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ABSTRACT
Researchers studying computer networks rely on the avail-
ability of traffic trace data collected from live production
networks. Those choosing to share trace data with col-
leagues must first remove or otherwise anonymize sensitive
information. This process, called sanitization, represents a
tradeoff between the removal of information in the interest
of identity protection and the preservation of data within
the trace that is most relevant to researchers. While sev-
eral metrics exist to quantify this privacy-utility tradeoff,
they are often computationally expensive. Computing these
metrics using a sample of the trace, rather than the entire
input trace, could potentially save precious time and space
resources, provided the accuracy of these values does not
suffer.

In this paper, we examine several simple sampling meth-
ods to discover their effects on measurement of the privacy-
utility tradeoff when anonymizing network traces prior to
their sharing or publication. After sanitizing a small sam-
ple trace collected from the Dartmouth College wireless net-
work, we tested the relative accuracy of a variety of previously-
implemented packet and flow-sampling methods on a few
existing privacy and utility metrics. This analysis led us to
conclude that, for our test trace, no single sampling method
we examined allowed us to accurately measure the trade-
off, and that some sampling methods can produce grossly
inaccurate estimates of those values. We were unable to
draw conclusions on the use of packet versus flow sampling
in these instances.

1. INTRODUCTION
Computer-network researchers depend on the availability

of traffic trace data collected from live production networks.
It is often difficult to obtain this type of data, however, which
aid in the solving of problems related to the structure and
usage of real-world networks. These difficulties are caused in
no small part by the imposing infrastructure requirements
and the need to obtain appropriate permissions to collect
trace data. Due to this scarcity of data, it becomes ex-
tremely important for the community of network researchers
to share available traces amongst several research projects;
this has resulted in the creation of data archive resources
such as CRAWDAD [10].

Those that choose to share trace data with their col-
leagues encounter the additional burden to remove or other-
wise anonymize sensitive information (e.g., identities of net-
work users or network topology). Identifying and properly
removing this information is often a daunting and complex

task, one that may deter researchers from releasing their col-
lected trace data. It is particularly difficult to identify the
types of data that are sensitive in network traces, leading to
the increased possibility of sensitive information remaining
within a trace thought to be properly sanitized.

Sanitization, by nature, represents a tradeoff between the
removal of information to fulfill privacy requirements and
the preservation of information that may be useful in later
analysis. To streamline the process of trace sanitization
and to better analyze this tradeoff, we proposed the Net-
SANI (Network Trace Sanitization and ANonymization In-
frastructure) framework and API [14]. Using either existing
or user-defined metrics, the framework is designed to allow
the researcher to analyze an anonymized trace to determine
whether it meets prespecified privacy and utility goals. In
computing the metrics, NetSANI works with a sample of
the collected trace with the goal of saving precious time and
resources when developing an anonymization scheme.

Trace sampling is hardly a new concept; the benefits and
accuracy of various sampling techniques have been analyzed
with respect to anomaly detection [1, 2, 23, 24], computation
of traffic flow statistics [5, 7, 12], network management [15],
and sample space efficiency [32]. However, little or no atten-
tion has been paid to the effects of sampling when analyzing
anonymized network traces.

In this thesis, we apply several well-known sampling meth-
ods to network traces and analyze their effect on some exist-
ing privacy and utility metrics. By comparing these results
to the same analysis on the unsampled traces, we seek to
discover which sampling methods produce the most accu-
rate estimates of the tradeoff between privacy and utility
and examine any trends in the experiments. These results
can then be used to benefit NetSANI, by either the identifi-
cation of globally-effective sampling methods or the discov-
ery of specific sampling methods that benefit a specific trace
analysis; the end goal is to allow researchers to quickly iden-
tify an appropriate anonymization strategy for their network
traces.

In Sections 2 and 3, we summarize some established network-
trace sampling methods and metrics to compute privacy and
utility, respectively. Then, in Section 4, we test a few of these
sampling methods on an anonymized TCP/IP network trace
to determine their effect on analyses of the privacy/utility
tradeoff on that trace. We discuss the results of these ex-
periments in Section 5 and how they may aid a researcher
to develop an adequate anonymization strategy. Finally, we
discuss related and future work in Section 6 and conclude in
Section 7.
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Figure 1: Examples of (a) periodic (1-of-n) sampling
and (b) random sampling.

2. SAMPLING METHODS
In this section, we introduce several methods used to sam-

ple or otherwise filter data. Because this thesis is concerned
about the effects of these sampling methods on network
traces in particular, we choose to group these methods into
two somewhat broad categories: those that operate by exam-
ining individual packets or records (record-based), and those
that operate on network flows (flow-based). The latter apply
only to packet traces, whereas the former may also apply to
other trace forms (such as network access-point association
logs).

Each of the sampling methods here behaves according to
fixed predefined rules for the entire sampling process; there-
fore, they are considered examples of conventional sampling.
Conversely, methods that are more complex and change be-
havior based on already seen data are considered adaptive
sampling [15].

2.1 Basic record-based sampling
The simplest of sampling methods, periodic sampling (also

known as deterministic or 1-of-n sampling), functions by
choosing every nth record in the original trace [7, 15]. Ap-
plying a probability distribution to the records results in a
variant method, random sampling. Each record processed
then has a probability 1/n of being included in the sample;
depending on the distribution function (such as uniform or
Poisson distributions), the number of records present in a
sample may vary run-to-run. Figure 1 shows basic examples
of periodic and random sampling.

Brauckhoff et al. [2] demonstrated that periodic sampling
of packets preserved the ability to accurately estimate packet
statistics, such as total packet count and average packet size.
Additionally, changes in the distribution of packet fields over
time – also called feature entropy – were also reasonably
well-preserved in the sampled trace even at high values of
n. Preservation of feature entropy is especially useful, as
variances in the entropies of specific fields have been used to
detect network anomalies such as DoS and portscans [20].
Unfortunately, periodic sampling was also shown to signif-
icantly degrade the ability to accurately estimate similar
statistics for flows contained within the trace, producing
“grossly inaccurate” results even at low values of n [2, 32].

2.2 Stratified record-based sampling
Stratified sampling attempts to improve on the methods

discussed in Section 2.1 by first using predetermined rules
to sort and separate records into mutually-exclusive groups,
or strata. Individual strata are then sampled separately,
often by periodic or random sampling as described above.
For example, Hernandez et al. [15] separated records into
fixed time-duration strata prior to sampling a single record
at random in each interval; this basic example of stratified

T 2T 3T 4T

Figure 2: Example of stratified sampling, as shown
by Hernandez et al. [15]. Upon dividing the trace
into fixed-time strata, each strata was then inde-
pendently sampled to choose one of its records at
random.

sampling is illustrated in Figure 2.

2.3 Flow-based sampling
A network flow (also known as a traffic flow) is an artifi-

cial construct analogous to a physical phone connection or
call, officially defined in RFC 2722 as “a portion of traffic,
delimited by a start and stop time, that belongs to [a net-
work entity]” [3]. The NetFlow protocol developed by Cisco
Systems defines by default a flow as a connection that either
terminates according to TCP protocol, or has seen no new
traffic in one minute [23].

The sampling of complete flows, or flow sampling, is an
alternative to record-based sampling, albeit one with a large
penalty in performance and space requirements, that allows
for more accurate estimates of unsampled flow statistics [1,
16]. Methods used to sample flows are similar to their
record-based counterparts once the flows present within the
packet trace are identified.

Periodic and uniform random sampling of flows has been
shown to have a bias towards larger, so-called “heavy-hitter”
or “elephant” flows [16]. Specific flow-sampling algorithms
have been developed that attempt to correct (or take ad-
vantage of) this bias and to address the high resource re-
quirements. In this section, we summarize a few of those
methods.

2.3.1 Opportunistic flow sampling
Androulidakis et al. [1] describe the concept of opportunis-

tic sampling, in which the sampling algorithm specifically
targets either larger or smaller flows to “[magnify] the ap-
pearance of anomalies within the sampled data set”, espe-
cially when an anomaly may be detected by outlying traffic.
The targeting of large flows is called smart sampling and the
targeting of small flows is called selective sampling.

Smart sampling. Smart sampling [1, 23] dictates that for
each flow F of size Fx bytes, the probability p(F ) that flow
F is selected in the sample is dictated by the expression in
Equation 1, where z is a threshold flow size to reduce space
requirements:

p(F ) =

{
Fx/z x < z
1 x ≥ z

(1)

Flows larger than the threshold are always chosen for
the sample, whereas flows smaller than the threshold are
sampled with probability proportional to their size. Mai et
al. [23] analyzed smart sampling with respect to portscan de-
tection, which relies on the presence of small flows to detect
possible anomalies; predictably, smart sampling performed
poorly in this instance.

Dartmouth TR2011-697 2



Selective sampling. Unlike smart sampling, selective sam-
pling takes the opposite approach, targeting smaller flows
that may be responsible for attacks such as DDoS, portscans,
and worm propogations. Selective sampling [1] is defined in
Equation 2, where c is a constant probability 0 < c < 1 that
a flow may be selected, z is a packets-per-flow threshold,
and n ≥ 1 is a parameter designed to allow further control
of the number of “heavy-hitting” flows in the sample:

p(F ) =

{
c x ≤ z

z
n · Fx

x > z (2)

Under certain circumstances, selective sampling was shown
to improve detection of anomalies, especially those that de-
pend on the presence of small flows; Androulidakis et al.
found “anomalies that would otherwise be untraceable” [1].

2.3.2 Hybrid methods
Many have attempted, with mixed results, to combine the

estimation accuracy benefits of flow-based sampling meth-
ods with the performance advantages of record-based sam-
pling methods.

An example of a hybrid approach is seen in the sample-
and-hold (S&H) method [13], in which a flow table F is
maintained during the parsing of records from a network
trace T . Each packet Ti, part of a flow FTi , is treated as
follows:

• if the corresponding flow is in the table, that is, FTi ∈
F , add Ti to the sample set;

• otherwise, sample the record with a probability p pro-
portional to its size. If packet Ti is selected for addition
to the sample set, also add FTi to F at this time.

Despite the potential benefits to this middle-of-the-road
approach, Mai et al. showed that the performance of S&H
was inferior to all other methods described above when small-
sized flows are desired in the sample [23]. In addition, by
definition, S&H may miss the beginnings of several flows,
and fail to recognize the termination of a flow. Therefore,
we did not implement this method in our experiments but
mention it here for completeness.

2.4 Adaptive and “fair” methods
Adaptive sampling methods, those that dynamically change

the sampling rate based on prior traffic, have also been
proposed primarily for their benefits during live collection
of data and passive traffic measurement, rather than post-
capture analysis; therefore, we only briefly mention them
here. Those performing passive traffic analysis are con-
fronted with several challenges, including the limited mem-
ory resources at collection points (routers) and the increas-
ing amount of network traffic given increased link capacity
and speeds.

When collecting trace data, it is also of interest to use
these resources to produce the “fairest” trace possible. Be-
cause the conventional sampling methods described above
tend to produce samples biased towards“heavy-hitting”flows,
“fair” in this context means determining methods to correct
this bias [17, 26], often at the expense of simplicity. To
make “fair” methods more feasible to implement, further ef-
forts have focused on reducing the space complexity required
to perform a fair sampling [32].

3. PRIVACY AND UTILITY METRICS
There are two types of metrics used in the analysis of

network traces: privacy metrics, which measure the degree
to which a sanitization method fulfills its predetermined re-
quirements, and utility metrics, which measure the useful-
ness of data preserved after the sanitization of a trace.

3.1 Privacy metrics
A privacy metric (also known as an anonymity metric),

is defined by Kelly et al. [18] as a quantification of how
well an anonymization strategy hides the identity of sensitive
information or users against a particular attack.

Individual privacy metrics may be sensitive to the under-
lying types or structure of the dataset to be analyzed or may
be generic enough to apply to a wider range of data formats.
In our work, we classify anonymity metrics into two broad
models: those that are microdata-based and those that are
network-based. Microdata-based metrics assume the dataset
is organized like a relational database in which certain fields
may be designated as “sensitive” a priori; network-based
metrics use statistical and probabilistic information about
the dataset to simulate an adversary’s knowledge. The Net-
SANI framework [14] is designed to accommodate both mod-
els, and our experiments here use examples of both types of
metrics.

3.1.1 k-anonymity
We begin with a well-known and simple microdata-based

metric, k-anonymity [6]. When preparing to release a dataset
that contains fields known to contain“sensitive”information,
we must recognize that the adversary may use some non-
sensitive fields in conjunction with externally available in-
formation to identify sensitive data; this set of attributes are
called quasi-identifiers [6]. An adversary may have external
information that maps quasi-identifiers to actual identities,
and thus may be able (with the released dataset) to map
identities to sensitive values. The microdata-based metric
of k-anonymity states that for each combination of values
of quasi-identifiers, that combination can be matched to at
least k identities.

The dataset presented in Table 1 is an example of an
anonymized dataset that achieves 2-anonymity with the set
of sensitive attributes S = query. This means that for each
individual record in the dataset, there exist at least 2 in-
stances of a single quasi-identifier Q = ip, date, time that
could be associated with that record’s sensitive value. In
our sample dataset, this means that the sensitive query of
“skin rash”could have originated from at least 2 records with
the quasi-identifier (96.234.68.2*, 2008-10-**, 23**).

k-anonymity is quite limited in its scope, and does not
attempt to measure the variety of sensitive values associated
with each quasi-identifier; for instance, all records within
the quasi-identifier (96.234.69.**, 2008-10-2*, 234*) in the
sample dataset can be associated with the sensitive query
“AIDS medicine”. Additional microdata-type metrics such
as l-diversity and t-closeness attempt to address this and
other shortcomings [18].

We can define k-anonymity as a simple ternary privacy
metric, as shown in Table 2; it measures privacy at three
levels: preserved, degraded, or eliminated. By specifying a
threshold value z, we measure whether the network trace is
k-anonymous such that k ≥ z. If so, then privacy is consid-
ered to be preserved; else privacy is considered degraded, or

Dartmouth TR2011-697 3



IP address Date Time Query

96.234.69.* 2008-10-2* 234* AIDS medicine
96.234.69.* 2008-10-2* 234* AIDS medicine
222.154.155.*** 2008-10-** 23** m-invariant
222.154.155.*** 2008-10-** 23** l-diversity
96.234.68.2* 2008-10-** 23** cook book
96.234.68.2* 2008-10-** 23** skin rash
96.234.68.2* 2008-10-** 23** filling station
96.234.68.2* 2008-10-** 23** winter coats
129.170.111.1** 2008-10-2* 235* tan salon
129.170.111.1** 2008-10-2* 235* mcdonalds jobs

Table 1: Sample dataset for a search engine network
log anonymized such that k-anonymity is achieved
for k = 2 [18].

in the case of k = 1, eliminated [18].

Privacy level Metric level = z
Preserved k ≥ z
Degraded k < z

Eliminated k = 1

Table 2: k-anonymity privacy metric [18].

3.1.2 L1-similarity
Prior to introducing the next metric, we introduce the

concept of a network object [8, 14]. A network object is
an entity whose identity a trace publisher seeks to protect
and/or retain utility, such as a host, subnet, or web page. It
is important to note that an object may be defined by more
than one record in a trace (multiple packets may be from
the same host); the converse holds, as a record may belong
to one or more network objects (for example, a TCP packet
refers to both the src host and the dst host).

L1-similarity [18] estimates the anonymity of an object by
computing a distance between the distribution of values of
an anonymized object X and the distribution of values of
an unanonymized object Y , defined as

sim(X,Y ) = 2−
∑

z∈X∪Y

|P (X = z)− P (y = z)|. (3)

The maximum value of sim(X,Y ) is 2, which represents
an identical distribution of features between the two objects.
This notion is somewhat counterintuitive, representing the
maximum preservation of anonymity because an attacker
fails to gain additional knowledge from the anonymized dataset.
Conversely, if the distributions of the two objects are totally
disjoint, the similarity is 0, and the attacker gains “complete

Privacy level Metric level = sim(X,Y )
Preserved sim(X,Y ) = 2
Degraded 0 < sim(X,Y ) < 2

Eliminated sim(X,Y ) ≈ 0

Table 3: L1-similarity anonymity metric [18].

Privacy level Metric level = Dr

Preserved Dr = 1
Degraded 0 ≤ Dr < 1

Eliminated Dr ≈ 0

Table 4: Entropy anonymity degree (EAD) privacy
metric [18].

or substantial knowledge of identities and relationships” [18].
This metric is summarized in Table 3.

3.1.3 Entropy anonymity degree (EAD)
Consider a situation of an adversary attempting to discern

the author of each of several messages sent across a network.
The adversary knows the set of all the possible authors, but
at the onset, it appears equally likely that any author may
have sent a given message. However, upon learning addi-
tional information, such as how prolific each author is, the
adversary is able to guess with more certainty which author
may have written a given message. The metric of entropy
anonymity degree uses entropy to measure how much infor-
mation the adversary has gained, and thus, the degree of
anonymity that the author of a message retains after the
attack [11].

Mathematically, let I be the set of distinct values that are
represented in a probability distribution X; in this case, each
i ∈ I represents an author ai in the set of all possible authors
A. Let pi represent the probability that ai is responsible
for a message. Therefore, pi = Pr(X = i), where Pr is a
probability mass function.

The entropy of this probability distribution is defined as
follows, where N is the size of the sample space [8, 11]:

H(X) = −
N∑
i=1

pi log2(pi) (4)

Entropy anonymity degree (noted Dr) normalizes the re-
sult of H(X) above, dividing it by the maximum entropy
Hmax = log2 N of the system:

Dr =
H(X)

Hmax
, (5)

where 0 ≤ Dr ≤ 1 [29].
Logically, the maximum degree of anonymity is achieved

when the attacker finds it equally likely that any author is re-
sponsible for sending a given message; likewise, anonymity
has been eliminated when the attacker is certain or near-
certain of the author of that message. This may be repre-
sented in an anonymity metric as follows (summarized in
Table 4): when Dr = 1, all values across the attribute are
equally likely, and privacy is fully preserved. As Dr de-
creases, privacy becomes increasingly degraded until, when
Dr = 0, privacy is considered fully eliminated.

Note that the value of EAD, Dr, is specific to the prob-
ability mass function Pr of the sample space X, which is
dependent on the type of information that the attacker pos-
sesses.

Dartmouth TR2011-697 4



3.2 Utility metrics
Quantified measurement of utility is difficult, because those

looking to use trace data (researchers) often have specific use
cases. Therefore, unlike the privacy metrics, developing an
overarching utility metric is a much more challenging en-
deavor [4]. Almost all metrics to date center on the concept
of anomaly detection as a measure of utility, because often
the search for anomalous traffic (e.g., DoS attack, portscan)
requires a wide range of useful data from the trace. For
example, several important anomalies may be mined from
examining the entropy of traffic features [1, 20]:

• DDoS attack: a distributed denial of service attack
attempts to target a single service, in order to make
a resource unavailable to others; the attack may come
from many sources.
Fields affected: large decrease in H for dst and dstprt.

• Portscan: in a portscan attack, a single sender sends
packets to a host over a wide range of ports, with the
intent to identify services available at the host.
Fields affected: large decrease in H for src, dst, and
srcprt, slight increase in H for dstprt, and slight de-
crease in H for Fx, the flow size.

• Worm propogation: a program that replicates itself
in an attempt to exploit and infect other machines.
Fields affected: large decrease in H for src and dstprt,
slight increase for dst and srcprt, and slight decrease
in H for Fx.

3.2.1 Snort
While it is possible to implement separate metrics measur-

ing detection of the attacks above, the open-source intrusion-
detection tool Snort [28] contains the tools necessary to
determine the type and extent of a wide range of anoma-
lies during either live packet capture or post-capture analy-
sis [21, for example]. Because Snort contains rules designed
to discover instances of all three attacks described above,
we develop a simple metric (Table 5) based on the number
and severity of alerts when running a TCP/UDP network
trace through the intrusion-detection tool; alerts with higher
severity and/or lower frequency are assigned higher utility
value.

Table 5: Snort utility metric: value assigned to alert
by type

Class Value
No Alert 0.0
Truncated header 0.1
TCP reset 0.2
SNMP request 0.3
TCP window close 0.3
SNMP trap 0.3
ICMP ping 0.4
ICMP ping NMAP 0.4
ICMP redirect host 0.4
ICMP unreachable host/port 0.4
SQL ping 0.7
TCP portscan 0.9
TCP portsweep 1.0

Because a trace theoretically has no measurable utility
limit, we compare the values of the utility metric of the raw
trace against the same analysis run on the sanitized trace.

4. EVALUATION
In this section, we present the results of our analysis of the

effects of the aforementioned sampling methods on privacy
metrics and Snort utility measurements on a modest-sized
trace.

The trace used for this analysis was collected over a nine-
hour period on the Dartmouth College campus wireless net-
work in December 2003 and contains 1,651,553 IP packets
with either TCP or UDP headers. It was collected using 18
wireless sniffers located in 14 buildings across campus.

4.1 Trace preparation
Prior to sampling the trace, we used the open-source anon-

tool [19] program to produce a sanitized version of our trace.
Its configuration was as follows:

• IP addresses: prefix-preserving mapping

• Port numbers: one-to-one mapping

• Payload: hashed

The payload of TCP/UDP packets was truncated during
collection of the trace. Thus, anontool calculates the hash
of the remaining payload data, if any exists.

By using this sanitization configuration, the count of pack-
ets and flows is consistent between the raw and sanitized
trace, and the distributions of features remain constant,
which allows us to measure the changes incurred upon these
distributions by the sampling methods.

4.2 Sampling configuration
In this subsection, we summarize the implementations of

our sampling methods and the configurations employed, to
produce sampled versions of our raw (pre-sanitization) and
sanitized traces.

4.2.1 Experiment framework and configuration
Packet-based sampling
To perform packet-based sampling on our traces in pcap for-
mat, we used a custom Python [27] wrapper for the C library
libpcap [22] to count the number of TCP and UDP packets
contained within the trace and collect field information as
necessary (e.g., src values when performing a stratified sam-
ple on that field), performed the selected sampling method
on the input trace, and constructed a new pcap trace con-
taining only the packets selected for the sample.

Flow-based sampling
Using the tool tcptrace [31] on default settings, we first
constructed a list of the distinct connections (flows) present
within our packet trace, and determined the total number of
TCP and UDP connections in the trace. With the detailed
output from tcptrace, we were then able to collect the ap-
propriate data needed about the trace (e.g., each flow’s size
in bytes, for smart sampling) – using this data, we wrote a
Python program to perform the selected sampling method
on the trace. Given the set of flows to be included in the
sample, we again used tcptrace to filter the trace and de-
termine the packets belonging to those flows; as before, we
then constructed a new pcap trace containing the packets
selected for the sample.

Dartmouth TR2011-697 5



4.2.2 Method parameters
For this analysis, we implemented deterministic and uni-

form random packet sampling, stratified packet sampling,
deterministic and uniform random flow sampling, smart sam-
pling, and selective sampling. Their configuration parame-
ters in our experiments are described in Table 6.

Table 6: Parameter configurations for sampling
methods used in analyses.

Packet Deterministic n = 1, 51, 111, ..., 961

Uniform random p = 1/1, 51, 111, ..., 961

Stratified
(Deterministic)

field= src
n = 1, 51, 111, ..., 961

field= srcprt
n = 1, 51, 111, ..., 961

Flow Deterministic n = 1, 51, 111, ..., 961

Uniform random p = 1/1, 51, 111, ..., 961

Smart z = 3, 503, 1003, ..., 9503

Selective
c = 0.03
n = 1, 100, 1000, 10000
z = 6, 8, 10, ..., 98

We chose parameters so that trends in privacy or utility
measurements could be best distinguished, with a secondary
goal that the sample trace sizes are roughly comparable be-
tween sampling methods. While deterministic and random
sampling can decrease the sample size (e.g., by increasing n
or decreasing p) until the size of the sample is 0, the oppor-
tunistic sampling methods’ sample size converges towards a
non-zero value, making direct comparison difficult between
individual traces produced by differing sampling methods.

4.3 Metric configuration
In this subsection, we briefly describe the specific imple-

mentations of the metrics described in Section 3.

4.3.1 k-anonymity
When calculating k-anonymity of the trace, we consider

one feature to be “sensitive” and the others to be quasi-
identifiers, leading to four cases:

Sensitive Field Quasi-identifiers
src {dst, srcprt, dstprt}
dst {src, srcprt, dstprt}
srcprt {src, dst, dstprt}
dstprt {src, dst, srcprt}

4.3.2 L1-similarity
We defined as a network object an entity called host.

Hosts are unique IP addresses that may appear in the src
or dst fields of a record in a packet trace; in other words, a
host is either a sender or a receiver of data during the time
period in which the trace was collected.

Formally, each host object A consists of records from T
with values on features F = {src, dst, srcprt, dstprt}, such
that A = t ∈ T : (tsrc = h ∨ tdst = h), where h is the
IP address for A. To measure the similarity between two
objects, we first calculate the distributions of distinct values

on each feature for the records contained within the host
object.

We measured the L1-similarity between an unanonymized
host Ar ∈ AR and an anonymized host As ∈ AS : for each
feature f ∈ F , we compared the distribution of distinct val-
ues in Arf and Asf , as in Equation 3. Due to trace sanitiza-
tion, these distinct values cannot be compared directly (e.g.,
IP address “67.23.134.45” anonymizes to “123.145.167.189”)
and we were thus forced to indirectly compare the distribu-
tions. We did this in our analysis by considering the most
frequently occurring value in Asf to represent the most fre-
quently occurring value in Arf , the second most frequently
values in Asf and to Arf to be the same, and so on. As de-
scribed in Section 3.1.2, the maximum value for sim(Arf , Asf )
is 2, which indicates that the two objects have identical dis-
tributions on the feature f , and there is a strong possibility
that Arf = Asf .

4.3.3 Entropy anonymity degree
As mentioned in Section 3.1.3, the probability mass func-

tion Pr required to calculate EAD is not specified. There-
fore, in our analysis, we were required to define our own
mass function.

The mass function we implemented for our experiments
was previously used by Coull et al. [8] as a portion of their
analysis to measure privacy over several iterations of ad-
versary deanonymization. The mass function is defined as
follows:

Pr(Arf = Asf ) =
sim(Arf , Asf )∑

a∈AR∪AS
sim(arf , as,f )

. (6)

This definition of the probability mass function assigns
the highest masses where similarity between two objects is
relatively high compared to the total similarity measured be-
tween all pairs of objects. For example, let sim(Arx , Asy ) =
1.8; if the average similarity between a raw object and sani-
tized object is 0.5, Pr(Arx , Asy ) would be much higher than
if the average similarity were 1.7.

We then calculated Shannon’s entropy (Equation 4), on
the set of values in Pr on each feature to calculate the EAD
at the field level. At the host level, the EAD is the sum of the
field-level entropies; to calculate the normalized EAD, whose
value is between 0 and 1, we divided the field-level EAD and
host-level EAD by log2 |AS | and |F | log2 |AS |, respectively,
as in Equation 5.

4.3.4 Snort
To perform our experiments, we obtained the core Snort

Engine and installed it on our test machine. Because the
Snort intrusion-detection system depends on an updated set
of rules to test traces against, we updated our rules to the
set current as of 2011-04-27.

To collect alert logs, we then ran Snort with these rules on
each input sampled trace, filtering for alerts on IP packets
only but otherwise run on default settings. (Alerts gener-
ated by packets with protocols other than TCP or UDP were
present in our log files; we discuss this effect when examin-
ing the results of our analyses in Section 4.4.3). After collec-
tion, we used a script to further parse and process these logs
to obtain counts of each unique alert type for our sampled
traces.
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4.4 Experiments
In this subsection, we present the results of our experi-

ments on the sample traces generated as described in Sec-
tion 4.2.

4.4.1 L1-similarity and EAD
The potential resource benefits of sampling are clear upon

examination of our chosen algorithm to calculate L1-similarity
between raw and anonymized objects. Because we compare
each raw object to each anonymized object, use of this met-
ric requires O(n2) time and space; reducing the input size,
even by a small amount, would therefore result in tangible
performance gains.

Due to our implementation of the L1-similarity metric as
the core for our EAD metric, we were able to directly ex-
amine whether similarity values are altered by the sampling
process, and if so, whether entropy values based on that
metric were also affected.

Calculating these metrics on our original unsampled trace
served as a baseline by which we could compare the accu-
racy of the same calculations when run on sampled raw and
sanitized traces; these baseline values are located in Table 7.
Note that in this and all other L1-similarity calculations in
our experiments, the value listed represents the average of
the L1-similarity values across all sanitized objects.

Unique hosts 1679
L1-similarity src dst srcprt dstprt

1.5314 1.4925 0.9112 1.4503
host: 1.3463

EAD src dst srcprt dstprt
0.99530 0.99513 0.97028 0.99486

host: 0.98889

Table 7: L1-similarity and EAD for unsampled san-
itized trace.

These results indicate that, over the 1,679 unique hosts lo-
cated in the trace file, the average similarity of hosts across
the src and dst objects are roughly the same and that the
distributions of these similarities are also comparable; the
entropy values for both src and dst are approximately 0.995
in the unsampled trace. The srcprt feature, however, fea-
tures notably less similarity between objects, raising the pos-
sibility that a host may be more sensitive to identification
by using external information about the srcprt field – the
lower EAD for the field seems to confirm this. We may,
therefore, consider the srcprt to be the “least private” field
when measuring the anonymity of hosts in our unsampled
trace.

Figure 3 presents the results of our calculations of the
L1-similarity of each feature f ∈ {src, dst, srcprt, dstprt}
and the host object for all samples described in Table 6.
Larger versions of these plots for each feature may be found
in Appendix A.

We chose the number of distinct hosts as our x-axis in
these plots because they reveal a clear trend in similarity
values for all features as the sampled trace size decreases;
L1-similarity measurements become artificially high even at
low sampling rates and then begin to decrease again as the
sample trace size approaches 0. None of the sampling meth-
ods tested here alters or mitigates this trend towards an

overestimation of L1-similarity values. Were there an end-
user who attempted trace sampling in conjunction with an
L1-similarity metric, that user could be led to believe, in
error, that the anonymized trace is more secure than it ac-
tually is.

Relationships in similarity between features are also dis-
torted (or lost entirely) in every sampling method tested.
For example, the similarity of field src is slightly greater
than the similarity of field dst in our non-sampled trace,
but as the sample size decreases, this situation quickly re-
verses itself. Distortions such as this make developing an
effective sanitization strategy more difficult, as they can al-
ter the perception of which fields are most insecure.

The results in Figure 3 are likely a result of the bias of the
sampling methods to select packets from larger “elephant”
flows and more prominent hosts in the trace – even selective
sampling fails to correct this bias; the resulting decreased
diversity in feature distributions would cause the similarity
values to increase. As sample size approaches zero, similar-
ity values are much more varied and scattered – especially
when using flow-sampling methods. This variation is due to
the fact that as the sampled trace shrinks, the removal of
additional packets or flows could just as easily increase the
similarity (as the sample becomes relatively more homoge-
neous) or decrease it (if the sample becomes less saturated
with dominant “elephant”-sized flows).

Figure 4 shows the calculation of entropy anonymity de-
gree using the same input traces and our similarity metric
from Figure 3 at its core. For all fields except srcprt (host
is based on an average of values including srcprt) the be-
havior of anonymity calculations is similar: as the sample
size (measured in distinct network hosts) shrinks, entropy
calculations remain at or slightly above the accurate value.
When the sample size decreases beneath approximately 800
distinct hosts, or about half the unsampled trace size, en-
tropy begins to decrease across the board, with this decrease
accelerating as the sample size approaches zero.

Entropy decreases when fewer network hosts are present in
the sample because the distributions between unanonymized
and anonymized objects are more easily placed in a one-to-
one mapping than may have occurred in a larger sample set;
each sanitized object is more likely to have a unique distri-
bution of features that can be matched with an equivalent
unsanitized object, whereas in a larger trace, there may be
several unanonymized objects with a similar distribution of
features.

These trends in entropy do not seem to apply to the srcprt
field, however, and the most likely reason is the large distor-
tion in similarity values for this field. As seen in Figure 3,
the rate of increase in L1-similarity values on the srcprt fea-
ture as sample size shrinks is greater than that of any other
feature. This result is likely due to an increased diversity in
source port values relative to the other fields, a theory con-
firmed in this case by examining some typical deterministic
packet samples, with increasing values of n (Table 8).

While the number of distinct source IPs and destination
IPs shrinks by about a factor of 4 between these three sam-
ples, the distinct count of source ports decreases by a factor
of 14 – this indicates that the number of records associated
with each source port is small. As sample size decreases,
the feature is dominated by a few more common ports and
many lesser-used ports are quickly filtered out even at low
sampling rates. This in turn causes the L1-similarity mea-
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Figure 3: Relationship between number of distinct hosts in a sampled trace and the corresponding L1-
similarity of each feature (including the host object). Note the different y-axis scale for the srcprt plot.
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n src dst srcprt dstprt
11 1163 474 7629 2708
111 566 221 1718 1009
511 219 117 538 389

Table 8: Distinct values for each feature in deter-
ministic packet samples.

surements for srcprt on the sample to increase and flatten
relative to each other, inaccurately increasing entropy at the
same time.

4.4.2 k-anonymity
The effects of sampling on k-anonymity are less clear, how-

ever, due to the fact that k for the sanitized trace is equal
to 1 on all fields. This is to be expected, as our sanitization
configuration did not involve the truncation of any data. By
not truncating data, we do not make any alterations to the
equivalence classes present in the unsanitized trace, and the
presence of just one quasi-identifier with one instance in the
dataset is enough to make k = 1 for the entire field.

The sole use of k-anonymity as a privacy metric is difficult,
however, due to the inability to identify sensitive attributes
with certainty. In our experiments, we attempted to judge
each field as sensitive, using the other three tested fields as
quasi-identifiers, as described in Section 4.3.1, with mixed
results. While an increase in k-anonymity in one of our
samples, such that k > 1, would indicate an inaccurate value
that could give a researcher a false sense of security, we did
not see this result in any of the sampled traces on any field.

Because k remains constant at 1 across all fields of all sam-
ples, we instead examined trends in the average size of equiv-
alence class for each feature present in our sampled traces
(Figure 5). Class size drops rapidly and non-linearly as
the host count decreases, indicating that the largest equiva-
lence classes quickly disappear from samples, as new smaller
equivalence classes are created, however, rather than de-
stroyed by the sampling process; this causes k to remain
constant at 1. The type of feature appears to affect equiva-
lence class size more than the distance feature count; equiv-
alence set size for both fields src and dst decreases to ap-
proximately 10 at sample size 1250 and approximately 2.5 at
the smallest sample sizes, despite there being over twice as
many unique sources as destinations in the trace (Table 8).

4.4.3 Snort alerts
Investigation of the effects of sampling on intrusion and

anomaly detection was similarly difficult because of the ten-
dency of sampling to reduce substantially the number of
alerts that Snort detects, which adversely affects the ability
to accurately predict the utility of the whole trace. A sum-
mary of the 2068 alerts triggered by the unsampled trace is
contained in Table 9.

Fully half of our sample traces (129 of 257) failed to trigger
any Snort alerts, while those that did trigger alerts only
triggered a small fraction of the utility total on its own; the
results are plotted in Figure 6. While the overall utility of
the sanitized trace was measured by Snort to be 568.4, this
figure includes ICMP packets that were filtered out in all of
the sampling processes – the sans-ICMP utility measure of
the unsampled anonymized trace was thus 371.6.

Only when using smart sampling, whose sample sizes all

Table 9: Snort alerts triggered by the unsampled
trace.

Alert type Frequency
ICMP unreachable host 1
ICMP unreachable port 206
ICMP ping 285
TCP reset 1012
TCP window close 564
total 2068

utility (Section 3.2.1) 568.4
utility (without ICMP included) 371.6

contained greater than 1200 unique hosts, were utility mea-
surements somewhat reliable and followed a basic trend, de-
creasing sharply in a somewhat-linear fashion until reaching
the smallest smart sample (z = 9503, 1231 unique hosts,
utility = 0.46). When sample size shrinks further, alert gen-
eration becomes hit-or-miss regardless of sampling method –
because different random samples can behave differently at
the same parameter settings – with no sample registering a
utility of greater than 11.4 (which occurred with determinis-
tic flow sampling, n = 211). Because of the unreliability (or
total lack) of alert counts, it is difficult to conclude that any
particular sampling method outperforms another. With the
possible exception of smart sampling, none of the sampling
methods tested would have allowed an accurate measure-
ment of utility; all would have severely underestimated the
utility of the trace, as defined by our metric.

4.5 Experiment limitations
The tests and measurements that we performed were con-

ducted on a single, relatively small (200MB) trace, which
precludes us from making broad-reaching conclusions about
the applicability of trace sampling to measure the privacy-
utility tradeoff in most circumstances or use cases. Because
only TCP and UDP headers were examined in our experi-
ments, there may be other types of records or protocols that
are more amenable to sampling. Finally, our experiments
themselves may not provide a comprehensive summary of
sampling methods to measure privacy and utility, as we have
focused on a small number of distinct metrics and did not
test any adaptive sampling methods, which may or may not
outperform the conventional methods tested here.

5. DISCUSSION
For the trace used in performing the above analyses, it is

apparent that none of the sampling methods tested would
have yielded accurate information about the privacy and
utility of the sanitized trace that could aid a researcher in
the task of releasing a network trace to the community. This
result does not rule out the ability of trace sampling to allow
an accurate estimation of the privacy-utility tradeoff, as the
trace used for these experiments was relatively small and
the sampling methods used here may differ in behavior on
larger or more diverse traces.
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But these results suggest that either additional research
into new sampling algorithms is needed, or that it may
be inappropriate to pursuit a one-size-fits-all approach to
sampling traces when measuring the privacy-utility trade-
off without a more intimate knowledge of the metrics being
used to measure that tradeoff.

Metrics relying on entropy, such as entropy anonymity de-
gree, seemed more able to absorb the changes in successively-
smaller sampled traces and produce somewhat accurate mea-
surements despite the noted changes in the L1-similarity
metric values that EAD was itself based on. Attempts to
distill EAD values for individual features down to a single
per-host privacy value could be misleading, however, as the
behavior of one field (srcprt) largely defines the EAD for
the entire host object in our experiments.

Because flow-based sampling did not definitively outper-
form packet-based sampling in any of our experiments, and
given its increased resource requirements, it would be diffi-
cult to recommend its use over packet-based sampling based
on these results. Were we to recommend a sampling strategy
for the trace tested in our experiments, a potential sampling
strategy to yield minor performance gains without signifi-
cant loss of accuracy could include:

1. limited deterministic (sample rate ≈ 2) packet sam-
pling to perform L1-similarity and EAD tests at a fea-
ture level, as they are the most performance-intense
metrics and least susceptible to disturbance by sam-
pling,

2. measuring k-anonymity without sampling, as the re-
sults (while somewhat unhelpful in this case) are rela-
tively easy to calculate and equivalence class sizes de-
grade quickly with even limited sampling, and

3. measuring utility using Snort without sampling, as any
sampling can seriously affect the number of alerts trig-
gered (and thus the inferred utility).

6. RELATED WORK AND FUTURE DIREC-
TIONS

Related work on packet sampling and its effects on net-
work traffic characterization was conducted by Claffy et
al. [7] and Hernandez et al. [15], the latter introducing adap-
tive methods to equal or outperform non-adaptive packet
sampling while reducing hardware or storage requirements
to collect the relevant traces.

Brauckhoff et al. [2] specifically examined the impact of
packet sampling on flow statistics and the ability to detect
the Blaster worm by examining changes in entropy. Mai
et al. [23, 24] demonstrated the ability to detect a range of
anomalies using a number of packet and flow-sampling meth-
ods, and Androulidakis et al. [1] used flow-sampling methods
to specifically target anomalies dependent on changes in en-
tropy across fields.

Kelly et al. [18] gathered a list of existing privacy metrics,
including metrics based on information entropy described
by Diaz et al. [11]. Coull et al. [8, 9] examined the sensitive
information that can be inferred from traces, methods to
measure privacy using a combination of entropy and L1-
similarity of feature distributions, and described an iterative
strategy to simulate an adversary’s attempt to deanonymize
data using externally available information.

Lakkaraju and Slagell [21] examined the use of Snort to
measure utility of a network trace. Research from Pang
et al. [25] and Slagell and Yurcik [30] discuss the inherent
tradeoff between privacy and utility when sanitizing network
traces. Finally, Fazio et al. [14] outlined a framework to
streamline the process of sanitizing traces for researchers
looking to best address this tradeoff.

To the best of our knowledge, however, there is no exist-
ing work that measures the effect of packet sampling (or flow
sampling) on the simultaneous measurement of privacy and
utility of a network trace, the so-called privacy-utility trade-
off. Additionally, this work treats trace sampling as one of
a series of steps to best utilize the resources of a researcher
seeking to anonymize and release a network trace with the
specific goal of allowing colleagues to conduct useful research
on the anonymized traces.

Future directions in work related to sampling and its effect
on measuring the privacy-utility tradeoff in network traces
include research towards more generally effective sampling
methods, and their specific effects on privacy and utility
metrics, and the ability to accurately “correct” measure-
ments using sampled traces to their unsampled equivalents.
Finally, future research could also examine multi-stage sam-
pling methods, or processes that combine one or more dis-
tinct sampling methods based on context, and their effects
on privacy and utility compared to using a single globally-
applicable sampling method.

7. SUMMARY
In this paper, we examine several simple non-adaptive

sampling methods to discover their effects on measurement
of the privacy-utility tradeoff when sanitizing network traces
prior to their sharing or publication. The results will be
applied to the recently-introduced NetSANI framework for
trace sanitization that seeks to ease the burden on researchers
to adequately sanitize their network traces (while preserv-
ing useful data) and share them with their colleagues. While
packet and flow sampling have been used and analyzed in the

Dartmouth TR2011-697 12



past for such applications as anomaly detection and traffic
measurement, little or no research has been done to sam-
pling’s direct effect on measuring both privacy and utility
at the same time.

After sanitizing a small sample trace collected from the
Dartmouth College wireless network, we tested the relative
accuracy of a variety of previously-implemented packet and
flow-sampling methods when measuring privacy with micro-
data, similarity, and entropy-based metrics, and on utility
by use of the Snort intrusion-detection system. The results
of this analysis led us to conclude that, for the test trace, no
single sampling method we examined was able to accurately
measure privacy and utility, and that some sampling meth-
ods can produce grossly inaccurate estimates of those values.
We also found it unlikely that a single “universal” sampling
method could be used to perform this analysis accurately
on a trace of any size. We were unable to draw conclusions
on the use of packet versus flow sampling in these instances,
nor were we able to gauge the accuracy of these experiments
on larger traces.
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APPENDIX
A. ADDITIONAL PLOTS

This section contains larger versions of the plots in Sec-
tion 4.4.1, to allow more detailed analysis of the individual
sampling methods.
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Figure 7: Relationship between sample size, in number of distinct hosts, and the measured L1-similarity on
the src field.
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Figure 8: Relationship between sample size, in number of distinct hosts, and the measured L1-similarity on
the dst field.

Dartmouth TR2011-697 16



0.800

1.000

1.200

1.400

1.600

1.800

02004006008001000120014001600

L1
-s

im
ila

rit
y 

(s
rc

pr
t)

Sample size (distinct hosts)

Unsampled
Packet-deterministic

Packet-uniform-random
Packet-stratified-src

Packet-stratified-srcprt
Flow-deterministic

Flow-random
Flow-selective-1

Flow-smart

Figure 9: Relationship between sample size, in number of distinct hosts, and the measured L1-similarity on
the srcprt field.
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Figure 10: Relationship between sample size, in number of distinct hosts, and the measured L1-similarity on
the dstprt field.
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Figure 11: Relationship between sample size, in number of distinct hosts, and the measured entropy
anonymity degree on the src field.
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Figure 12: Relationship between sample size, in number of distinct hosts, and the measured entropy
anonymity degree on the dst field.
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Figure 13: Relationship between sample size, in number of distinct hosts, and the measured entropy
anonymity degree on the srcprt field.
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Figure 14: Relationship between sample size, in number of distinct hosts, and the measured entropy
anonymity degree on the dstprt field.
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