph.

The proposed Laplacian eigenmaps-based measure is similar to the PCA-
based measures from Huizinga et al. (2016). Indeed, Sharma et al. (2009) have
previously shown that the eigenvalues obtained from LE are closely related to
those of PCA. Where PCA maximizes the variance in the original coordinates, it
can be shown that LE maximizes the variance in the embedded coordinates with
the inverse of the eigenvalues from Eq. (6.4), i.e. λ−1, expressing the explained
variance.

We hypothesize that when the images are misaligned, the samples in the
joint intensity space are dispersed more, and less variance in the embedded
space is captured by the first eigenvalue of Eq. 6.4, leading to a larger value
of the proposed dissimilarity measure in Eq. 6.5. This concept is illustrated in
Fig. 6.1 where the joint intensity space for a group of three images is given, a CT
image, an MR image and a PET image (taken from the RIRE database (West
et al., 1997)). After alignment the intensities are less dispersed and more clus-
tered. Note that while the interpretation is similar to the PCA-based measures,
the proposed measure based on LE could capture more complex, non-linear re-
lationships in the joint intensity space, potentially allowing for the alignment
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of multimodal images. Moreover, the historical interpretation of the Fiedler
eigenvalue to correspond to the connectivity and robustness of the graph can
be understood from a clustering perspective. When the images are aligned, the
nodes in the graph corresponding to different anatomical structures are tightly
clustered in different regions of the joint intensity space. Here, the removal of a
single node can break the graph apart in several subgraphs, making the graph
fragile and its connectivity low. However, at misalignment, outlier nodes (cor-
responding to one anatomical structure in one image and to another structure
in other images) are more likely to occur, which add additional connectivity
between the intensity clusters.

The proposed dissimilarity measure based on LE can also be interpreted to
be similar to the correlation ratio (CR). Roche et al. (1998a,b) proposed CR
as an alternative to mutual information in multimodal pairwise registration. It
was subsequently employed and extended to register US-MR image pairs (Rivaz
et al., 2015; Roche et al., 2001), DT-MRI (Zvitia et al., 2010) and respiratory
CT (Wolthaus et al., 2006). As a similarity measure, the CR takes values be-
tween 0 and 1, where a value of 0 indicates no functional dependence between
the two images and a value of 1 can be interpreted as a high functional de-
pendence. The correlation ratio is expressed as the variance of the conditional
expectation of the target intensities given the reference intensities, relative to
the variance of the target intensities (Roche et al., 1998a). As such, both the
CR and the proposed measure based on LE maximize the variance of a set
of projected intensities, the conditional expected intensities and the Laplacian
embedded intensities, respectively. In the CR, the variance of the target inten-
sities is split between the part that can be explained by the reference (which is
maximized) and the part which cannot be explained (which is minimized). In
the proposed LE-based measure, variance of the embedded intensities is split
between the different eigenvalues. The variance which can be explained by the
first eigenvalue is maximized, while the variance in the other eigenvalues is min-
imized. Note however that in the correlation ratio a functional relationship is
assumed, meaning that for every input only one output value exists in the func-
tion. A manifold, employed in LE, is not bound by such restrictions and can
be employed to represent more general intensity relationships, which is a fun-
damental point of difference. Furthermore, the correlation ratio is asymmetric
with respect to the target and reference image, each taking a different role in
the calculation of the measure (the target image being conditionalized on the
reference). The proposed dissimilarity measure, however, is symmetric and each
image in the group is considered equally.



86 CHAPTER 6. LAPLACIAN EIGENMAPS FOR REGISTRATION

of multimodal images. Moreover, the historical interpretation of the Fiedler
eigenvalue to correspond to the connectivity and robustness of the graph can
be understood from a clustering perspective. When the images are aligned, the
nodes in the graph corresponding to different anatomical structures are tightly
clustered in different regions of the joint intensity space. Here, the removal of a
single node can break the graph apart in several subgraphs, making the graph
fragile and its connectivity low. However, at misalignment, outlier nodes (cor-
responding to one anatomical structure in one image and to another structure
in other images) are more likely to occur, which add additional connectivity
between the intensity clusters.

The proposed dissimilarity measure based on LE can also be interpreted to
be similar to the correlation ratio (CR). Roche et al. (1998a,b) proposed CR
as an alternative to mutual information in multimodal pairwise registration. It
was subsequently employed and extended to register US-MR image pairs (Rivaz
et al., 2015; Roche et al., 2001), DT-MRI (Zvitia et al., 2010) and respiratory
CT (Wolthaus et al., 2006). As a similarity measure, the CR takes values be-
tween 0 and 1, where a value of 0 indicates no functional dependence between
the two images and a value of 1 can be interpreted as a high functional de-
pendence. The correlation ratio is expressed as the variance of the conditional
expectation of the target intensities given the reference intensities, relative to
the variance of the target intensities (Roche et al., 1998a). As such, both the
CR and the proposed measure based on LE maximize the variance of a set
of projected intensities, the conditional expected intensities and the Laplacian
embedded intensities, respectively. In the CR, the variance of the target inten-
sities is split between the part that can be explained by the reference (which is
maximized) and the part which cannot be explained (which is minimized). In
the proposed LE-based measure, variance of the embedded intensities is split
between the different eigenvalues. The variance which can be explained by the
first eigenvalue is maximized, while the variance in the other eigenvalues is min-
imized. Note however that in the correlation ratio a functional relationship is
assumed, meaning that for every input only one output value exists in the func-
tion. A manifold, employed in LE, is not bound by such restrictions and can
be employed to represent more general intensity relationships, which is a fun-
damental point of difference. Furthermore, the correlation ratio is asymmetric
with respect to the target and reference image, each taking a different role in
the calculation of the measure (the target image being conditionalized on the
reference). The proposed dissimilarity measure, however, is symmetric and each
image in the group is considered equally.

6.2. MATERIAL AND METHODS 87

6.2.4 Optimization

With the proposed dissimilarity measure being graph-based, its optimization can
be challenging. Changing one edge in the graph induces a discrete, discontinuous
(and thus non-differentiable) change in the measure value, making gradient-
based optimization difficult. Alternatives in non-gradient-based optimization,
such as an evolution strategy, would typically not guarantee optimality either
and Klein et al. (2007) have previously shown that the convergence rate of such
an evolution strategy is too low to be competitive. As such, in our experiments
gradient-based optimization is performed. It should be noted that the following
derivation for the gradient of the proposed measure should be considered as
an approximation since it does not take into account possible changes in the
topology of the graph.

The approach of de Leeuw (2007) was followed to calculate the derivative of
an eigenvalue:

∂DLE

∂µ
= vT

1 (
∂L
∂µ

− λ1
∂D

∂µ
)v1 . (6.6)

Herein is v1 the eigenvector associated to λ1. To ease the notational burden we
will drop the subscript on v1 and λ1 hereafter and rewrite W from Eq. (6.2) as

W = e−
R̃
t . (6.7)

Where R̃ = τ (R) and τ the function is which sets all elements to zero if they
are not connected with an edge in the graph. R is written as

R =
n∑

i=1

Ri

=
n∑

i=1

(mi ◦mi)1
T + 1 (mi ◦mi)

T − 2mim
T
i

(6.8)

with 1 a column vector of size s with all elements equal to 1 and ◦ the Hadamard
product. Its derivative can then be found to be:

∂R̃

∂µ
=τ

(
2

n∑

i=1

(
mi ◦

∂mi

∂µ

)
1T + 1

(
mi ◦

∂mi

∂µ

)T

−

mi

(
∂mi

∂µ

)T

−
(
∂mi

∂µ

)
mT

i

)
.

(6.9)
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Employing Eq. (6.7, 6.8) to rewrite L and D in Eq. (6.6) and expanding all
products leads to

∂DLE

∂µ
=
− (1− λ)

t

∑

a

va
∑

b

(
Wab

∂R̃ab

∂µ

)
va−

−1

t

∑

a

va
∑

b

(
Wab

∂R̃ab

∂µ

)
vb .

(6.10)

Introducing Eq. (6.9) herein results in

∂DLE

∂µ
=
−2

t

n∑

i=1

∑

a

∑

b

(1− λ)Wab

[
v2ami,a + v2bmi,a − v2bmi,b − v2ami,b

− 2vami,avb + 2vavbmi,a

]
∂mi,a

∂µ
.

(6.11)

In our implementation, the graph, needed to construct Eq. (6.2), was built
using k nearest neighbors and a brute force approach which scales quadratically
with respect to the number of coordinate samples, s. Note that other methods
exist to construct the graph, most notably the approximate nearest neighbors
algorithm (Arya et al., 1998) or a fixed-radius approach. To obtain the eigen-
values from Eq. (6.4), the Lanczos algorithm for sparse symmetric matrices was
employed (Lanczos, 1950) which scales linearly with the number of coordinate
samples and the average number of edges connecting to a node in the graph.
Furthermore, the proposed algorithm requires the construction of several ma-
trices (such as W , D, L and R̃) of size s × s, which would be troublesome in
terms of memory consumption and computation time when the measure is cal-
culated deterministically over the entire sampling domain, discretized to a voxel
level. Registering a group of images of size 512×512×512 voxels would require
more than 32.000 TB for one such matrix at 16bit precision. It is clear that
such an approach would be unfeasible and to resolve this issue, we propose to
combine the LE-based measure with a stochastic optimization approach. Here,
only a limited number of random coordinates samples, s, are considered in each
iteration of the registration algorithm. As a result, the size of the matrices is
reduced to a tractable level and significantly speeds up the calculation of the
eigenvalues.
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An adaptive stochastic gradient descent was employed where the number
of random coordinate samples, s, was set to the default value of 2048, follow-
ing Klein et al. (2009b). The number of iterations was fixed to the default value
of 2000, after which convergence was assumed.

6.2.5 Hyperparameter settings

The application of Laplacian eigenmaps requires finetuning two hyperparame-
ters, the number of nearest neighbors in the graph, k, and the free parameter in
Eq. (6.2), t. Setting the nearest neighbors, k, to a smaller value leads to a more
detailed characterization of the manifold, highlighting the outlier voxels which
require the largest deformation. Care should be taken not to ‘break’ the graph
into multiple subgraphs, as the Fiedler eigenvalue collapses to zero and is only
defined for a connected graph. As such, the lowest number which does not break
up the graph is a good starting point for finetuning the number of nearest neigh-
bors, k. t can be rewritten to 2σ2 giving Eq. (6.2) its resemblance to a Gaussian
kernel. As an alternative to finetuning the parameter, we propose to set this
hyperparameter, σ2, to 10 times the variance of ||ma −mb||2 in Eq. (6.2) and
to recalculate it after a predefined number of iterations. This allows for nodes
who are far apart to still influence the constructed manifold. Furthermore, dy-
namically setting the hyperparameter, σ2, is necessary due to the changes in
the manifold during the registration process. Note that alternative approaches
exist to set this hyperparameter, t (Sharma et al., 2009).

Following the approach of Balci et al. (2007) we constrain the transforma-
tions such that the sum of all deformations for a given coordinate in the common
sampling domain, Ω, is equal to zero

1

n

n∑

i=1

Tµi(x) = x, ∀x . (6.12)

6.3 Data and experiments

In this work, experiments were performed on four datasets. The first dataset
featured synthetic data and the second dataset featured simulated data from
the BrainWeb database (Cocosco et al., 1997; Collins et al., 1998). The third
and fourth dataset included clinical data, MRI acquisitions of the brain in
neonates (Wang et al., 2019) and MRI acquisitions of the knee (Balamoody
et al., 2010; Williams et al., 2010).
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6.3.1 Experimental settings

We compared the proposed LE-based measure with four other groupwise dis-
similarity measures suited for multimodal registration problems. Accumulated
pairwise estimates of mutual information (APEMI) compares every image in the
group to every other image in terms of mutual information and sums these es-
timates (Wachinger and Navab, 2013). The average mutual information (AMI)
compares every image in the group to the current average intensity image in
terms of mutual information (Bhatia et al., 2007). The conditional template
entropy (CTE) compares every image to the principal component image in
terms of conditional entropy (Polfliet et al., 2018). Finally, the PCA2 measure
was included, which is expressed as a weighted sum of the variance explained
by the progressing eigenvalues of the intensity correlation matrix of the im-
ages (Huizinga et al., 2016). Aside from the choice of dissimilarity measure, all
other experimental settings remained fixed for every experiment to avoid con-
founding factors. All experiments were performed single-threaded on the local
high performance cluster.

A multiresolution approach was employed with deformable transformations
based on cubic B-splines (Rueckert et al., 1999). The proposed dissimilarity
measure was implemented as part of the software package elastix (Klein et al.,
2010) and is made publicly available.

All deformable registrations were regularized with a groupwise bending en-
ergy (Polfliet et al., 2018). The hyperparameters related to the cost functions,
such as the regularization weight, the number of histogram bins for entropy-
based measures and the number of nearest neighbors in the graph, were fine-
tuned with respect to the validation scores to obtain the best result for each
(dis)similarity measure and dataset separately.

Hyperparameters unrelated to the cost function were set either to their de-
fault value, such as the number of random coordinate samples in the adaptive
stochastic gradient descent optimizer, s, or empirically, such as the number of
resolutions or the control point spacing. These hyperparameters were set to a
constant value for all (dis)similarity measures in a given dataset. The employed
values of the most important hyperparameters are presented in Table 6.1.

6.3.2 Synthetic dataset

First, an experiment performed by Roche et al. (1998b) was repeated for the
groupwise measures under consideration. This experiment demonstrated the
shortcoming of mutual information-based measures in images with bias fields,
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Table 6.1: Summary of the registration hyperparameters employed in the dif-
ferent datasets.

Dataset Number
of

images

Reso-
lutions

Histo-
gram
bins

Grid
spacing
(mm)

Spatial
samples

Iter-
ations

Nearest
neigh-
bors

Synthetic 2 1 48 N.A. 1200/All N.A. 400
BrainWeb 30-90 2 48 6.0 2048 2000 120
iSeg 10-46 7 32 4.0 2048 2000 65
MRI
Knee

86 7 32 6.0 2048 2000 10

Figure 6.2: Images in the synthetic dataset with a bias field.

Figure 6.3: Images in the synthetic dataset with a non-linear intensity relation-
ship.



92 CHAPTER 6. LAPLACIAN EIGENMAPS FOR REGISTRATION

which are typically present in MRI-based acquisitions. Two images of 30-by-40
pixels were progressively translated relative towards each other. The first image
consisted of only two intensities (0 and 1), whereas the second image contained
a continuous spectrum of intensities, resembling a bias field (Fig. 6.2). This
hampers mutual information-based measures, as intensities are spread across
different bins in the joint histogram, and alignment does not lead to a decrease
in joint entropy.

Secondly, an experiment was performed where the first image consisted of
only two intensities (0 and 0.5) and the second image contained three intensities
(0, 0.5 and 1) to simulate a non-linear intensity relationship between the two
images (Fig. 6.3). It is expected that measures based on linear dimensionality
reduction will fail to model the non-linear intensity relationship and fail to
indicate the correct optimum.

Thirdly, an experiment was performed to investigate the effect on computa-
tion time when increasing the number of images. The images from the second
experiment were added to a group of increasing size (i.e. size 2, 5, 10, 20, 50,
100, 200, 500 and 1000) and the time to perform a single iteration was measured.

Due to the synthetic nature of the images (only three distinct intensities)
and a limited amount of samples therein, all pixels of the images (s = 1200)
were used to calculate the values of the (dis)similarity measures. Furthermore,
σ2 was set manually to be equal to the variance of ||ma −mb||2 instead of the
automatic setting discussed in sec. 6.2.4. This proved to be necessary due to
large discrete intensity differences in this synthetic example.

6.3.3 BrainWeb dataset

BrainWeb (Cocosco et al., 1997; Collins et al., 1998) allows for users to download
simulated brain images of three MRI modalities (T1, T2 and PD). Examples
of the images are shown in Fig. 6.4. For our experiments, additive Gaussian
noise and a 40% intensity non-uniformity field were added to the images. The
influence of an increasing number of images in the group was investigated for
all (dis)similarity measures. T1 images were grouped and the number of images
in the group was increased from 30 to 90 with a stepsize of 10. Separately, the
influence of additional modalities in the group of images was investigated. 30
T2 and subsequently 30 PD images were added to a group of 30 T1 images,
leading to a total of, respectively, 60 and 90 images.

Twenty random deformable transformations were synthesized for each sep-
arate group of images with a B-spline control point spacing of 8 voxels and the
registrations attempted to recover the generated transformations with a control
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Figure 6.4: Top - Original BrainWeb images. Bottom - Noisy BrainWeb images.
Left - PD modality. Center - T1 modality. Right - T2 modality.

point spacing of 6 voxels. The random transformations were confirmed to be in-
vertible by verifying that the Jacobian determinant was positive everywhere. 40
landmarks were used to quantify the registration accuracy using the groupwise
target registration error (gTRE):

gTRE (µ) =
1

n

n∑

i̸=r

1

|Pi|

|Pi|∑

j

||Ti,r (pi,j)− pr,j || (6.13)

where r is the index of the reference image, Pi the collection of landmarks in
the ith image, Ti,r the transformation that maps the coordinates from the ith

image to the reference image and pi,j the jth landmark from the ith image. The
initial gTRE before registration is 1.51mm.
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6.3.4 iSeg dataset

For the 2017 iSeg Challenge, 10 T1 and T2 pairs of neonatal brain images were
made available with ground truth segmentations of the grey and white matter
and cerebrospinal fluid, together with 13 T1 and T2 pairs without ground truth
segmentations (Wang et al., 2019). The T1 images were acquired as sagittal
slices with TR/TE = 1900/4.38 ms, a flip angle of 7◦ and a resolution of
1 × 1 × 1 mm3 and the T2 images as axial slices with a TR/TE = 7380/119
ms, a flip angle of 150◦ and a resolution of 1.25 × 1.25 × 1.25 mm3. These
images were corrected for bias fields present in the MRI acquisitions. However,
due to cortical organization and myelination of the white matter during the
first two years of pediatric brain development, contrast inversion of gray and
white matter can take place in MR imaging. This has led several authors to
use multimodal (dis)similarity measures in registration tasks involved in brain
atlas construction, even after intensity standardization algorithms have been
applied (Bhatia et al., 2007; Blesa et al., 2016; Klein et al., 2009a; Xue et al.,
2007).

Similar to the experiments performed with the BrainWeb dataset, we inves-
tigated the influence of increasing the number of images and modalities in the
registrations. First, registrations were performed on 10 T1 images for which
ground truth segmentations were available, then progressively including addi-
tional T1 images with a stepsize of 2. Secondly, starting from the same 10 T1
and 10 T2 images for which ground truth segmentations were available, addi-
tional T1-T2 pairs were included with a step size of 4 images (i.e. 2 pairs).

Validation of all registration results was performed on the 10 images where
a ground truth segmentation was available, employing a groupwise Dice score
(gDice) and a smoothness score (Smo):

gDice (µ) =
1

h

1

n

h∑

g=1

n′∑

i=1

2|Ag
i ∩ Sg

i ◦ Tµi |
|Ag

i |+ |Sg
i ◦ Tµi |

(6.14)

Smo (µ) =
1

n

n∑

i=1

STD

(∣∣∣∣
∂Tµi

∂x

∣∣∣∣

)
. (6.15)

In Eq. 6.14, h is the number of structures which were annotated (in this case
the grey and white matter and cerebrospinal fluid) and n′ is the number of
images for which segmentations are available. Sg

i is the segmentation of the

gth structure in the ith image. Ag
i = ⌊ 1

2 + 1
n′−1

n′∑
j ̸=i

Sg
j ◦ Tµj⌋ is a majority



94 CHAPTER 6. LAPLACIAN EIGENMAPS FOR REGISTRATION

6.3.4 iSeg dataset

For the 2017 iSeg Challenge, 10 T1 and T2 pairs of neonatal brain images were
made available with ground truth segmentations of the grey and white matter
and cerebrospinal fluid, together with 13 T1 and T2 pairs without ground truth
segmentations (Wang et al., 2019). The T1 images were acquired as sagittal
slices with TR/TE = 1900/4.38 ms, a flip angle of 7◦ and a resolution of
1 × 1 × 1 mm3 and the T2 images as axial slices with a TR/TE = 7380/119
ms, a flip angle of 150◦ and a resolution of 1.25 × 1.25 × 1.25 mm3. These
images were corrected for bias fields present in the MRI acquisitions. However,
due to cortical organization and myelination of the white matter during the
first two years of pediatric brain development, contrast inversion of gray and
white matter can take place in MR imaging. This has led several authors to
use multimodal (dis)similarity measures in registration tasks involved in brain
atlas construction, even after intensity standardization algorithms have been
applied (Bhatia et al., 2007; Blesa et al., 2016; Klein et al., 2009a; Xue et al.,
2007).

Similar to the experiments performed with the BrainWeb dataset, we inves-
tigated the influence of increasing the number of images and modalities in the
registrations. First, registrations were performed on 10 T1 images for which
ground truth segmentations were available, then progressively including addi-
tional T1 images with a stepsize of 2. Secondly, starting from the same 10 T1
and 10 T2 images for which ground truth segmentations were available, addi-
tional T1-T2 pairs were included with a step size of 4 images (i.e. 2 pairs).

Validation of all registration results was performed on the 10 images where
a ground truth segmentation was available, employing a groupwise Dice score
(gDice) and a smoothness score (Smo):

gDice (µ) =
1

h

1

n

h∑

g=1

n′∑

i=1

2|Ag
i ∩ Sg

i ◦ Tµi |
|Ag

i |+ |Sg
i ◦ Tµi |

(6.14)

Smo (µ) =
1

n

n∑

i=1

STD

(∣∣∣∣
∂Tµi

∂x

∣∣∣∣

)
. (6.15)

In Eq. 6.14, h is the number of structures which were annotated (in this case
the grey and white matter and cerebrospinal fluid) and n′ is the number of
images for which segmentations are available. Sg

i is the segmentation of the

gth structure in the ith image. Ag
i = ⌊ 1

2 + 1
n′−1

n′∑
j ̸=i

Sg
j ◦ Tµj⌋ is a majority

6.4. RESULTS 95

voted label atlas image of the gth annotated structure based on all transformed
segmentations in the group except the segmentation that is being tested (to
avoid any bias). The initial gDice score in this experiment before registration
was 39%. In Eq. 6.15, ‘STD’ refers to the standard deviation taken over all
coordinates, x, in the image domain (Huizinga et al., 2016). The smoothness
score can be employed to signal physically implausible or extreme deformations.

6.3.5 MRI knee dataset

86 T1 MRI images of the knee were made available by the OsteoArthritis Initia-
tive with associated ground truth segmentations for the femoral cartilage, lat-
eral and medial tibial cartilage and the lateral and medial meniscus (Balamoody
et al., 2010; Williams et al., 2010). The images were acquired with sagittal slices
and a double echo steady state sequence at a resolution of 0.36×0.36×0.7 mm3

and not preprocessed or corrected for intensity inhomogeneities commonly asso-
ciated to MRI acquisitions. These intensity inhomogeneities can be considered
to be similar to the problems faced in multimodal registration and are typically
solved by using multimodal (dis)similarity measures (Klein et al., 2009a).

The experimental design is similar to the experiments in the iSeg and Brain-
Web dataset. The influence of an increasing number of images was investigated
by performing registrations with 36, 46, 56, 66, 76 and 86 images. Similar to
the iSeg dataset, validating the obtained transformations was achieved with the
gDice (Eq. 6.14) of the five available anatomical structures and the smooth-
ness score (Eq. 6.15). The intial gDice score before registration was 0% due
to poor initialization. To be able to directly compare the validation results
across registrations with different number of images, the same 36 ground truth
segmentations were used across all validations, even when more segmentations
were available.

Additionally, to investigate the impact the hyperparameters can have on
the registration accuracy and to verify the effectiveness of the automatic hyper-
parameter estimation of t, a hyperparameter robustness experiment was per-
formed. Here, the values of the two hyperparameters of the proposed dissimi-
larity measure, t and k, were varied. These registrations were performed without
regularization to avoid possible confounding effects.
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Figure 6.5: The behavior of the different (dis)similarity measures with images
from the Synthetic dataset (a) including a bias field and (b) including a non-
linear intensity relationship. The measure values are normalized between 0 and
1 for clarity. The dashed vertical lines indicate integer voxel displacements.

Figure 6.6: The computation time of a single iteration for the investigated
dissimilarity measures. Note the log-log scale.
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6.4 Results

6.4.1 Synthetic

The behavior of the different (dis)similarity measures for the Synthetic dataset is
given in Fig. 6.5 with the measure values normalized between 0 and 1 for clarity.
All measures under investigation are implemented as dissimilarity measures, i.e.
minimizing the negative mutual information instead of maximizing it. As such,
the global optimum is achieved when the normalized measure value reaches zero.

The proposed measure based on LE was able to identify the correct mini-
mum in both cases. In the experiment involving images with a bias field, all
entropy-based measures (AMI, CTE and APEMI) failed to recognize the cor-
rect minimum. In the experiment involving images with a non-linear intensity
relationship, the PCA-based measure (and AMI) failed to indicate the correct
minimum. It should be noted that all measures, except PCA2, suffered from
intensity interpolation artifacts at non-integer voxel displacements similar to
the experiment performed in Roche et al. (1998b).

Furthermore, in the third experiment, where we explored the time a single
iteration requires, we can see in Fig. 6.6 that the LE-based measure has a
completely different scaling behaviour when increasing the number of images.
Increasing the size of the group of images 500-fold (from 2 to 1000) increased
the computational time approximately 6-fold (10× 103s to 58× 103s), whereas
APEMI increased the computation time 72000-fold.

6.4.2 BrainWeb

Results on the accuracy and computation time for the BrainWeb dataset are
given in Fig. 6.7(a) and 6.8(a).

In the monomodal registrations involving only T1 images of the BrainWeb
phantom, PCA2 performed best in terms of accuracy with a gTRE of 1.10 mm
to 0.90 mm for registrations of 30 and 90 images, respectively; where LE scored
second best with a gTRE of 1.23 mm to 1.25 mm. For the registrations including
multimodal data, PCA2 performed best with a final gTRE of 0.94 mm and LE
performed second best with a gTRE of 1.40 mm. In general, entropy-based
measures performed poorly in terms of accuracy compared to measures based
on dimensionality reduction and even deteriorated the initial alignment with an
intial gTRE of 1.51 mm.

In terms of computational cost, registrations with LE showed the best scaling
behaviour with the computation time only increasing twofold when the number
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of images in the group was increased from 30 to 90. Other measures showed
close to a tenfold increase. However, only when 90 images were used in the
registration, the computation time of LE was equivalent or better than the
other (dis)similarity measures.

6.4.3 iSeg

In Fig. 6.7(b), 6.8(b) and 6.9(a), the results on the accuracy, computation time
and smoothness for the iSeg dataset are provided. In Fig. 6.10 vizualizations of
the deformations fields are shown.

Both APEMI and LE demonstrated relatively stable registration accuracy
for an increasing number of images with similar registration accuracy. Their
gDice scores remained stable from 78.6% and 77.4% for 10 images in the group
to 77.9% and 77.8% for 46 images in the group, for APEMI and LE respectively.
The registration accuracy of template-based methods (AMI and CTE) suffered
from the inclusion of multimodal images in the group. Despite the multimodal
nature of the T1 and T2 images, PCA2 performed adequately compared to the
other (dis)similarity measures.

The transformations for PCA2 were most smooth compared to other ap-
proaches, whilst APEMI and LE performed comparable to each other and
template-based methods performed worst.

In terms of computation time, registrations with the reference measures
(AMI, CTE, APEMI and PCA2) performed comparable, showing large increases
in their computation time as the number of images in the group increased.
Whereas registrations with LE are associated with a high cost for small groups
of images, they showed little dependence on the computation time of the number
of images in the group, becoming competitive in terms of efficiency from 45
images upwards.

6.4.4 MRI knee

The gDice scores, computation times and smoothness scores for the experiment
with MRI Knee data are given in Fig. 6.7(c), 6.8(c) and 6.9(b). In Fig. 6.11 the
group of images is displayed as a concatenation before and after registration.

The results for the gDice show comparable performance for all (dis)similarity
measures for all image group sizes (within 1% gDice).

In terms of the smoothness score, the proposed dissimilarity measure per-
formed best. For all methods, a decreasing trend could be noticed when more
images were included in the registration.
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(a) BrainWeb (b) iSeg

(c) MRI Knee

Figure 6.7: Registration accuracy results as a function of the number of images
in the registration for the (a) BrainWeb, (b) iSeg and (c) MRI Knee dataset. (a)
gTRE results (lower is better) for the BrainWeb dataset. The errorbars indicate
the standard deviation over the 20 repeated registrations. ‘Monomodal’ refers to
registrations including T1 images only and ‘Multimodal’ refers to registrations
which also includes T2 and/or PD images. (b) gDice scores (higher is better)
for the iSeg dataset. ‘Monomodal’ refers to registrations including T1 images
only and ‘Multimodal’ refers to registrations which also included T2 images. (c)
gDice scores (higher is better) for the MRI Knee dataset.
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(a) BrainWeb (b) iSeg

(c) MRI Knee

Figure 6.8: Computation times (lower is better) as a function of the number
of images in the registration for the (a) BrainWeb, (b) iSeg and (c) MRI Knee
dataset. In (a) the errorbars indicate the standard deviation over the 20 re-
peated registrations, ‘Monomodal’ refers to registrations including T1 images
only and ‘Multimodal’ refers to registrations that also included T2 and/or PD
images. In (b) ‘Monomodal’ refers to registrations including T1 images only
and ‘Multimodal’ refers to registrations that also included T2 images.
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(a) BrainWeb (b) iSeg

(c) MRI Knee

Figure 6.8: Computation times (lower is better) as a function of the number
of images in the registration for the (a) BrainWeb, (b) iSeg and (c) MRI Knee
dataset. In (a) the errorbars indicate the standard deviation over the 20 re-
peated registrations, ‘Monomodal’ refers to registrations including T1 images
only and ‘Multimodal’ refers to registrations that also included T2 and/or PD
images. In (b) ‘Monomodal’ refers to registrations including T1 images only
and ‘Multimodal’ refers to registrations that also included T2 images.
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Figure 6.9: Registration smoothness results (lower is better) as a function of
the number of images in the registration for the (a) iSeg and (b) MRI Knee
dataset. In (a) ‘Monomodal’ refers to registrations including T1 images only
and ‘Multimodal’ refers to registrations that also included T2 images. Note
that for AMI some points could not be plotted on the graph. This was due to
extreme bending at the edge of the ROI which created extreme outlier values.
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(a) LE (b) PCA2 (c) AMI

(d) CTE (e) APEMI

Figure 6.10: Axial slice of the iSeg dataset overlayed with the resulting defor-
mation field for the different measures under study.
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Large differences can be observed for the computation times. Herein, LE
scored best and required 32 hours to complete the registration when all 86
images are employed in the registration. As a result a speedup of factor 2-3
is achieved compared to the other measures. In addition to the best absolute
performance in terms of computation times, the proposed measure also showed
the best scaling behaviour.

For the hyperparameter robustness experiment the results are shown in
Fig. 6.12. Limited impact on the registration accuracy is noted over the tested
range of hyperparameter values. The automatic hyperparameter estimation for
t was effective to both simplify the hyperparameter optimization and increase
the accuracy of the method.

6.5 Discussion

In the experiments based on synthetic data, the correct optimum was found
by the proposed method based on Laplacian Eigenmaps, showing its potential
to be applied to various registration problems. The experiments on synthetic
data highlight that LE can be utilized both for multimodal data with non-linear
intensity relationships, where PCA-based measures would fail; and for data with
complex intensity profiles caused by bias fields, where entropy-based measures
would fail. Additionally, in the third experiment we highlight the favorable
scaling behaviour of the computation time with respect to the number of images
in the registration for the proposed measure based on LE.

The experiments based on the BrainWeb, iSeg and MRI Knee dataset showed
consistent results. First, in terms of registration accuracy, the LE measure per-
formed second best (after PCA2) in the experiments on the BrainWeb dataset,
achieves the best results (together with APEMI) in the experiments based on the
iSeg dataset and performs similar to the other dissimilarity measures in the ex-
periment on the MRI Knee dataset. Secondly, in all three datasets the proposed
methodology showed an increase in computation times which was considerably
less with an increasing number of images compared to other (dis)similarity mea-
sures. These results imply an efficient computational approach for large groups
of images as we previously highlighted in section 6.2.4. Note, however, that
some increase in the computation times with an increasing number of images
is to be expected due to other components of the registration algorithm with
such a dependency (e.g reading the images to memory or the calculation of the
regularizer).

For the smoothness results we can observe a trade-off between a more ac-
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Figure 6.11: Partial concatenation of all images used in the MRI knee dataset.
Each image in the group is represented in the concatenation image in four to five
sequential slices along the coronal axis to highlight the remaining intersubject
differences in the anatomical structures (a) Axial and (b) sagittal view before
registration. (c) Axial and (d) sagittal view after registration.
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Figure 6.12: Hyperparameter robustness results for registrations on the MRI
knee dataset with varying hyperparameters, t and k. The colour coding repre-
sent the gDice scores and the white squares indicate failed registrations. The
top row indicates the automatic hyperparameter estimation proposed in this
work.

curate, but simultaneously a more complex (i.e. non-smooth) transformation
in Fig. 6.9(b). This trade-off holds in Fig. 6.9(a) if the template-based meth-
ods (AMI and CTE) are excluded. This is qualitatively confirmed in Fig. 6.10.
The most complex deformation fields were generated from AMI and CTE, while
PCA2 produced the simplest deformation field. It should be noted that pro-
ducing smooth transformations might not necessarily be a desirable property
of a (dis)similarity measure. For example, in cases where sliding motion occurs
(such as in the thoracic or abdominal region) or in inter-subject registration
where certain structures might not co-occur in both patients (such as implants
or lesions). This was not the case in this work.

It is important to emphasize that in these datasets, neither the computa-
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tion times, the transformation smoothness nor the registration accuracy suffered
from including additional images in the registration for the proposed methodol-
ogy. This property could aid in the unbiased construction of population atlases
where only a limited number of annotations are available. Including additional
and possibly unannotated images could lead to a closer representation of the true
population average to which the annotated images could be mapped, without
the burden of extra computation time or reducing the smoothness or accuracy
of the registration result. This was illustrated in Fig. 6.13. Here, the label and
intensity atlas images were constructed from the 10 image sets for which the
annotations were available in the iSeg dataset. In the top row, the source inten-
sity and label images were transformed to the atlas space with the result from
the groupwise registration where the intensity images were utilized for which
annotations were available (n = 10). In the bottom row, all intensity images
(n = 23) were incorporated in the groupwise registration and the transforma-
tions to the atlas space for the 10 labeled image sets were extracted and applied
before constructing the atlas images. It is clear that a different resulting atlas
was obtained, potentially more representative of the population mean, due to
the use of more images in the analysis. Herein, a registration technique for
which the registration accuracy (or timing) is not hampered by the number of
images in the group is especially important.

PCA2 has performed on par with other multimodal (dis)similarity measures
in all experiments with non-synthetic data despite the multimodal nature of
some of the included images. In the BrainWeb dataset, we registered T1, T2
and PD images, whereas T1 and T2 images were registered in the iSeg dataset.
It is plausible to assume that given the similarity in the imaging modalities, an
almost linear subspace exists that PCA-based measures can exploit to drive the
registration. The linear assumption of PCA-based measures obtains a simpler
embedding or representation compared to the non-linear embedding achieved
with Laplacian Eigenmaps. With more degrees of freedom to obtain the em-
bedding, Laplacian Eigenmaps may overfit and embed noise, especially when a
simpler embedding exists. This could explain the superior performance of PCA-
based measures compared to the proposed LE-based measure in the BrainWeb
dataset. Additionally, it should be noted that PCA2 uses all eigenvalues of
the intensity correlation matrix to compute the dissimilarity measure. Exploit-
ing other eigenvalues in the LE-based measure, besides the well-known Fiedler
eigenvalue, could improve the registration accuracy and would be an interesting
direction for future research.

In this work we compared different dissimilarity measures in terms of reg-
istration accuracy with a gTRE or Dice score. However, other measure prop-
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Figure 6.13: (a) Axial and (c) coronal view of the intensity atlas images con-
structed using intensity averaging. (b) Axial and (d) coronal view of the cor-
responding label atlas images constructed using majority voting. In the top
row, the source intensity and label images were transformed to the atlas space
with the result from the groupwise registration where the intensity images were
utilized for which annotations were available (n = 10). In the bottom row,
all intensity images (n = 23) were incorporated in the groupwise registration
and the transformations to the atlas space for the 10 labeled image sets were
extracted and applied before constructing the atlas images.

erties such as the capture range, distinctiveness of the optimum or risk of non-
convergence (Skerl et al., 2006) could be of interest and insightful as well, and
should be studied in future research.

It is interesting to discuss the proposed measure based on Laplacian eigen-
maps and its similarities to entropic graphs for groupwise registration. Both ap-
proaches are graph-based, where the graph is constructed in the joint intensity
space. Where LE tries to minimize the inverse of the explained variance with the
first eigenvector of the Laplacian, entropic graphs try to minimize some length
descriptor (minimal spanning tree length, k-nearest neighbors graph length, ...)
of the graph. With the Fiedler eigenvalue closely related to the average distance
of the nodes in the graph (Mohar et al., 1991), it is expected both methods are
closely related. The relationship between both methods remains to be fully
investigated.

Given the wide range of registration problems in which the correlation ra-
tio has been used, and the similarities between the proposed measure and the
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correlation ratio, it would be interesting to expand the validation to additional
modalities such as ultrasound and CT in the future.

6.6 Conclusion

In this work we have proposed a novel dissimilarity measure for multimodal
groupwise registration. The method is based on Laplacian Eigenmaps, a non-
linear dimensionality reduction technique, and is employed to capture complex
non-linear intensity relationships. The dissimilarity is expressed as the magni-
tude of the Fiedler eigenvalue, the second generalized eigenvalue of the Laplacian
of the graph constructed in the joint intensity space. The measure, combined
with the automatic hyperparameter estimation and stochastic gradient descent,
showed improved or equivalent performance compared to other state-of-the-art
groupwise (dis)similarity measures in terms of registration accuracy, in addi-
tion to an efficient scaling of the computational complexity with respect to the
number of images in the group.
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CHAPTER 7

Discussion and conclusion

7.1 Main findings

This thesis contains two main contributions. We compare groupwise registra-
tion to repeated pairwise registration in several experiments with respect to
registration accuracy and transitivity, a measure which can be interpreted as
the consistency of the transformations in a groupwise setting. Secondly, we fill
a gap in current literature on efficient (dis)similarity measures for multimodal
groupwise registration.

In Chapter 3, registrations were performed in the head and neck region
of patients with oral squamous cell carcinoma. For this clinical application, we
concluded that a conventional pairwise, rigid registration method is the rec-
ommended approach. Furthermore, we showed improved performance in terms
of registration accuracy for the symmetric non-rigid transformation approach
compared to the asymmetric approach, although the differences did not reach
statistical significance. In other works the impact on registration accuracy was
found to be significant when applying a symmetric registration approach Aganj
et al. (2017); Lorenzi et al. (2013). Combining our findings with those in lit-
erature, we conclude that the choice of transformation strategy (symmetric vs.
asymmetric) can have an impact on the registration accuracy. This is of im-
portance to groupwise registration approach as they are often combined with
symmetric transformations to reduce the methodological bias in the registration
approach.

In Chapter 4, an investigation was performed on different template images
in groupwise registration based on mutual information. We showed that the
entropy of the template image can have a counter-productive contribution to
the global measure value. Additionally, in this chapter we performed an initial
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comparison in terms of registration accuracy between repeated pairwise and
groupwise registration approaches. We showed that equivalent performance in
terms of registration accuracy can be achieved with both approaches.

In Chapter 5, a novel similarity measure was introduced for multimodal
groupwise registrations. The conditional template entropy measures the aver-
age of the pairwise similarity of each image of the group and a template image,
which is constructed with the use of principal component analysis. The pair-
wise similarity is measured with the conditional entropy. The computational
complexity of the novel measure scales linearly with respect to the number of
images in the group. We furthermore showed improved or equivalent perfor-
mance in terms of accuracy compared to other state-of-the-art (dis)similarity
measures for multimodal groupwise registration and compared to multimodal
repeated pairwise registrations. We showed that groupwise registrations vastly
outperformed repeated pairwise registrations in terms of transitivity, which mea-
sures the transitive property of the transformations in a group of images and
can be interpreted as a measure for the consistency of the transformations in
a groupwise setting. These results are consistent with present literature (Geng
et al., 2009; Metz et al., 2011) and this property can be identified as one of the
advantages of groupwise approaches compared to repeated pairwise approaches.

In Chapter 6, to further improve on the efficiency of multimodal groupwise
registration for large groups of images, we proposed a novel dissimilarity measure
which is especially adept at registering such large groups of images. Laplacian
eigenmaps were employed, a technique that achieves non-linear dimensionality
reduction. The measure was formulated as the second smallest eigenvalue of the
generalized eigenvalue problem posed in the description of Laplacian eigenmaps.
The measure scales quadratically with the number of image samples employed
in the measure calculation. It is clear that such an approach would be unfeasible
when considering all image samples and to resolve this issue, we proposed to
combine the LE-based measure with a stochastic optimization approach, reduc-
ing the calculations to a tractable level. We showed a favourable scaling of the
measure in terms of computational time with respect to the number of images in
the group and showed equivalent or improved performance in terms of registra-
tion accuracy compared to state-of-the-art multimodal groupwise (dis)similarity
measures.
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7.2 Future perspectives

In this work all registrations were performed in elastix, a modular and open-
source library developed for medical image registration (Klein et al., 2010).
Initially designed for pairwise image registrations, elastix can also be employed
for groupwise registrations (Metz et al., 2011) despite a number of practical,
software implementation related drawbacks. All images in the group that need
to be registered are loaded into memory twice and must have the same origin,
voxel spacing and size, requiring them to be resampled prior to the registration
in some cases. Furthermore, the transformations in groupwise registrations
in elastix are formulated from the domain of the common reference space
to the domain of the reference spaces of the individual images in the group.
Such a formulation might be suboptimal (Allassonnière et al., 2007; Ma et al.,
2008). Efficient, modular and open-source software for groupwise registration
has yet to emerge and would increase its adoption rate in the image registration
community and clinical routine. Currently, the registration of large groups of
images is limited to powerful machines capable to fit the entire group into its
memory.

Additionally, such a modular and open-source tool would allow for researchers
to evaluate newly proposed methods to existing state-of-the-art methods more
easily. Rapid advances in AI research have shown that the focus on open source
and open data has a beneficial effect on research and innovation output. Open
(e-)health data has historically, and more recently with GDPR, been difficult
to achieve (Culnane et al., 2017). More recently however, advances have been
made to ensure privacy through novel methodologies (secure multi-party compu-
tation, homomorphic encryption, differential privacy, ...), proper infrastructure
and education of the data owners and data processors. Which leads to more
and more (open) data being available to transparently and reproducibly validate
and benchmark novel methods against in the medical domain.

The increasing availability of health data drives some interesting research
questions. Does the inclusion of more images in a groupwise registration result
in an improved registration result as we illustrated in Fig. 2.3? In other words,
does the additional data and the information it might carry (possibly resulting
in a better defined global optimum) outweigh the additional algorithmic com-
plexity? We could not find a clear answer to this question in present literature.
In Chapter 6, we have illustrated that for some methods the registration accu-
racy and transformation smoothness might be impacted, both favourably and
unfavourably. However, a thorough study is required to answer this research
question. Note that given the computational scaling of some registration algo-



112 CHAPTER 7. DISCUSSION AND CONCLUSION

rithms, increasing the number of images can have a detrimental effect on the
computational time required to perform the registration. In such cases a trade-
off between accuracy and computational timing may be required. Furthermore,
it is interesting to discuss this research question in parallel to the peaking para-
dox or phenomenon (occasionally seen in pattern recognition research). This
paradox states that in a pattern recognition classifier (or regressor), the recog-
nition accuracy initially increases when more features are added. However, once
enough features have been added the accuracy peaks and deteriorates thereafter.

Several works show that groupwise registrations (Metz et al., 2011; Huizinga
et al., 2016) obtain smoother transformations compared to repeated pairwise
approaches. In this work we did not investigate what the driving force is behind
this regularizing effect. However, it would be interesting from both a theoretical
and practical perspective to investigate the relationship of this smoothing of the
transformation further, especially its relationship to other explicit regularization
terms such as the bending energy penalty or a localized rigidity penalty. Does
explicit regularization influence the transformation smoothness in the same or
in a different manner? Is an explicit regularization term required in groupwise
registration? Furthermore, does this smoothing effect increase or grow when
more images are included in the groupwise registration? And should groupwise
approaches be avoided when smooth transformations are undesirable?

In recent years, major advances in learning-based approaches for image reg-
istration have shown promising results, especially those based on convolutional
neural networks. In such approaches registering images can be performed in
seconds instead of minutes or even hours, although at the cost that extensive
prior training is required. Such learning-based approaches can be subdivided in
supervised and unsupervised approaches. Where the former approach relies on
ground truth transformations to be available at the time of learning (which are
notoriously difficult to attain) (Cao et al., 2017; Sokooti et al., 2017), the latter
typically relies on a synthetically constructed loss function based on segmen-
tations or (dis)similarity measures such as the mean squared differences, the
cross-correlation or another differentiable measure (Balakrishnan et al., 2019;
de Vos et al., 2019; Sedghi et al., 2018; Yu et al., 2020; Lei et al., 2020). A
model is trained to generate a smooth displacement field at every voxel by
minimizing said loss function between the target image and the transformed
source image after the application of the displacement field. For those unsuper-
vised learning-based approaches based on (dis)similarity measures, the proposed
measures from Chapters 5 and 6 can be plugged in and serve as a loss function.
This could potentially speed-up registration even further while producing re-
sults, with similar or even improved accuracy. As such, developments in both
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learning and non-learning based approaches could parallelize efforts to improve
registration results.

Specifically in the context of groupwise image registration, it is interesting
to discuss the differences and similarities that exist between non-learning and
learning-based approaches. Consider the case where a large group of images
needs to be registered. A learning-based approach performs prior training on all
images in the large group, extracting valuable feature representations from the
group, and compresses it into an efficient model to perform image registration. A
non-learning-based groupwise approach, on the other hand, would include the
entire group of images in the optimization problem without any compression
which would require significantly greater computational resources. However,
considering all images simultaneously at runtime has the advantage that was
pointed out in Fig. 2.3. The ability to register two images, without any common
features between them, through confounding features in a third image remains
a compelling methodological advantage uniquely attributed to groupwise image
registration. As such, a combined approach where learning-based groupwise
registration is applied, would carry both the advantage of efficiency and possible
confounding image features.

More generally, outside the medical research field, learning-based computer
vision for pattern recognition could potentially benefit from efficient multimodal
groupwise registrations as well. When faced with too much variance in the data,
the images could be aligned to reduce the input data variability, for example in
the case of facial recognition such alignment is common practice.

7.3 General conclusion

This thesis deals with advances in groupwise image registration, which is of grow-
ing interest to the community given the increasing availability of medical imag-
ing data, both at the individual and the population level. We have shown that
groupwise registrations achieve comparable results in terms of registration accu-
racy compared to repeated pairwise approaches and that groupwise approaches
are superior in terms of the transitive error due to simultaneous estimation of
all transformations. We identified a lack of efficient (dis)similarity measures
for multimodal groupwise registration in existing literature and proposed two
novel measures as a solution: the conditional template entropy, an entropy-
based measure with a template image constructed with principal component
analysis, and a measure based on Laplacian eigenmaps. For these measures
specifically, we achieved equivalent or superior results in terms of registration
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accuracy compared to other state-of-the-art registration methods.
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accuracy compared to other state-of-the-art registration methods.
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Wolvius, E., Puppels, G., Koljenović, S., 2018. Evaluation of bone resec-
tion margins of segmental mandibulectomy for oral squamous cell carcinoma.
International journal of oral and maxillofacial surgery 47, 959–964.

Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P., Išgum, I., Staring, M.,
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