42,475 research outputs found

    Comparing Evaluation Methods for Encumbrance and Walking on Interaction with Touchscreen Mobile Devices

    Get PDF
    In this paper, two walking evaluation methods were compared to evaluate the effects of encumbrance while the preferred walking speed (PWS) is controlled. Users frequently carry cumbersome objects (e.g. shopping bags) and use mobile devices at the same time which can cause interaction difficulties and erroneous input. The two methods used to control the PWS were: walking on a treadmill and walking around a predefined route on the ground while following a pacesetter. The results from our target acquisition experiment showed that for ground walking at 100% of PWS, accuracy dropped to 36% when carrying a bag in the dominant hand while accuracy reduced to 34% for holding a box under the dominant arm. We also discuss the advantages and limitations of each evaluation method when examining encumbrance and suggest treadmill walking is not the most suitable approach to use if walking speed is an important factor in future mobile studies

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Investigating user preferences in utilizing a 2D paper or 3D sketch based interface for creating 3D virtual models

    Get PDF
    Computer modelling of 2D drawings is becoming increasingly popular in modern design as can be witnessed in the shift of modern computer modelling applications from software requiring specialised training to ones targeted for the general consumer market. Despite this, traditional sketching is still prevalent in design, particularly so in the early design stages. Thus, research trends in computer-aided modelling focus on the the development of sketch based interfaces that are as natural as possible. In this report, we present a hybrid sketch based interface which allows the user to make draw sketches using offline as well as online sketching modalities, displaying the 3D models in an immersive setup, thus linking the object interaction possible through immersive modelling to the flexibility allowed by paper-based sketching. The interface was evaluated in a user study which shows that such a hybrid system can be considered as having pragmatic and hedonic value.peer-reviewe

    Mid-air haptic rendering of 2D geometric shapes with a dynamic tactile pointer

    Get PDF
    An important challenge that affects ultrasonic midair haptics, in contrast to physical touch, is that we lose certain exploratory procedures such as contour following. This makes the task of perceiving geometric properties and shape identification more difficult. Meanwhile, the growing interest in mid-air haptics and their application to various new areas requires an improved understanding of how we perceive specific haptic stimuli, such as icons and control dials in mid-air. We address this challenge by investigating static and dynamic methods of displaying 2D geometric shapes in mid-air. We display a circle, a square, and a triangle, in either a static or dynamic condition, using ultrasonic mid-air haptics. In the static condition, the shapes are presented as a full outline in mid-air, while in the dynamic condition, a tactile pointer is moved around the perimeter of the shapes. We measure participants’ accuracy and confidence of identifying shapes in two controlled experiments (n1 = 34, n2 = 25). Results reveal that in the dynamic condition people recognise shapes significantly more accurately, and with higher confidence. We also find that representing polygons as a set of individually drawn haptic strokes, with a short pause at the corners, drastically enhances shape recognition accuracy. Our research supports the design of mid-air haptic user interfaces in application scenarios such as in-car interactions or assistive technology in education

    When paper meets multi-touch : a study of multi-modal interactions in air traffic controls

    Get PDF
    International audienceWhen multiple modes of interaction are available, it is not obvious whether combining these technologies necessarily leads to a better user experience. It can be difficult to determine which modes are most appropriate for each interaction. However, complex activities such as air traffic control require multiple interaction techniques and modalities. As a result, in this paper, we study the technical challenges of adding finger detection to an augmented flight strip board used by air traffic controllers. We use our augmented strip board to evaluate interactions based on touch, digital pen and physical paper objects. From our user study, we find that users are able to quickly adapt to an interface that offers such a wide range of modalities. The availability of different modalities did not overburden the users and they did not find it difficult to determine the appropriate modality to use for each interaction

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Rhythmic Micro-Gestures: Discreet Interaction On-the-Go

    Get PDF
    We present rhythmic micro-gestures, micro-movements of the hand that are repeated in time with a rhythm. We present a user study that investigated how well users can perform rhythmic micro-gestures and if they can use them eyes-free with non-visual feedback. We found that users could successfully use our interaction technique (97% success rate across all gestures) with short interaction times, rating them as low difficulty as well. Simple audio cues that only convey the rhythm outperformed animations showing the hand movements, supporting rhythmic micro-gestures as an eyes-free input technique

    Literacy: A cultural influence on functional left-right differences in the inferior parietal cortex

    Get PDF
    The current understanding of hemispheric interaction is limited. Functional hemispheric specialization is likely to depend on both genetic and environmental factors. In the present study we investigated the importance of one factor, literacy, for the functional lateralization in the inferior parietal cortex in two independent samples of literate and illiterate subjects. The results show that the illiterate group are consistently more right-lateralized than their literate controls. In contrast, the two groups showed a similar degree of left-right differences in early speech-related regions of the superior temporal cortex. These results provide evidence suggesting that a cultural factor, literacy, influences the functional hemispheric balance in reading and verbal working memory-related regions. In a third sample, we investigated grey and white matter with voxel-based morphometry. The results showed differences between literacy groups in white matter intensities related to the mid-body region of the corpus callosum and the inferior parietal and parietotemporal regions (literate > illiterate). There were no corresponding differences in the grey matter. This suggests that the influence of literacy on brain structure related to reading and verbal working memory is affecting large-scale brain connectivity more than grey matter per se

    Different strokes for different folks? Revealing the physical characteristics of smartphone users from their swipe gestures

    Get PDF
    Anthropometrics show that the lengths of many human body segments follow a common proportional relationship. To know the length of one body segment - such as a thumb - potentially provides a predictive route to other physical characteristics, such as overall standing height. In this study, we examined whether it is feasible that the length of a person’s thumb could be revealed from the way in which they complete swipe gestures on a touchscreen-based smartphone.From a corpus of approx. 19000 swipe gestures captured from 178 volunteers, we found that people with longer thumbs complete swipe gestures with shorter completion times, higher speeds and with higher accelerations than people with shorter thumbs. These differences were also observed to exist between our male and female volunteers, along with additional differences in the amount of touch pressure applied to the screen.Results are discussed in terms of linking behavioural and physical biometrics. Keywords: Touchscreen gestures, behavioral biometrics, physical biometrics<br/
    • 

    corecore