4,100 research outputs found

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed

    Planetary Microlensing: Present Status and Long-term Goals

    Full text link
    Massive gravitational microlensing programs were begun about a decade ago as a means to search for compact baryonic dark matter in the Galaxy, but before the first events were detected the technique was also proposed as a means of detecting extra-solar planets in our Galaxy. Current microlensing planet searches, which have been underway for four years, are sensitive to jovian-mass planets orbiting a few to several AU from their parent Galactic stars. Within two years, sufficient data should be in hand to characterize or meaningfully constrain the frequency of massive planets in this range of parameter space, nicely complementing information about planets at smaller orbital radii now being provided by radial velocity searches. In principle, the technique could be pushed to smaller planetary masses, but only if a larger number of faint microlensed sources can be monitored with higher precision and temporal sampling. The VST on Paranal, with spectroscopic follow-up with the VLT, may be the ideal instrument for such an ambitious program.Comment: Invited Review at VLT Opening Symposium, Antofagasta, Chile, March 1999. To appear in the Springer-Verlag series ``ESO Astrophysics Symposia'

    A Precise Distance to IRAS 00420+5530 via H2O Maser Parallax with the VLBA

    Full text link
    We have used the VLBA to measure the annual parallax of the H2O masers in the star-forming region IRAS 00420+5530. This measurement yields a direct distance estimate of 2.17 +/- 0.05 kpc (<3%), which disagrees substantially with the standard kinematic distance estimate of ~4.6 kpc (according to the rotation curve of Brand and Blitz 1993), as well as most of the broad range of distances (1.7-7.7 kpc) used in various astrophysical analyses in the literature. The 3-dimensional space velocity of IRAS 00420+5530 at this new, more accurate distance implies a substantial non-circular and anomalously slow Galactic orbit, consistent with similar observations of W3(OH) (Xu et al., 2006; Hachisuka et al. 2006), as well as line-of-sight velocity residuals in the rotation curve analysis of Brand and Blitz (1993). The Perseus spiral arm of the Galaxy is thus more than a factor of two closer than previously presumed, and exhibits motions substantially at odds with axisymmetric models of the rotating Galaxy.Comment: 33 pages, 12 figures; Accepted by ApJ (to appear March 2009
    corecore