

An Unsupervised Approach to DDoS Attack Detection

and Mitigation in Near-Real Time

Robert McAndrew

Colorado State University

 rmcand@colostate.edu

Stephen Hayne

Colorado State University

 stephen.hayne@colostate.edu

Haonan Wang

Colorado State University

 wanghn@stat.colostate.edu

Abstract

We present an approach for Distributed Denial of

Service (DDoS) attack detection and mitigation in
near-real time. The adaptive unsupervised machine

learning methodology is based on volumetric

thresholding, Functional Principal Component

Analysis, and K-means clustering (with tuning

parameters for flexibility), which dissects the dataset

into categories of outlier source IP addresses. A

probabilistic risk assessment technique is used to

assign “threat levels” to potential malicious actors.

We use our approach to analyze a synthetic DDoS

attack with ground truth, as well as the Network Time

Protocol (NTP) amplification attack that occurred

during January of 2014 at a large mountain-range
university. We demonstrate the speed and capabilities

of our technique through replay of the NTP attack. We

show that we can detect and attenuate the DDoS within

two minutes with significantly reduced volume

throughout the six waves of the attack.

1. Introduction

 Distributed Denial of Service (DDoS) attacks have

received significant global attention, because they are

increasing in frequency and severity [1]. DDoS occurs

when attackers flood the target systems with huge

amounts of traffic from many compromised systems,

leading to interruption of the victim’s services [2].

Direct costs to large organizations range from $50,000

to $100,000 per hour, and indirect costs can total much

higher. We describe a system (NetBrane) designed to

detect these DDoS in near real-time, and report on two

different mitigation strategies based on our

unsupervised outlier detection mechanism.
The contribution of this work lies in its combination

of multiple features. First, our system is a near-real

time monitor of all traffic on a network; that is, we can

analyze traffic accurately without the need for

sampling. This is a major benefit because using the

entirety of the dataset for anomaly (outlier) detection

provides the best possible results in terms of accuracy

[25]. Next, our outlier detection mechanism is

unsupervised, removing any dependence on having

labeled data. It is impractical to obtain labeled data in

many instances, especially in the case of a “new” attack

whose profile is unknown. This freedom from labels

also lets our mechanism be adaptive in the sense that it

only seeks to identify behaviors that are “unusual”

when compared to the majority of traffic. Such

adaptivity allows for the potential to detect “new”
attacks that supervised techniques cannot. Other

domains are also coming to the conclusion that

unsupervised learning is an attractive approach when

dealing with unlabeled data [26, 27].

 Detection and mitigation of DDoS is important

because attackers increasingly use DDoS events as a

smokescreen or distraction for more covert operations

that allow them to carry out data breaches [3]. Our

adversaries want not only to steal data or intellectual

property (for later use or sale), but also to disrupt the

operations of those targeted or impact their reputation.

DDoS have been reported in the +1Tb/s range, driven
by compromised Internet of Things (IoT) devices, such

as digital video recorders and security cameras [4].

Trends in the size of DDoS appear stable; growing at

approximately 6% per year since 2017 [1]. But the

median size is erratic, with cyclic growth. It seems

that when adversaries find new methods of attack, we

see a new peak, followed by a decline when the

method is mitigated (patched or blocked).

 In 2019, 95% hit at 11.3Gbps or less. While

tsunamis make headlines, the “small” ripples can still

cripple a business. Our university was overwhelmed
during a medium-sized DDoS in 2014 on two 10Gpbs

connections to our Internet service provider (ISP).

 In the last six months “the total number of attacks

climbed by 84%, and the number of sustained (over

60 minutes) DDoS sessions doubled…extremely long

attacks posted a massive 487% growth” [5]. Attackers

have also resorted to small multi-vector attacks (using

more than one service or attack type at a time). These

“bit-and-piece” attacks beat detection thresholds

because the targeted IP address receives only a

relatively small number of responses in each organized
campaign, leaving little or no trace. The typical ISP

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6466
URI: https://hdl.handle.net/10125/64534
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

response of blocking all traffic to an entire IP prefix

cannot reasonably be applied; it is costly, due to

blocking access to various legitimate services of many

customers. We suggest that a finer grained detection

and mitigation mechanism is required.
 There are currently over 300 DDoS attack vectors,

but the worst are those of “amplified reflection”, where

adversaries send relatively small queries to a server,

spoofing a victim’s IP address(es), and requesting a

response involving a large amount of data. As a result,

the server’s and victim’s network bandwidth will be

flooded. It is the amplification factor/ratio of inbound

to outbound data that makes the attack both easy and

dangerous. Reflection attacks are occurring every 40

minutes, with the largest to date being 1.35Tbps using

memcached UDP reflection (50000:1) [6].

 In this paper, we study data captured from an actual
NTP attack that occurred in 2014 on our campus with

an amplification factor of 556, as well as a simulated

attack in our network security lab. We conduct

forensic re-analysis using our methodology to detect

outliers in the flow data and apply the result to mitigate

the effects of the actual DDoS in near real-time.

Specifically, we detect unusual behaviors in two steps:

(1) Functional Principal Component Analysis (FPCA)

combined with (2) K-means clustering.

2. Related Work

Anomaly detection methods can be classified into

(1) signature-based and (2) profile-based [7]. Signature-

based methods use prior knowledge about

characteristics of the anomaly of interest to identify

suspects, and have several requirements, such as prior

results from anomalies, the need for labeled data, and
an external supervisor. Many machine learning

classification techniques are “supervised”, meaning that

they need to be trained on a set of labeled data prior to

use. Examples of popular approaches are the Support

Vector Machine, Bayesian Networks, Neural Networks,

and Discriminant Analysis (surveyed in [7, 8]). While

these have been shown to perform well in certain

situations where “known” anomaly data exists, the

reliance on labeled data can be a difficult hurdle to

overcome. For the case of network traffic

classification, “ground truth” knowledge may not be
available or even exist, thus supervised techniques can

only be applied when the true labels are approximated.

Training on incorrectly labeled data greatly skews

results [9].

In the case of recent or new DDoS attacks,

knowledge of which behaviors are malicious is not

known; we do not have labels. Thus, supervised

techniques cannot be applied. Profile-based methods

create representative “normal” traffic behavior, and

anomalies are detected by deviations from this profile.

While there may be higher false alarm rates, profile-

based methods are more promising due to their data-

driven flexibility and they may also detect previously

unknown anomalies [9]. Principal Component Analysis
(PCA) is a widely used profile-based method which

has been applied to detect traffic anomalies in DDoS

data by decomposing network traffic into two

components [24]. The anomalous subspace, which is

noisier and contains the significant traffic spikes, is

separated from the normal, which is dominated by

predictable traffic. An individual observation is

deemed an anomaly if its projection to the anomalous

subspace is large. A two-stage approach was

proposed, using (1) PCA to identify potential

anomalies, and (2) a meta-heuristic to group them [10].

However, the use of PCA has been criticized due to
issues pertaining to (i) false positive rates, (ii) traffic

measurement aggregation, (iii) normal subspace

pollution and (iv) correct anomaly identification [11].

The third is important, as it highlights the need to

choose which principal components represent “normal”

behavior, and which ones represent the “abnormal”. It

has been demonstrated that some traffic captures do

not lend themselves to this partition/selection; that is,

all principal components contain abnormal behaviors,

and thus this approach is not usable [28].

Clustering is another example of a profile-based
method. Clustering has been applied to all traffic,

comparing the centers of known “normal” traffic

clusters to the centers of actual traffic, to try and

determine if the actual traffic is not normal [12].

Unfortunately, this specific approach has only been

applied to Simple Network Management Protocol

(SNMP) objects, not network flows, and requires

known normal traffic data. Clustering techniques have

been used to characterize DDoS attack traffic (K-

means, Clustering Large Applications (CLARA), and

Self Organizing Maps) [13]. K-means was found to be

the most accurate for attack detection because attack
traffic has strong similarity as opposed to the

heterogeneity of normal traffic. In this research,

“attack” clusters still mixed in legitimate traffic with

malicious (between .4% and 2.04%). We believe this

phenomenon can be eliminated by clustering only

demonstrated “outliers”, not all traffic.

To avoid the issues we have identified with PCA

and clustering when applied separately, we will use

FPCA (instead of PCA) and apply clustering to the

resulting outliers [28] (that paper examined “scanner”

behavior, where here we analyze a DDoS attack). We
perform classification only using the data that is given

as input, making this technique well-suited for dealing

with an unknown attack. We suggest this is more

appropriate than using a supervised approach trained

Page 6467

on data from a previous attack, as there are a wide

variety of different attack vectors, and what was

previously learned may not apply.

When ground truth knowledge of true perpetrators

in an attack is non-existent, the notion of “false-

positives” in anomaly detection arises. Frequently,

these are potentially controlled with risk assessment,

computational trust, and reputation models (for a
survey, see [14]). Methods based on probabilistic risk

assessments are widely used and seem to provide

promising results [15]. We introduce a probabilistic

approach to risk assessment which assigns a “threat

level” to potential attackers.

3. System Design and Dataset Description

 The size of the organization does not matter when it

comes to protection from attack. Big, small, startup:

hackers still want your data and they will stealthily

poke holes in your network to find the access points.

While “security as a service” (SECaaS) exists (e.g.,

Qualys, Sentinel, Sophos, Proofpoint, along with

offerings from the major cloud computing companies

such as AWS, Azure, Google) and can offer some

protection, current solutions cannot benefit everyone;

SECaaS is usually cloud-based without requiring any
on-premise hardware or much software distribution.

However, many organizations, such as government,

military, and financial organizations, need to tightly

control their data which is incompatible with SECaaS –

(meta) data cannot be shipped off-premises.

 To bridge this gap, we have built a system called

“NetBrane” (network membrane, [29]). NetBrane is a

defense service where technologies are combined to

construct a shield while leaving data and sensitive

services on the premises. Figure 1 shows the NetBrane

architecture. Key novelties of the project lies in the

confluence of: (a) Software-Defined Networking

(SDN) enabled small distributed footprint with 100G

capture/filter capability for neutralizing DDoS (left

side of figure), (b) elastic data analytics using near-real

time flows and cloud capabilities (all analytics

described in this paper are conducted in the section

enclosed within the red box), (c) situational awareness,
in terms of the global Internet information, and (d)

proactive reconnaissance, by intelligent synthesis of

information from multiple sources. The design calls

for NetBrane nodes to reside in points-of-presence

(POPs), capturing and summarizing traffic at line

speed, finding anomalies worthy of creating filter rules

for, pushing these filters to the local SDN

infrastructure, communicating with the appropriate

POPs routing infrastructure to block traffic, while

tunneling legitimate traffic to its destination. We use

SDN because it allows for dynamic software control of
network design and operations. Unfortunately we have

discovered that openflow will not function at high line

rates (>20gbps), and have had to design and implement

a system called FlowRide (not described here).

 At our large mountain-west university, we have

installed optical taps to capture network flows (top left,

Figure 1) at line rate. FlowRide pushes those flows

into message queues, which are read by our analytics

engine (red box on right side of Figure 1) in near-real

time where traffic is characterized (scanner or attack

detection); data is saved in parallel to hadoop (HDFS)
for data lake analytics. We read these flows from the

message queue in small time intervals and analyze

them, applying multi-core (parallel R packages). We

have currently demonstrated resilience up to 400Gb/s.

 The real-world raw data we consider in this paper is

a collection of bi-directional flow records to and from

Figure 1. NetBrane system architecture

Page 6468

our university, relating to the NTP service. We focus

on traffic between January 12 and January 25 of 2014,

during the second half of which a true real-world

amplified reflection DDoS was carried out (starting in

the early morning of January 18). This attack impacted
the university in six waves (see Figure 4 for a plot of

packet counts), with a wave defined by significantly

decreased packet volume, or the monitoring system

becoming unavailable.

 The flow records contain timestamp, source and

destination IP (SIP & DIP), source (SRC) and

destination (DST) port, packet and byte counts. We

currently only analyze TCP data; we plan to consider

UDP in future work. We group information into one-

minute bins, and the full dataset covers roughly twenty-

thousand minutes. As this is a real-world dataset, we

lack “ground truth” knowledge of which SIPs are the
victims (spoofed by attackers). However, we suggest

that ground truth is not necessary as we know that an

amplified reflection DDoS occurred, and we only seek

ways to alleviate damage.

 The synthetic data we consider is very similar to the

NTP attack data in terms of flow records. This data is

grouped into one-minute bins, but the total dataset only

covers forty minutes. This attack comes in one wave,

for which we do have ground truth. There are twenty

true attackers, all with SIPs of the form 10.1.7.X,

targeting one victim with SIP 129.82.138.136 on port
80. These attackers send approximately 20 million

packets during the attack.

4. Methodology

Upon initialization of our analytics system, we

aggregate the most recent thirty-minutes of Internet

traffic (packet and byte count separately) into one-

minute bins. For this initial thirty-minute window, we

assume that we are not under an attack and have

relatively “usual” traffic. When one minute has

passed, we “slide” this window to cover the new

minute’s worth of data and drop the first observation

from the previous window (i.e., the “oldest” minute of
data). With this mechanism, we always have the most

recent thirty-minute time series of traffic volumes,

allowing us to monitor for potential attacks in near-real

time.

In each iteration of the thirty-minute window, two

thresholds (one for packets and one for bytes) are

calculated and used for volumetric attack detection.

The threshold is given by Equation (1),

Thresh = max{Xt | t ɛ H} + cv⸱SE[max{Xt | t ɛ H}]. (1)

In the above equation, Xt for t ɛ H is the time series of

packets or bytes in the given window of history.

SE[max{Xt | t ɛ H}] is the standard error of the

maximum packet or byte count from a LOESS fit of

the packet/byte time series in the window of history.

Lastly, cv is a critical value determined from

investigation of long-term (months) packet and byte
distributions.

When our window slides and gathers the new, most

recent minute of packet and byte counts, these values

are compared to the thresholds calculated in the

previous window iteration. That is, we check if the

new packet/byte count exceeds their respective

thresholds. If they are below their thresholds, the

thresholds are recalculated, and the process is repeated

when a new minute’s worth of data is collected. If at

least one of the counts exceeds their threshold, we

believe a DDoS has been detected, and begin our

attack mitigation.
The motivation for this threshold is as follows:

when not under attack, previous “large” volumes and

counts are considered acceptable, so we believe we are

under attack from a DDoS when new data exceeds the

largest value in the window of history by more than a

scaled measure of the maximum’s variability. This

also captures the idea that we may see “normal”

network activity that is larger than a previously

accepted amount, but only see potential for a DDoS if

new packet or byte counts exceed what we expect from

historical variability of our data.
When an attack is first detected, our system decides

which destination port the attack is being launched on.

This port is chosen based on the largest relative change

in the minute at which the attack was detected. That is,

the system has already noticed a large increase in the

traffic when aggregated across all ports, so we now

focus on the specific port that saw the largest increase.

We refer to this as the “attack port”, and then attempt

to identify attacker SIPs on that port.

For each SIP that contacted a DIP on the attack port

in the given window, we construct a time series (by

minute) of packet counts sent and received by that SIP.
These time series are then used as input for Functional

Principal Component Analysis (FPCA), and outliers

are determined using the FPCA scores. We perform a

“two-pass” implementation of FPCA; that is, after

identifying outliers from one application, they are

removed from the dataset and FPCA is re-run to flag

additional outliers. This portion of the analytics is

described in more detail in Section 4.1. Once outlier

SIPs – the potential attackers – are gathered, risk

assessment is carried out and a threat level is assigned

to each. This threat level exists between 0 and 1 and is
intended to represent the likelihood of a SIP being an

attacker, with a value closer to 1 indicating malicious

activity. This risk assessment is described in more

detail in Section 4.2.

Page 6469

After the first minute of attack analytics, we switch

our “sliding” window to one that is a “growing”

window. That is, we do not drop the oldest

observation when a new minute is gathered. This is

done so that we do not only investigate attack volumes
when mitigating the attack. Note that when the attack

is first detected, we have 29 minutes of “usual” traffic,

and FPCA finds outliers by identifying significant

differences between SIPs in this period of “usual”

activity and the attackers. If the sliding window is

used and the attack continues for a large amount of

time, we may eventually encounter an instance where

“usual” activity is drowned out by the attackers, or is

non-existent, which hinders the ability of FPCA to find

all significantly different SIPs. With each new minute,

the outlier detection procedure and threat level

assignment are repeated.
We then perform DDoS mitigation using the set of

outliers found by our system. For the SIPs flagged to

be an outlier by FPCA in previous iterations of attack

analytics, firewall rules are created to block their traffic

from the network in future minutes. That is, the SIPs

with unusual traffic volumes are prevented from

impacting the network any further, dampening their

effect on the system. In addition, previously

determined outliers are not considered in subsequent

FPCA analyses, so new potential attackers can be

identified and blocked, leading to continued mitigation.
To determine if an attack has stopped (or

significantly declined), we set a limit on how long we

expect to see traffic return to “usual” levels. When

new minutes’ data stay below the thresholds that were

initially exceeded for one hour, we think that we are no

longer under attack. At this point, the analytics system

removes all outlier SIPs from being blocked and

returns to calculating the packet/byte thresholds until

another attack is detected. In addition, the “growing”

window reverts back to a “sliding” window, snapping

to the most recent thirty minutes of traffic. One hour is

chosen because it is double the size of our sliding
window. That is, we revert to monitoring the traffic

rather than mitigating it when we are sure that volumes

have returned to “usual” levels, and our thresholds will

not be inflated by including attack traffic.

4.1. FPCA + K-means

 The procedure begins with application of FPCA in

order to first classify “outliers” in the data. We
construct an n × T matrix whose (i,t) entry is the count

of packets sent and received by the ith SIP during the

tth minute. FPCA models this as a mean series plus a

linear combination of eigenfunctions, which are

orthogonal curves representing the descending

dimensions of variance in the data; that is, the first

eigenfunction can be thought of as the direction of

highest variability, eigenfunction two the second most

variable, and so on. We employ the Principal Analysis

by Conditional Expectation (PACE) algorithm of [16].

In order to select the number of eigenfunctions in our
model, we apply the Akaike information criterion

(AIC) and the Bayesian information criterion (BIC)

[17]. For the data presented here, these agree on

parameter selection; but we acknowledge this may not

always be the case. Context-specific factors should be

considered when deciding which criterion is more

appropriate [18].

 To classify SIPs, we calculate each observed series’

FPCA scores, which are projections of the data onto

the eigenfunctions. Each SIP has one score for every

eigenfunction, and that SIP is flagged as an “outlier” if

at least one of its scores exceeds a three standard
deviation threshold from the mean (well-known due to

its standard application based on Chebyshev’s

inequality [19]). For example, from the n scores on the

first eigenfunction, we can calculate the bounds xbar

±3s; xbar is the mean score and s is the standard

deviation. Any SIP whose first eigenfunction score lies

beyond these bounds is flagged as an outlier. We use

the term “outlier” because we do not think all SIPs

flagged by FPCA are attackers - these are SIPs that

contacted the network in an unusual way, which can

clearly include other activity. Because of this, we
carry out the second step of clustering these abnormal

SIPs based on their rate of successful connections,

where a “success” is characterized as the DIPs sending

at least one packet back to the SIP. With this, we can

investigate the cluster that exhibits behavior expected

of an attacker, as our abnormal SIPs are now separated

by their connectivity with the network.

 In order to perform this clustering, we employ the

K-means algorithm of [20]. The number of clusters in

the application of K-means is chosen with the “elbow

method”, which seeks the cluster amount such that

adding one additional cluster would not have a
significant impact on the fraction of variance explained

(FVE) in the entire dataset [21]. K-means is run

multiple times using randomly generated centers in

order to assess sensitivity with respect to their centers,

and we find that our data does not exhibit sensitivity to

center selection.

4.2. False-Positives and Risk Assessment

 In each iteration of our “growing” window when

under attack, a set of outlier SIPs is collected as

potential attackers. We do not suppose that all outliers

are attackers, so we aim to introduce a quantitative

mechanism to allow an operator to filter out possible

false positives (non-attackers identified as outliers).

Page 6470

We call this mechanism a “threat level”, which is a

value between 0 and 1, with a value closer to 0

indicating a higher likelihood of a false-positive (non-

threatening).

 To calculate this threat level, we first gather the

total data sent and received by each outlier SIP and use

these to construct a cumulative density estimate of

“outlier” data. Then, we take a sample of size 200 (or

as many as we possibly can, should there be less than

200) from the non-outlier SIPs, and construct a similar
cumulative density estimate from their total volumes

sent and received. This gives us two cumulative

density estimates: one for the outliers, and one for the

non-outliers.

 Next, for each outlier SIP we calculate its percentile

in both cumulative density estimates. That is, each

outlier SIP has a corresponding p1, which is the

probability that an outlier has volume less than or equal

to that of the given SIP, and p2, which is the

probability that a non-outlier has volume less than or

equal to that of the given SIP. The threat level is then
calculated by Equation (2),

 Threat Level = min(1,max(0, p1 – (1 – p2))). (2)

 This threat level is motivated by using the SIPs not

labeled as outliers to determine if the outliers found are

false positives. If an outlier’s volume is low, it will be

closer to the distribution of non-outliers, making us

think that it is a false-positive. For example, suppose

an outlier SIP is a false-positive (non-attacker). Then,

the location of that SIP in the outlier cumulative

density estimate will be close to the body of the non-
outlier cumulative density estimate, making p1 low and

p2 high. This translates into a threat level close to

zero. Compare this to the case where we have an

outlier SIP that is an attacker. This SIP will have both

p1 and p2 large, translating into a larger threat level.

 With each outlier being assigned a threat level,

operators can be more measured in their “blocking”

during an attack. If an outlier with a low threat level is

a known or acceptable SIP, then it may not need to be

blocked from the network. This decision would

require specific knowledge of the network and we

leave this decision to operators at this time. In our

analyses for this paper we always block all outliers

collected.

5. Results

 We apply our attack detection and mitigation

methodology to a simulated DDoS attack as well as an

amplified reflective DDoS attack from 2014. The

simulated attack is discussed first, with focus on attack

detection. Ground truth from this event allows us to

use this application of our methodology as validation.

Following the synthetic event, we discuss the real-

world NTP attack with focus on attack mitigation.

5.1. Simulated Attack

 Our system first initializes on a thirty-minute

window in which we are not under an attack. The

packet (top) and byte (bottom) count time series are

shown in Figure 2, with the line separating the yellow

region above indicating the thresholds for attack

detection, as calculated in this window. Note the

observation circled in teal – this is the largest value in

our window. At this point, there is a mean packet
count of 50 thousand and a mean byte count of 25

million. After initialization, the simulated attack was

started, so the next minute of data will include attack

traffic. When the new data is received by the system,

the aggregated packet and byte counts are compared to

the previous thresholds. Figure 3 shows both

thresholds being exceeded (by the point circled in

pink), which indicates that our system is under attack

(also denoted by the red region above the yellow).

Notice that the point circled in teal is the same value

circled in Figure 2, showing the scale of this attack.
We now know the simulated attack has begun,

validating correct attack detection within its first

Figure 2. Initialization, simulated attack Figure 3. Simulated attack detected

Page 6471

minute. With this new minute of data, the average

packet count rises to 4.4 million, and the average byte

count rises to 6.25 billion.
Next, we seek to determine the attack port by

finding the port that had the largest relative increase in
the most recent minute. In this case, this is identified

to be port 80, which is the actual destination port being

targeted by the simulated attack.

Table 1 shows the outlier SIPs along with their

cluster center from application of K-means and threat

level. Note that all the attackers belong to the same

cluster with low proportion of successful contacts,

while the victim is alone in the cluster with a high

proportion. This separation is due to the victim

appearing in the period of “usual” activity prior to the

attack. It was behaving in its usual way, reaching out

to other IPs on the network and receiving responses.
The attackers do not appear in this portion of the

dataset, only coming into play during the most recent

minute of the window. They only contact the victim,

and since they are performing a DDoS and sending

large volumes, they receive no responses.

We also see a separation between attackers and

victim in the form of the threat level. All attackers

have threat levels of at least 88%, which is appropriate

because we want a larger threat level to indicate

malicious SIPs. The victim has a threat level of about

5%, which accurately reflects the fact that it is a false-
positive (non-attacker outlier). We believe it is quite

useful that this technique captures the victim because it

likely removes a secondary step of further investigating

the attackers to determine their target.

When the next minute of data is gathered, we block

traffic from all twenty-one of these outliers. This

significantly reduces the volume seen on the network,

and returns packet and byte counts to below their

respective thresholds. This minute still involves attack

traffic, but we have mitigated all of it since we have

identified all malicious SIPs. The same is true for the

remaining minutes of the dataset – we stay below our

thresholds and mitigate the DDoS event. This analysis
focuses on an attack that only comes in one wave and

does not have enough “usual” traffic following the

simulated event to fully discuss when to stop blocking

the identified outliers from the network.

Table 1. Simulated DDoS attack - outlier summary

SIP Cluster Center Threat Level

10.1.7.133 0 0.9961

10.1.7.141 0 0.9903

10.1.7.89 0 0.9785

10.1.7.150 0 0.9779

10.1.7.136 0 0.967

10.1.7.20 0 0.967

10.1.7.37 0 0.9554

10.1.7.113 0 0.9533

10.1.7.53 0 0.9327

10.1.7.147 0 0.9286

10.1.7.23 0 0.9272

10.1.7.85 0 0.9259

10.1.7.127 0 0.9203

10.1.7.71 0 0.9189

10.1.7.134 0 0.9148

10.1.7.148 0 0.9134

10.1.7.81 0 0.9108

10.1.7.82 0 0.9033

10.1.7.58 0 0.8978

10.1.7.149 0 0.8801

129.82.138.136 0.94 0.0527

Figure 4. NTP attack packet counts - actual (blue), “strategy a” reduced (orange), “strategy b” reduced (green)

Page 6472

5.2. NTP Attack

In applying our detection mechanism to the real-
world NTP amplified reflection DDoS attack, the

packet threshold is immediately exceeded in the first

minute of the first wave of the attack. As this dataset

consists only of NTP traffic, the step of determining

the “attack port” is unnecessary.

Recall our mitigation strategy: we “remember” the

SIPs we flag as outliers and block their activity until

aggregate traffic stays below our thresholds for one

hour. This attack includes six waves, each of which is

more than one hour after the end of the previous (as

shown in Figure 4). Because of the big gaps between
the waves, our analytics system treats these waves as

six different attacks, as we “forget” outlier SIPs from

previous waves. Since we now have the knowledge

that this is one attack, we aim to compare our current

strategy to one in which outliers are not forgotten and

their traffic continues to be blocked. For the purposes

of this discussion, we refer to the strategy of forgetting

outliers after one hour of usual activity as “Strategy

A”, and the alternative of never forgetting outliers as

“Strategy B”.

Figure 4 shows the time series (by minute) of

packet counts sent and received on the network for the
NTP DDoS event. The actual packet count series of

the event is shown in blue. The series shown in orange

is the remaining packet counts after mitigation Strategy

A has been applied, and the series shown in green is

after mitigation Strategy B has been applied; that is,

these are the packet counts that would have been seen

if our blocking rules had been in effect (actual packet

count minus outliers’ packet count).

First observe in Figure 4 that the series of packet

counts for both Strategy A and Strategy B are well

below that of the actual attack. This visually indicates
that our mitigation procedure is effective in reducing

the impact of the attack. Numerically, we can

investigate total packet counts across the entire attack

for all three series. In the actual attack, approximately

2.8⸱109 packets were sent and received across the

network on the NTP service. Applying Strategy A

brings the total packet count to approximately 6.4⸱108,

or 23% of the true attack (a 77% reduction in packets).

Applying Strategy B brings the total packet count to

approximately 2.4⸱108, or 8.7% of the true attack (a

91.3% reduction in packets).

 To more formally compare the packet counts of the
attack and our two mitigation strategies, we perform

paired t-tests for each of the three combinations [22].

That is, we test for significant differences between the

packet counts of the attack and Strategy A, the attack

and Strategy B, and both strategies. In all three of

these tests, a p-value of less than 2⸱10-16 is reported,

indicating strong statistical evidence for a difference in

these time series. From the visual inspection of Figure

4, we certainly expected the reduced packet count

series to be different from the true attack, but we also

see a significant difference between Strategy A and B.
To further investigate their difference, we calculate the

Dynamic Time Warping (DTW) “distance” between

the two packet counts – a smaller distance implies a

greater similarity in the series [23]. The DTW

“distance” is calculated to be approximately 2.7⸱108.

While this seems large, it is relatively small when

compared to the DTW “distance” between the true

attack and the two strategies: Strategy A is roughly

2.5⸱109 away from the full un-mitigated attack, and

Strategy B is at almost 3.5⸱109. We expected Strategy

B to be further from the true attack because of the

larger packet reduction it achieved, but it is interesting
that we observe such a significant difference between

the resulting time series of Strategy A and B. Strategy

B clearly outperforms Strategy A. Further discussion

about these two strategies is included in Section 6.

 This mitigation includes the steps of outlier

detection, clustering, and threat level assignment in our

analytics. Recall that, for this analysis, we

“remember” and block all outliers found in future

traffic. This makes the resulting clusters and threat

levels calculated throughout the NTP attack

independent of our mitigation. This does not always
need to be the case, as the system (or an operator)

could block traffic from only outliers with a threat

level above a specified threshold, outliers in certain

clusters, or a combination of the two. In any instance

of this, fewer outliers would be blocked than were

found, and the mitigation achieved would not be as

large as that from Strategy A or Strategy B. That is,

the mitigation we are comparing here is between

extremes – the true attack and blocking all outliers. As

such, we do not investigate the effect of blocking

subsets of outliers in this paper. For our analysis, the

clusters and threat levels were used to better
understand the types of behaviors that were apparent

during the attack. This is a benefit that was highlighted

in the smaller simulated attack of Section 5.1, and one

that an operator would be able to use as well.

6. Discussion

Our attack detection mechanism relies on the

sliding-window approximation of real-time streaming

data. Thirty-minutes is selected as the window size

because it is a near “worst-case” scenario in terms of

how much data we need for our statistical procedures to

be applicable. We want our FPCA results to be

accurate and stable, and we feel going below thirty

observations for each series would breach this. A larger

Page 6473

window could be kept for attack detection, but this

would impact the thresholds in each iteration of the

window. This would also alter the set of outliers found

when an attack is detected, as we would have more

“usual” activity in the beginning of the time series.
In Section 5.1, we applied our attack detection

methodology to a simulated DDoS attack. Our

analytics detected the attack within its first minute of

activity, and accurately identified the twenty attackers

as well as the one victim. The clustering results and

threat level assignments clearly separated attackers

from victim. In the real-world attack of Section 5.2,

we cannot expect to see such a distinct stratification of

outliers because we do not have “ground truth”

knowledge of the attackers. We cannot check if they

have significantly larger threat levels or appear in

clusters distinct from the non-attackers. Further, we do
not know how many true attackers there are, so the

threat level procedure we implement might produce

“deflated” values for truly malicious SIPs.

To demonstrate this, consider the early phases of an

attack with many malicious IPs. Imagine our

unsupervised FPCA outlier identification produces a

set of SIPs that is only a subset of the attackers

(because some have not had enough time to fully

behave like an attacker), so that some attackers are left

in the non-outlier set. In assigning threat levels, we

compare probabilities from outlier and non-outlier
cumulative density estimates, and having attackers

included in the non-outlier set makes the non-outlier

distribution closer to that of the outliers. In turn, the

approach think that outliers are more like “usual

traffic”, producing a lower threat level. Note that we

attempt to reduce the impact of this issue by creating

non-outlier cumulative density estimates from a sample

of non-outliers, so it is possible that we will avoid

attackers that have not yet been flagged as outliers.

Even with this, we concede that it is possible for some

attackers to be treated as non-outliers – this is very

difficult to control for without ground truth knowledge
of the dataset.

We compared two mitigation strategies in Section

5.2 – Strategy A involved “forgetting” outliers and

resetting blocking rules when an attack subsides below

initial thresholds for an hour while Strategy B

mimicked a perfect memory and continual blocking.

Strategy A reduced total packet counts of the event to

23% of the original un-mitigated amount, and Strategy

B reduced it to 8.7%. Strategy B achieves greater

packet reduction, as it immediately blocks SIPs that

were flagged as outliers in previous waves. We
suggest Strategy B is most useful when a “botnet” is

being used for an attack, because the IPs are “re-

engaging” after a pause. By building up this botnet

list, and completely blocking them, they cannot even

“restart” the attack. Further, this is why the reduced

packet counts are identical in the first wave shown in

Figure 4 (the green and orange series over plot) – there

are no previous outliers for Strategy B to block.

Note that mitigation achieved is not the only
difference between these Strategies. In all waves after

the first, Strategy A allows traffic through that was

previously being blocked, increasing the packet counts

relative to Strategy B, while also providing a different

set of SIPs for FPCA to use as input. As a result, this

also changes the threat level calculation, and

introduces a greater chance for having attackers in the

non-outlier set.

This may seem to indicate that a “perfect memory”

of outliers after an attack has been detected is superior,

but this does not account for the true nature of the real

world. During an actual DDoS attack, there is no way
to tell how many “waves” there will be and when they

will stop. Due to this, we initially recommend

“forgetting” the outliers and returning to a sliding

window (monitoring for the start of an attack) after one

hour. We allow for human operators to interact and

configure the system to implement Strategy B for a

while, and then to reset when ready.

We do not suggest that our methodology can be

used as a “set-and-forget” piece of software, but rather

a strong supplemental tool to an operator or operating

team. Consider our mechanism detecting the start of a
DDoS attack and informing humans. Outlier SIPs will

be blocked, mitigating the attack, while summary

information (clusters and threat levels) are provided to

operators every minute. They then have at least one

hour to investigate further and more accurately

determine the nature of the attack. For example,

suppose a “false alarm” is detected (large packet/byte

counts that do not truly represent an attack). If the

operator determines that this was a false alarm, they

can stop the blocking and not have to wait an hour the

system to return to attack monitoring. Alternatively,

should a true attack be detected, and operators think
there may be waves, the one-hour limit can be removed

so that larger and faster mitigation is achieved. In all,

we suggest the length of time it takes for the analytics

system goes from attack mitigation back to detection is

a tuning parameter that should be informed by specific

knowledge of the network/institution.

7. Conclusions

We have demonstrated an unsupervised, adaptive

technique for detecting and mitigating DDoS attacks

on both synthetic and real-world datasets. Dynamic

thresholding is shown to detect the attack, and the

FPCA+Kmeans approach mitigates the volume

significantly (by more than 90%). Such unsupervised

Page 6474

approaches are best suited for detection and mitigation

of “unknown” attacks. We have investigated two

strategies for reducing packet and byte counts during

an attack and suggest operators with network-specific

knowledge can use both as appropriate. Assignment of
probabilistic threat levels to the outliers allows for

better understanding of the SIPs identified.

Acknowledgements
This material is based on research sponsored by the

Department of Homeland Security (DHS) Science and
Technology Directorate, Homeland Security Advanced

Research Projects Agency (HSARPA), Cyber Security
Division (DHS S&T/HSARPA CSD) BAA HSHQDC-14-R-
B0005, and the Government of United Kingdom of Great
Britain and Northern Ireland via contract number
D15PC00205. The views and conclusions contained herein

are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the Department of Homeland
Security, the U.S. Government, or the Government of United
Kingdom of Great Britain and Northern Ireland. The
research of Dr. Wang was partially supported by NSF grants
DMS-1737795 and DMS-1923142.

References

[1] Akamai, “The State of the Internet Report,” 2019.

https://www.akamai.com/us/en/resources/our-thinking/state-of-the-

internet-report/.

[2] Kaspersky, “Kaspersky Labs,” 2018. https://usa.kaspersky.com/.

[3] S. Mansfield-Devine, “The Growth and Evolution of DDoS,”

Network Security, pp. 13-20, 2015.

[4] B. Krebs, “KrebsOnSecurity Hit with Record DDoS,” 2016.

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-

record-ddos/.

[5] O. Kupreev, E. Badovskaya and A. Gutnikov, “DDoS Attacks in

Q1 2019,” https://securelist.com/ddos-report-q1-2019/90792/.

[6] Cloudflare, “NTP Amplification Attack,” 2019.

https://www.cloudflare.com/learning/ddos/ntp-amplification-ddos-

attack/.

[7] M. Ahmed, A. N. Mahmood and J. Hu, “A Survey of Network

Anomaly Detection Techniques,” Journal of Network and

Computer Applications, vol. 60, pp. 19-31, 2016.

[8] A. Singh, N. Thakur and A. Sharma, “A review of supervised

machine learning algorithms,” in Computing for Sustainable

Global Development (INDIACom), 2016 3rd International

Conference on, New Delhi, 2016.

[9] M. Soysal and E. G. Schmidt, “Machine learning algorithms for

accurate flow-based network traffic classification: Evaluation and

comparison,” Performance Evaluation, vol. 67, pp. 451-467, 2010.

[10] G. Fernandes, L. F. Carvalho, J. J. Rodrigues and M. L. Proenca,

“Network anomaly detection using IP flows with principal

component analysis and ant colony optimization,” Journal of

Network and Computer Applications, vol. 64, pp. 1-11, 2016.

[11] H. Ringberg, A. Soule, J. Rexford and C. Diot, “Sensitivity of PCA

for traffic anomaly detection,” ACM SIGMETRICS Performance

Evaluation Review, vol. 35, pp. 109-120, 2007.

[12] W. Cerroni, G. Monti, G. Moro and M. Ramilli, “Network attack

detection based on peer-to-peer clustering of SNMP data,” in

International Conference on Heterogeneous Networking for

Quality, Reliability, Security and Robustness, Houston, 2009.

[13] B. Hammi, M. C. Rahal and R. Khatoun, “Clustering methods

comparison: Application to source based detection of botclouds,”

in Security of Smart Cities, Industrial Control System and

Communications, 2016 Intntl. Conf. on, Paris, 2016.

[14] D. D. S. Braga, M. Niemann, B. Hellingrath and F. B. D. L. Neto,

“Survey on Computational Trust and Reputation Models,” ACM

Computing Surveys (CSUR), vol. 51, p. 101, 2018.

[15] Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H.

Soulsby and K. Stoddart, “A review of cyber security risk

assessment methods for SCADA systems,” Computers & security,

vol. 56, pp. 1-27, 2016.

[16] F. Yao, H.-G. Muller and J.-L. Wang, “Functional data analysis for

sparse longitudinal data,” Jrnl. of the American Statistical

Association, vol. 100, pp. 577-590, 2005.

[17] S. I. Vrieze, “Model selection and psychological theory: a

discussion of the differences between the AIC and the BIC,”

Psych. methods, vol. 17, p. 228, 2012.

[18] Y. Li, N. Wang and R. J. Carroll, “Selecting the number of

principal components in functional data,” Jrnl. of the American

Statistical Association, vol. 108, pp. 1284-1294, 2013.

[19] S. Seo, A review and comparison of methods for detecting outliers

in univariate data sets, Pittsburgh, 2006.

[20] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means

clustering algorithm,” Jrnl. of the Royal Statistical Society, C, vol.

28, pp. 100-108, 1979.

[21] D. J. Ketchen and C. L. Shook, “The application of cluster analysis

in strategic management research: an analysis and critique,”

Strategic Management Journal, vol. 17, pp. 441-458, 1996.

[22] H. Hsu and P. A. Lachenbruch, “Paired t Test,” Wiley encyclopedia

of clinical trials, pp. 1-3, 2007.

[23] P. Tormene, T. Giorgino, S. Quaglini and M. Stefanelli, “Matching

incomplete time series with dynamic time warping: an algorithm

and an application to post-stroke rehabilitation,” Artificial

intelligence in medicine, vol. 45, pp. 11-34, 2009.

[24] A. Lakhina, M. Crovella and C. Diot, “Diagnosing network-wide

traffic anomalies,” in ACM SIGCOMM Computer Communication

Review, New York, 2004.

[25] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye and H. Zang, “Is

Sampled Data Sufficient for Anomaly Detection?,” in 6th ACM

SIGCOMM conference on Internet measurement, 2006.

[26] T. Tlusty, G. Amit and R. Ben-Ari, “Unsupervised clustering of

mammograms for outlier detection and breast density estimation,”

in 24th International Conference on Pattern Recognition, 2018.

[27] F. Carcillo, Y.-A. Le Borgne, O. Caelen, Y. Kessaci, F. Oble and

G. Bontempi, “Combining unsupervised and supervised learning in

credit card fraud detection,” Information Sciences, 2019.

[28] R. McAndrew, M. Gharaibeh, H. Wang, S. Hayne and C.

Papadopoulos, “A Functional Approach to Scanner Detection,” in

Proceedings of the Asian Internet Engineering Conference,

Bangkok, 2017.

[29] “NetBrane, Funded Project, Department of Homeland Security

Award D15PC00205,” 2015-2019.

Page 6475

