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Abstract 

 

We present an approach for Distributed Denial of 

Service (DDoS) attack detection and mitigation in 
near-real time.  The adaptive unsupervised machine 

learning methodology is based on volumetric 

thresholding, Functional Principal Component 

Analysis, and K-means clustering (with tuning 

parameters for flexibility), which dissects the dataset 

into categories of outlier source IP addresses.  A 

probabilistic risk assessment technique is used to 

assign “threat levels” to potential malicious actors.  

We use our approach to analyze a synthetic DDoS 

attack with ground truth, as well as the Network Time 

Protocol (NTP) amplification attack that occurred 

during January of 2014 at a large mountain-range 
university. We demonstrate the speed and capabilities 

of our technique through replay of the NTP attack.  We 

show that we can detect and attenuate the DDoS within 

two minutes with significantly reduced volume 

throughout the six waves of the attack. 

 

1. Introduction  

 
     Distributed Denial of Service (DDoS) attacks have 

received significant global attention, because they are 

increasing in frequency and severity [1].  DDoS occurs 

when attackers flood the target systems with huge 

amounts of traffic from many compromised systems, 

leading to interruption of the victim’s services [2].  

Direct costs to large organizations range from $50,000 

to $100,000 per hour, and indirect costs can total much 

higher.  We describe a system (NetBrane) designed to 

detect these DDoS in near real-time, and report on two 

different mitigation strategies based on our 

unsupervised outlier detection mechanism. 
The contribution of this work lies in its combination 

of multiple features.  First, our system is a near-real 

time monitor of all traffic on a network; that is, we can 

analyze traffic accurately without the need for 

sampling.  This is a major benefit because using the 

entirety of the dataset for anomaly (outlier) detection 

provides the best possible results in terms of accuracy 

[25].  Next, our outlier detection mechanism is 

unsupervised, removing any dependence on having 

labeled data.  It is impractical to obtain labeled data in 

many instances, especially in the case of a “new” attack 

whose profile is unknown.  This freedom from labels 

also lets our mechanism be adaptive in the sense that it 

only seeks to identify behaviors that are “unusual” 

when compared to the majority of traffic.  Such 

adaptivity allows for the potential to detect “new” 
attacks that supervised techniques cannot.  Other 

domains are also coming to the conclusion that 

unsupervised learning is an attractive approach when 

dealing with unlabeled data [26, 27]. 

     Detection and mitigation of DDoS is important 

because attackers increasingly use DDoS events as a 

smokescreen or distraction for more covert operations 

that allow them to carry out data breaches [3].  Our 

adversaries want not only to steal data or intellectual 

property (for later use or sale), but also to disrupt the 

operations of those targeted or impact their reputation. 

DDoS have been reported in the +1Tb/s range, driven 
by compromised Internet of Things (IoT) devices, such 

as digital video recorders and security cameras [4].  

Trends in the size of DDoS appear stable; growing at 

approximately 6% per year since 2017 [1].  But the 

median size is erratic, with cyclic growth.  It seems 

that when adversaries find new methods of attack, we 

see a new peak, followed by a decline when the 

method is mitigated (patched or blocked).   

     In 2019, 95% hit at 11.3Gbps or less.  While 

tsunamis make headlines, the “small” ripples can still 

cripple a business.  Our university was overwhelmed 
during a medium-sized DDoS in 2014 on two 10Gpbs 

connections to our Internet service provider (ISP).   

    In the last six months “the total number of attacks 

climbed by 84%, and the number of sustained (over 

60 minutes) DDoS sessions doubled…extremely long 

attacks posted a massive 487% growth” [5].  Attackers 

have also resorted to small multi-vector attacks (using 

more than one service or attack type at a time).  These 

“bit-and-piece” attacks beat detection thresholds 

because the targeted IP address receives only a 

relatively small number of responses in each organized 
campaign, leaving little or no trace.  The typical ISP 
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response of blocking all traffic to an entire IP prefix 

cannot reasonably be applied; it is costly, due to 

blocking access to various legitimate services of many 

customers.  We suggest that a finer grained detection 

and mitigation mechanism is required. 
     There are currently over 300 DDoS attack vectors, 

but the worst are those of “amplified reflection”, where 

adversaries send relatively small queries to a server, 

spoofing a victim’s IP address(es), and requesting a 

response involving a large amount of data. As a result, 

the server’s and victim’s network bandwidth will be 

flooded.  It is the amplification factor/ratio of inbound 

to outbound data that makes the attack both easy and 

dangerous.  Reflection attacks are occurring every 40 

minutes, with the largest to date being 1.35Tbps using 

memcached UDP reflection (50000:1) [6]. 

     In this paper, we study data captured from an actual 
NTP attack that occurred in 2014 on our campus with 

an amplification factor of 556, as well as a simulated 

attack in our network security lab.  We conduct 

forensic re-analysis using our methodology to detect 

outliers in the flow data and apply the result to mitigate 

the effects of the actual DDoS in near real-time. 

Specifically, we detect unusual behaviors in two steps: 

(1) Functional Principal Component Analysis (FPCA) 

combined with (2) K-means clustering. 

 

2. Related Work 
 

Anomaly detection methods can be classified into 

(1) signature-based and (2) profile-based [7]. Signature-

based methods use prior knowledge about 

characteristics of the anomaly of interest to identify 

suspects, and have several requirements, such as prior 

results from anomalies, the need for labeled data, and 
an external supervisor.  Many machine learning 

classification techniques are “supervised”, meaning that 

they need to be trained on a set of labeled data prior to 

use.  Examples of popular approaches are the Support 

Vector Machine, Bayesian Networks, Neural Networks, 

and Discriminant Analysis (surveyed in [7, 8]).  While 

these have been shown to perform well in certain 

situations where “known” anomaly data exists, the 

reliance on labeled data can be a difficult hurdle to 

overcome.  For the case of network traffic 

classification, “ground truth” knowledge may not be 
available or even exist, thus supervised techniques can 

only be applied when the true labels are approximated.  

Training on incorrectly labeled data greatly skews 

results [9]. 

In the case of recent or new DDoS attacks, 

knowledge of which behaviors are malicious is not 

known; we do not have labels.  Thus, supervised 

techniques cannot be applied.  Profile-based methods 

create representative “normal” traffic behavior, and 

anomalies are detected by deviations from this profile.  

While there may be higher false alarm rates, profile-

based methods are more promising due to their data-

driven flexibility and they may also detect previously 

unknown anomalies [9]. Principal Component Analysis 
(PCA) is a widely used profile-based method which 

has been applied to detect traffic anomalies in DDoS 

data by decomposing network traffic into two 

components [24]. The anomalous subspace, which is 

noisier and contains the significant traffic spikes, is 

separated from the normal, which is dominated by 

predictable traffic. An individual observation is 

deemed an anomaly if its projection to the anomalous 

subspace is large.  A two-stage approach was 

proposed, using (1) PCA to identify potential 

anomalies, and (2) a meta-heuristic to group them [10].   

However, the use of PCA has been criticized due to 
issues pertaining to (i) false positive rates, (ii) traffic 

measurement aggregation, (iii) normal subspace 

pollution and (iv) correct anomaly identification [11].  

The third is important, as it highlights the need to 

choose which principal components represent “normal” 

behavior, and which ones represent the “abnormal”.  It 

has been demonstrated that some traffic captures do 

not lend themselves to this partition/selection; that is, 

all principal components contain abnormal behaviors, 

and thus this approach is not usable [28]. 

Clustering is another example of a profile-based 
method. Clustering has been applied to all traffic, 

comparing the centers of known “normal” traffic 

clusters to the centers of actual traffic, to try and 

determine if the actual traffic is not normal [12]. 

Unfortunately, this specific approach has only been 

applied to Simple Network Management Protocol 

(SNMP) objects, not network flows, and requires 

known normal traffic data.  Clustering techniques have 

been used to characterize DDoS attack traffic (K-

means, Clustering Large Applications (CLARA), and 

Self Organizing Maps) [13]. K-means was found to be 

the most accurate for attack detection because attack 
traffic has strong similarity as opposed to the 

heterogeneity of normal traffic. In this research, 

“attack” clusters still mixed in legitimate traffic with 

malicious (between .4% and 2.04%). We believe this 

phenomenon can be eliminated by clustering only 

demonstrated “outliers”, not all traffic. 

To avoid the issues we have identified with PCA 

and clustering when applied separately, we will use 

FPCA (instead of PCA) and apply clustering to the 

resulting outliers [28] (that paper examined “scanner” 

behavior, where here we analyze a DDoS attack).  We 
perform classification only using the data that is given 

as input, making this technique well-suited for dealing 

with an unknown attack.  We suggest this is more 

appropriate than using a supervised approach trained 
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on data from a previous attack, as there are a wide 

variety of different attack vectors, and what was 

previously learned may not apply. 

When ground truth knowledge of true perpetrators 

in an attack is non-existent, the notion of “false-

positives” in anomaly detection arises.  Frequently, 

these are potentially controlled with risk assessment, 

computational trust, and reputation models (for a 
survey, see [14]).  Methods based on probabilistic risk 

assessments are widely used and seem to provide 

promising results [15].  We introduce a probabilistic 

approach to risk assessment which assigns a “threat 

level” to potential attackers. 

 

3. System Design and Dataset Description  
 

     The size of the organization does not matter when it 

comes to protection from attack.  Big, small, startup: 

hackers still want your data and they will stealthily 

poke holes in your network to find the access points.  

While “security as a service” (SECaaS) exists (e.g., 

Qualys, Sentinel, Sophos, Proofpoint, along with 

offerings from the major cloud computing companies 

such as AWS, Azure, Google) and can offer some 

protection, current solutions cannot benefit everyone; 

SECaaS is usually cloud-based without requiring any 
on-premise hardware or much software distribution.  

However, many organizations, such as government, 

military, and financial organizations, need to tightly 

control their data which is incompatible with SECaaS – 

(meta) data cannot be shipped off-premises.      

     To bridge this gap, we have built a system called 

“NetBrane” (network membrane, [29]).  NetBrane is a 

defense service where technologies are combined to 

construct a shield while leaving data and sensitive 

services on the premises.  Figure 1 shows the NetBrane 

architecture.  Key novelties of the project lies in the 

confluence of: (a) Software-Defined Networking 

(SDN) enabled small distributed footprint with 100G 

capture/filter capability for neutralizing DDoS (left 

side of figure), (b) elastic data analytics using near-real 

time flows and cloud capabilities (all analytics 

described in this paper are conducted in the section 

enclosed within the red box), (c) situational awareness, 
in terms of the global Internet information, and (d) 

proactive reconnaissance, by intelligent synthesis of 

information from multiple sources.  The design calls 

for NetBrane nodes to reside in points-of-presence 

(POPs), capturing and summarizing traffic at line 

speed, finding anomalies worthy of creating filter rules 

for, pushing these filters to the local SDN 

infrastructure, communicating with the appropriate 

POPs routing infrastructure to block traffic, while 

tunneling legitimate traffic to its destination.  We use 

SDN because it allows for dynamic software control of 
network design and operations.  Unfortunately we have 

discovered that openflow will not function at high line 

rates (>20gbps), and have had to design and implement 

a system called FlowRide (not described here). 

     At our large mountain-west university, we have 

installed optical taps to capture network flows (top left, 

Figure 1) at line rate.  FlowRide pushes those flows 

into message queues, which are read by our analytics 

engine (red box on right side of Figure 1) in near-real 

time where traffic is characterized (scanner or attack 

detection); data is saved in parallel to hadoop (HDFS) 
for data lake analytics.  We read these flows from the 

message queue in small time intervals and analyze 

them, applying multi-core (parallel R packages).  We 

have currently demonstrated resilience up to 400Gb/s. 

     The real-world raw data we consider in this paper is 

a collection of bi-directional flow records to and from 

Figure 1. NetBrane system architecture 
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our university, relating to the NTP service.  We focus 

on traffic between January 12 and January 25 of 2014, 

during the second half of which a true real-world 

amplified reflection DDoS was carried out (starting in 

the early morning of January 18).  This attack impacted 
the university in six waves (see Figure 4 for a plot of 

packet counts), with a wave defined by significantly 

decreased packet volume, or the monitoring system 

becoming unavailable. 

     The flow records contain timestamp, source and 

destination IP (SIP & DIP), source (SRC) and 

destination (DST) port, packet and byte counts.  We 

currently only analyze TCP data; we plan to consider 

UDP in future work.  We group information into one-

minute bins, and the full dataset covers roughly twenty-

thousand minutes.  As this is a real-world dataset, we 

lack “ground truth” knowledge of which SIPs are the 
victims (spoofed by attackers).  However, we suggest 

that ground truth is not necessary as we know that an 

amplified reflection DDoS occurred, and we only seek 

ways to alleviate damage. 

     The synthetic data we consider is very similar to the 

NTP attack data in terms of flow records.  This data is 

grouped into one-minute bins, but the total dataset only 

covers forty minutes.  This attack comes in one wave, 

for which we do have ground truth.  There are twenty 

true attackers, all with SIPs of the form 10.1.7.X, 

targeting one victim with SIP 129.82.138.136 on port 
80.  These attackers send approximately 20 million 

packets during the attack. 
 

4. Methodology 
 

Upon initialization of our analytics system, we 

aggregate the most recent thirty-minutes of Internet 

traffic (packet and byte count separately) into one-

minute bins.  For this initial thirty-minute window, we 

assume that we are not under an attack and have 

relatively “usual” traffic.  When one minute has 

passed, we “slide” this window to cover the new 

minute’s worth of data and drop the first observation 

from the previous window (i.e., the “oldest” minute of 
data).  With this mechanism, we always have the most 

recent thirty-minute time series of traffic volumes, 

allowing us to monitor for potential attacks in near-real 

time. 

In each iteration of the thirty-minute window, two 

thresholds (one for packets and one for bytes) are 

calculated and used for volumetric attack detection.  

The threshold is given by Equation (1), 

 

Thresh = max{Xt | t ɛ H} + cv⸱SE[max{Xt | t ɛ H}].  (1) 

 
In the above equation, Xt for t ɛ H is the time series of 

packets or bytes in the given window of history.  

SE[max{Xt | t ɛ H}] is the standard error of the 

maximum packet or byte count from a LOESS fit of 

the packet/byte time series in the window of history.  

Lastly, cv is a critical value determined from 

investigation of long-term (months) packet and byte 
distributions. 

When our window slides and gathers the new, most 

recent minute of packet and byte counts, these values 

are compared to the thresholds calculated in the 

previous window iteration.  That is, we check if the 

new packet/byte count exceeds their respective 

thresholds.  If they are below their thresholds, the 

thresholds are recalculated, and the process is repeated 

when a new minute’s worth of data is collected.  If at 

least one of the counts exceeds their threshold, we 

believe a DDoS has been detected, and begin our 

attack mitigation. 
The motivation for this threshold is as follows: 

when not under attack, previous “large” volumes and 

counts are considered acceptable, so we believe we are 

under attack from a DDoS when new data exceeds the 

largest value in the window of history by more than a 

scaled measure of the maximum’s variability.  This 

also captures the idea that we may see “normal” 

network activity that is larger than a previously 

accepted amount, but only see potential for a DDoS if 

new packet or byte counts exceed what we expect from 

historical variability of our data. 
When an attack is first detected, our system decides 

which destination port the attack is being launched on.  

This port is chosen based on the largest relative change 

in the minute at which the attack was detected.  That is, 

the system has already noticed a large increase in the 

traffic when aggregated across all ports, so we now 

focus on the specific port that saw the largest increase.  

We refer to this as the “attack port”, and then attempt 

to identify attacker SIPs on that port. 

For each SIP that contacted a DIP on the attack port 

in the given window, we construct a time series (by 

minute) of packet counts sent and received by that SIP.  
These time series are then used as input for Functional 

Principal Component Analysis (FPCA), and outliers 

are determined using the FPCA scores.  We perform a 

“two-pass” implementation of FPCA; that is, after 

identifying outliers from one application, they are 

removed from the dataset and FPCA is re-run to flag 

additional outliers.  This portion of the analytics is 

described in more detail in Section 4.1.  Once outlier 

SIPs – the potential attackers – are gathered, risk 

assessment is carried out and a threat level is assigned 

to each.  This threat level exists between 0 and 1 and is 
intended to represent the likelihood of a SIP being an 

attacker, with a value closer to 1 indicating malicious 

activity.  This risk assessment is described in more 

detail in Section 4.2. 
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After the first minute of attack analytics, we switch 

our “sliding” window to one that is a “growing” 

window.  That is, we do not drop the oldest 

observation when a new minute is gathered.  This is 

done so that we do not only investigate attack volumes 
when mitigating the attack.  Note that when the attack 

is first detected, we have 29 minutes of “usual” traffic, 

and FPCA finds outliers by identifying significant 

differences between SIPs in this period of “usual” 

activity and the attackers.  If the sliding window is 

used and the attack continues for a large amount of 

time, we may eventually encounter an instance where 

“usual” activity is drowned out by the attackers, or is 

non-existent, which hinders the ability of FPCA to find 

all significantly different SIPs.  With each new minute, 

the outlier detection procedure and threat level 

assignment are repeated. 
We then perform DDoS mitigation using the set of 

outliers found by our system.  For the SIPs flagged to 

be an outlier by FPCA in previous iterations of attack 

analytics, firewall rules are created to block their traffic 

from the network in future minutes.  That is, the SIPs 

with unusual traffic volumes are prevented from 

impacting the network any further, dampening their 

effect on the system.  In addition, previously 

determined outliers are not considered in subsequent 

FPCA analyses, so new potential attackers can be 

identified and blocked, leading to continued mitigation. 
To determine if an attack has stopped (or 

significantly declined), we set a limit on how long we 

expect to see traffic return to “usual” levels.  When 

new minutes’ data stay below the thresholds that were 

initially exceeded for one hour, we think that we are no 

longer under attack.  At this point, the analytics system 

removes all outlier SIPs from being blocked and 

returns to calculating the packet/byte thresholds until 

another attack is detected.  In addition, the “growing” 

window reverts back to a “sliding” window, snapping 

to the most recent thirty minutes of traffic.  One hour is 

chosen because it is double the size of our sliding 
window.  That is, we revert to monitoring the traffic 

rather than mitigating it when we are sure that volumes 

have returned to “usual” levels, and our thresholds will 

not be inflated by including attack traffic. 

 

4.1. FPCA + K-means 
  

     The procedure begins with application of FPCA in 

order to first classify “outliers” in the data. We 
construct an n × T matrix whose (i,t) entry is the count 

of packets sent and received by the ith SIP during the 

tth minute. FPCA models this as a mean series plus a 

linear combination of eigenfunctions, which are 

orthogonal curves representing the descending 

dimensions of variance in the data; that is, the first 

eigenfunction can be thought of as the direction of 

highest variability, eigenfunction two the second most 

variable, and so on. We employ the Principal Analysis 

by Conditional Expectation (PACE) algorithm of [16]. 

In order to select the number of eigenfunctions in our 
model, we apply the Akaike information criterion 

(AIC) and the Bayesian information criterion (BIC) 

[17]. For the data presented here, these agree on 

parameter selection; but we acknowledge this may not 

always be the case. Context-specific factors should be 

considered when deciding which criterion is more 

appropriate [18].  

     To classify SIPs, we calculate each observed series’ 

FPCA scores, which are projections of the data onto 

the eigenfunctions. Each SIP has one score for every 

eigenfunction, and that SIP is flagged as an “outlier” if 

at least one of its scores exceeds a three standard 
deviation threshold from the mean (well-known due to 

its standard application based on Chebyshev’s 

inequality [19]). For example, from the n scores on the 

first eigenfunction, we can calculate the bounds xbar 

±3s; xbar is the mean score and s is the standard 

deviation. Any SIP whose first eigenfunction score lies 

beyond these bounds is flagged as an outlier.  We use 

the term “outlier” because we do not think all SIPs 

flagged by FPCA are attackers - these are SIPs that 

contacted the network in an unusual way, which can 

clearly include other activity.  Because of this, we 
carry out the second step of clustering these abnormal 

SIPs based on their rate of successful connections, 

where a “success” is characterized as the DIPs sending 

at least one packet back to the SIP. With this, we can 

investigate the cluster that exhibits behavior expected 

of an attacker, as our abnormal SIPs are now separated 

by their connectivity with the network.       

     In order to perform this clustering, we employ the 

K-means algorithm of [20]. The number of clusters in 

the application of K-means is chosen with the “elbow 

method”, which seeks the cluster amount such that 

adding one additional cluster would not have a 
significant impact on the fraction of variance explained 

(FVE) in the entire dataset [21]. K-means is run 

multiple times using randomly generated centers in 

order to assess sensitivity with respect to their centers, 

and we find that our data does not exhibit sensitivity to 

center selection. 

 

4.2. False-Positives and Risk Assessment 
 
     In each iteration of our “growing” window when 

under attack, a set of outlier SIPs is collected as 

potential attackers.  We do not suppose that all outliers 

are attackers, so we aim to introduce a quantitative 

mechanism to allow an operator to filter out possible 

false positives (non-attackers identified as outliers).  
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We call this mechanism a “threat level”, which is a 

value between 0 and 1, with a value closer to 0 

indicating a higher likelihood of a false-positive (non-

threatening). 

     To calculate this threat level, we first gather the 

total data sent and received by each outlier SIP and use 

these to construct a cumulative density estimate of 

“outlier” data.  Then, we take a sample of size 200 (or 

as many as we possibly can, should there be less than 

200) from the non-outlier SIPs, and construct a similar 
cumulative density estimate from their total volumes 

sent and received.  This gives us two cumulative 

density estimates: one for the outliers, and one for the 

non-outliers. 

     Next, for each outlier SIP we calculate its percentile 

in both cumulative density estimates.  That is, each 

outlier SIP has a corresponding p1, which is the 

probability that an outlier has volume less than or equal 

to that of the given SIP, and p2, which is the 

probability that a non-outlier has volume less than or 

equal to that of the given SIP.  The threat level is then 
calculated by Equation (2), 

 

     Threat Level = min(1,max(0, p1 – (1 – p2))).       (2) 

 

     This threat level is motivated by using the SIPs not 

labeled as outliers to determine if the outliers found are 

false positives.  If an outlier’s volume is low, it will be 

closer to the distribution of non-outliers, making us 

think that it is a false-positive.  For example, suppose 

an outlier SIP is a false-positive (non-attacker).  Then, 

the location of that SIP in the outlier cumulative 

density estimate will be close to the body of the non-
outlier cumulative density estimate, making p1 low and 

p2 high.  This translates into a threat level close to 

zero.  Compare this to the case where we have an 

outlier SIP that is an attacker.  This SIP will have both 

p1 and p2 large, translating into a larger threat level. 

     With each outlier being assigned a threat level, 

operators can be more measured in their “blocking” 

during an attack.  If an outlier with a low threat level is 

a known or acceptable SIP, then it may not need to be 

blocked from the network.  This decision would 

require specific knowledge of the network and we 

leave this decision to operators at this time.  In our 

analyses for this paper we always block all outliers 

collected. 
 

5. Results 
 

     We apply our attack detection and mitigation 

methodology to a simulated DDoS attack as well as an 

amplified reflective DDoS attack from 2014.  The 

simulated attack is discussed first, with focus on attack 

detection.  Ground truth from this event allows us to 

use this application of our methodology as validation.  

Following the synthetic event, we discuss the real-

world NTP attack with focus on attack mitigation. 

  

5.1. Simulated Attack 
 

     Our system first initializes on a thirty-minute 

window in which we are not under an attack.  The 

packet (top) and byte (bottom) count time series are 

shown in Figure 2, with the line separating the yellow 

region above indicating the thresholds for attack 

detection, as calculated in this window.  Note the 

observation circled in teal – this is the largest value in 

our window.  At this point, there is a mean packet 
count of 50 thousand and a mean byte count of 25 

million.  After initialization, the simulated attack was 

started, so the next minute of data will include attack 

traffic.  When the new data is received by the system, 

the aggregated packet and byte counts are compared to 

the previous thresholds.  Figure 3 shows both 

thresholds being exceeded (by the point circled in 

pink), which indicates that our system is under attack 

(also denoted by the red region above the yellow).  

Notice that the point circled in teal is the same value 

circled in Figure 2, showing the scale of this attack.  
We now know the simulated attack has begun, 

validating correct attack detection within its first 

Figure 2. Initialization, simulated attack Figure 3. Simulated attack detected 
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minute.  With this new minute of data, the average 

packet count rises to 4.4 million, and the average byte 

count rises to 6.25 billion. 
Next, we seek to determine the attack port by 

finding the port that had the largest relative increase in 
the most recent minute.  In this case, this is identified 

to be port 80, which is the actual destination port being 

targeted by the simulated attack. 

Table 1 shows the outlier SIPs along with their 

cluster center from application of K-means and threat 

level.  Note that all the attackers belong to the same 

cluster with low proportion of successful contacts, 

while the victim is alone in the cluster with a high 

proportion.  This separation is due to the victim 

appearing in the period of “usual” activity prior to the 

attack.  It was behaving in its usual way, reaching out 

to other IPs on the network and receiving responses.  
The attackers do not appear in this portion of the 

dataset, only coming into play during the most recent 

minute of the window.  They only contact the victim, 

and since they are performing a DDoS and sending 

large volumes, they receive no responses.    

We also see a separation between attackers and 

victim in the form of the threat level.  All attackers 

have threat levels of at least 88%, which is appropriate 

because we want a larger threat level to indicate 

malicious SIPs.  The victim has a threat level of about 

5%, which accurately reflects the fact that it is a false-
positive (non-attacker outlier).  We believe it is quite 

useful that this technique captures the victim because it 

likely removes a secondary step of further investigating 

the attackers to determine their target. 

When the next minute of data is gathered, we block 

traffic from all twenty-one of these outliers.  This 

significantly reduces the volume seen on the network, 

and returns packet and byte counts to below their 

respective thresholds.  This minute still involves attack 

traffic, but we have mitigated all of it since we have 

identified all malicious SIPs.  The same is true for the 

remaining minutes of the dataset – we stay below our 

thresholds and mitigate the DDoS event.  This analysis 
focuses on an attack that only comes in one wave and 

does not have enough “usual” traffic following the 

simulated event to fully discuss when to stop blocking 

the identified outliers from the network. 

 

Table 1. Simulated DDoS attack - outlier summary 

SIP Cluster Center Threat Level 

10.1.7.133 0 0.9961 

10.1.7.141 0 0.9903 

10.1.7.89 0 0.9785 

10.1.7.150 0 0.9779 

10.1.7.136 0 0.967 

10.1.7.20 0 0.967 

10.1.7.37 0 0.9554 

10.1.7.113 0 0.9533 

10.1.7.53 0 0.9327 

10.1.7.147 0 0.9286 

10.1.7.23 0 0.9272 

10.1.7.85 0 0.9259 

10.1.7.127 0 0.9203 

10.1.7.71 0 0.9189 

10.1.7.134 0 0.9148 

10.1.7.148 0 0.9134 

10.1.7.81 0 0.9108 

10.1.7.82 0 0.9033 

10.1.7.58 0 0.8978 

10.1.7.149 0 0.8801 

129.82.138.136 0.94 0.0527 

 

Figure 4. NTP attack packet counts - actual (blue), “strategy a” reduced (orange), “strategy b” reduced (green) 
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5.2. NTP Attack 
  

In applying our detection mechanism to the real-
world NTP amplified reflection DDoS attack, the 

packet threshold is immediately exceeded in the first 

minute of the first wave of the attack.  As this dataset 

consists only of NTP traffic, the step of determining 

the “attack port” is unnecessary.   

Recall our mitigation strategy: we “remember” the 

SIPs we flag as outliers and block their activity until 

aggregate traffic stays below our thresholds for one 

hour.  This attack includes six waves, each of which is 

more than one hour after the end of the previous (as 

shown in Figure 4).  Because of the big gaps between 
the waves, our analytics system treats these waves as 

six different attacks, as we “forget” outlier SIPs from 

previous waves.  Since we now have the knowledge 

that this is one attack, we aim to compare our current 

strategy to one in which outliers are not forgotten and 

their traffic continues to be blocked.  For the purposes 

of this discussion, we refer to the strategy of forgetting 

outliers after one hour of usual activity as “Strategy 

A”, and the alternative of never forgetting outliers as 

“Strategy B”. 

Figure 4 shows the time series (by minute) of 

packet counts sent and received on the network for the 
NTP DDoS event.  The actual packet count series of 

the event is shown in blue.  The series shown in orange 

is the remaining packet counts after mitigation Strategy 

A has been applied, and the series shown in green is 

after mitigation Strategy B has been applied; that is, 

these are the packet counts that would have been seen 

if our blocking rules had been in effect (actual packet 

count minus outliers’ packet count).   

First observe in Figure 4 that the series of packet 

counts for both Strategy A and Strategy B are well 

below that of the actual attack.  This visually indicates 
that our mitigation procedure is effective in reducing 

the impact of the attack.  Numerically, we can 

investigate total packet counts across the entire attack 

for all three series.  In the actual attack, approximately 

2.8⸱109 packets were sent and received across the 

network on the NTP service.  Applying Strategy A 

brings the total packet count to approximately 6.4⸱108, 

or 23% of the true attack (a 77% reduction in packets).  

Applying Strategy B brings the total packet count to 

approximately 2.4⸱108, or 8.7% of the true attack (a 

91.3% reduction in packets). 

 To more formally compare the packet counts of the 
attack and our two mitigation strategies, we perform 

paired t-tests for each of the three combinations [22].  

That is, we test for significant differences between the 

packet counts of the attack and Strategy A, the attack 

and Strategy B, and both strategies.  In all three of 

these tests, a p-value of less than 2⸱10-16 is reported, 

indicating strong statistical evidence for a difference in 

these time series.  From the visual inspection of Figure 

4, we certainly expected the reduced packet count 

series to be different from the true attack, but we also 

see a significant difference between Strategy A and B.  
To further investigate their difference, we calculate the 

Dynamic Time Warping (DTW) “distance” between 

the two packet counts – a smaller distance implies a 

greater similarity in the series [23].  The DTW 

“distance” is calculated to be approximately 2.7⸱108.  

While this seems large, it is relatively small when 

compared to the DTW “distance” between the true 

attack and the two strategies: Strategy A is roughly 

2.5⸱109 away from the full un-mitigated attack, and 

Strategy B is at almost 3.5⸱109.  We expected Strategy 

B to be further from the true attack because of the 

larger packet reduction it achieved, but it is interesting 
that we observe such a significant difference between 

the resulting time series of Strategy A and B.  Strategy 

B clearly outperforms Strategy A.  Further discussion 

about these two strategies is included in Section 6. 

 This mitigation includes the steps of outlier 

detection, clustering, and threat level assignment in our 

analytics.  Recall that, for this analysis, we 

“remember” and block all outliers found in future 

traffic.  This makes the resulting clusters and threat 

levels calculated throughout the NTP attack 

independent of our mitigation.  This does not always 
need to be the case, as the system (or an operator) 

could block traffic from only outliers with a threat 

level above a specified threshold, outliers in certain 

clusters, or a combination of the two.  In any instance 

of this, fewer outliers would be blocked than were 

found, and the mitigation achieved would not be as 

large as that from Strategy A or Strategy B.  That is, 

the mitigation we are comparing here is between 

extremes – the true attack and blocking all outliers.  As 

such, we do not investigate the effect of blocking 

subsets of outliers in this paper.  For our analysis, the 

clusters and threat levels were used to better 
understand the types of behaviors that were apparent 

during the attack.  This is a benefit that was highlighted 

in the smaller simulated attack of Section 5.1, and one 

that an operator would be able to use as well. 

 

6. Discussion  
 

Our attack detection mechanism relies on the 

sliding-window approximation of real-time streaming 

data.  Thirty-minutes is selected as the window size 

because it is a near “worst-case” scenario in terms of 

how much data we need for our statistical procedures to 

be applicable.  We want our FPCA results to be 

accurate and stable, and we feel going below thirty 

observations for each series would breach this.  A larger 
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window could be kept for attack detection, but this 

would impact the thresholds in each iteration of the 

window.  This would also alter the set of outliers found 

when an attack is detected, as we would have more 

“usual” activity in the beginning of the time series. 
In Section 5.1, we applied our attack detection 

methodology to a simulated DDoS attack.  Our 

analytics detected the attack within its first minute of 

activity, and accurately identified the twenty attackers 

as well as the one victim.  The clustering results and 

threat level assignments clearly separated attackers 

from victim.  In the real-world attack of Section 5.2, 

we cannot expect to see such a distinct stratification of 

outliers because we do not have “ground truth” 

knowledge of the attackers.  We cannot check if they 

have significantly larger threat levels or appear in 

clusters distinct from the non-attackers.  Further, we do 
not know how many true attackers there are, so the 

threat level procedure we implement might produce 

“deflated” values for truly malicious SIPs. 

To demonstrate this, consider the early phases of an 

attack with many malicious IPs.  Imagine our 

unsupervised FPCA outlier identification produces a 

set of SIPs that is only a subset of the attackers 

(because some have not had enough time to fully 

behave like an attacker), so that some attackers are left 

in the non-outlier set.  In assigning threat levels, we 

compare probabilities from outlier and non-outlier 
cumulative density estimates, and having attackers 

included in the non-outlier set makes the non-outlier 

distribution closer to that of the outliers.  In turn, the 

approach think that outliers are more like “usual 

traffic”, producing a lower threat level.  Note that we 

attempt to reduce the impact of this issue by creating 

non-outlier cumulative density estimates from a sample 

of non-outliers, so it is possible that we will avoid 

attackers that have not yet been flagged as outliers.  

Even with this, we concede that it is possible for some 

attackers to be treated as non-outliers – this is very 

difficult to control for without ground truth knowledge 
of the dataset. 

We compared two mitigation strategies in Section 

5.2 – Strategy A involved “forgetting” outliers and 

resetting blocking rules when an attack subsides below 

initial thresholds for an hour while Strategy B 

mimicked a perfect memory and continual blocking.  

Strategy A reduced total packet counts of the event to 

23% of the original un-mitigated amount, and Strategy 

B reduced it to 8.7%.  Strategy B achieves greater 

packet reduction, as it immediately blocks SIPs that 

were flagged as outliers in previous waves.  We 
suggest Strategy B is most useful when a “botnet” is 

being used for an attack, because the IPs are “re-

engaging” after a pause.  By building up this botnet 

list, and completely blocking them, they cannot even 

“restart” the attack.  Further, this is why the reduced 

packet counts are identical in the first wave shown in 

Figure 4 (the green and orange series over plot) – there 

are no previous outliers for Strategy B to block.   

Note that mitigation achieved is not the only 
difference between these Strategies.  In all waves after 

the first, Strategy A allows traffic through that was 

previously being blocked, increasing the packet counts 

relative to Strategy B, while also providing a different 

set of SIPs for FPCA to use as input.  As a result, this 

also changes the threat level calculation, and 

introduces a greater chance for having attackers in the 

non-outlier set. 

This may seem to indicate that a “perfect memory” 

of outliers after an attack has been detected is superior, 

but this does not account for the true nature of the real 

world.  During an actual DDoS attack, there is no way 
to tell how many “waves” there will be and when they 

will stop.  Due to this, we initially recommend 

“forgetting” the outliers and returning to a sliding 

window (monitoring for the start of an attack) after one 

hour.  We allow for human operators to interact and 

configure the system to implement Strategy B for a 

while, and then to reset when ready. 

We do not suggest that our methodology can be 

used as a “set-and-forget” piece of software, but rather 

a strong supplemental tool to an operator or operating 

team.  Consider our mechanism detecting the start of a 
DDoS attack and informing humans.  Outlier SIPs will 

be blocked, mitigating the attack, while summary 

information (clusters and threat levels) are provided to 

operators every minute.  They then have at least one 

hour to investigate further and more accurately 

determine the nature of the attack.  For example, 

suppose a “false alarm” is detected (large packet/byte 

counts that do not truly represent an attack).  If the 

operator determines that this was a false alarm, they 

can stop the blocking and not have to wait an hour the 

system to return to attack monitoring.  Alternatively, 

should a true attack be detected, and operators think 
there may be waves, the one-hour limit can be removed 

so that larger and faster mitigation is achieved.  In all, 

we suggest the length of time it takes for the analytics 

system goes from attack mitigation back to detection is 

a tuning parameter that should be informed by specific 

knowledge of the network/institution. 

 

7. Conclusions  
 

We have demonstrated an unsupervised, adaptive 

technique for detecting and mitigating DDoS attacks 

on both synthetic and real-world datasets.  Dynamic 

thresholding is shown to detect the attack, and the 

FPCA+Kmeans approach mitigates the volume 

significantly (by more than 90%).  Such unsupervised 
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approaches are best suited for detection and mitigation 

of “unknown” attacks.  We have investigated two 

strategies for reducing packet and byte counts during 

an attack and suggest operators with network-specific 

knowledge can use both as appropriate.  Assignment of 
probabilistic threat levels to the outliers allows for 

better understanding of the SIPs identified. 
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