32 research outputs found

    Automating Security Risk and Requirements Management for Cyber-Physical Systems

    Get PDF
    Cyber-physische Systeme ermöglichen zahlreiche moderne Anwendungsfälle und Geschäftsmodelle wie vernetzte Fahrzeuge, das intelligente Stromnetz (Smart Grid) oder das industrielle Internet der Dinge. Ihre Schlüsselmerkmale Komplexität, Heterogenität und Langlebigkeit machen den langfristigen Schutz dieser Systeme zu einer anspruchsvollen, aber unverzichtbaren Aufgabe. In der physischen Welt stellen die Gesetze der Physik einen festen Rahmen für Risiken und deren Behandlung dar. Im Cyberspace gibt es dagegen keine vergleichbare Konstante, die der Erosion von Sicherheitsmerkmalen entgegenwirkt. Hierdurch können sich bestehende Sicherheitsrisiken laufend ändern und neue entstehen. Um Schäden durch böswillige Handlungen zu verhindern, ist es notwendig, hohe und unbekannte Risiken frühzeitig zu erkennen und ihnen angemessen zu begegnen. Die Berücksichtigung der zahlreichen dynamischen sicherheitsrelevanten Faktoren erfordert einen neuen Automatisierungsgrad im Management von Sicherheitsrisiken und -anforderungen, der über den aktuellen Stand der Wissenschaft und Technik hinausgeht. Nur so kann langfristig ein angemessenes, umfassendes und konsistentes Sicherheitsniveau erreicht werden. Diese Arbeit adressiert den dringenden Bedarf an einer Automatisierungsmethodik bei der Analyse von Sicherheitsrisiken sowie der Erzeugung und dem Management von Sicherheitsanforderungen für Cyber-physische Systeme. Das dazu vorgestellte Rahmenwerk umfasst drei Komponenten: (1) eine modelbasierte Methodik zur Ermittlung und Bewertung von Sicherheitsrisiken; (2) Methoden zur Vereinheitlichung, Ableitung und Verwaltung von Sicherheitsanforderungen sowie (3) eine Reihe von Werkzeugen und Verfahren zur Erkennung und Reaktion auf sicherheitsrelevante Situationen. Der Schutzbedarf und die angemessene Stringenz werden durch die Sicherheitsrisikobewertung mit Hilfe von Graphen und einer sicherheitsspezifischen Modellierung ermittelt und bewertet. Basierend auf dem Modell und den bewerteten Risiken werden anschließend fundierte Sicherheitsanforderungen zum Schutz des Gesamtsystems und seiner Funktionalität systematisch abgeleitet und in einer einheitlichen, maschinenlesbaren Struktur formuliert. Diese maschinenlesbare Struktur ermöglicht es, Sicherheitsanforderungen automatisiert entlang der Lieferkette zu propagieren. Ebenso ermöglicht sie den effizienten Abgleich der vorhandenen Fähigkeiten mit externen Sicherheitsanforderungen aus Vorschriften, Prozessen und von Geschäftspartnern. Trotz aller getroffenen Maßnahmen verbleibt immer ein gewisses Restrisiko einer Kompromittierung, worauf angemessen reagiert werden muss. Dieses Restrisiko wird durch Werkzeuge und Prozesse adressiert, die sowohl die lokale und als auch die großräumige Erkennung, Klassifizierung und Korrelation von Vorfällen verbessern. Die Integration der Erkenntnisse aus solchen Vorfällen in das Modell führt häufig zu aktualisierten Bewertungen, neuen Anforderungen und verbessert weitere Analysen. Abschließend wird das vorgestellte Rahmenwerk anhand eines aktuellen Anwendungsfalls aus dem Automobilbereich demonstriert.Cyber-Physical Systems enable various modern use cases and business models such as connected vehicles, the Smart (power) Grid, or the Industrial Internet of Things. Their key characteristics, complexity, heterogeneity, and longevity make the long-term protection of these systems a demanding but indispensable task. In the physical world, the laws of physics provide a constant scope for risks and their treatment. In cyberspace, on the other hand, there is no such constant to counteract the erosion of security features. As a result, existing security risks can constantly change and new ones can arise. To prevent damage caused by malicious acts, it is necessary to identify high and unknown risks early and counter them appropriately. Considering the numerous dynamic security-relevant factors requires a new level of automation in the management of security risks and requirements, which goes beyond the current state of the art. Only in this way can an appropriate, comprehensive, and consistent level of security be achieved in the long term. This work addresses the pressing lack of an automation methodology for the security-risk assessment as well as the generation and management of security requirements for Cyber-Physical Systems. The presented framework accordingly comprises three components: (1) a model-based security risk assessment methodology, (2) methods to unify, deduce and manage security requirements, and (3) a set of tools and procedures to detect and respond to security-relevant situations. The need for protection and the appropriate rigor are determined and evaluated by the security risk assessment using graphs and a security-specific modeling. Based on the model and the assessed risks, well-founded security requirements for protecting the overall system and its functionality are systematically derived and formulated in a uniform, machine-readable structure. This machine-readable structure makes it possible to propagate security requirements automatically along the supply chain. Furthermore, they enable the efficient reconciliation of present capabilities with external security requirements from regulations, processes, and business partners. Despite all measures taken, there is always a slight risk of compromise, which requires an appropriate response. This residual risk is addressed by tools and processes that improve the local and large-scale detection, classification, and correlation of incidents. Integrating the findings from such incidents into the model often leads to updated assessments, new requirements, and improves further analyses. Finally, the presented framework is demonstrated by a recent application example from the automotive domain

    Rekommendationssamling om tillämpningen av vissa bestämmelser om informationssäkerhet

    Get PDF
    Denna rekommendationssamling som utfärdats av informationsförvaltningsnämnden ger vägledning när det gäller att uppfylla olika krav som ställs i lagen om informationshantering inom den offentliga förvaltningen. Kapitel 4 i informationshanteringslagen innehåller de krav på informationssäkerhet som alla myndigheter som hör till tillämpningsområdet för informationshanteringslagen ska uppfylla. För att se till att informationssäkerhetskraven uppfylls har informationshanteringsnämnden gett rekommendationer som gäller informationssäkerhet. Informationshanteringsnämnden godkände den senaste versionen av rekommendationssamlingen på sina möten den 11 juni och den 14 oktober 2021. Ersätter de versioner som publicerades den 1 april 2020 (Finansministeriets publikationer 2020:21) och den 21 september 2020 (Finansministeriets publikationer 2020:61). Informationshanteringsnämnden godkände den ursprungliga versionen av rekommendationssamlingen den 26 mars 2020 och kompletteringen den 23 juni 2020

    Testen von Datensicherheit in vernetzten und automatisierten Fahrzeugen durch virtuelle Steuergeräte

    Get PDF
    In der Automobilindustrie sind in den vergangenen Jahren die zwei Trends Automatisierung und Vernetzung entstanden. Diese Trends sorgen für eine steigende Anzahl an Funktionen im Fahrzeug. Neben einer Erhöhung des Komforts nehmen jedoch auch die Risiken durch den unerlaubten Zugriff von außen zu. Das IT-Manipulationen bei Fahrzeugen keine Ausnahme bilden, zeigen bereits erste Beispiele. Besonders durch die langen Lebenszyklen in der Automobilindustrie und der Tatsache, dass 44% aller Angriffe auf IT-Systeme durch bekannte Schwachstellen geschehen, müssen Fahrzeuge bereits in der Entwicklung abgesichert werden. Bezogen auf die funktionale Sicherheit (engl. Safety) existieren in der Automobilentwicklung bereits eine Vielzahl an Testprozessen und -methoden. Eine Übertragbarkeit dieser auf die Datensicherheit (engl. Security) ist jedoch nicht gegeben, wodurch neue Methoden am Entstehen sind. Daher wird eine Testmethode mittels virtuellen Steuergeräten vorstellt. Hierfür wird aufgezeigt, welche Beobachtungspunkte und Überwachungsfunktionen für die Tests der Datensicherheit gegeben sein müssen, wie sich daraus eine Testmethodik ableiten lässt und wie diese Testmethodik anschließend in die Automobilentwicklung eingebunden werden kann. Für die Testmethodik wurden die Bereiche Speicher-, Numerische-, Systematische-, Funktionale- und Anwendungsfehler identifiziert. Der Fokus wird dabei auf die ersten beiden Fehlerarten gelegt und daraus Kriterien für einen Test der Datensicherheit abgeleitet. Anhand der Kriterien werden Beobachtungspunkte in bestehenden Testsystemen analysiert und basierend auf einem virtuellen Steuergerät neue Beobachtungspunkte ergänzt. Hierbei werden nicht nur Schnittstellen des Steuergeräts berücksichtigt, sondern ebenfalls interne Zustände des steuernden Artefakts (ausgeführte Instruktionen, Variablen und Speicherbereiche) und des ausführenden Artefakts (Register, lokaler Busse und Recheneinheit). Eine Berücksichtigung der internen Zustände ist wichtig, da Speicherfehler und numerische Fehler nicht zwangsläufig an die Schnittstellen propagieren und dadurch in der Umwelt sichtbar sind. Anhand der Beobachtungspunkte in einem virtuellen Steuergerät wurde eine Gesamtsystemsimulation erstellt, die das Steuergerät mit Applikation, Prozessor und Peripherie simuliert. Eine Co-Simulation übernimmt die Erzeugung der Teststimuli. Durch die Beobachtungspunkte können Rückschlüsse auf das Verhalten und die Zustände innerhalb des Steuergeräts gezogen werden. Durch die zusätzlichen Beobachtungspunkte können Testmethoden wie Überwachung der Instruktionen und Register, Analyse der Eingaben, Markierung des genutzten Speichers und Analysemöglichkeiten der Codeabdeckung eingesetzt werden. Zusätzlich ergeben sich durch evolutionäre Verfahren die Möglichkeit der Maximierung des Variablen Wachstums und des Speicherzugriffs sowie die Minimierung des Abstands zwischen Heap und Stack. Um die Testmethoden in einem Entwicklungsprozess einsetzten zu können werden die Ergebnisse auf eine vernetzte Funktion (Adaptive Cruise Control) skaliert und das Echtzeitverhalten beurteilt. Für die Simulation eines einzelnen Steuergeräts können dabei bis zu 62 Steuergeräte parallel simuliert werden, bevor die Simulation auf der realen Hardware schneller als der Ablauf in der Simulation ist. Durch die Ergänzung von Überwachungsfunktionen und Co-Simulationen sinkt das Echtzeitverhältnis jedoch exponentiell. Abschließend wird die Testmethodik mit Angriffen aus der Automobilindustrie bewertet und aufgezeigt, welche Fehler erkannt worden wären. Die Testmethodik ist dabei jedoch nur so genau, wie die zugrundeliegenden Modelle. Eine Erhöhung der Genauigkeit bedeutet dabei höhere Kosten in der Entwicklung. Zudem muss der Quellcode für die Applikation als Source- oder Maschinencode bekannt sein. Wird die Testmethode als Ergänzung zu bereits bekannten Testverfahren eingesetzt, können jedoch Probleme in der Datensicherheit bereits der Entwicklung erkannt werden

    Integration von bestehendem Sicherheitswissen in einen Software-Entwicklungsprozess

    Get PDF
    Die Komplexität der Sicherheitsdomäne schränkt die Wiederverwendung von existierenden Sicherheitswissen bei der Entwicklung von Software ein. In dieser Arbeit wird ein Modell für Sicherheitswissen und ein Prozess aufgezeigt, um das bereits vorhandene Sicherheitswissen effektiv in einen Software-Entwicklungsprozess einzubetten, um zielgerichtet Sicherheitsmaßnahmen für ein Software-System zu implementieren

    Case Kritis - Fallstudien zur IT-Sicherheit in Kritischen Infrastrukturen

    Get PDF
    Kritische Infrastrukturen bilden das Rückgrat unserer Gesellschaft. Fallen sie aus, kaskadieren die Auswirkungen schnell und können katastrophale Folgen haben. Wie andere Unternehmen sind auch Kritische Infrastrukturen weitgehend von Informationstechnik durchdrungen und nicht selten von deren fehlerfreier Funktion abhängig. Es wundert somit nicht, dass auch der Gesetzgeber angemessene Maßnahmen verlangt. Aber welchen speziellen Herausforderungen stehen Kritische Infrastrukturen dabei gegenüber? Und wie kann diesen wirksam und effizient begegnet werden? Dieses Buch bündelt neun Lösungen aus der Praxis, die Good Practices von Betreibern Kritischer Infrastrukturen, beispielgebende Projekte und Technologien aufzeigen und deren Erfolgsfaktoren mögliche Antworten auf diese Fragen geben. Der Band enthält Fachbeiträge zu folgenden Themen: - Gesetzliche Anforderungen an die IT-Sicherheit in Deutschland und Europa - Stand der Technik im Bereich der IT-Sicherheit Kritischer Infrastrukturen - Umsetzung im Unternehmen: Von der IT-Sicherheit zu Innovatio
    corecore