27 research outputs found

    Physics based modeling of the charging dynamics in silicon nanocrystal non-volatile flash memory cell

    Full text link
    Flash memory devices based on continuous floating gate are rapidly approaching their technological limitations due to excessive gate leakage currents, resulting from reduced tunnel oxide thickness. A new architecture based on Si-Nanocrystal floating gate has shown promise through realization of devices with reduced gate leakage current and lower programming and erase voltages. The dominant transport mechanisms in this device are tunneling of electrons from the (3-D) silicon into the (0-D) nanocrystals and Fowler-Nordheim tunneling of carriers from nanocrystals to the bulk Si. In order to accurately model the charging dynamics of such devices, size based quantum confinement effects should be included. A fully physics based model is developed to describe the current-voltage and current-time characteristics of Si-Nanocrystal Floating Gate flash memory cells. The model includes the size dependent quantum confinement effects and Coulomb blockade effects. The results of the model are compared with various experimental results, such as current-voltage characteristics, program time versus gate voltage and drain voltage characteristics and the agreement in general is good. The model is very flexible, and it can be used to investigate the charging dynamics of any type of nanocrystals embedded in any type of dielectric layers. Additionally, a possible process methodology to achieve control on the size and density of the nanocrystals is proposed

    Etude d'architectures et d'empilements innovants de mémoires Split-Gate (grille séparée) à couche de piégeage discret

    Get PDF
    Du fait de l'augmentation de la demande de produits pour les applications grand public, industrielles et automobiles, des mémoires embarquées fiables et à faible coût de fabrication sont de plus en plus demandées. Dans ce contexte, les mémoires split-gate à piégeage discret sont proposées pour des microcontrôleurs. Elles combinent l'avantage d'une couche de stockage discrète et de la con guration split-gate. Durant ce travail de recherche, des mémoires split-gate à couche de piégeage discret ayant des longueurs de grille de 20nm sont présentées pour la première fois. Celles-ci on été réalisées avec des nanocristaux de silicium (Si-nc), du nitrure de silicium (SiN) ou un hybride Si-nc/SiN avec diélectrique de control de type SiO2 ou AlO et sont comparées en termes de performances lors des procédures d'eff acement et de rétention. Ensuite, la miniaturisation des mémoires split-gate à piégeage de charge est étudié, en particulier au travers de l'impact de la réduction de la longueur de grille sur la fenêtre de mémorisation, la rétention et la consommation. Le rôle des défauts dans le diélectrique de contrôle (alumine) utilisé dans les mémoires de type TANOS a été étudié. Des travaux ont été menés pour déterminer l'origine des pièges dans ce matériau, par le biais de la simulation atomistique ainsi que d'analyses physico-chimiques précises. Nous avons montré que la concentration de pièges dans AlO pouvait être réduite par ajustement des conditions de procédé de fabrication, débouchant ainsi sur l'amélioration de la rétention dans les mémoires à piégeage de charge. Ce résultat est convenable pour les applications de type embarquéDue to the increasing demand for consumer, industrial and automotive products, highly reliable, and low integration cost embedded memories are more and more required. In this context, split-gate charge trap memories were proposed for microcontroller products, combining the advantage of a discrete storage layer and of the split-gate con guration. In this thesis, split-gate charge trap memories with electrical gate length down to 20nm are presented for the 1st time. Silicon nanocristals (Si-nc), or silicon nitride (SiN) and hybrid Si-nc/SiN based split-gate memories, with SiO2 or AlO control dielectrics, are compared in terms of program erase and retention. Then, the scalability of split-gate charge trap memories is studied, investigating the impact of gate length reduction on the memory window, retention and consumption. We thus studied the role of defects on alumina control dielectric employed in TANOS-like memory. We used atomistic simulation, consolidated by a detailed alumina physico-chemical material analysis, to investigate the origin of traps in alumina. We showed that the trap concentration in AlO can be decreased by adjusting the process conditions leading to improved retention behaviour in charge trap memory, suitable for embedded applications.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Telehealth Sensor Authentication Through Memory Chip Variability

    Get PDF
    In light of the COVID-19 world-wide pandemic, the need for secure and readily available remote patient monitoring has never been more important. Rural and low income communities in particular have been severely impacted by the lack of accessibility to in-person healthcare. This has created the need for access to remote patient monitoring and virtual health visits in order for greater accessibility to premier care. In this paper, we propose hardware security primitives as a viable solution to meet the security challenges of the telehealth market. We have created a novel solution, called the High-Low (HiLo) method, that generates physical unclonable function (PUF) signatures based on process variation within flash memory in order to uniquely identify and authenticate remote sensors. The HiLo method consumes 20x less power than conventional authentication schemes, has an average latency of only 39ms for signature generation, and can be readily implemented through firmware on ONFI 2.2 compliant off-the-shelf NAND flash memory chips. The HiLo method generates 512 bit signatures with an average error rate of 5.9 * 10-4, while also adapting for flash chip aging. Due to its low latency, low error rate, and high power efficiency, we believe that the HiLo method could help progress the field of remote patient monitoring by accurately and efficiently authenticating remote health sensors

    Application of novel gate materials for performance improvement in flash memory devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Caractérisation, mécanismes et applications mémoire des transistors avancés sur SOI

    Get PDF
    Ce travail présente les principaux résultats obtenus avec une large gamme de dispositifs SOI avancés, candidats très prometteurs pour les futurs générations de transistors MOSFETs. Leurs propriétés électriques ont été analysées par des mesures systématiques, agrémentées par des modèles analytiques et/ou des simulations numériques. Nous avons également proposé une utilisation originale de dispositifs FinFETs fabriqués sur ONO enterré en fonctionnalisant le ONO à des fins d'application mémoire non volatile, volatile et unifiées. Après une introduction sur l'état de l'art des dispositifs avancés en technologie SOI, le deuxième chapitre a été consacré à la caractérisation détaillée des propriétés de dispositifs SOI planaires ultra- mince (épaisseur en dessous de 7 nm) et multi-grille. Nous avons montré l excellent contrôle électrostatique par la grille dans les transistors très courts ainsi que des effets intéressants de transport et de couplage. Une approche similaire a été utilisée pour étudier et comparer des dispositifs FinFETs à double grille et triple grille. Nous avons démontré que la configuration FinFET double grille améliore le couplage avec la grille arrière, phénomène important pour des applications à tension de seuil multiple. Nous avons proposé des modèles originaux expliquant l'effet de couplage 3D et le comportement de la mobilité dans des TFTs nanocristallin ZnO. Nos résultats ont souligné les similitudes et les différences entre les transistors SOI et à base de ZnO. Des mesures à basse température et de nouvelles méthodes d'extraction ont permis d'établir que la mobilité dans le ZnO et la qualité de l'interface ZnO/SiO2 sont remarquables. Cet état de fait ouvre des perspectives intéressantes pour l'utilisation de ce type de matériaux aux applications innovantes de l'électronique flexible. Dans le troisième chapitre, nous nous sommes concentrés sur le comportement de la mobilité dans les dispositifs SOI planaires et FinFET en effectuant des mesures de magnétorésistance à basse température. Nous avons mis en évidence expérimentalement un comportement de mobilité inhabituel (multi-branche) obtenu lorsque deux ou plusieurs canaux coexistent et interagissent. Un autre résultat original concerne l existence et l interprétation de la magnétorésistance géométrique dans les FinFETs.L'utilisation de FinFETs fabriqués sur ONO enterré en tant que mémoire non volatile flash a été proposée dans le quatrième chapitre. Deux mécanismes d'injection de charge ont été étudiés systématiquement. En plus de la démonstration de la pertinence de ce type mémoire en termes de performances (rétention, marge de détection), nous avons mis en évidence un comportement inattendu : l amélioration de la marge de détection pour des dispositifs à canaux courts. Notre concept innovant de FinFlash sur ONO enterré présente plusieurs avantages: (i) opération double-bit et (ii) séparation de la grille de stockage et de l'interface de lecture augmentant la fiabilité et autorisant une miniaturisation plus poussée que des Finflash conventionnels avec grille ONO.Dans le dernier chapitre, nous avons exploré le concept de mémoire unifiée, en combinant les opérations non volatiles et 1T-DRAM par le biais des FinFETs sur ONO enterré. Comme escompté pour les mémoires dites unifiées, le courant transitoire en mode 1T-DRAM dépend des charges non volatiles stockées dans le ONO. D'autre part, nous avons montré que les charges piégées dans le nitrure ne sont pas perturbées par les opérations de programmation et lecture de la 1T-DRAM. Les performances de cette mémoire unifiée multi-bits sont prometteuses et pourront être considérablement améliorées par optimisation technologique de ce dispositif.The evolution of electronic systems and portable devices requires innovation in both circuit design and transistor architecture. During last fifty years, the main issue in MOS transistor has been the gate length scaling down. The reduction of power consumption together with the co-integration of different functions is a more recent avenue. In bulk-Si planar technology, device shrinking seems to arrive at the end due to the multiplication of parasitic effects. The relay has been taken by novel SOI-like device architectures. In this perspective, this manuscript presents the main achievements of our work obtained with a variety of advanced fully depleted SOI MOSFETs, which are very promising candidates for next generation MOSFETs. Their electrical properties have been analyzed by systematic measurements and clarified by analytical models and/or simulations. Ultimately, appropriate applications have been proposed based on their beneficial features.In the first chapter, we briefly addressed the short-channel effects and the diverse technologies to improve device performance. The second chapter was dedicated to the detailed characterization and interesting properties of SOI devices. We have demonstrated excellent gate control and high performance in ultra-thin FD SOI MOSFET. The SCEs are efficiently suppressed by decreasing the body thickness below 7 nm. We have investigated the transport and electrostatic properties as well as the coupling mechanisms. The strong impact of body thickness and temperature range has been outlined. A similar approach was used to investigate and compare vertical double-gate and triple-gate FinFETs. DG FinFETs show enhanced coupling to back-gate bias which is applicable and suitable for dynamic threshold voltage tuning. We have proposed original models explaining the 3D coupling effect in FinFETs and the mobility behavior in ZnO TFTs. Our results pointed on the similarities and differences in SOI and ZnO transistors. According to our low-temperature measurements and new promoted extraction methods, the mobility in ZnO and the quality of ZnO/SiO2 interface are respectable, enabling innovating applications in flexible, transparent and power electronics. In the third chapter, we focused on the mobility behavior in planar SOI and FinFET devices by performing low-temperature magnetoresistance measurements. Unusual mobility curve with multi-branch aspect were obtained when two or more channels coexist and interplay. Another original result in the existence of the geometrical magnetoresistance in triple-gate and even double-gate FinFETs.The operation of a flash memory in FinFETs with ONO buried layer was explored in the forth chapter. Two charge injection mechanisms were proposed and systematically investigated. We have discussed the role of device geometry and temperature. Our novel ONO FinFlash concept has several distinct advantages: double-bit operation, separation of storage medium and reading interface, reliability and scalability. In the final chapter, we explored the avenue of unified memory, by combining nonvolatile and 1T-DRAM operations in a single transistor. The key result is that the transient current, relevant for 1T-DRAM operation, depends on the nonvolatile charges stored in the nitride buried layer. On the other hand, the trapped charges are not disturbed by the 1T-DRAM operation. Our experimental data offers the proof-of-concept for such advanced memory. The performance of the unified/multi-bit memory is already decent but will greatly improve in the coming years by processing dedicated devices.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Channel-Stacked NAND Flash Memory with High-κ Charge Trapping Layer for High Scalability

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 박병국.Exploding demands for mobile devices induce the drastic expansion of the market of NAND flash memory as high density storage devices. Three-dimensional (3D) NAND flash memory paved a new way of increasing the memory capacity by stacking cells in three-dimension. For stacked NAND flash memory, the thickness of ONO (memory dielectric layers) is a roadblock in scaling-down of the minimum feature size, because channel diameter can be scaled down to < 20 nm. However, it is challenging to reduce the thickness of oxide-nitride-oxide (ONO) layer, since the charge trapping properties degrade when the Si3N4 is made thinner. .In this thesis, the channel stacked NAND flash memory array (CSTAR) with high-κ charge trapping layer for high scalability is proposed. To adopt high-κ layer into 3D NAND, its memory characteristics were evaluated with capacitors and gate-all-around flash memory devices. Finally, 4-layer channel stacked memory with high-κ layer was successfully fabricated and characterized. Recent trend of nonvolatile memories are introduced and the overview of 3D stacked NAND flash memory technology is presented in Chapter 1 and 2. In Chapter 3, the memory characteristics of high-κ layer were evaluated with fabricated capacitors and flash memory devices. In Chapter 4, fabrication process and electrical characteristics of CSTAR with high-κ are shown. With the comparison with previous works using ONO layer, CSTAR with high-κ is evaluated. In Chapter 5, the novel operation method of CSTAR is presented. Using TCAD and measurement, a newly designed operation method is verifiedChapter 1 Introduction 1 1.1 Flash Memory Technology 1 1.2 Flash Memory Unit Cell and Array Structure 6 1.3 NAND Cell Operation 13 1.4 Charge Trap Flash Memory 25 Chapter 2 3-D Stacked NAND Flash Memory 28 2.2 Examination of Previous 3-D Stacked NAND Flash 28 2.2.1 Gate Stack Type 3-D NAND Flash Memory 28 2.2.2 Channel Stack Type 3-D NAND Flash Memory 36 2.2.3 Comparison between the Gate Stack Type and the Channel Stack Type 45 Chapter 3 Channel Stacked NAND Flash Memory with high- Charge Trapping Layer 48 3.1 Introduction 48 3.2 Memory Characteristics of HfO2 52 3.3 Fabrication of Nanowire Memory Devices with high-κ Dielectric Layer 56 Chapter 4 Fabrication of Channel Stacked NAND Flash Memory with High-κ 66 4.1 Introduction 66 4.2 Fabrication Method 67 4.3 Key Process Steps of CSTAR with high-κ 72 4.3.1 Single Crystalline Silicon Channel 72 4.3.2 Fin Patterning 74 4.3.3 Stacked Nanowires 76 4.4 Measurement Results 81 4.5 Comparison with Previous Works 88 Chapter 5 Novel Program Operation in CSTAR 92 5.1 Introduction. 92 5.2 Simulation Results 93 5.3 Measurement Results 103 Chapter 6 Conclusions 106 Bibliography 108 Abstract in Korean 116 List of Publications 118Docto
    corecore