619 research outputs found

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    Reasoning about transfinite sequences

    Full text link
    We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω\omega-sequences but interact synchronously with the system in order to restrict their behaviors. We show that the satisfiability problem for the logics working on ωk\omega^k-sequences is EXPSPACE-complete when the integers are represented in binary, and PSPACE-complete with a unary representation. To do so, we substantially extend standard results about LTL by introducing a new class of succinct ordinal automata that can encode the interaction between the different quantitative temporal operators.Comment: 38 page

    Syntactic Complexity of Circular Semi-Flower Automata

    Full text link
    We investigate the syntactic complexity of certain types of finitely generated submonoids of a free monoid. In fact, we consider those submonoids which are accepted by circular semi-flower automata (CSFA). Here, we show that the syntactic complexity of CSFA with at most one `branch point going in' (bpi) is linear. Further, we prove that the syntactic complexity of nn-state CSFA with two bpis over a binary alphabet is 2n(n+1)2n(n+1)

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    On the Size Complexity of Non-Returning Context-Free PC Grammar Systems

    Get PDF
    Improving the previously known best bound, we show that any recursively enumerable language can be generated with a non-returning parallel communicating (PC) grammar system having six context-free components. We also present a non-returning universal PC grammar system generating unary languages, that is, a system where not only the number of components, but also the number of productions and the number of nonterminals are limited by certain constants, and these size parameters do not depend on the generated language

    On the state complexity of semi-quantum finite automata

    Full text link
    Some of the most interesting and important results concerning quantum finite automata are those showing that they can recognize certain languages with (much) less resources than corresponding classical finite automata \cite{Amb98,Amb09,AmYa11,Ber05,Fre09,Mer00,Mer01,Mer02,Yak10,ZhgQiu112,Zhg12}. This paper shows three results of such a type that are stronger in some sense than other ones because (a) they deal with models of quantum automata with very little quantumness (so-called semi-quantum one- and two-way automata with one qubit memory only); (b) differences, even comparing with probabilistic classical automata, are bigger than expected; (c) a trade-off between the number of classical and quantum basis states needed is demonstrated in one case and (d) languages (or the promise problem) used to show main results are very simple and often explored ones in automata theory or in communication complexity, with seemingly little structure that could be utilized.Comment: 19 pages. We improve (make stronger) the results in section
    corecore