484 research outputs found

    Development of the Availability Concept by Using Fuzzy Theory with AHP Correction, a Case Study: Bulldozers in the Open-Pit Lignite Mine

    Get PDF
    Availability is one of the most used terms in maintainability engineering. This concept is used to denote: The quality of service of an engineering system, i.e., machines, weak points' analysis, asset management, as well as making decisions in the process of life cycle management. Availability is an overall indicator and contains partial indicators that are oriented towards reliability, maintenance, and logistical support. Availability presents a variable value and changes in time and space. Usually, availability is shown as the coefficient of time use of the machine. This approach is not good enough because it does not go into the structure of the availability itself and requires a high level of IT support in system monitoring. In this sense, this paper will use the fuzzy theory and the corresponding analytic hierarchy process (AHP) multi-criteria analysis to present a conceptual and mathematical model for the assessment of availability based on expert judgment. The model will be shown in the case study (on the example) of bulldozers working in the open-pit lignite mine

    Development of the Availability Concept by Using Fuzzy Theory with AHP Correction, a Case Study: Bulldozers in the Open-Pit Lignite Mine

    Get PDF
    Availability is one of the most used terms in maintainability engineering. This concept is used to denote: The quality of service of an engineering system, i.e., machines, weak points' analysis, asset management, as well as making decisions in the process of life cycle management. Availability is an overall indicator and contains partial indicators that are oriented towards reliability, maintenance, and logistical support. Availability presents a variable value and changes in time and space. Usually, availability is shown as the coefficient of time use of the machine. This approach is not good enough because it does not go into the structure of the availability itself and requires a high level of IT support in system monitoring. In this sense, this paper will use the fuzzy theory and the corresponding analytic hierarchy process (AHP) multi-criteria analysis to present a conceptual and mathematical model for the assessment of availability based on expert judgment. The model will be shown in the case study (on the example) of bulldozers working in the open-pit lignite mine

    Energy Harvesting from Vibration with Alternate Scavenging Circuitry and Tapered Cantilever Beam

    Get PDF
    Piezoelectric transducers are increasingly being used to harvest energy from environmental vibrations in order to either power remote sensors or charge batteries that power the sensors. In this paper, a new voltage compensation scheme for high-voltage-based (\u3e 100 V ) energy harvesting is introduced, and its fundamental concepts, as well as the operation details, are elaborated. This scheme, when applied to the voltage inversion method [synchronized switch harvesting on inductor (SSHI)], provides an increase of over 14% in harvested power when compared to the parallel inversion method (parallel SSHI) alone and more than 50% in the case of series inversion method (series SSHI). Second, tapered cantilever beams were shown to be more effective in generating a uniform strain profile over rectangular and trapezoidal beams if they are precisely shaped, resulting in a significant increase in harvested power over available methods in the literature from laboratory experimental tests. In addition, a simplified method to design such a beam is introduced. Finally, a field test of the proposed tapered beam is conducted by using a dozer for earth-moving applications, and experimental results are discussed

    Manned Mars missions: A working group report

    Get PDF
    The discussions of the Working Group (based in large part on working papers, which will shortly be published separately) are summarized. These papers cover a broad range of subjects which need to be addressed in the formulation of such a formidable enterprise as a manned Mars program. Science objective and operations; Mars surface infrastructure and activities; mission and system concepts and configurations; life sciences; impacts on the space infrastructure; and costs, schedules, and organizations are addressed

    AI and IoT Meet Mobile Machines

    Get PDF
    Infrastructure construction is society's cornerstone and economics' catalyst. Therefore, improving mobile machinery's efficiency and reducing their cost of use have enormous economic benefits in the vast and growing construction market. In this thesis, I envision a novel concept smart working site to increase productivity through fleet management from multiple aspects and with Artificial Intelligence (AI) and Internet of Things (IoT)

    Design, testing and validation of model predictive control for an unmanned ground vehicle

    Full text link
    The rapid increase in designing, manufacturing, and using autonomous robots has attracted numerous researchers and industries in recent decades. The logical motivation behind this interest is the wide range of applications. For instance, perimeter surveillance, search and rescue missions, agriculture, and construction. In this thesis, motion planning and control based on model predictive control (MPC) for unmanned ground vehicles (UGVs) is tackled. In addition, different variants of MPC are designed, analysed, and implemented for such non-holonomic systems. It is imperative to focus on the ability of MPC to handle constraints as one of the motivations. Furthermore, the proliferation of computer processing enables these systems to work in a real-time scenario. The controller's responsibility is to guarantee an accurate trajectory tracking process to deal with other specifications usually not considered or solved by the planner. However, the separation between planner and controller is not necessarily defined uniquely, even though it can be a hybrid process, as seen in part of this thesis. Firstly, a robust MPC is designed and implemented for a small-scale autonomous bulldozer in the presence of uncertainties, which uses an optimal control action and a feed-forward controller to suppress these uncertainties. More precisely, a linearised variant of MPC is deployed to solve the trajectory tracking problem of the vehicle. Afterwards, a nonlinear MPC is designed and implemented to solve the path-following problem of the UGV for masonry in a construction context, where longitudinal velocity and yaw rate are employed as control inputs to the platform. For both the control techniques, several experiments are performed to validate the robustness and accuracy of the proposed scheme. Those experiments are performed under realistic localisation accuracy, provided by a typical localiser. Most conspicuously, a novel proximal planning and control strategy is implemented in the presence of skid-slip and dynamic and static collision avoidance for the posture control and tracking control problems. The ability to operate in moving objects is critical for UGVs to function well. The approach offers specific planning capabilities, able to deal at high frequency with context characteristics, which the higher-level planner may not well solve. Those context characteristics are related to dynamic objects and other terrain details detected by the platform's onboard perception capabilities. In the control context, proximal and interior-point optimisation methods are used for MPC. Relevant attention is given to the processing time required by the MPC process to obtain the control actions at each actual control time. This concern is due to the need to optimise each control action, which must be calculated and applied in real-time. Because the length of a prediction horizon is critical in practical applications, it is worth looking into in further detail. In another study, the accuracies of robust and nonlinear model predictive controllers are compared. Finally, a hybrid controller is proposed and implemented. This approach exploits the availability of a simplified cost-to-go function (which is provided by a higher-level planner); thus, the hybrid approach fuses, in real-time, the nominal CTG function (nominal terrain map) with the rest of the critical constraints, which the planner usually ignores. The conducted research fills necessary gaps in the application areas of MPC and UGVs. Both theoretical and practical contributions have been made in this thesis. Moreover, extensive simulations and experiments are performed to test and verify the working of MPC with a reasonable processing capability of the onboard process

    Electrified Powertrains for a Sustainable Mobility: Topologies, Design and Integrated Energy Management Strategies

    Get PDF
    This Special Issue was intended to contribute to the sustainable mobility agenda through enhanced scientific and multi-disciplinary knowledge to investigate concerns and real possibilities in the achievement of a greener mobility and to support the debate between industry and academic researchers, providing an interesting overview on new needs and investigation topics required for future developments

    Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars

    Get PDF
    The currently known resources on Mars are massive, including extensive quantities of water and carbon dioxide and therefore carbon, hydrogen and oxygen for life support, fuels and plastics and much else. The regolith is replete with all manner of minerals. In Situ Resource Utilization (ISRU) applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing and autonomy. These technologies combined with the vast natural resources should enable serious, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars. Various system-level transportation concepts employing Mars produced fuel would enable Mars resources to evolve into a primary center of trade for the inner solar system for eventually nearly everything required for space faring and colonization. Mars resources and their exploitation via extensive ISRU are the key to a viable, safe and affordable, human presence beyond Earth. The purpose of this paper is four-fold: 1) to highlight the latest discoveries of water, minerals, and other materials on Mars that reshape our thinking about the value and capabilities of Mars ISRU; 2) to summarize the previous literature on Mars ISRU processes, equipment, and approaches; 3) to point to frontier ISRU technologies and approaches that can lead to safe and affordable human missions to Mars; and 4) to suggest an implementation strategy whereby the ISRU elements are phased into the mission campaign over time to enable a sustainable and increasing human presence on Mars

    Risk Assessment as a Tool for Mobile Plant Operators for Sustainable Development: Lessons from the Western Australian Mining Industry

    Get PDF
    Mobile plant is used extensively not only in the Western Australian (WA) Mining Industry but internationally as well. The use of mobile plant has inherently high risk and every year is associated with a significant number of workplace fatalities and injuries. Prior to this research being conducted there was no specific data published related to mobile plants incidents and fatalities for the Western Australian mining industries. The aim of this research was to improve the safety performance of mobile plant operators in the Western Australia (WA) mining industry by identifying the causes of mobile plant incidents reported to Resources Safety between 1/1/2007 and 31/3/2020
    • …
    corecore