19,848 research outputs found

    LDPC Code Design for Noncoherent Physical Layer Network Coding

    Full text link
    This work considers optimizing LDPC codes in the physical-layer network coded two-way relay channel using noncoherent FSK modulation. The error-rate performance of channel decoding at the relay node during the multiple-access phase was improved through EXIT-based optimization of Tanner graph variable node degree distributions. Codes drawn from the DVB-S2 and WiMAX standards were used as a basis for design and performance comparison. The computational complexity characteristics of the standard codes were preserved in the optimized codes by maintaining the extended irregular repeat-accumulate (eIRA). The relay receiver performance was optimized considering two modulation orders M = {4, 8} using iterative decoding in which the decoder and demodulator refine channel estimates by exchanging information. The code optimization procedure yielded unique optimized codes for each case of modulation order and available channel state information. Performance of the standard and optimized codes were measured using Monte Carlo simulation in the flat Rayleigh fading channel, and error rate improvements up to 1.2 dB are demonstrated depending on system parameters.Comment: Six pages, submitted to 2015 IEEE International Conference on Communication

    Nonlinear dynamical analysis of the Blazhko effect with the Kepler space telescope: the case of V783 Cyg

    Get PDF
    We present a detailed nonlinear dynamical investigation of the Blazhko modulation of the Kepler RR Lyrae star V783 Cyg (KIC 5559631). We used different techniques to produce modulation curves, including the determination of amplitude maxima, the O-C diagram and the analytical function method. We were able to fit the modulation curves with chaotic signals with the global flow reconstruction method. However, when we investigated the effects of instrumental and data processing artefacts, we found that the chaotic nature of the modulation can not be proved because of the technical problems of data stitching, detrending and sparse sampling. Moreover, we found that a considerable part of the detected cycle-to-cycle variation of the modulation may originate from these effects. According to our results, even the four-year-long, unprecedented Kepler space photometry of V783 Cyg is too short for a reliable nonlinear dynamical analysis aiming at the detection of chaos from the Blazhko modulation. We estimate that two other stars could be suitable for similar analysis in the Kepler sample and in the future TESS and PLATO may provide additional candidates.Comment: 9 pages, 12 figures, accepted for publication in MNRA

    The CoRoT star 105288363: strong cycle to cycle changes of the Blazhko modulation

    Get PDF
    We present the analysis of the CoRoT star 105288363, a new Blazhko RR Lyrae star of type RRab (f0 = 1.7623 c/d), observed with the CoRoT space craft during the second long run in direction of the galactic center (LRc02, time base 145 d). The CoRoT data are characterized by an excellent time sampling and a low noise amplitude of 0.07 mmag in the 2-12 c/d range and allow us to study not only the fine details of the variability of the star but also long-term changes in the pulsation behaviour and the stability of the Blazhko cycle. We use, among other methods, standard Fourier analysis techniques and O-C diagrams to investigate the pulsational behavior of the Blazhko star 105288363. In addition to the frequency pattern expected for a Blazhko RR Lyrae star, we find an independent mode (f1 = 2.984 c/d) showing a f0/f1 ratio of 0.59 which is similar to that observed in other Blazhko RR Lyrae stars. The bump and hump phenomena are also analysed, with their variations over the Blazhko cycle. We carefully investigated the strong cycle-to-cycle changes in the Blazhko modulation (PB = 35.6 d), which seem to happen independently and partly diametrically in the amplitude and the phase modulation. Furthermore, the phasing between the two types of modulation is found to change during the course of the observations.Comment: 15 pages, 8 figures, accepted for publication in MNRA

    Phase Diagram of Bosons in Two-Color Superlattices from Experimental Parameters

    Full text link
    We study the zero-temperature phase diagram of a gas of bosonic 87-Rb atoms in two-color superlattice potentials starting directly from the experimental parameters, such as wavelengths and intensities of the two lasers generating the superlattice. In a first step, we map the experimental setup to a Bose-Hubbard Hamiltonian with site-dependent parameters through explicit band-structure calculations. In the second step, we solve the many-body problem using the density-matrix renormalization group (DMRG) approach and compute observables such as energy gap, condensate fraction, maximum number fluctuations and visibility of interference fringes. We study the phase diagram as function of the laser intensities s_2 and s_1 as control parameters and show that all relevant quantum phases, i.e. superfluid, Mott-insulator, and quasi Bose-glass phase, and the transitions between them can be investigated through a variation of these intensities alone.Comment: 4 pages, 3 figure

    Autonomous Bursting in a Homoclinic System

    Full text link
    A continuous train of irregularly spaced spikes, peculiar of homoclinic chaos, transforms into clusters of regularly spaced spikes, with quiescent periods in between (bursting regime), by feeding back a low frequency portion of the dynamical output. Such autonomous bursting results to be extremely robust against noise; we provide experimental evidence of it in a CO2 laser with feedback. The phenomen here presented display qualitative analogies with bursting phenomena in neurons.Comment: Submitted to Phys. Rev. Lett., 14 pages, 5 figure
    corecore